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Abstract. For d ≥ 2 we exhibit mixing Z
d shifts of finite type and sofic shifts

with large entropy but poorly separated subsystems (in the sofic examples, the
only minimal subsystem is a single point). These examples consequently have
very constrained factors; in particular, no non-trivial full shift is a factor. We
also provide examples to distinguish certain mixing conditions, and develop
the natural class of “block gluing” shifts. In particular, we show that block
gluing shifts factor onto all full shifts of strictly smaller entropy.

1. Introduction

The Zd shifts of finite type (SFTs) and sofic shifts (d ≥ 2) are a drastically more
problematic and diverse class of systems than their relatives in only one dimension
[24, 26, 28]. The most fundamental theorems in the Z case do not carry over to the
Zd setting for d ≥ 2 and nearly all structural results [4, 5, 9, 12, 14, 16, 17, 18, 24, 27]
hold only for certain subclasses of Zd SFTs or Zd sofic shifts (for a rare exception,
see [8]). Nontrivial mixing Zd SFTs are qualitatively homogeneous in the case
d = 1, but quite heterogeneous for d ≥ 2.

As part of the exploration of this landscape of possibilities, we consider subsys-
tems and factors. Every mixing Z SFT or sofic shift of positive entropy contains
a vast collection of pairwise disjoint subsystems (4.5). For d ≥ 2, Desai has shown
that a general Zd sofic shift X of positive entropy still contains many subsystems: it
contains subshifts achieving all entropies in the interval [0, h(X)]. What we empha-
size in this paper is that, in contrast to the Z case, these subsystems may be very
poorly separated. For example, we exhibit mixing Zd sofic shifts of arbitrarily large
entropy whose only minimal subsystem is a fixed point (so no pair of subsystems
can be disjoint). Similarly, for d ≥ 2 we exhibit Zd SFTs of arbitrarily large entropy
all of whose minimal subsystems are contained in a subSFT of zero entropy.

Under a factor map, the preimages of disjoint subsystems are disjoint. Conse-
quently systems with poorly separated subsystems cannot factor onto systems with
a rich collection of pairwise disjoint subsystems. In particular, our examples cannot
factor onto any non-trivial block gluing SFT, and in particular cannot factor onto
a non-trivial full shift. This provides a negative answer to the question of Johnson
and Madden studied in [14, 9, 5, 11] and is another stark contrast to the case d = 1
(4.6). The sofic examples cannot factor onto or contain a non-trivial SFT, again
in stark contrast to the Z case (4.6). In some cases, our examples can be arranged
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to have topologically completely positive entropy, but at the same time to have no
factor admitting an invariant measure such that as a measurable system it is of
completely positive entropy. The proof (6.1) of the latter property appeals to a Zd

disjointness theorem of Glasner, Thouvenot and Weiss [10].
The paper is organized as follows. In Section 2, we provide symbolic dynamics

background. In Section 3, we define a natural notion of “block gluing” (mixing on
blocks given a uniform separation) and show for d ≥ 2 that any block gluing Zd

shift X has many factors, including full shifts of any smaller entropy and a set of
SFTs with entropies dense in [0, h(X)]. This generalizes the corresponding result
of Johnson-Madden-Desai for corner gluing shifts [14, 9]. In Section 4, we state
our main results on systems with restricted subsystems and factors, and contrast
them with the Z case. The proofs are carried out over Sections 5-10, as described
in Section 4. The constructions are different for the cases d = 2 and d ≥ 3, and
rely heavily on two papers of Mike Hochman [11, 12].

In the appendices, we establish some properties of block gluing shifts, discuss a
range of mixing conditions on Zd shifts (d ≥ 2), and provide some examples. We
show the uniform filling property is not implied by corner gluing; block gluing does
not imply corner gluing; and a block gluing (or even corner gluing) Zd SFT need
not be entropy minimal.

2. Background

We assume a basic familiarity with symbolic dynamics, nevertheless we recall
some notations in this section. Formal definitions of some relevant mixing notions
so far introduced to the study of Zd shifts by other authors can be found in Appendix
A, where we also discuss their mutual relations.

A d-dimensional full shift (d ∈ N) on some finite alphabet A consists of the set

AZ
d

together with the Zd shift action σ~ı : AZ
d → AZ

d

(~ı ∈ Zd) defined at each
coordinate ~ ∈ Zd as (σ~ı(x))~ := x~ı+~.

Closed shift-invariant subsets of some d-dimensional full shift are called Zd

(sub)shifts. A subsystem of some Zd shift X is a closed shift-invariant subset of
X, together with the restriction of the Zd shift action to this set.

The language of a Zd shiftX is the set of finite patterns which appear as subwords
of elements ofX. It is denoted by L(X). The subset of patterns in the language ofX
with a certain (finite) shape F ( Zd we denote by LF (X) := {x|F | x ∈ X} ( L(X).

For any Zd shift X, pattern P ∈ LF (X), and point x ∈ X, the frequency of P
in x (if it exists) is

lim
n→∞

|{~i ∈ Fn | x|F+~i = P}|
|Fn|

where Fn := {~ı ∈ Zd | ‖~ı ‖∞ ≤ n}.
A d-dimensional shift of finite type (Zd SFT) is a Zd shift X ⊆ AZ

d

defined using
a finite set P ⊆ AF of patterns on a finite non-empty shape F ( Zd, such that

X = {x ∈ AZ
d | ∀~ı ∈ Zd : x|~ı+F ∈ P}. If the diameter of F with respect to the

maximum-norm ‖.‖∞ on Zd is m ∈ N, then X has order m.
Recall that the topological entropy of a Zd shift X is by definition

h(X) := lim
n→∞

log |LFn
(X)|

|Fn|
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(Note that by [1] this limit h(X) is the same for any sequence of finite convex shapes
(Fn ( Zd)n∈N, such that the inradii of Fn diverge to infinity with n.) The measure-
theoretic entropy hµ(X) of X with respect to a shift-invariant Borel probability
µ ∈ M(X) is generalized analogously from the Z case.

Unless qualified, by a dynamical system we mean in this paper a homeomorphism
of a compact metric space. We call a point x of a dynamical system (Ξ, ξ) transitive
if its ξ-orbit is dense in Ξ. A dynamical system (Ξ, ξ) is called minimal if all points
are transitive, or in other words if all ξ-orbits are dense in Ξ, meaning that Ξ itself
is the only non-empty ξ-invariant closed subset of Ξ. A system (Ξ, ξ) is called trivial
if it consists of only one point.

A factor map between two Zd shifts means a surjective map intertwining the
shift actions and the image of a subshift X under such a map is referred to as a
factor of X. A factor map is called topological if it is in addition continuous and it
is called measurable if it is a measure preserving Borel map. In this paper, unless
indicated otherwise, factor maps are in the topological category. It is well known
that factor maps never increase entropy.

The class of Zd sofic shifts constitutes the factors of Zd SFTs. Obviously it is
closed under factor maps, i.e. factors of sofic shifts are again sofic.

By a measurable dynamical system we mean in this paper an invertible mea-
sure preserving transformation of a Borel probability space. We say a measurable
dynamical system has (measurably) completely positive entropy (c.p.e.) if every
non-trivial measurable factor has positive entropy. Likewise we say a topologi-
cal dynamical system has (topologically) completely positive entropy (top.c.p.e.) if
every non-trivial topological factor has positive entropy.

3. Factors of block gluing Zd shifts (d ≥ 1)

In this section we introduce the uniform mixing property “block gluing” for Zd

shifts, and we prove that block gluing Zd shifts factor onto full shifts of smaller
entropy (and more generally onto any lower entropy Zd SFT containing a safe
symbol) as well as onto a family of strongly irreducible Zd SFTs realizing a dense
set of values in the possible range of entropies. We discuss block gluing shifts in
detail in Appendix B.

In the sequel, δ∞ will represent the maximum-metric on Zd, i.e. ∀~v, ~w ∈ Zd

we define δ∞(~v, ~w) := ‖~v − ~w ‖∞ = max1≤k≤d |vk − wk|. δ∞ can be extended to
a non-negative symmetric function on non-empty subsets V,W ⊆ Zd in the usual
way: δ∞(V,W ) := min~v∈V,~w∈W δ∞(~v, ~w).

Let ~v, ~w ∈ Zd such that for all 1 ≤ k ≤ d the components satisfy ~vk ≤ ~wk.
We will denote this with ~v � ~w. For every pair ~v � ~w the non-empty subset

B := Zd ∩ ∏d
k=1[~vk, ~wk] = {~ı ∈ Zd | ~v � ~ı � ~w} constitutes a solid block for which

we use the notation B = [~v, ~w]. With ~1 we refer to the element in Zd in which all

components equal 1, i.e. ~1 := (1, 1, . . . , 1) ∈ Zd and by N0 to the set of non-negative
integers.

Definition 3.1. A Zd shift X is called block gluing at gap g ∈ N0 if for any
two (disjoint) solid blocks B1 = [~v(1), ~w(1)], B2 = [~v(2), ~w(2)] ( Zd with distance
δ∞(B1, B2) > g any pair of patterns on B1 and B2 occurring in X can be put
together to form a valid point of X, i.e. ∀P1 ∈ LB1

(X), P2 ∈ LB2
(X) ∃x ∈ X

such that x|B1
= P1 and x|B2

= P2 (or equivalently ∀ y, z ∈ X ∃x ∈ X such that
x|B1

= y|B1
and x|B2

= z|B2
).
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A Zd shift X is called block gluing if it is block gluing at gap g for some g ∈ N0.

Obviously Zd full shifts are block gluing at gap g = 0. Note that a Z shift is
block gluing if and only if it satisfies the specification property [2].

In analogy with the matrix-SFT case in [22, 14] we say that a general Zd shift
X has a safe symbol if its alphabet contains a letter a such that for any x ∈ X, any
way of changing some letters in x to as results in a new point still in X.

It is well known that every Z SFT of entropy at least logN factors onto the Z

full shift on N symbols. The same holds for d > 1 in the case of Zd group shifts [4]
(note that those have entropy logN for some N ∈ N) but not for general Zd SFTs
[5, 11]. Desai proved for d ≥ 2 that a corner gluing Zd SFT of entropy strictly
greater than logN factors onto a Zd full shift on N symbols [9]. (Corner gluing is
a condition strictly stronger than block gluing – see Appendix A.) We prove the
following generalization of Desai’s theorem.

Theorem 3.2. Suppose d ≥ 1 and let X be a block gluing Zd shift. Then the
following hold.

(1) If N ∈ N and h(X) > logN , then X factors topologically onto the Zd full
shift on N symbols.

(2) X factors topologically onto a family of strongly irreducible Zd SFTs with
entropies dense in [0, h(X)].

(3) X factors topologically onto any lower entropy Zd SFT having a safe symbol.

Proof. For all three claims we use ideas of Desai’s proof of part (1) of our theorem
from [9] (stated there under the stronger assumption of X being a corner gluing
Zd SFT), with some adaptations. Due to space considerations, we just sketch our
argument here, and refer to Desai’s paper [9] for finer details.

We may assume X to be block gluing with gap g ∈ N0 and entropy h(X) > 0.
Fix any ε > 0 such that ε < h(X). Theorem B.2(4) guarantees the existence of a

pattern P ∈ L(X) such that the subshift XZP := {x ∈ X | P does not occur in x}
still has entropy h(XZP ) > h(X) − ε.

Because h(XZP ) > 0, there is a pattern Q ∈ LB(XZP ) on some solid block B ( Zd

such that for ~ı ∈ Zd with ‖~ı ‖∞ ≤ g + ‖P‖∞, the pattern Q can not overlap with
a copy of Q translated by ~ı, i.e. ∃~ ∈ B ∩ B −~ı : Q~ 6= Q~ı+~ (we can use Desai’s
original construction to show this). Since X is block gluing, there is a solid block
pattern M ∈ L(X) with P at each corner and also containing Q (see the left part of
Figure 1), w.l.o.g. we may assume P,Q and thus M have the shape of a hypercube.

We define a “surrounded word” to be the central pattern of a configuration on
a solid hypercube as pictured in Figure 1. The surrounded words play the role of
Desai’s “follower words” in the original proof.

In Figure 1, each G represents any valid pattern of appropriate shape in which

P does not occur, i.e. G ∈ L(XZP ) (different G symbols may not represent the same
word). The unspecified shaded regions represent valid configurations in X (over
which we have no control) filling gaps of thickness g. By the block gluing property,

all possible patterns C ∈ L(XZP ) of appropriate size appear as surrounded words in
a configuration in X.

To establish claim (1) we choose ε := 1
2 (h(X) − logN) > 0 and define a factor

map φ from X to the full shift on symbols A := {0, . . . , N − 1} which will be
defined as suggested by Figure 2. For arbitrarily fixed n ∈ N we choose a function

Φ : L[~1,n~1](X
ZP ) → A[~1,(n+r)~1] where r := 2g + ‖M‖∞. If in a point in X we see
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Figure 1. The marker pattern M (left), and a surrounded word C (right).

a configuration with a surrounded word C ∈ L[~1,n~1](X
ZP ) at coordinates ~ı+ [~1, n~1]

(~ı ∈ Zd), the image configuration on the solid block ~ı − g~1 + [~1, (n + r)~1] ( Zd

indicated as the larger thicklined region in Figure 2 will be Φ(C). Wherever this
rule does not apply (we do not see a complete surrounded-word-pattern in our
coding window), we fill in the image coordinates with 0s. The map φ induced by
this rule is well defined because the marker structure containing Q ensures that two
configurations defining surrounded words can overlap only by complete overlap of
M corners.

M

M M

M

G GG

G

G

Figure 2. A surrounded word C and the (larger) region it
uniquely determines in the φ-image

As h(XZP ) > h(X) − ε = logN + ε we can fix n ∈ N large enough such that∣∣L[~1,n~1](X
ZP )

∣∣ > N (n+r)d

. Thus we may choose Φ surjective. This implies that φ is

onto: one simply places copies of the pattern M gridding the plane with appropriate
distance, and interpolates surrounded words C, to produce a specified image point.

For the second part of the theorem we explicitly construct a family of strongly

irreducible Zd SFTs. For any fixed ε > 0 we choose 2 ≤ m ∈ N such that log md

md < ε
2 .

For every j ∈ N let AYj
:= {0, 1, . . . , (j − 1)} and define Zd SFTs

Yj :=
{
y ∈ AZ

d

Yj

∣∣ ∀~ı ∈ Zd : y|~ı+[~1,m~1] contains at most one non-zero symbol
}
.

Since there cannot be more than one non-zero symbol in a block of size [~1,m~1]
we have

∣∣L[~1,m~1](Yj)
∣∣ ≤ md · j. Using this and the fact that we can place symbols
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freely on a grid (mZ)d while filling in the remaining coordinates with 0s, we have

jtd ≤
∣∣L[~1,tm~1](Yj)

∣∣ ≤ (md · j)td

for any t ∈ N. The entropy of Yj can thus be estimated to be:

(EB)
log j

md
≤ h(Yj) ≤

log j

md
+

logmd

md
<

log j

md
+
ε

2
.

We claim that each Yj is strongly irreducible with gap m. For this let P1 ∈
LF1

(Yj), P2 ∈ LF2
(Yj) be two patterns on finite non-empty sets F1, F2 ( Zd such

that δ∞(F1, F2) > m. Clearly the points y(1), y(2) ∈ AZ
d

Yj
defined as y(i)|Fi

:= Pi

and y(i)
~ı := 0 for every ~ı ∈ Zd \ Fi (i = 1, 2) are in Yj (each realizes the pattern Pi

in a “minimal” way). Suppose the point y ∈ AZ
d

Yj
with y|F1

:= P1, y|F2
:= P2 and

y~ı := 0 for all ~ı ∈ Zd \ (F1 ∪ F2) is not in Yj . Due to the description of Yj , there
has to be ~ı ∈ Zd such that y|~ı+[~1,m~1] contains at least two non-zero symbols. But

as y(1), y(2) ∈ Yj this can only happen if the block ~ı+ [~1,m~1] contains coordinates
of both F1 and F2, which contradicts F1, F2 being separated by m. So y ∈ Yj and
Yj is strongly irreducible as claimed.

Now choose j∗ ∈ N such that h(X) − 2ε < h(Yj∗) < h(X) − ε, which is possible

by the choice of m. Again we find XZP ( X with h(XZP ) > h(X) − ε and we carry
out the marker construction as above. This time we fix n ∈ N with n > m large
enough that

log
∣∣L[~1,n~1](X

ZP )
∣∣

(n+ r)d
> h(X) − ε >

log
∣∣L[~1,(n+r)~1](Yj∗)

∣∣
(n+ r)d

> h(X) − 2ε

holds for r := 2g + ‖M‖∞. Hence we have more surrounded words than valid

Yj∗ -patterns and we can choose a surjection Φ : L[~1,n~1](X
ZP ) → L[~1,(n+r)~1](Yj∗)

to build our factor map φ: Whenever φ sees a complete marker configuration on

~ı+[(1−‖M‖∞)~1, (n+r)~1] ( Zd (~ı ∈ Zd) with a surrounded word C ∈ L[~1,n~1](X
ZP )

in the middle, it tries to apply the rule given by Φ to place the pattern Φ(C) at

~ı+[~1, (n+r)~1]. To ensure that the image point will be valid for Yj∗ we have to take
care of the local condition defining Yj∗ . Therefore φ scans a larger neighborhood for
surrounded word patterns. If there exists another surrounded word configuration

with C ′ ∈ L[~1,n~1](X
ZP ) in the middle completely contained within a coding window

of size ~ı + [(1 − ‖M‖∞ − n − r − m)~1, (2n + 2r + m)~1] and the image patterns
Φ(C),Φ(C ′) are not compatible with the condition on Yj∗ , φ just fills in a block of
0s instead. In all other cases φ puts 0s too.

As before φ is well defined because of the marker structure and it is onto since for
every point in Yj∗ we can grid Zd with markers and fill in appropriate surrounded
words (the rule Φ will always apply, since the image point will satisfy the “non-zero
symbols must have distance at least m”-condition).

Note that for every j > 1 there exists a natural factor map ψ : Yj → Yj−1

(replacing all occurrences of the symbol (j − 1) with 0s), so X factors onto every
Yj with j ∈ {1, 2, . . . , j∗}. The choice of m implies that the entropies of the finite
family of Zd SFTs

(
Yj

)
j∈{1,2,...,j∗} is a ε-dense set in [0, h(X) − ε], i.e. h(Y1) = 0,

h(Yj∗) > h(X) − 2ε and for 2 ≤ j ≤ j∗

0 ≤ h(Yj) − h(Yj−1)
(EB)
<

log j − log(j − 1)

md
+
ε

2
≤ log 2

md
+
ε

2
< ε .
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As ε > 0 was arbitrary we have finished the proof of (2).
For (3) suppose Y is a Zd SFT with h(Y ) < h(X) and safe symbol 0. The factor

map defined for (2) can be used to show that X factors onto Y (we only need that
Y is defined by local conditions and replacing symbols with 0s never violates these
constraints). As the argument is almost identical, details are left to the reader. �

We do not know a satisfying characterization of the Zd shifts which factor onto
full shifts.

4. The restricted subsystem/quotient results

In this section we will state our main results on the existence of sofic/SFT shifts
with restricted subsystems and quotients, and indicate the organization of their
proofs in subsequent sections. Recall that by a trivial factor we mean the factor
which is the trivial dynamical system consisting of one fixed point.

Theorem 4.1. Given M > 0 and d ≥ 2, there exists a Zd sofic shift S with the
following properties.

(1) h(S) > M .
(2) S (and thus every topological factor of S) contains a fixed point which is its

unique minimal subsystem.
(3) Every topological factor of S (including S) contains a unique Zd SFT, which

is a fixed point. In particular, S has no non-trivial SFT factor.
(4) If Y is any non-trivial subshift factor of S, then Y cannot be block gluing.

Hence Y also cannot be strongly irreducible, cannot have the uniform filling
property (UFP), and cannot be corner gluing. In particular, Y cannot be a
full shift.

(5) In the case d ≥ 3, S can be chosen such that for every non-trivial topological
factor Y of S, there is no invariant Borel probability µ ∈ M(Y ) on Y such
that (Y, µ) as a measurable system has completely positive entropy.

(6) S has an equal entropy (sofic) subshift factor of topologically completely
positive entropy.

(7) There is a Zd SFT X and a factor map π : X → S such that h(X) = h(S)
and the preimage in X of the unique fixed point in S is a Zd SFT K ( X
such that h(K) = 0.

(8) In the case d = 2, S can in addition be chosen to be mixing and of topolog-
ically completely positive entropy.

(9) For d ≥ 3, S can be chosen to be mixing and satisfying all the properties
(1)-(7) except (6).

The mixing S we construct to prove Theorem 4.1 in the case d ≥ 3 has no
topological factor which has topologically completely positive entropy.

We have similar results in the case that the subshift must be SFT.

Theorem 4.2. Given M > 0 and d ≥ 2, there exists a Zd SFT X with the following
properties.

(1) h(X) > M .
(2) X contains a zero entropy SFT K which contains every minimal subsystem

of X. In particular, every non-empty subsystem of X has to intersect K.
(3) If Y is any block gluing shift factor of X, then Y is trivial. In particular,

the only full shift factor of X is the trivial shift.
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(4) If Y is any subshift factor of X, and YMIN is the orbit closure of its minimal
subsystems, then h(YMIN) = 0.

(5) In the case d ≥ 3, X can be chosen such that for every non-trivial topological
factor Y of X, there is no invariant Borel probability µ ∈ M(Y ) on Y such
that (Y, µ) as a measurable system has completely positive entropy.

(6) X has an equal entropy sofic factor with topologically completely positive
entropy. In the case d = 2, X itself can be chosen mixing with topologically
completely positive entropy.

Remark 4.3. Our constructions for some claims in the theorems above require d = 2
or d ≥ 3. However, we know of no obstruction to the existence of examples for all
d ≥ 2 for which all the claims hold. There is some further give and take in the
properties we can demand of the examples within the limitations of our current
techniques; for this see Remarks 9.1 and 10.1.

Remark 4.4. A Z sofic shift S contains pairwise disjoint SFTs with entropies dense
in [0, h(S)]. Desai proved for d ≥ 2 that a Zd sofic shift S contains sofic shifts
with entropies dense in [0, h(S)] [8]. Theorem 4.1 shows for d ≥ 2 that we cannot
improve Desai’s theorem by replacing sofic with SFT or by requiring disjointness.

Similarly, a Z SFT X contains pairwise disjoint SFTs with entropies dense in
[0, h(X)]. Desai (generalizing [25]) proved for d ≥ 2 that a Zd SFT X contains
SFTs with entropies dense in [0, h(X)] [8]. Theorem 4.2 shows for d ≥ 2 we cannot
improve Desai’s theorem by requiring the SFTs to be disjoint.

Remark 4.5. By way of contrast we recall some facts about the subsystems of a
mixing Z SFT X. By the Jewett Krieger Theorem and one of its proofs, every Borel
probability preserving measurable system with entropy strictly less than h(X) has
a realization as a uniquely ergodic subshift Y of X [7]. This Y ( X can be chosen
disjoint from any given proper subsystem ofX (“there is always room at the Krieger
Hotel”). Krieger’s Embedding Theorem [15, 19] provides an even more vast array
of subsystems. A mixing Z sofic shift S contains an increasing union of mixing
SFTs Xn with limn→∞ h(Xn) = h(S) [21], so these statements also hold for mixing
Z sofic shifts.

Remark 4.6. The abundance of subsystems in Z SFTs is related to a number of
significant coding constructions and in particular to a considerable control over
their factors. For example [3], if S is a Z sofic shift and Y is a mixing Z SFT such
that h(S) > h(Y ), then Y is a factor of S if and only if

∀ s ∈ S, n ∈ N with σn
S(s) = s =⇒ ∃ y ∈ Y such that σn

Y (y) = y .

Even for Z, when Y above is only sofic the statement fails, and the problem of
when there is a factor map between mixing Z sofic shifts of different entropy is only
partly solved – see [3, 29]. However, if X is any Z SFT with h(X) ≥ logN , then X
factors onto the full Z shift on N symbols [3, 20]. This led to the following question
of Johnson and Madden (see [5] for more motivation).

Question 4.7. [14] If N ∈ N is a positive integer and X is a Zd SFT with entropy
h(X) ≥ logN , must there exist a continuous factor map from X onto the Zd full
shift on N symbols?

Examples proving a negative answer to Question 4.7 for the case h(X) = logN
and d ≥ 2 were given in [5] and then [11]. Theorem 4.2 proves the negative answer
even given a strict entropy inequality.
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The proofs of Theorems 4.1 and 4.2 are spread over the next several sections.
Sections 5-8 are devoted to the case d ≥ 3, and are based on a very general subdy-
namics realization theorem of Hochman [11]. Section 5 establishes properties of a Z

shift which is an ingredient for the construction in Section 6, which proves Theorem
4.1 for the case that d ≥ 3 and S is not mixing, In Section 7, we elaborate this
construction to prove Theorem 4.1 for the case that d ≥ 3 and S is mixing. As a
corollary of this construction, in Section 8 we prove Theorem 4.2 for the case d ≥ 3.

The constructions for d = 2 do not rely on a general theorem but rather on a
specific example from another paper of Hochman [12]. In Section 9, we show this
example satisfies the conditions of Theorem 4.2 in the case d = 2. In Section 10,
the case d = 2 of Theorem 4.1 follows easily. The powerful constructions of Zd

sofic and finite type shifts due to Hochman and Meyerovitch [13] and Hochman [11]
(for example constructing SFTs of all possible entropies, and Z3 sofic shifts with
every possible one-dimensional subdynamic) have the feature that the constructed
systems lie in the class of subshifts which have an infinite, non-mixing, zero entropy
factor. This underlines interest in constructions with stronger mixing properties,
and explains our considerable efforts to achieve topologically mixing examples. The
property of topologically completely positive entropy is another step away from
the class of Hochman-Meyerovitch examples; on the other hand, the lack of any
topological factor supporting a c.p.e. measure for our examples with d ≥ 3 is a
pungent residue of the original zero entropy factor.

5. Definition of a certain Z ESS

In this section we define a particular Z shift Z ( {0, 1}Z
which will be used to

build our Zd examples when d ≥ 3. For this choose an integer N ∈ N so that∑∞
n=N+1 n

−1.1 < 1 and set

Z :=
{
z ∈ {0, 1}Z

∣∣ ∀n > N : 0n appears in every subword of length
⌈
n2.1

⌉
of z

}
.

Recall from [11] that a d-dimensional dynamical system is called an effective
symbolic system (ESS) if it is conjugate to a Zd shift X defined over some alphabet
A such that X is given as

X := X
�E

=
{
x ∈ AZ

d ∣∣ x does not contain any pattern from E
}

where the set of excluded patterns E ⊆ L(AZ
d

) is a recursively enumerable set
(RE-set), i.e. there exists a Turing machine that given input n ∈ N outputs a finite

d-dimensional pattern Pn ∈ L(AZ
d

) over A such that E = {Pn | n ∈ N}.
Lemma 5.1. The Z shift Z defined above has the following properties.

(1) Z is topologically mixing.
(2) For every n ∈ N the pattern 0n appears syndetically in every point in Z.

Hence the fixed point 0∞ is the only minimal subsystem in Z.
(3) For any pattern P ∈ L(Z), P has positive frequency in some point of Z.
(4) Z is an effective symbolic system.

Proof. To prove (1), take any two valid patterns P1, P2 ∈ L[1,l](Z) of length l ∈ N.

For any m ≥ max{5, l}, define a point z ∈ {0, 1}Z by z|[1,l] := P1, z|[m+l+1,m+2l] :=
P2 and zi := 0 for all other i ∈ Z. We claim that z ∈ Z. To see this, we have
to check that for every n > N and every subpattern P of z of length

⌈
n2.1

⌉
, P

contains 0n. We consider two cases: n ≥ m and n < m.
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First suppose n ≥ m. Using the definition of m this already gives
⌈
n2.1

⌉
> 5n ≥

2n+ 2l+m. A subpattern P of z of length
⌈
n2.1

⌉
is at least 2n+ 1 symbols longer

than the concatenation P1 0m P2 having length 2l+m. Therefore P contains more
than n consecutive 0s either to the left or to the right of z|[1,m+2l] = P1 0m P2.

Now assume n < m. Choose any subpattern P of z of length
⌈
n2.1

⌉
. If P

contains letters from P1 as well as from P2, then clearly P covers the gap of m 0s
between P1 and P2, and so contains 0n. Otherwise P does not contain letters of
both patterns and without loss of generality we may suppose P does not overlap
with P2. Then P is also a subpattern of the modified point z′ ∈ {0, 1}Z, defined by
z′|[1,l] := P1 and zi := 0 for all other i ∈ Z. Since P1 ∈ L[1,l](Z) it occurs in some
z′′ ∈ Z (with z′′|[1,l] = P1). Note that every letter of z′ is less than or equal to
the corresponding letter of z′′. If P = z′|[j,j+⌈n2.1⌉−1] for some j ∈ Z, then define

P ′ := z′′|[j,j+⌈n2.1⌉−1]. As P ′ is a subpattern of z′′ ∈ Z of length
⌈
n2.1

⌉
, it has

to contain 0n. Finally P occupying the same position in z′ as P ′ in z′′ has to be
coordinatewise less than or equal to P ′ and thus P contains 0n as well.

Therefore any subpattern of z of length
⌈
n2.1

⌉
contains 0n and we have shown

that z ∈ Z. As P1, P2 were chosen arbitrarily Z is (topologically) mixing.
The definition of Z trivially implies (2).
To prove (3), it clearly suffices to consider legal patterns P0 ∈ L[1,l0](Z) of big

length, e.g. l0 > 520. The proof of (1) demonstrates that for m0 ∈ N such that the
inequality

⌈
n2.1

⌉
> 2n + 2l0 + m0 holds for every n ≥ m0, the point z ∈ {0, 1}Z

defined by z|[1,l0] := z|[m0+l0+1,m0+2l0] := P0 and zi := 0 for all other i ∈ Z is

in Z. This condition is satisfied by any m0 >
√
l0, since for such m0 and any

n ≥ m0 we get
⌈
n2.1

⌉
> 5n2 > 2n2 + 3n > 2n + 2m2

0 + m0 > 2n + 2l0 + m0. In

particular, the word P1 := P0 0m0 P0 is a legal pattern in Z for m0 := 2
⌊√

l0
⌋
.

Denote by l1 ∈ N the length of P1. Then by the same argument, for m1 := 2
⌊√

l1
⌋
,

the word P2 := P1 0m1 P1 is a legal pattern in Z. Continuing in this fashion we

inductively define a sequence
(
Pn ∈ L[1,ln](Z)

)
n∈N0

, where Pn+1 := Pn 02⌊√ln⌋ Pn,

and ln+1 := 2ln + 2
⌊√

ln
⌋
. Since Pn is a prefix of Pn+1 for every n ∈ N0, there is a

point z ∈ Z so that z|[0,ln−1] = Pn for all n ∈ N0. We claim that the frequency of
P0 in the point z is positive.

Define the sequence
(
rn := ln

2n

)
n∈N0

. Then, r0 = l0 and for n ∈ N0 we get

rn+1 =
2ln+2⌊√ln⌋

2n+1 =
ln+⌊√ln⌋

2n ≤ rn + 2−
n
2
√
rn. For large n we immediately get a

loose but sufficient estimate rn+1 < 1.5 rn. So we can assume rn < 1.62n at least
for n big enough. This yields rn+1 ≤ rn +2−

n
2
√
rn < rn +2−

n
2

√
1.62n = rn +0.9n

again for n large. Applying the geometric series, the strictly increasing sequence
(rn)n∈N0

has a positive limit, call it r ∈ R+. Note that by definition, P0 appears at
least 2n times in z|[0,ln−1] = Pn for all n ∈ N0. Therefore, the frequency fP0

(z) ∈ R

of P0 in z is at least

fP0
(z) = lim

n→∞

# P0’s in z|[−ln,ln]

2ln + 1
≥ lim

n→∞
2n

2ln(1 + 1
2ln

)
= lim

n→∞
1

2rn
=

1

2r
> 0

proving (3).
To get (4), we have to find a RE-set E ⊆ L({0, 1}Z) of excluded patterns such that

Z =
{
z ∈ {0, 1}Z

∣∣ z does not contain any subpattern which is an element of E
}
.
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By simply rewriting the definition of Z, we observe that the following set will do.

E :=

∞⋃

n=N+1

{
P ∈ {0, 1}[1,⌈n2.1⌉] ∣∣ P does not contain 0n

}

It is not difficult to design an algorithm to construct the elements of E in (length-
lexicographic) order. Therefore, E is a recursively enumerable set and so Z is an
effective symbolic system. �

The Z shift Z will be used as a main ingredient in the constructions in the
following three sections.

6. The non-mixing Zd sofic examples for d ≥ 3

In this section, we prove Theorem 4.1 in the case that d ≥ 3 and the constructed
sofic shift is not required to be mixing.

Proof. Let Z be the ESS obtained in Lemma 5.1. For each integer 1 ≤ i ≤ d define

the Zd shift Ti as the set of all configurations t ∈ {0, 1}Z
d

satisfying the following:

(PC)
(tn~ei

)n∈Z ∈ Z , and

t~ı = t~ı+~ej
∀~ı ∈ Zd and j 6= i .

So, along the axis Z~ei, a point t in Ti is a copy of a point in Z; in perpendicular
directions, t just copies symbols from that axis. Because d ≥ 3 and Z is a Z

ESS, Hochman’s ESS subdynamics realization theorem [11], together with its proof,
shows that Ti is a Zd sofic shift, such that for each 1 ≤ i ≤ d there is a one-block
factor map γi : Vi → Ti, where Vi is a zero entropy Zd SFT.

Next we map the Zd sofic shift T1×T2×· · ·×Td onto a sofic shift S′ ( {0, 1}Z
d

by
the one-block code defined by the rule sending a symbol (a1, a2, . . . , ad) ∈ {0, 1}d

to the product a1a2 · · · ad. This product is 0 unless every ai is 1. Note that S′

has entropy zero. Finally, we will pick m ∈ N and define S by freely splitting the
symbol 1 of S′ into m symbols 11, 12, . . . , 1m; i.e. a point s is in S if and only if its
image under the one-block factor map κ : S → S′ replacing all the 1j ’s (1 ≤ j ≤ m)
with 1 is in S′.

By Lemma 5.1, the ESS Z has the following property: every allowed finite
configuration occurs with positive frequency in some point of the subshift. This
property is inherited by the product T1 × T2 × · · · × Td; and then by the factor S′;
and then by S. As in [13], the entropy of S is logm multiplied by the maximum
frequency of the symbol 1 in a point of S′, which we have noted is positive. We fix
m ∈ N so that h(S) > M , establishing (1).

We have an obvious one-block factor map from the zero entropy Zd SFT X ′ :=
V1 × V2 × · · · × Vd onto S′, which we denote by π′ : X ′ → S′. We define a Zd

SFT X by freely splitting each preimage symbol 1̃ ∈ π′−1(1) of 1 in X ′ into m
symbols 1̃1, . . . , 1̃m, and then define a one-block factor map π : X → S by sending
each 1̃j to 1j (1 ≤ j ≤ m) and otherwise using the one-block rule for π′. Clearly

h(X) = h(S), and the preimage K := π−1(0Z
d

) of the fixed point 0Z
d ∈ S has

entropy zero. Because 0Z
d

and X are SFTs, K is an SFT, and (7) follows.
By construction arbitrarily long blocks of 0s appear syndetically in all points of

the one-dimensional ESS Z (5.1(2)). This together with the periodicity constraints
(PC) forces the syndetic occurrence of (d−1)-dimensional hyperplanes of 0s of any
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fixed “thickness” (perpenticular to the ~ei-axis) in points of Ti. Points from the
factor system S′ then have a gridlike structure, where the walls of the grid consist
of (d−1)-dimensional hyperplanes of 0s separating solid blocks of 1s. In particular,
arbitrarily large d dimensional hypercubes of 0s occur in every point, and thus the

fixed point 0Z
d

is the only minimal subsystem of S. Consequently any factor of S
has as its unique minimal subsystem a fixed point, proving (2).

Moreover, for any n ∈ N and any finite pattern P ∈ LF (S) (F ( Zd finite)
occuring in a point s ∈ S, the pattern P must occur in s inside a pattern P ′ := s|B
on some larger block B ⊇ F for which all sites within distance n of the boundary

are occupied by 0s. If an SFT inside S contains a point s other than 0Z
d

, then we
can find in s a non-zero pattern P ′ of this form, with n large enough (larger than
the order of the SFT), thus a tiling of Zd with P ′ would produce a legal, non-zero

periodic point. This is impossible since 0Z
d

is the unique minimal subsystem of S.
The gridlike structure of 0s is inherited by any Zd shift factor of S, proving (3)
for subshift factors of S. If there were a factor map φ from S onto any compact
metrizable system containing a subsystem isomorphic to a non-trivial Zd SFT Y ,
the restriction of φ to φ−1(Y ) would be isomorphic to a block code, which we could
extend to S to realize an isomorphic copy of Y in some subshift factor of S, which
is impossible. This proves (3).

If a non-trivial factor of S were block-gluing, by Theorem B.2 it would contain

a subsystem disjoint from the image of the fixed point 0Z
d

, contradicting (2). This
proves (4). The statement (5) follows from Proposition 6.1.

Finally we construct an explicit factor U of S satisfying (6). We define U as the
image of S under the one-block map ψ which replaces 11 with 0 and changes no
other symbol. The (one-block) injective map ψ×κ : S → U ×S′ has a (one-block)
inverse. Thus h(U) ≤ h(S) ≤ h(U) + h(S′) = h(U). This implies h(S) = h(U).

Now suppose there is a factor map φ : U → Y onto a non-trivial subshift Y .

Let 0̃ and 1̃ be distinct symbols in the alphabet of Y such that 0̃Z
d

is the unique
fixed point of Y . Let B := [−n~1, n~1], where n ∈ N is chosen large enough that for

all s ∈ S, s|B determines (φ(ψs))0. Choose s ∈ S such that (φ(ψs))0 = 1̃ and let
Q be the block s|B . Note that Q contains at least one of the symbols 1j , j > 1.

Let s be a point in S in which Q occurs with positive frequency. Thus there is
a subset C ⊆ Zd of positive density in Zd such that for all ~ı ∈ C the restriction of s
to ~ı+ B is Q. Perhaps after reducing the frequency, we may further assume these
translates of B by the vectors ~ı are pairwise disjoint. Let Q1 be the pattern which
equals Q, except that every 1j with j > 1 is replaced with 11. If s|B = Q1, then

(φ(ψs))0 = 0̃. The block Q1 can be substituted in s for Q at ~ı+ B for any subset
of vectors ~ı from C to produce a legal point of S. Consequently, in Y all possible
patterns of 0̃ and 1̃ on C have to appear. This implies that Y has positive entropy,
and finishes the proof of the non-mixing and d ≥ 3 case of Theorem 4.1. �

Proposition 6.1. Suppose S is a Zd action by homeomorphisms on a compact
metric space X such that the following hold:

(1) (X,S) has an infinite zero entropy topological factor (X ′, S′).
(2) Every minimal subsystem of (X,S) is contained in a zero entropy subsystem

(W,S|W ) with W ⊆ X.



SOFIC SHIFTS WITHOUT SEPARATION 13

Then no non-trivial topological Zd factor (Y, T ) of (X,S) admits an invariant proba-
bility µ ∈ MT (Y ) such that (Y, T, µ) as a measurable system has completely positive
entropy.

Proof. Let κ : (X,S) → (X ′, S′) and φ : (X,S) → (Y, T ) be continuous factor
maps, and suppose (Y, T, µ) is c.p.e.. Let µ̃ ∈ MS(X) be an S-invariant probability
such that φ µ̃ = µ, and let µ′ := κµ̃. We have factor maps of Zd measure-preserving
systems, κ : (X,S, µ̃) → (X ′, S′, µ′) and φ : (X,S, µ̃) → (Y, T, µ). Because one
factor is zero entropy and the other is c.p.e., the disjointness theorem of [10] tells
us that the map κ× φ sends µ̃ onto the product measure µ′ × µ.

Now consider the decomposition of µ̃ relative to µ′, which for µ′-almost all x′

in X ′ assigns a measure µ̃x′ to the fiber κ−1(x′). On an S-invariant set of full µ̃
measure, φ must send µ̃x′ to µ. The hypothesis (2) implies that every neighborhood
of W is visited syndetically in every S-orbit. Therefore we may choose a sequence
(νn)n∈N of such measures, νn := µ̃x′(n), which as measures on the compact metric
space X converge to a measure ν supported on the subset W . (S-invariance of the
measures νn is neither available nor needed.) Because φνn = µ for all n ∈ N and φ
is continuous, it follows that φν = µ. This means that the support of µ is contained
in φ(W ). Because the restriction of T to φ(W ) has zero entropy, this contradicts
c.p.e., and proves the Proposition. �

7. The mixing Zd sofic examples for d ≥ 3

Elaborating the construction of Section 6, in this section we will construct a

family of topologically mixing Zd sofic shifts S̃ to establish Theorem 4.1 for d ≥ 3
in the mixing case.

The construction of S̃ borrows from the ribbon shift from [24], the technique of
“transmitting information” over long distances in a Zd SFT used in [11] and [13],
and the results about SFTs mapping onto multidimensional substitution systems
from [23]. Begin with the sofic shifts Ti defined in the previous section, i.e. Ti

contains the Z ESS Z as its one-dimensional subdynamics in the ~ei-direction, and
Ti is periodic with respect to ~ej for all 1 ≤ j 6= i ≤ d. Each Ti has an SFT cover
Vi. Recall that each Vi is a nearest neighbor shift, i.e. the forbidden patterns in Vi

are just pairs of adjacent symbols in any ~ej-direction (1 ≤ j ≤ d) and that each
symbol carries enough information to determine the corresponding symbol in the
sofic factor Ti. Denote by γi the one-block factor map from Vi to Ti, and denote
by Ai the alphabet of Vi.

For any 1 ≤ i ≤ d, define a new SFT Wi as follows. The alphabet for Wi is
Ai∪̇A′

i, where each symbol of A′
i := {|a | a ∈ Ai} is a line in the ~ei-direction – which

from now on, we will assume to be vertical – labeled with a symbol from Ai. We will
call the elements of A′

i vertical line segments, and the terms “below” and “above”
will be used to refer to adjacency in the ~ei-direction. We will put constraints on the
transitions between elements of Ai∪̇A′

i with the effect that points in Wi contain
“gently ascending hyperplanes” of elements of Ai which are separated vertically by
one or more vertical line segments from A′

i.
We begin with the exact definition of the allowed adjacencies. In points of Wi, if

a symbol b ∈ Ai appears at coordinate ~ı ∈ Zd, then for any k 6= i, a symbol c ∈ Ai

must appear at ~ı + ~ek or ~ı + ~ek + ~ei, but not in both places. We say that the rise
in direction ~ek from ~ı is 0 in the former case and 1 in the latter case. Similarly, a
symbol a ∈ Ai must appear at either ~ı− ~ek or ~ı− ~ek − ~ei, but not in both places.
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In any of these cases, the pairs of symbols b c and a b must be legal patterns in the
~ek-direction in Vi. We also impose a homogeneity constraint on the rise: whenever
i 6= j 6= k 6= i, and a symbol of Ai appears at coordinate~ı ∈ Zd, we require that the
rise in direction ~ek from ~ı equal the rise in direction ~ek from ~ı+~ej resp. ~ı+~ej +~ei.
(Note that rises in different directions add up, i.e. if there is a rise of 1 from the ~ek

direction and also from the ~ej direction then going from coordinate ~ı to ~ı+ ~ek + ~ej

the ~ei coordinate of the ascending hyperplane increases by 2.)
We go on to complete the adjacency rules. If a ∈ Ai appears at coordinate ~ı,

then the vertical line segment |a ∈ A′
i must appear at ~ı − ~ei, and some symbol

|b ∈ A′
i must appear at ~ı + ~ei, where the pair a b must be a legal pattern in the

~ei-direction in Vi. Above a vertical line segment |a ∈ A′
i we can have either another

|a ∈ A′
i or the symbol a ∈ Ai, but nothing else. Hence putting a ∈ Ai at coordinate

~ı, at position~ı+~ek we have to see either b ∈ Ai or |b ∈ A′
i with the pattern a b being

valid in the ~ek-direction in Vi for the chosen k 6= i. Finally if we see an element
|a ∈ A′

i at ~ı we can always use a vertical line segment |b ∈ A′
i for which a b is a

valid pattern in the ~ek-direction in Vi to fill coordinate ~ı+~ek. However in addition
to this possibility we may put there also a symbol d ∈ Ai, whenever the coordinate
~ı − ~ei contains an element of Ai, say c ∈ Ai for which c d again has to be a valid
pattern in the ~ek-direction in Vi.

We define a gently ascending hyperplane in a point w in Wi to be a subset H
of Zd such that w~ı ∈ Ai for all ~ı ∈ H, and H is a maximal connected set under
paths built out of elementary paths (~ı,~) such that both ~ı and ~ are in H and
~ − ~ı = ±(~ek + ∆~ei) for some k 6= i and some ∆ ∈ {0, 1}. The homogeneity
constraint guarantees that orthogonal projection along ~ei from a gently ascending
hyperplane to {~ ∈ Zd | ~i = 0} is a bijection. The definition of gently ascending
hyperplanes allows them to ascend upwards with a local slope in cardinal directions
not exceeding 1.

Note, for every w in Wi and every ~ı ∈ Zd, the vertical axis ~ı + Z~ei intersects
every gently ascending hyperplane in w exactly once. The restriction of w to these
intersections, read consecutively, gives a legal configuration for Z (which could
be empty, finite, half-infinite or bi-infinite). This configuration determines the A′

i

symbols of the remaining sites on the axis, except perhaps in the case that the set
{n ∈ Z |~ı+ n~ei ∈ H, for some gently ascending hyperplane H} is bounded above.

The sofic shift Ui ( {0, 1}Z
d

is obtained by applying the one-block factor map
̟i : Wi → Ui, where ̟i(a) := γi(a) for a ∈ Ai, and ̟i(|a) := 0 for any |a ∈ A′

i

(in order to keep notation simple we will no longer distinguish between a one-block
factor map acting on points of a subshift and the corresponding maps acting on
the level of valid patterns or even symbols). By a gently ascending hyperplane in
Ui we mean the image of a gently ascending hyperplane in Wi. Roughly speaking,
flat hyperplanes of 1s in a point of Vi give rise to gently ascending hyperplanes of
1s in Ui, separated vertically by some positive number of 0s.

In a second step we actually have to change Wi and Ui slightly to construct
the objects that we will want to work with. The problem with Ui is that there is
too much choice in where hyperplanes are allowed to ascend, which will both ruin
the grid structure used heavily in Section 6 and cause Ui to already have positive
entropy, rendering the proof of part (5) of Theorem 4.1 unusable. We will solve this
by superimposing a point from a Zd−1 SFT over each ascending hyperplane which
tells the hyperplane when it is possible to ascend one step, and allows ascensions
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only very rarely. This restrictive SFT is made by using a result of Mozes about
substitution dynamical systems in Zd for d ≥ 2, for which we must give some
definitions.

Definition 7.1. A Zd substitution rule is a map τ : A → A[~1,n~1] for some integer

n > 1. For any m > 1, τ can also be thought of as a map from A[~1,m~1] to A[~1,mn~1]

by identifying A[~1,mn~1] with (A[~1,n~1])[
~1,m~1]. Hence τ can be iterated in a natural

way.

Definition 7.2. The Zd substitution system associated with a substitution rule τ

is the set Ω of all ω ∈ AZ
d

so that every subword of ω is a subword of τk(a) for
some a ∈ A and some k ∈ N0.

In [23], it was shown that for any Zd substitution system Ω, there exists an SFT Σ
and a one-block factor map ς from Σ onto Ω. If, in addition, the substitution system
has a property called unique derivation, then this map can in fact be made into a
measure-theoretic isomorphism, though a surjection will suffice for our purposes.
Consider the Zd−1 substitution system Ω1 defined by the following substitution rule

τ1 : {0, 1} → {0, 1}[~1,9~1] (in the picture, the ~e1-direction is horizontal).

0 →

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1 →

1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1

The shown substitution rule is for d − 1 = 2; for d − 1 > 2 it is extended
to the remaining directions by concatenating copies of the image-patterns in the

picture above. Explicitly: τ1(0) := 0[~1,9~1], and τ1(1) is defined by (τ1(1))~ := 0 if

~1 ∈ {2, 3, . . . , 8} and (τ1(1))~ := 1 if ~1 ∈ {1, 9} (for ~ ∈ [~1, 9~1]).
Now by Mozes’ theorem, choose a Zd−1 SFT Σ1 which surjectively factors onto

Ω1 via a one-block factor map ς1. Create Zd−1 SFTs Σk for 2 ≤ k ≤ d − 1 in the
same way, i.e. Σk factors onto Ωk via ςk where Ωk denotes the substitution system

obtained from the rule τk(0) := 0[~1,9~1], and (τk(1))~ := 0 if ~k ∈ {2, 3, . . . , 8} and
(τk(1))~ := 1 if ~k ∈ {1, 9}. Next, define the Zd−1 SFT Σ := Σ1 × Σ2 × . . .× Σd−1

whose alphabet we denote by AΣ, as well as the sofic shift Λ ( {0, 1}Z
d−1

obtained
by applying the one-block factor map

η : Σ → Λ, (s1, s2, . . . , sd−1) 7→
(
max{(ςk(sk))~ | 1 ≤ k ≤ d− 1}

)
~∈Zd−1

which sends a symbol (s1, s2, . . . , sd−1)~ ∈ AΣ from the alphabet of Σ to 0 if(
ςk(sk)

)
~

= 0 for all 1 ≤ k ≤ d − 1 and to 1 in any other case. Λ then consists of

0/1-configurations on Zd−1 with a grid structure of sparse Zd−2-hyperplanes of 1s
in each cardinal direction.

Claim 7.3. The number of 1s within a solid block B := [~1, n~1] ( Zd−1 in points
of Λ is bounded by n(d−2)+.32 for large n ∈ N. In particular the frequency of
1s in any point of Λ is zero and thus every point in Λ contains arbitrarily large
Zd−1-hypercubes of 0s.

Proof. The sparsely appearing Zd−2-hyperplanes of 1s along each ~ek-direction (1 ≤
k ≤ d − 1) in points of Λ stem from the substitution rule τk. As τk(0) = 0[~1,9~1]
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an upper bound to the number of Zd−2-hyperplanes being perpendicular to ~ek and
carrying symbols 1 in a legal Λ-pattern of shape B is achieved by applying the
substitution rule ⌈log9 n⌉ times to the symbol 1. In every iteration the number
of Zd−2-hyperplanes of 1s doubles and the total number of 1s is multiplied by a
factor 2 · 9(d−2). Simply adding the numbers produced in all the d − 1 directions,
we slightly overestimate the total number of 1s, getting a bound:

# 1s in any P ∈ LB(Λ) ≤ (d− 1) · (2 · 9(d−2))⌈log9 n⌉ ≤
≤ (d− 1) · 2 · 2log9 n · 9(d−2) · n(d−2) = C · n(d−2)+ log 2

log 9

with a constant C := 2 · 9(d−2) · (d − 1). As log 2
log 9 < .3155 we established the first

part of our claim (increasing the exponent to (d−2)+ .32 we get rid of the constant
for large enough values of n).

Moreover this bound shows that the frequency of 1s

f(1) ≤ lim
n→∞

C · n(d−2)+ log 2
log 9

n(d−1)
= C · lim

n→∞
n

log 2
log 9−1 = 0

is zero in every point of Λ and thus in particular there can be no bound on the size
of hypercubes of 0s seen in each single point in Λ. �

For each 1 ≤ i ≤ d let Σ̃i := {s̃ ∈ AΣ
Z

d | ∀n ∈ Z : s̃|{~∈Zd|~i=n} ∈ Σ} be the Zd

SFT obtained as the full Z extension of Σ along direction ~ei. Define the Zd SFT W̃i

constructed just as Wi, with the following changes: the alphabet of W̃i is Ãi∪̇Ã′
i,

where Ãi := Ai ×AΣ and each element of Ã′
i is again a vertical line segment this

time labeled with a symbol of Ãi. Points in W̃i arise from elements in the SFT

Vi×Σ̃i as points inWi arose from elements in Vi with only one exception: in addition
to the restrictions on adjacencies described for Wi above we introduce an extra rule
allowing ascensions only at a sparse set of coordinates governed by the superimposed

points from Σ̃i. More explicitly, for any ~ı ∈ Zd, and for any 1 ≤ k 6= i ≤ d, if a

symbol ã = (a, s) ∈ Ãi appears at ~ı, then a symbol b̃ = (b, t) ∈ Ãi is allowed to

appear at ~ı+ ~ek + ~ei only when η(t) = 1; otherwise, b̃ has to appear at coordinate
~ı+~ek. Claim 7.3 then shows that on a large scale ascensions of hyperplanes happen

very rarely. Finally define the sofic shift Ũi (a subsystem of Ui) as the image of W̃i

under the one-block map given by the rule ã = (a, s) 7→ γi(a) for all ã = (a, s) ∈ Ãi

and ã′ 7→ 0 for all vertical line segments ã′ ∈ Ã′
i. Denote this one-block map by

˜̟ : W̃i → Ũi. A gently ascending hyperplane of a point in Ũi is defined with

respect to Ãi as a gently ascending hyperplane of a point in Ui was defined with

respect to Ai. If ˜̟ (w) = u, then a gently ascending hyperplane in w ∈ W̃i is simply

the preimage of a gently ascending hyperplane H in u ∈ Ũi, and on a large scale H
has rare ascensions.

Next we have to prove some elementary properties of the sofic shifts Ũi that will
be used later.

Claim 7.4. The topological entropy of Ũi (1 ≤ i ≤ d) is zero.

Proof. As all of the shifts Ũi are constructed in the same way, it is enough to show

that h(Ũ1) = 0. In order to get a sufficient (upper) bound on the entropy of Ũ1 we

do a very coarse estimate on the number of legal patterns in Ũ1 on some large solid
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block Bn :=
[
~1, n~1 ]

( Zd (n ∈ N). First note that a gently ascending hyperplane of

1s which intersects Bn must intersect the set {~1+j~e1 | −d(n−1) < j < n} at a single

point. For u ∈ Ũ1, define Jn(u) as the set of j ∈ Z such that −d(n−1) < j < n and
~1+j~e1 is part of some gently ascending hyperplane of 1s in u. Trivially, the number∣∣{Jn(u) | u ∈ Ũ1}

∣∣ is bounded above by 2n(d+1). It is not hard to see that u|Bn
is

uniquely determined – use the fact that Ũ1 has alphabet {0, 1} – by the set Jn(u),
together with the sets of coordinates within each hyperplane at which ascensions
actually occur inside Bn. The latter have to be subsets of the coordinates containing
the symbol 1 in the corresponding superimposed Λ-point intersected with Bn and
their cardinality is bounded by n(d−2)+.32 (7.3) for large n. Hence we get an upper

bound on the number of valid Ũ1-patterns on Bn =
[
~1, n~1 ]

with n large enough

∣∣∣LBn
(Ũ1)

∣∣∣ ≤ 2n(d+1) ·
( ⌊n(d−1.68)⌋∑

m=0

(
n(d−1)

m

))n(d+1)

.

For n large enough n(d−1.68) ≪ 1
2 n

(d−1), so the binomial coefficients grow with m
and the sum can be bounded from above by taking the trivial approximation

∣∣∣LBn
(Ũ1)

∣∣∣ ≤ 2n(d+1) ·
(
n(d−1.68) + 1

)n(d+1) ·
(

n(d−1)

⌊n(d−1.68)⌋

)n(d+1)

≤
(
2 · n(d−1.68) + 2

)n(d+1) ·
(
n(d−1)

)n(d−1.68)·n(d+1)
.

Therefore the entropy of Ũ1 turns out to be zero as claimed above by the following
estimate:

0 ≤ h(Ũ1) = lim
n→∞

log
∣∣LBn

(Ũ1)
∣∣

nd

≤ lim
n→∞

log
((

2 · n(d−1.68) + 2
)n(d+1) · n(d2−1)·n(d−0.68))

nd
= 0 .

�

Claim 7.5. Every Zd shift Ũi (1 ≤ i ≤ d) as defined above is topologically mixing.

Proof. We can show that Ũi is topologically mixing in much the same way as
was done for the ribbon shift in [24]. Consider any two congruent solid blocks

B1, B2 ( Zd spaced at a large distance DB1,B2
∈ N apart and legal Ũi-patterns

P1 ∈ LB1
(Ũi) on B1 and P2 ∈ LB2

(Ũi) on B2. (The definition of topological
mixing uses arbitrary finite subsets, however it is easy to see that checking it for
congruent solid blocks suffices.) Without loss of generality we may assume that
in our patterns Pj (j = 1, 2) there are no symbols 1 along the top or bottom of
the solid blocks Bj . If this were the case, just use the fact that Pj is a legal word

in Ũi, say Pj = ũ(j)|Bj
for some ũ(j) ∈ Ũi, to extend it upwards and downwards

to a pattern P ′
j := ũ(j)|B′

j
on a solid block B′

j ⊇ Bj in which every hyperplane

intersecting the original Pj does not intersect the top or bottom of B′
j . Then,

replace all symbols in P ′
j above the topmost hyperplane which intersects Pj and

below the bottommost hyperplane which intersects Pj with 0s. This results in a

pattern P ′′
j (still on B′

j) which is legal in Ũi (since thickening layers of 0s is always
possible), which contains Pj as a subpattern, and which has no hyperplanes of 1s
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intersecting its top and bottom. As the slope of our gently ascending hyperplanes
is at most 1 in cardinal directions, the required vertical extension of the pattern Pj

to a pattern P ′′
j is linear in the size of Bj and by adding some extra hyperplanes of

0s on top of the smaller one of the two patterns P ′′
j if necessary, we reestablish our

assumption that both patterns have a congruent shape. For notational simplicity
from now on we will drop the ′s, so talking about Pj on Bj we actually refer to the
enlarged patterns constructed above.
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Figure 3. Extending a pattern Pj on the solid block Bj (on the
left) via a pattern P ′

j on B′
j (in the middle) to a pattern P ′′

j also
on B′

j (on the right).

After this preprocessing there are two cases; either B1 and B2 are separated by a
large distance in the ~ei-direction, or they have large separation in an ~ek-direction for
some 1 ≤ k 6= i ≤ d. If they have large separation in the ~ei-direction, then the fact

that the patterns P1 and P2 can be put together to form a valid point in Ũi comes

from mixing of Z (condition 1 of Lemma 5.1). To create a Ũi-configuration on Zd

containing P1 on B1 and P2 on B2, simply first extend all gently ascending (finite)
regions of 1s inside P1 and P2 to ascending hyperplanes of 1s with no additional
ascensions (apart from the ones forced by the homogeneity condition) outside B1

and B2. Fill the gaps between those hyperplanes with 0s and add a layer of 0s
just above and below the extended patterns. Then use mixing of Z to interpolate
between those infinite configurations, putting in non-ascending hyperplanes of 1s
and 0s surrounded vertically by layers of 0s according to a point in Z that contains
subwords realizing both patterns P1 and P2. As long as the ~ei-separation is large
enough, this can always be done.

Suppose now that B1 and B2 have large separation in some direction ~ek with
k 6= i. In this case we exploit the possibility to let hyperplanes of 1s ascend in
order to interpolate between P1 and P2. Roughly speaking, we again extend the
gently ascending (finite) regions of 1s inside P1 and P2 to ascending hyperplanes,
but outside B1 and B2 we allow only ascensions in the ~ek-direction, apart from
the ascensions forced by the homogeneity constraints. Then, interpolating between

these two sets of hyperplanes in Ũi may be done as in the first case, since due to
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the ascending and the sufficiently large initial ~ek-separation of B1 and B2, the two
stacks of hyperplanes observed at the same ~ek-coordinate will already have large
separation in the ~ei-direction. We have then shown that as long as B1 and B2 have
large separation in some direction, P1 and P2 can be put together to form a valid

point of Ũi, and so Ũi is mixing. �

We now proceed just as in Section 6. Take the product shift Ũ1 × Ũ2 × . . .× Ũd,

and factor it onto the Zd shift S̃′ ( {0, 1}Z
d

by the one-block factor map

ϑ̃ : Ũ1 × Ũ2 × . . .× Ũd → S̃′, (ũ(1), ũ(2), . . . , ũ(d)) 7→ (ũ
(1)
~ı · ũ(2)

~ı · . . . · ũ(d)
~ı )~ı∈Zd .

As each Ũi was a topologically mixing sofic shift, S̃′ is mixing sofic as well. We

also note that h(S̃′) = 0; because S̃′ is a factor of Ũ1 × Ũ2 × . . .× Ũd, this follows
from our Claim 7.4. Just as every point of Ti contained syndetically appearing

thick hyperplanes of 0s, every point of Ũi contains a set of arbitrarily thick gently
ascending hyperplanes of 0s.

The next result shows that hyperplane ascensions in points of Ũi are sufficiently
slow that we may recover the key feature of the gridlike structure of 0s from Ui:
finite patterns must occur within block patterns which are labeled with 0s in an
arbitrarily large neighborhood of the boundary.

Claim 7.6. Suppose s̃ ∈ S̃′ and l,m ∈ N. Then there exists a solid block B :=
[~v, ~w] ( Zd, containing [−(l + m)~1, (l + m)~1], such that s̃~ = 0 whenever ~ ∈
[~v, ~w] \ [~v + l~1, ~w − l~1].

Proof. We start with a technical observation about the variation in thickness of

layers of 0s in points of Ũi (1 ≤ i ≤ d). Suppose somewhere in a point ũ ∈ Ũi there
appears a block of n ∈ N consecutive 0s along the ~ei-direction. For convenience,
assume this happens on the interval [0, n − 1]~ei := {j~ei ∈ Zd | 0 ≤ j < n} ( Zd.
We claim that for large n, ũ~ = 0 as well for any ~ ∈ Zd with n

4 ≤ ~i <
3n
4

and ‖~ ‖∞ ≤ n3.1 + m + l. In other words, within a distance of n3.1 + m + l
in all directions, hyperplanes do not ascend by more than n

4 . This is not hard
to see: consider the ascending hyperplanes of 1s which bound our pattern of 0s
containing the interval [0, n − 1]~ei from above and below – if those do not exist,
i.e. the region of 0s is unbounded from above/from below, the claim is trivially
true. Along each direction ~ek (k 6= i), these bordering hyperplanes may ascend
only at coordinates where there is a Zd−2-hyperplane of 1s perpendicular to ~ek in
the superimposed Λ-point. By earlier computations (see Claim 7.3) the number

of those over a distance of n3.1 + m + l is bounded by (n3.1 + m + l)
log 2
log 9 . As the

hyperplanes in Ũi “climb up” just one coordinate in each ascension, after summing
over all ~ek-directions, we can (over)estimate the total gain in height in direction ~ei

by (d− 1) · (n3.1 +m+ l).32 < (d− 1) · n.993 < n
4 for n large enough.

Now consider any point s̃ ∈ S̃′ and some ϑ̃-preimage (ũ(1), ũ(2), . . . , ũ(d)) ∈
ϑ̃−1(s̃). The construction of Ũi ensures that the point ũ(i) contains the word 0n

somewhere in the interval [m+l, n3.1+m+l−1]~ei and also somewhere in the interval
[−(n3.1 +m+ l− 1),−(m+ l)]~ei. (Here n3.1 appears rather than the distance n2.1

from the definition of Z to address the fact that successive hyperplanes of 1s are
separated vertically with gap at most n.) We define the ith coordinates of the
vectors ~v, ~w as follows. Using the technical result of the previous paragraph, we

pick some interval Ii = [~wi− n
2 , ~wi] ⊆ [m+ l, n3.1 +m+ l−1]∩Z, such that ũ

(i)
~ = 0
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for any ~ ∈ Zd with ~i ∈ Ii and ‖~ ‖∞ ≤ n3.1 +m+ l. Similarily we pick an interval

[~vi, ~vi +
n
2 ] on the negative ~ei-axis. After applying ϑ̃, we see that the restriction of s̃

to [~v, ~w] has 0s at sites within distance n
2 of the boundary. We may require n

2 > l,
and this proves the claim. �

If z ∈ Z, then for each Ũi there is a point ũ(i) ∈ Ũi such that ũ
(i)
~ := zn when

~i = 2n and ũ
(i)
~ := 0 otherwise. Since the symbol 1 occurs with positive frequency

in some points of Z, it follows that 1s appear with positive frequency in some points

of Ũi and therefore in some point of S̃′. Hence, just as in Section 6, we can split

the symbol 1 into many distinct copies to create the Zd sofic shift S̃ of arbitrarily

large entropy h(S̃) > M . Denote by κ̃ : S̃ → S̃′ the 1-block factor map collapsing

the different copies of the symbol 1 in S̃ back onto the original. Since S̃′ was

topologically mixing, it is clear that S̃ is as well.
The rest of the proof of Theorem 4.1 for d ≥ 3 now proceeds just as in the non-

mixing case, with one exception. We do not claim that our mixing example S̃′ has
a topological factor of completely positive entropy. (In fact, it has no such factor,
but we will not give a proof.) Presumably this feature of the mixing example is
only a limitation of our technique.

8. The Zd SFT examples for d ≥ 3

In this section we prove Theorem 4.2 in the case d ≥ 3. We choose the required
SFT X to be the SFT cover of the sofic shift S described in Theorem 4.1(7). We
now verify the claims of Theorem 4.2.

Proof. (1) This is instantly true as X is a cover of S and h(S) > M .
(2) Let K be the SFT from part (7) of Theorem 4.1. If there is a minimal sub-

system W of X which is not contained in K, then it is disjoint from K, and we have
π(W ) a minimal subsystem of S other than its fixed point (4.1(7)), contradicting
part (2) of Theorem 4.1.

(3,4) Suppose Y is non-trivial block gluing and φ : X → Y is a factor map.
Using Theorem B.2, we have h(Y ) > 0 (by non-triviality) and then Y contains a
subsystem W disjoint from φ(K). Therefore φ−1(W ) is a subsystem of X disjoint
from K, which is impossible. As every minimal subsystem in Y is contained in
φ(K) and h(φ(K)) = 0, we have h(YMIN) = 0.

(5) Because arbitrarily large hypercubes of 0s occur in every point of S, and K

is the preimage of the fixed point 0Z
d

, it follows that arbitrarily large hypercubes
of K-configurations occur in every point of X. Because h(K) = 0, this claim (like
part (5) of Theorem 4.1) now follows from Proposition 6.1.

(6) This follows because S is an equal entropy factor of X. (4.1(6)) �

9. A topologically mixing, top.c.p.e. Z2 SFT example

Turning our attention to two-dimensional shifts, we present a family of Z2 SFTs

X̃k which prove the case d = 2 of Theorem 4.2 (with X = X̃k of sufficiently large
entropy).

These SFTs are in fact an example of Hochman from [12]. We will begin by
giving a brief description of the construction of those Z2 SFTs and discuss their
properties pertinent to our argument. For a full examination of these systems,
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see [12].

The construction: For any positive integer k ∈ N, first a Z2 SFT Xk is
defined with alphabet Ak of 32 + k symbols, which are most conveniently thought
of as square tiles of unit length. Thirty-two of the symbols of Ak are defined by
assigning a tile one of four colors and one of eight types of arrows. For reasons which
will become clear soon, the colors should be thought of as representing the four
directions NW (northwest), NE (northeast), SW (southwest), and SE (southeast).
The eight types of arrows are four straight arrows in the four cardinal directions (up,
down, right, left), and four arrows turning ninety degrees clockwise. The remaining
k tiles are called “blanks” and are labeled with an associated integer between 1 and
k inclusive. The symbols of Ak appear in Figure 4.

blank
1

blank
k

blank
2

blank
3

NW SWSENE

Figure 4. The 32 + k different symbols of Ak

The subshift Xk is an SFT of order 2, meaning that there is a set of legal 2 × 2

patterns L{0,1}2(Xk) ⊆ Ak
{0,1}2

, and Xk is precisely the set of elements of Ak
Z
2

in which every 2 × 2 subpattern is one of the elements in L{0,1}2(Xk). For the
purposes of legal 2× 2 patterns, all blanks are considered indistinguishable, and so
from now on we refer only to blank tiles in general, with the understanding that
the k blank tiles are completely interchangeable in elements of Xk.

We inductively define valid patterns P θ
n ∈ L[~1,(2n+1+2n−1−2)~1](Xk) for any n ∈ N

and θ one of the four colors NW , NE, SE, and SW as follows (let us denote
by T := {NW,NE,SE, SW} the set of colors): for any θ ∈ T , P θ

1 is the 3 × 3
square with a blank tile in the center, surrounded by a clockwise circuit of arrows
colored by θ; for any n ∈ N and color θ ∈ T , P θ

n+1 is constructed by concatenating

the four smaller patterns PNW
n ,PNE

n ,PSE
n , and PSW

n into a square configuration of

shape [~1, (2(2n+1 + 2n−1 − 2))~1] with each of the four patterns P θ′

n in the corner
corresponding to θ′ ∈ T , and then surrounding this square with a clockwise circuit
of arrows, colored by θ. For n ∈ N, θ ∈ T , we call P θ

n the level-n square with
θ-colored boundary. As an example, the configuration appearing in Figure 5 is
actually PNW

3 . The set L{0,1}2(Xk) of allowed 2×2 patterns in Xk is defined to be

the set of all 2×2 configurations which appear in P θ
3 for some θ ∈ T . It is verified in

[12] that P θ
n ∈ L(Xk) for all n ∈ N, θ ∈ T , and in fact we will see that in some sense

most points in Xk are built up from the patterns P θ
n . (We are still not concerning
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blank blank blank blank

blankblankblankblank

blank blank blank blank

blankblankblankblank

Figure 5. Part of a point of Xk

ourselves with the labeling of blank tiles; so each P θ
n actually corresponds to many

configurations in L(X) depending on how the blanks are labeled.)
For any ω = (ω1, ω2, . . .) ∈ T N, we define xω ∈ Xk as follows: begin by defining

xω on a 3 × 3 square centered at the origin, call this square B1 := [−~1, ~1], so that
xω|B1

:= Pω1
1 . For any n ≥ 1, assume that xω has already been defined on a

square Bn ( Z2 which is a translate of [~1, (2n+1 + 2n−1 − 2)~1] so that xω|Bn
=

Pωn
n . Since Pωn

n appears as a subpattern of P
ωn+1

n+1 exactly once, there is a unique
way to extend the definition of xω to a square Bn+1 which is some translate of

[~1, (2(n+1)+1+2(n+1)−1−2)~1] so that xω|Bn+1
:= P

ωn+1

n+1 . In addition, as P
ωn+1

n+1 has a
closed path of arrows on the boundary, it must be the case that Bn ⊆ Bn+1\∂Bn+1.

It is then easily checked by induction that [−n~1, n~1] ⊆ Bn for all n ∈ N, and so⋃∞
n=1Bn = Z2, thus xω is eventually defined on all of Z2 in this way.

In [12], it is proven that every element x ∈ Xk is of one of two types. If x = σ~ı(xω)
for some ~ı ∈ Z2 and ω ∈ T N, then x is transitive. Otherwise x – being a boundary
point of the orbit closure of some xω – is what Hochman calls an “exceptional
point.” Essentially there are four types of exceptional points, shown in Figure 6
without their coloring. Every exceptional point is of one of these four types, possibly
rotated by a multiple of ninety degrees, and having the arrows colored in some way
allowed in Xk.

For any subpattern of an exceptional point with shape B := [~1, n~1], knowing the
arrows on the boundary of B suffices to reconstruct the arrows of all interior tiles
(there are no blank tiles in an exceptional point and all arrows have to line up). If
one knows in addition the colors of the boundary tiles, one can recover the colors in
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(a) (b)

(d)(c)

Figure 6. Exceptional points of Xk (uncolored)

the interior. This is because, due to the finite type restrictions on Xk, any pair of
arrows which join up head-to-tail must have the same color. This means that the
boundary of any subpattern of an exceptional point forces the configuration on its
interior. So if we denote by E ( Xk the subshift of Xk consisting of all exceptional

points,
∣∣∣L[~1,n~1](E)

∣∣∣ ≤ |Ak|4n−4
< (32 + k)4n, and so h(E) = 0. (We may use the

notation E independent of k since elements of E contain no blanks, and therefore
the subshifts of exceptional points in Xk for any k ∈ N coincide.)

It is easily seen that no Xk is topologically mixing, so the Xk will not satisfy
4.2(6). However without much effort it is possible to adjust the defining rules of
the SFTs Xk in order to create similar Z2 shifts of finite type which are indeed
topologically mixing. For this, we use another example of Hochman, which is very
similar to Xk. In Xk, blank tiles were not permitted to be adjacent to each other.

Define a new system X̃k by allowing free combinations of blank tiles to appear in
rectangular configurations of dimensions 1×1, 1×2, 2×1, and 2×2 only. All other
adjacency conditions remain unchanged. Figure 7 shows a possible configuration

in X̃k.
The level-n squares from Xk correspond to a slightly more general class of level-n

rectangles in X̃k. A level-1 rectangle of X̃k is defined to be any rectangular config-
uration of blanks surrounded by a closed path of arrows (all with the same color).

For n > 1, a pattern with rectangular shape is a level-n rectangle in X̃k if the
configuration on its boundary is a closed path of arrows with the same color and its
interior is the union of four rectangular patterns, each of which is a level-m rectan-
gle for some m < n, and at least one of which is of level n−1. In fact, it is shown in
Lemma 6.14 of [12] that the four component rectangular configurations must all be
level-(n− 1) rectangles. The description of the transitive (non-exceptional) points

of X̃k is similar to that of Xk; Lemma 6.16 of [12] states that for any x̃ ∈ X̃k, either
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Figure 7. Part of a point of X̃k

there exists a sequence of nested rectangles Rn ( Z2 (n ∈ N) with
⋃∞

n=1Rn = Z2

where x̃|Rn
is a level-n rectangle for all n ∈ N, or x̃ is an exceptional point. (The

set of exceptional points in X̃k is actually the same as the set of exceptional points
for Xk, again because exceptional points contain no blanks.) We are now ready to

prove that for sufficiently large k ∈ N, X = X̃k satisfies the claims of Theorem 4.2.

Proof. (1) In Xk, any level-n square has shape [~1, (2n+1 +2n−1 −2)~1] and contains
4n−1 blank tiles, so the density of blank (�) tiles in any xω ∈ Xk (ω ∈ T N) is

f
�

:= lim
n→∞

4n−1

(2n+1 + 2n−1 − 2)2
=

1

25
.

Therefore, since any blank tile may have k labels, it is not hard to check that

h(Xk) = limn→∞
log|L[~,(2n+1+2n−1

−2)~](Xk)|
(2n+1+2n−1−2)2 ≥ log k

25 for any positive integer k ∈ N.

Since Xk ( X̃k, certainly h(X̃k) ≥ h(Xk) ≥ log k
25 . So we may set X = X̃k with k

chosen large enough that h(X) > M .
(2,4) These claims may be proved just as they were proved in the case d ≥ 3.

(Recall that for any x ∈ X and n ∈ N, there will exist l ∈ N and some rectangular

block B := [~v, ~w] such that [~v + l~1, ~w − l~1] contains [−n~1, n~1] and for all ~ı in the

thick border [~v, ~w] \ [~v + l~1, ~w − l~1], the symbol x~ı is an arrow.)
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(6) It is shown in Theorem 6.23 of [12] that X̃1 is topologically mixing, and the

proof extends trivially to any X̃k.
To prove X has top.c.p.e., assume that φ : X → Y is a sliding block code

from X onto Y , and denote by 2m + 1 (m ∈ N0) the size of its coding window.
If Y is non-trivial, then there exist two patterns P, P ′ ∈ L[−m~1,m~1](X) so that

φ(P ) 6= φ(P ′). By definition of transitivity, any transitive point of X contains both
P and P ′ as subpatterns, and by the description of the transitive points in Lemma
6.16 of [12], for some n ∈ N there exists a level-n rectangle Qn whose dimensions
are an × bn (an, bn ∈ N) and which contains both P and P ′ as subpatterns. Say
that Qn|~ı+[−m~1,m~1] = P and Qn|~+[−m~1,m~1] = P ′ for some ~ı 6= ~ ∈ Z2.

We claim that for N ∈ N large enough there exist two level-N rectangles QN , Q
′
N

both having a border colored SE, both of dimensions aN × bN (aN , bN ∈ N) and

such that QN |B = P and Q′
N |B = P ′ for some fixed B ⊆ [~1, (aN , bN )] ( Z2

a translated copy of [−m~1,m~1]. To prove this it suffices to show that we can
decrease the horizontal |~1 −~ı1| and vertical |~2 −~ı2| distance between occurrences
of P and P ′ in Qn by increasing the level of the rectangle.

Without loss of generality, assume that ~1 > ~ı1 and that the border of Qn is
colored SE. It is shown in [12] that for any a, b ∈ In := [2n+1 + 2n−1 − 2, 2n+1 +
2n−2]∩Z, there exists a level-n rectangle with dimensions a×b. We now construct
two level-(n + 1) rectangles Qn+1 and Q′

n+1. Qn+1 has a border colored NW ,
and the four level-n rectangles in it have the following properties: the northwest
rectangle has dimensions a×a for some allowed integers a, a+1 ∈ In, the southeast
rectangle is Qn, and the northeast and southwest rectangles are any with the correct
dimensions, i.e. the northeast is an×a and the southwest is a×bn. Q′

n+1 is described
in exactly the same way as Qn+1, except that the northwest subrectangle of Q′

n+1

has dimensions a+1× a. The dimensions of Qn+1 are then a+ an +2× a+ bn +2,
and the dimensions of Q′

n+1 are a+an +3×a+ bn +2. We finally create two level-
(n+ 2) rectangles Qn+2 and Q′

n+2 in a similar fashion. Qn+2 has a border colored
SE, and the four level-(n + 1) rectangles in it have the following properties: the
northwest rectangle is Qn+1, the southeast rectangle has dimensions b+1×b+1 for
some allowed integers b, b + 1 ∈ In+1, and the northeast and southwest rectangles
are any with the correct dimensions. Q′

n+2 is described in exactly the same way
as Qn+2, except that the southeast subrectangle of Q′

n+2 has dimensions b× b+ 1.
Then, Qn+2 and Q′

n+2 both have dimensions an + a+ b+ 5× bn + a+ b+ 5. Also,

it is not hard to see that there exists B′ ⊆ [~1, (an + a+ b+ 5, bn + a+ b+ 5)] ( Z2

a translated copy of [−m~1,m~1] so that Qn+2|~ı+B′ = P and Q′
n+2|~+B′−~e1

= P ′,
so the horizontal distance between subpatterns P and P ′ has decreased by one.
By repeating this procedure, we will eventually arrive at a pair Qn′ , Q′

n′ of level-n′

rectangles (n′ > n), both with dimensions an′ × bn′ (an′ , bn′ ∈ N) such that P
appears in Qn′ at the same ~e1-coordinate as P ′ in Q′

n′ . Similarily we may decrease
the (vertical) ~e2-coordinate, changing the role of the integers a and a + 1 resp. b
and b + 1. After finitely many steps we arrive at level-N rectangles QN , Q′

N as
claimed.

Now for any N ′ > N , it is possible to construct a level-N ′ rectangle such that
all 4N ′−N of its level-N subrectangles have dimensions aN × bN . The dimensions of
this level-N ′ rectangle are then 2N ′−NaN +2N ′−N+1−2×2N ′−NbN +2N ′−N+1−2.
Obviously each of the 4N ′−N−1 level-N subrectangles having a border colored SE
can be independently filled either by QN or by Q′

N . As QN |B = P and Q′
N |B = P ′
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we know that φ(QN ) 6= φ(Q′
N ) and hence all of the 24N′

−N−1

level-N ′ rectangles
createable in this manner have distinct φ-images. This means that the number of
distinct (2N ′−NaN +2N ′−N+1−2−2m)× (2N ′−NbN +2N ′−N+1−2−2m) patterns

in the language of Y is at least 24N′
−N−1

, and so the entropy of Y will be

h(Y ) ≥ lim
N ′→∞

log(24N′
−N−1

)

(2N ′−NaN + 2N ′−N+1 − 2 − 2m)(2N ′−NbN + 2N ′−N+1 − 2 − 2m)

=
log 2

4aNbN + 8(aN + bN ) + 16
> 0 .

It follows that every non-trivial subshift factor of X has positive entropy, and
therefore no non-trivial topological factor of X has zero entropy. �

Remark 9.1. Our techniques allow some give and take in the properties enjoyed by

an example. Above, if we set X equal to Xk rather than X̃k, then X would not
be mixing and X would not be top.c.p.e.. However, X = Xk would still satisfy

conditions (1)-(4) of Theorem 4.2. Also (in contrast to X̃k), Xk would satisfy (5)
(i.e. Xk has no topological factor which admits a c.p.e. measure); this follows from
Proposition 6.1, because Xk has the zero entropy factor X1 and arbitrarily large
blocks from the zero entropy exceptional shift E occur in every point of Xk and it
would have a top.c.p.e. sofic factor (constructed from S by sending one of the blank
symbols to 0).

Alternately, using the technique which built the gently ascending hyperplanes

in Section 7, we could build an SFT X̃∗
k by superimposing on X̃k an SFT which

allows the blocks of blanks with sizes 2×2, 1×2, 2×1 to occur only very rarely, so

that h(X̃∗
1 ) = 0 even though the blank symbol will occur with positive frequency

in some points. Now X̃∗
k is mixing, and has no topological factor admitting a

c.p.e. invariant measure, and satisfies the other statements of Theorem 4.2, with

the following exception: X̃∗
k has no factor which is top.c.p.e..

10. A topologically mixing, top.c.p.e. Z2 sofic example

In this section we complete the proof of Theorem 4.1 by establishing the case
d = 2.

Proof. Let X = X̃k be the Z2 SFT constructed in the previous section, satisfying
the statement of Theorem 4.2 in the case d = 2. We define S as the image of X
under the one-block factor map π which sends all non-blank symbols in the alphabet

of X̃k to 0 and leaves each of the k blank symbols unchanged. Hence S is a subshift

with an alphabet Ãk := {0} ∪ {�j | 1 ≤ j ≤ k} and π collapses the subsystem of

exceptional points E ( X̃k to a single (fixed) point. We go on now to verify the
claims of Theorem 4.1.

(1, 7) We claim that h(X) = h(S). As S is a factor of X we only need to
show h(X) ≤ h(S). For this we estimate the number of patterns in LBn

(X) in

terms of image patterns in LBn
(S) for Bn := [~1, n~1] (n ∈ N). Preimages of the

pattern 0Bn ∈ LBn
(S) are subpatterns of exceptional points and their number is

thus bounded by |Ak|4n−4
as before (the symbols along the boundary determine

the interior). Every other pattern P ∈ LBn
(S) contains at least one blank and

every preimage can be recreated from an n-tuple of colors t ∈ T n as follows: Let
s ∈ S such that s|Bn

= P . Starting at the lexicographically smallest coordinate
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~ı ∈ Bn containing a blank, surround it (and the adjacent blanks if any) by a level-1
border of color t1. Knowing t1 we can also put down the three neighboring level-1
rectangles. In doing so, we completed the interior of the level-2 rectangle containing
the blank at ~ı; now surround it by a border of arrows of color t2. Continue in this
way: for any i > 2, take the next color ti (1 < i ≤ n) from the list and surround
the already placed level-(i − 1) rectangles with a level-i border of color ti (we
can easily determine its size from the knowledge of the positions of the blanks)
and we can fill in all remaining symbols in its interior (all 4 subrectangles have
to be level-(i − 1)). In every step the region already colored extends at least 1
coordinate further into each direction than in the step before, so after at most n
steps we have completely filled Bn. As every preimage of P can be obtained by this
procedure,

∣∣π−1(P )
∣∣ ≤ 4n ≤ |Ak|4n

and we have
∣∣LBn

(X)
∣∣ ≤ |Ak|4n ·

∣∣LBn
(S)

∣∣.
Hence h(X) ≤ h(S), proving our claim and thus (7). (1) follows because h(X) > M .

(2) Because E contains every minimal subsystem of X, the image of E (which
is the fixed point) contains every minimal subsystem of S.

(3,4) These items are proved as in the case d ≥ 3. (Note that finite configura-
tions must occur inside blocks with arbitrarily large neighborhoods of the boundary
colored 0.)

(6,8) S is mixing and top.c.p.e. because it is a non-trivial factor of X which has
those properties. Trivially (6) also follows. �

Remark 10.1. Let S̃∗
k be the sofic shift which is the image under the map π above

of the SFT X̃∗
k described in Remark 9.1. This shift is mixing, and satisfies the

conditions satisfied by S above, except that it has no top.c.p.e. factor. However,

no topological factor of S̃∗
k admits a c.p.e. invariant measure.

Appendix A. A hierarchy of mixing notions for Zd shifts

In this appendix, we collect and put into a more general framework some mixing
properties for Zd shifts dispersed throughout the literature [9, 14, 16, 17, 24, 25, 27],
as well as the block gluing notion (3.1) of the current paper. We record some known
and some new facts about these mixing properties. We show that all of them can
be put into a linear chain, in which – with one possible exception – none of the
logical implications can be reversed (A.6).

Recall that δ∞ represents the maximum-metric on Zd, i.e. δ∞(~v, ~w) = ‖~v − ~w ‖∞ :=
max1≤k≤d |vk − wk| and also its natural extension to a separation function on non-
empty subsets V,W ⊆ Zd: δ∞(V,W ) := min~v∈V,~w∈W δ∞(~v, ~w).

We start with two common definitions from the Zd shift literature.

Definition A.1. A Zd shift X is topologically mixing if for any two non-empty
finite subsets V,W ( Zd there exists a constant DV,W ∈ N0 so that for any ~ı ∈ Zd

such that δ∞(V,W +~ı ) > DV,W , any pair of patterns on V and W +~ı occurring
in X can be put together to form a valid point of X, i.e. ∀x, y ∈ X, ∃ z ∈ X such
that z|V = x|V and z|W+~ı = y|W+~ı.

Furthermore remember that ~v � ~w is a shorthand for the fact that the compo-
nents of ~v, ~w ∈ Zd satisfy the inequality ~vk ≤ ~wk for all 1 ≤ k ≤ d. As in Section 3,
the notation B = [~v, ~w] := {~ı ∈ Zd | ~v � ~ı � ~w} will be used for solid blocks in Zd

and ~1 refers to the element in Zd in which all components equal 1.
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Definition A.2. [14] A Zd shift X is corner gluing at gap g ∈ N0 if for any

~u,~v, ~w ∈ Zd with ~u+ ~1 � ~v � ~w − g~1, any patterns on L := [~u, ~w] \ [~v, ~w] – which

we will call the corner-shape – and a solid block R := [~v+ g~1, ~w] which are legal in
X can be put together in the same point of X, i.e. ∀x, y ∈ X, ∃ z ∈ X such that
z|L = x|L and z|R = y|R.

Next we introduce the general concepts of F-gluing and F-filling and exhibit
some special cases of these new notions which are already present in the literature.

Definition A.3. Let F ⊆ {F ( Zd | F 6= ∅ ∧ F finite} be a family of non-empty
finite subsets in Zd.

A Zd shift X is called F-gluing at gap g ∈ N0 if for any two elements V,W ∈ F
with separation δ∞(V,W ) > g and any two patterns on V and W which occur in
X there is a valid point in X realizing these two patterns, i.e. ∀x, y ∈ X, ∃ z ∈ X
such that z|V = x|V and z|W = y|W .

Similarily a Zd shift X is called F-filling at gap g ∈ N0 if for any element V ∈ F
and any (possibly infinite) subset ∅ 6= W ⊆ Zd with separation δ∞(V,W ) > g every
pair of patterns on V and W which occur in X can be put together to form a valid
point in X, i.e. ∀x, y ∈ X, ∃ z ∈ X such that z|V = x|V and z|W = y|W .

A Zd shift X is called F-gluing resp. F-filling if it is F-gluing at gap g resp.
F-filling at gap g for some g ∈ N0.

Observation A.4. Note that by compactness the notions of F-gluing at gap g and
F-filling at gap g coincide for F = {F ( Zd | F 6= ∅ ∧ F finite} the collection of all
finite subsets. Zd shifts satisfying this complete gluing/filling condition are usually
(following [6]) called strongly irreducible (SI) and we will use this terminology for
the two equivalent properties.

However, for general sets F the notions of F-gluing and F-filling need not coin-
cide, as we can check with the following:

Observation A.5. For B := {B = [~v, ~w] | ~v � ~w ∈ Zd} the collection of all solid
blocks, the notion B-gluing at gap g becomes block gluing at gap g as defined in
Section 3.

The property of being B-filling already appears in the literature as the uniform
filling property (UFP). For simplicity we will also use this common expression. As
we will see in Theorem A.6, block gluing and having the UFP (i.e. being block
filling) are not equivalent for Zd shifts.

Theorem A.6. For g ∈ N0 and a Zd shift X we have the following implications.

X is SI at gap g
(1)
=⇒ X has the UFP at gap g

(2)
=⇒ X is corner gluing at gap g

(3)
=⇒

X is block gluing at gap g
(4)
=⇒ X is topologically mixing.

Implications (2), (3), and (4) cannot be reversed even if we allow an increase in g.

Proof. Implications (1), (2) and (4) are fairly clear from the definitions.
We prove Implication (3). Let the Zd shift X be corner gluing at gap g ∈ N0

and let B1 = [~v(1), ~w(1)], B2 = [~v(2), ~w(2)] ( Zd be two disjoint solid blocks with
separation δ∞(B1, B2) > g. There must be some 1 ≤ j ≤ d such that the intervals
[(~v(1))j , (~w

(1))j ], [(~v
(2))j , (~w

(2))j ] ( Z have separation larger than g; otherwise, since

each Bi (i = 1, 2) is a product
∏

1≤k≤d[(~v
(i))k, (~w

(i))k], we could find points in B1
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and B2 at a distance at most g. Without loss of generality, suppose (~w(1))j +

g < (~v(2))j . Define L := Zd ∩
(∏d

k=1

[
min{~v(1)

k , ~v
(2)
k } − g − 1,max{~w(1)

k , ~w
(2)
k }

])
\(∏d

k=1

[
~v

(2)
k − g,max{~w(1)

k , ~w
(2)
k }

])
and R := Zd ∩ ∏d

k=1

[
~v

(2)
k ,max{~w(1)

k , ~w
(2)
k }

]
. By

corner gluing, any patterns on L and R which are legal in X can occur in the same
point. Because B1 ⊆ L and B2 ⊆ R, the same holds for B1 and B2.

It will be shown in Example C.1 that corner gluing (at gap 2) does not imply
the UFP, and so Implication (2) cannot be reversed.

Block gluing at gap 1 does not imply corner gluing, as will be shown in Example
A.7 below. Therefore, Implication (3) cannot be reversed.

Finally, we will see in Appendix B that non-trivial block gluing Zd shifts have
positive entropy (B.2), and so since there exist topologically mixing shifts with zero
entropy (for instance, those in [24]), topological mixing does not imply block gluing
at any gap either. Thus Implication (4) cannot be reversed. �

We point out that whether or not SI and UFP define the same notion seems to
be still an open question.

The following example shows that the condition of being block gluing is in fact
strictly weaker than corner gluing.

Example A.7. Consider the SFT X ( {0, 1}Z
2

with forbidden pattern Q = 0 1
0 0 .

In other words, x ∈ {0, 1}Z
2

is in X if and only if x does not contain Q as a subword.
We claim that X is block gluing at gap 1, but not corner gluing at any gap.

Take any pair of solid blocks B1, B2 ( Z2 with δ∞(B1, B2) > 1, and any pair of
patterns P1 ∈ LB1

(X) on B1 and P2 ∈ LB2
(X) on B2. We claim that the point

x ∈ {0, 1}Z
2

defined by x|B1
:= P1, x|B2

:= P2, and x~ı := 1 for all ~ı /∈ B1 ∪B2 is in
X. All that must be checked is that x does not contain Q as a subword. Consider
any 2× 2 solid block B ( Z2. There are two cases. If B ⊆ B1 or B ⊆ B2, then x|B
is a subword of P1 or P2 and therefore does not equal Q. If B 6⊆ B1 and B 6⊆ B2,
then |B \ (B1 ∪B2)| ≥ 2. Therefore, x|B contains at least two 1s, and is again not
equal to Q. So, x does not contain Q as a subword, and x ∈ X. This means that
X is block gluing at gap 1.

Now consider, for any g ∈ N0, take the solid blocks B1 = [~0, (g + 1)~1], B2 =

[~1, (g + 1)~1], and define the set L := B1 \ B2 ( Z2. The pattern P := 0L on
L consisting of all 0s is certainly valid for X – for instance, it is a subword of

the point 0Z
2

, which is in X. However, we claim that if P appears in some point
x ∈ X, i.e. there exists ~ı ∈ Z2 so that x|~ı+L = P , this actually forces the entire
solid block on whose lower-left boundary the pattern P occurs to be filled with 0s,
i.e. x|~ı+B1

= 0B1 . Suppose this is not the case. Then there would exist x ∈ X
and ~ı ∈ Z2 so that x|~ı+L = P and x|~ı+B1

contains a 1. Consider the lowest row
of x|~ı+B1

containing a 1 and then take the leftmost 1 in this row. The 2 × 2 solid
block with this 1 in its upper-right corner will have 0s in its other locations, and
so equals Q. This cannot happen since x ∈ X, so we have a contradiction and in
fact x|~ı+B1

has all 0s. Now define the singleton set R := {(g + 1)~1} ( Z2, and let
the pattern on R be just a single 1. Certainly the pattern 1 appears in X, e.g. in

the point 1Z
2

. However, there does not exist x ∈ X so that x|L = P and x|R = 1.
As δ∞(L,R) > g this means that X is not corner gluing at gap g, and since g was
arbitrary, X is not corner gluing (at any gap-size).
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Appendix B. Block gluing Zd shifts

In this section we consider some consequences of the very natural block gluing
condition, some of which are used in the proof of Theorems 3.2, 4.1 and 4.2.

Lemma B.1. Let d ≥ 1, g ∈ N0 and let X be a Zd shift. Then the following
statements are equivalent.

(1) X is block gluing at gap g.
(2) For n ∈ N0 and any countable family (P~ı ∈ L[~1,n~1](X))~ı∈(g+n)Zd of individ-

ually valid patterns there exists a point x ∈ X such that x|~ı+[~1,n~1] = P~ı for

all ~ı ∈ (g + n)Zd.

Proof. (2)=⇒ (1) is trivial, and the converse is a straightforward compactness ar-
gument. �

Theorem B.2. Suppose d ≥ 1 and let X be a non-trivial block gluing Zd shift.
Then the following hold.

(1) h(X) > 0.
(2) Every subshift factor of X is again block gluing.
(3) X has topologically completely positive entropy.
(4) For every ε > 0, X contains a proper subshift W ( X such that h(W ) >

h(X) − ε.
(5) For every non-empty proper subsystem V ( X and every ε > 0 there is a

non-empty subshift W ( X disjoint from V with h(W ) > h(X) − ε.

Proof. Assume that X is block gluing at gap g ∈ N0.
(1) This follows easily from condition (2) of Lemma B.1.
(2,3) Suppose φ : X → Y is a factor map between subshifts, such that x|[−n~1,n~1]

(n ∈ N0) determines (φ(x))0. Patterns on Y -blocks with separation g + 2n are the
images of patterns on X-blocks with separation g, and therefore Y is block gluing
at gap g + 2n. (3) now follows from (1) and (2).

(5) Let P ∈ L(X) \ L(V ) be a pattern appearing in some point in X but not
in any point of the proper subsystem V ; w.l.o.g. we assume P ∈ L[~1,n~1](X) for

some fixed n ∈ N. Let PN := {Q ∈ L[~1,N~1](X) | Q|[~1,n~1] = P} with N ≥ n.

By block gluing, every element of L[~1,(N−n−g)~1](X) occurs as the upper corner

subblock of some element of PN , so |PN | ≥
∣∣L[~1,(N−n−g)~1](X)

∣∣. Given N > g, let

B := [~1, (2N + g)~1] and define a subshift

WN := {x ∈ X | ∀~ı ∈ Zd : the block x|~ı+B contains the subpattern P} .
Clearly WN is disjoint from V . By condition (2) of Lemma B.1, patterns from PN

may appear independently on the lattice (g + N)Zd in points of X. Such points
are in WN and it follows that limN→∞ h(WN ) = h(X).

(4)) We will show that X contains a proper subshift, and then (5) will imply (4).
Given N ∈ N, pick a pattern P ∈ L[~1,N~1](X), and let UN be the set of points x in

X such that x|~ı+[~1,N~1] = P for all ~ı ∈ (g +N)Zd. By condition (2) of Lemma B.1,

UN is non-empty. Also UN is closed, and invariant under shifts from NZd. Thus
the Zd shift orbit closure VN of UN is the union of images of UN under finitely
many (i.e. Nd) shifts. Clearly limN→∞ h(VN ) = 0, and for large N it follows that
VN is a proper subshift of X. �
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We are interested in the implications of block gluing (or other mixing conditions)
on richness and separation properties of subsystems. Within a mixing Z SFT X
of positive entropy, any two disjoint subsystems are contained in disjoint mixing
subSFTs of X, with entropy arbitrarily close to that of X. This technical fact is
tremendously useful for constructions with Zd SFTs when d = 1 (e.g. see [7]), but
it fails for d > 1 [24]. As part of the effort to understand the boundaries of how
properties do and do not extend to higher dimensional SFTs, we ask the following.

Question B.3. Given ε > 0 and d ≥ 2, is any pair of disjoint subsystems V1, V2

inside a block gluing Zd SFT X contained in a pair W1 ⊇ V1,W2 ⊇ V2 of disjoint
block gluing subSFTs of entropy at least h(X) − ε?

For d = 1, the block gluing SFTs are the mixing SFTs, and the answer to
Question B.3 is well known to be yes [7, Section 26].

For d = 1, 2 (but not for d ≥ 3), it is known that finite orbits of a Zd strongly
irreducible SFT are dense [30]. The same argument works for block gluing SFTs,
and we have the same question.

Question B.4. Are there block gluing Zd SFTs (for d ≥ 3) that do not have dense
periodic points? Are there examples with no periodic points?

From [24] we know that every Zd SFT having the UFP is entropy minimal (i.e.,
every proper subsystem has strictly smaller entropy). We note that Example C.1
provides the existence of non-trivial block gluing Zd SFTs (d ≥ 2) which are not
entropy minimal.

Appendix C. A non-entropy-minimal 4-corner-gluing Z2 SFT

This appendix contains a Z2 SFT which is corner gluing in all 4 corners, i.e.
in the NW-, NE-, SW- and SE-corners, but which still does not have the UFP.
With a small adjustment we can even violate entropy minimality. In particular this
example proves that implication (2) in Theorem A.6 cannot be reversed.

The Z2 SFT we construct models a system of meandering streams running in a
Z2 plane that has a large slope in north-south direction, but no slope in east-west
direction. Therefore a stream starting somewhere north has to constantly run south
(it will never run uphill), with some possible meandering in east-west direction. It
can split into different “branches” and those branches can unify again. However
there are neither sources nor sinks, thus a stream has to run forever without starting
or ending at a certain coordinate in Z2.

Example C.1 (The meandering streams SFT). The formal definition of the me-
andering streams shift XMS uses an alphabet of 16 symbols as displayed in Figure
8. We will refer to symbol 1 as the blank symbol and to symbols 2 up to 16 as the
non-blanks.

Now the 16 symbols can be placed next to each other only in a way that conserves
the current indicated by the direction of the arrows. For example a symbol with an
arrow pointing east resp. west at its right edge can only sit to the left of a symbol
also having an arrow pointing east resp. west at its left edge and a symbol with an
arrow ending on its lower edge can sit above a symbol if and only if this has an
arrow starting from its upper edge.
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Figure 8. The alphabet of the meandering streams shift XMS

Posing these nearest-neighbor restrictions as local rules we obviously define a
non-trivial Z2 SFT. Note that all allowed transitions are realized in some point, i.e.
the corresponding transition matrices are already strictly essential. Next we prove
the desired properties of our example.

Claim C.2. The meandering streams SFT XMS is corner gluing at gap 2 in each
of the 4 corners.

Proof. Since XMS is a nearest-neighbor SFT and the horizontal resp. vertical tran-
sitions only depend on the arrows that are (are not) present at the vertical resp.
horizontal borders of each symbol we may prove the corner gluing property by fill-
ing the gap of width 2 between arbitrary configurations along the borders of the
rectangle and the corner-shape region that appear in the definition of corner gluing.

In fact we will give a procedure to fill the gap between the following two infinite
regions forming a NW-corner in Z2 with parts of either two or three streams. Let
a, b ∈ Z, define an infinite corner-shape region L′ := {~u ∈ Z2 | u1 < a − 2 ∨ u2 >
b + 2} and an infinite rectangle R′ := {~v ∈ Z2 | v1 ≥ a ∧ v2 ≤ b} and let
x, y ∈ XMS be two arbitrary points. Now we construct a new point z ∈ XMS such
that z|L′ = x|L′ and z|R′ = y|R′ . The coordinates in Z2 \ (L′ ∪ R′) are filled with
symbols as follows.

First we put z|(a−1,b+1) = 15 and for every i ∈ N we put z|(a−1,b+1−i) ∈ {2, 3, 5}
and z|(a−1+i,b+1) ∈ {8, 12}. In this manner we have already nurtured all currents
on the top-border of R′ and nurtured/drained all currents on the left border of
R′. Second we assign a pattern to the remaining coordinates depending on the two
symbols sitting to the left and above the coordinate (a− 2, b+ 2).

If z|(a−3,b+2) ∈ {1, 2, 4, 6, 14, 16}, we use the first drawing of Figure 9, i.e. we
put z|(a−2,b+2) ∈ {5, 15} and for all i ∈ N we put z|(a−2,b+2−i) ∈ {2, 4, 6} and
z|(a−2+i,b+2) ∈ {8, 11}.

If z|(a−3,b+2) ∈ {3, 7, 9, 10, 13}, we use the second drawing of Figure 9, i.e. we
put z|(a−2,b+2) ∈ {4, 14} and for all i ∈ N we put z|(a−2,b+2−i) ∈ {2, 4, 6}. Let
i′ := min{i ∈ N | z|(a−2+i,b+3) ∈ {2, 3, 4, 5, 6, 10, 12, 14, 15}}, then for every i ∈ N

with i < i′ put z|(a−2+i,b+2) = 1, put z|(a−2+i′,b+2) = 13 and for i > i′ put
z|(a−2+i,b+2) ∈ {7, 9}.

Similarily if z|(a−3,b+2) ∈ {5, 8, 11, 12, 15} and z|(a−2,b+3) ∈ {1, 7, 8, 9, 11, 13, 16},
we use the third drawing of Figure 9 and finally if z|(a−3,b+2) ∈ {5, 8, 11, 12, 15}
and z|(a−2,b+3) ∈ {2, 3, 4, 5, 6, 10, 12, 14, 15}, we use the fourth drawing of Figure 9.
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Figure 9. Corner gluing in the NW-corner

In all four cases we have constructed a new point z ∈ XMS which combines the
infinite patterns x|L′ and y|R′ . Obviously this implies corner-gluing at gap size 2 for
the NW-corner, as every finite NW-corner-gluing configuration (on finite regions L
and R = [~v, ~w]) of gap size at least two can be reduced to the case treated above
by choosing a = v1, b = w2 and extending L to L′ ) L and R to R′ ) R (keeping
larger parts of the points x, y).

As the situation is completely symmetric in the east-west direction one can flip
the drawings in Figure 9 about their north-south axis to get appropriate fillings
for the NE-corner. Similarily, because the situation is almost symmetric (except
for the vertical current of a stream) in the north-south direction one can produce
corresponding fillings for the SW- resp. SE-corner by flipping the drawings in Figure
9 resp. those obtained for the NE-corner about their east-west axis and reversing
the direction of the current in all vertical parts afterwards. �

Claim C.3. The meandering streams SFT XMS does not have the UFP.

Proof. Note that XMS contains the fixed point of all blanks. However as a stream
cannot stop at any coordinate in Z2 there are no points seeing non-blank symbols
only at a finite subset of Z2. To show this suppose there exists a point x ∈ XMS

and a non-empty finite subset F ( Z2 of coordinates such that x|~v 6= 1 for all ~v ∈ F
but x|~v = 1 for all ~v ∈ Z2 \ F . Let b := max{r ∈ Z | Z × {r} ∩ F 6= ∅} be the
top-most row in Z2 containing elements of F and let a := min{c ∈ Z | (c, b) ∈ F}
be the left-most coordinate in this row. Now the symbol at coordinate (a, b) has
to be a non-blank sitting beneath a blank and also sitting to the right of a blank
symbol. Checking the alphabet of XMS we find that x|(a,b) = 15 – the only non-
blank symbol with no arrow on its top nor its left border. Since by definition of b
all symbols in row Z×{b+ 1} have to be blanks, the only possibilities for x|(a+1,b)

are the symbols 8 or 12. Continuing in this fashion we see that x|(a+i,b) ∈ {8, 12}
for all i ∈ N. Therefore (a+ N0) × {b} ⊆ F which contradicts the finiteness of F .

This proves that in XMS there is a unique way to fill in a rectangular frame
of blanks, namely with all blanks. Thus it is not possible for any g ∈ N0 to glue
together a non-blank symbol at the origin U := [~0,~0] = {~0} to a pattern of only

blank symbols on V := Z2 \ [−g~1, g~1] and thus XMS does not have the UFP. �

Now we modify the meandering streams shift by splitting the blank symbol into
N ∈ N distinct but completely interchangeable copies. This modified meandering
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streams SFT X
(N)
MS is still corner gluing at gap 2 in each of the 4 corners and still

does not have the UFP. Moreover for N large enough it is not entropy minimal.

Claim C.4. For N ≥ 120 the modified meandering streams SFT X
(N)
MS contains a

proper subsystem of full entropy.

Proof. For n ∈ N we estimate the number of patterns in L[~1,n~1](X
(N)
MS ) containing

a fixed number 0 ≤ m ≤ n2 of non-blank symbols. Those patterns are uniquely
determined by specifying the finite parts of streams intersecting the solid block
B := [~1, n~1] and putting in arbitrary blanks in the remaining positions. The key

point in our argument is the fact that every non-blank in a point of X
(N)
MS is part of

some infinite stream and those have to hit the boundary of B at least twice (once
entering, once leaving).

This enables us to design an algorithm which allows a Turing machine to recreate

every single pattern in L[~1,n~1](X
(N)
MS ) given a specific piece of input consisting of a

finite ordered list L ⊆ B of coordinates, an m-tuple I of instructions taken from

a set of 120 different commands and an (n2 −m)-tuple N ∈ {1, 2, . . . , N}n2−m of
numbers specifying blank symbols. The list L is an ordered subset of the boundary
∂B := B \ [2~1, (n − 1)~1] ( Z2 of B that contains a starting coordinate for every
connected finite part of a stream seen in B. Every instruction in I is itself a 3-
tuple (ai, fi, di) (1 ≤ i ≤ m) where ai ∈ {2, 3, . . . , 16} represents one of the 15

non-blanks in the alphabet of X
(N)
MS , fi ∈ {0, 1} is a flag that signals either “revert”

or “continue” and di ∈ {up,down, right, left} is one of the four standard directions
in Z2. Now the Turing machine processes its input and puts down symbols on the
solid block B as follows: The machine starts by moving its writing-head to the
coordinate given by the first entry in the list L (if L is empty the machine skips
the first part of the algorithm and continues with placing the blank symbols, see
below). There it puts down the symbol a1 from the first instruction in I starting
a finite part of some stream. If f1 is “continue” it moves its writing-head one
step in the direction given by d1 where it executes the next instruction in the
same manner. If some fi is “revert” the machine moves back along the non-blank
symbols written so far until it comes to the first junction – one of the symbols
{3, 4, 5, 6, 9, 10, 11, 12} as in Figure 8 – where one of the three branches is a dead-
end (i.e. the branch points to a place still inside B but where the machine has
not already placed another non-blank symbol). From there the machine moves one
step in the direction specified by di and continues with the (i + 1)th instruction.
If there is no dead-end, the machine moves its writing-head to the next coordinate
from the list L, where it starts another stream using the next instruction from I.
After executing all commands in I, the machine has placed exactly m non-blanks.
It then jumps to coordinate ~1, from which it starts filling in the remaining n2 −m
coordinates of B with blank symbols as specified by the numbers in N .

As every pattern in L[~1,n~1](X
(N)
MS ) can be created by our Turing machine using a

particular input, the number of different “programs” gives an upper bound on the

number of elements in L[~1,n~1](X
(N)
MS ) and thus on the entropy ofX

(N)
MS . Overestimat-

ing the number of different lists L with the number of subsets of the boundary ∂B,
summing over programs with exactly m instructions (0 ≤ m ≤ n2), and assuming
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N ≥ 120, we get

∣∣L[~1,n~1](X
(N)
MS )

∣∣ ≤ 2|∂B| ·
n2∑

m=0

(120m ·N (n2−m)) ≤ 24n−4 · (n2 + 1) ·Nn2

.

As a lower bound we take the number of different patterns containing only blanks, so∣∣L[~1,n~1](X
(N)
MS )

∣∣ ≥ Nn2

. Putting both bounds together we see that h(X
(N)
MS ) = logN

for allN ≥ 120. AsX
(N)
MS contains the full Z2 shift onN (blank) symbols as a proper

subshift, we are done. �
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