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Abstract We prove that every infinite minimal subshift with word complexity p(q) satisfying
lim sup p(q)/q < 3/2 is measure-theoretically isomorphic to its maximal equicontinuous factor;
in particular, it has measurably discrete spectrum. Among other applications, this provides a
proof of Sarnak’s conjecture for all subshifts with lim sup p(q)/q < 3/2 (which can be thought
of as a much stronger version of zero entropy).

As in [CP23], our main technique is proving that all low-complexity minimal subshifts have
a specific type of representation via a sequence {τk} of substitutions, usually called an S-
adic decomposition. The maximal equicontinuous factor is the product of an odometer with a
rotation on an abelian one-dimensional nilmanifold with adelic structure, for which we can give
an explicit description in terms of the substitutions τk. We also prove that all such odometers
and nilmanifolds may appear for minimal subshifts with lim sup p(q)/q = 1, demonstrating
that lower complexity thresholds do not further restrict the possible structure.

1 Introduction

In this work, we demonstrate some surprising connections between symbolically defined dynamical sys-
tems called subshifts and algebraic number theory. Our main result (see Section 1.3) shows that every
minimal subshift with word complexity function (see Section 1.1) of very slow growth is measurably iso-
morphic to a specific rotation of a compact abelian group called its maximal equicontinuous factor
or MEF (which can be defined as the character group of its eigenvalue group; see Section 1.2).

What’s more, the group in question has a very specific structure as the product of an odometer and a
number-theoretic object known as an adelic 1-step (i.e. abelian) one-dimensional nilmanifold. Sections
1.5 and 1.6 give more details about the former object, but for context we mention that a simple example
is irrational rotation of the unit circle S1 = R/Z, and all adelic 1-step one-dimensional nilmanifolds can
be thought of as rotations on p-adic extensions of S1.

In this introduction, we will describe our main results and consequences/connections to several disparate
areas, including Sarnak’s conjecture (see Section 1.4), Pisot’s substitution conjecture and so-called S-
adic representations of subshifts (see Section 1.7), and word complexity thresholds (see Section 1.8). To
explain these, we need some brief definitions/background; for full formal definitions, see Section 2.

1.1 Topological dynamics, subshifts, and word complexity

A topological dynamical system (TDS) is a pair (X,T ) where X is a compact metric space and
T : X → X is a homeomorphism. A TDS is transitive if there exists x ∈ X for which X = {Tnx};
every TDS throughout this work will be assumed transitive to avoid degenerate examples such as disjoint
unions, for which it is impossible to give a unified structure. A TDS is called minimal if it does not
properly contain any nonempty TDS.
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A subshift is a TDS given by a finite set A (called the alphabet) and a set X ⊂ AZ which is closed
(thereby compact) in the product topology and invariant under all powers of the left shift σ (i.e. any shift
of a sequence in X must also be in X). Every subshift is endowed with the action by the homeomorphism
σ, and so we generally refer to a subshift as X instead of (X,σ).

The word complexity function p(q) of a subshift X simply counts the number of q-letter contiguous
strings which appear within at least one x ∈ X. For instance, if X is the so-called golden mean shift,
consisting of 0-1 sequences without consecutive 1s, then it’s not hard to check that p(1) = 2, p(2) = 3,
p(3) = 5, and in fact p(q) is the Fibonacci sequence.

The well-known Morse-Hedlund theorem ([MH38]) states that if there exists any q for which p(q) ≤ q,
then X is a finite set of periodic sequences, i.e. any infinite X must have p(q) ≥ q + 1 for all q. This
means that for infinite X, word complexity grows at least linearly. Ferenczi ([Fer96]) proved that minimal
subshifts with linear complexity have a recursive structure given by a sequence τk of substitutions (such
subshifts are now called S-adic); see Section 2 for formal definitions.

This structure already restricts the dynamical behavior of such a subshift significantly; for instance
X must have finite topological rank ([DDMP21]), finitely many ergodic invariant measures ([Bos92],
[CK19], [DOP22]), and cannot support a strongly mixing measure ([Fer96]). (All σ-invariant measures
on subshifts are assumed to be Borel probability measures.)

In [CP23], we showed that any minimal subshift X with lim sup p(q)/q < 4/3 has a quite restrictive S-adic
structure, which implies (measurable) discrete spectrum, meaning that X is measurably isomorphic
to the rotation of a compact abelian group. In this work, we improve that result in multiple ways. First,
we increase the threshold from 4/3 to 3/2, which is optimal since [CP23] also contains an example with
lim sup p(q)/q = 3/2 which is (measurably) weakly mixing, which is antithetical to discrete spectrum.
Second, we describe the exact group in question (in terms of the S-adic decomposition) and show that
the canonical projection of X to the group rotation is a measure-theoretic isomorphism; this is in a
sense showing that X is as close as possible to a group rotation (since an infinite subshift cannot be
topologically isomorphic to a rotation).

We note for future reference that lim sup p(q)/q < 3 is known to imply uniqueness of invariant measure
for minimal subshifts ([Bos92]), and so when we refer to ‘the measure’ on such a subshift X, there is no
ambiguity.

1.2 Eigenvalues, characters, MEFs, and Sturmian and Toeplitz subshifts

We say that f ∈ C(X) is a continuous eigenfunction of the TDS (X,T ) with continuous additive
eigenvalue γ if f(Tx) = e2πiγf(x) for all x ∈ X. The continuous additive eigenvalues form a subgroup
EX of (R,+) containing Z; the continuous multiplicative eigenvalues EX = {exp(2πiγ) : γ ∈ E}
form a subgroup of the unit circle (S1, ·) in the complex plane, which is always isomorphic to EX/Z.

For any minimal TDS, its MEF is a rotation of the dual group or character group of the continuous
multiplicative eigenvalues, i.e. the group ÊX (under pointwise multiplication) of homomorphisms from
EX to S1, see [BK13].

Two well-studied classes of subshifts with known MEF are the Sturmian subshifts and Toeplitz
subshifts. Sturmian subshifts are particularly relevant for our purposes since they are subshifts of
minimal word complexity, i.e. p(q) = q+1 for all q. In addition, any Sturmian subshift S has ES = Zα+Z
for some α /∈ Q, and so ES = Zα, which is isomorphic to Z. The MEF of a Sturmian shift is therefore Ẑ,
which is an (irrational) rotation on the unit circle.

A subshift T is Toeplitz if it is an almost 1-1 extension of its MEF and has ET a subgroup of (Q,+)

(which must contain Z). Then ET is isomorphic to ET /Z, and so the MEF of T is given by ÊT /Z. One
way of viewing any such dual group is as an odometer, which is defined as coordinatewise addition by
1 in an inverse limit of the form lim←−k Z/o1o2 . . . okZ. (In a slight abuse of notation, we sometimes also
use the term ‘odometer’ to refer to the group itself and not the rotation; since the only rotation ever
considered on such groups in this work is the coordinatewise addition by 1, we hope this will not cause
ambiguity.)
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Unlike Sturmian subshifts, Toeplitz subshifts need not have low word complexity (it can even grow
exponentially) and may have many invariant measures; in fact one of the most celebrated results about
this class ([Dow91]) is that their measure-theoretic structure can be that of an arbitrary Choquet simplex,
and so measure-theoretically Toeplitz subshifts are no more restrictive than general topological dynamical
systems.

As will be seen in the next section, we prove that every minimal subshift X with sufficiently low word
complexity is a combination of Sturmian and Toeplitz subshifts in the sense that their MEFs are a com-
bination of an adelic 1-step one-dimensional nilsystem and an odometer and such nilsystems generalize
and factor onto circle rotations; see Theorem 6.4.

1.3 Our main results

Theorem A. Let X be an infinite minimal subshift with lim sup p(q)/q < 3/2. Then, if (M,η) is the
maximal equicontinuous factor of (X,σ) and φ : (X,σ)→ (M,η) is the associated factor map,

� φ is a measure-theoretic isomorphism with respect to the unique invariant measures on (X,σ) and
(M,η) (Proposition 6.5),

� the additive continuous eigenvalue group of (X,σ) is EX = {qα+
∑
{qep}p : q ∈ Q}+R for some

α /∈ Q, ep ∈ Qp and Q,R subgroups of Q containing Z (Theorem 5.3),

� (M,η) is isomorphic to a product of a (possibly finite) odometer OX (controlling the rational con-
tinuous eigenvalues) and a rotation of an adelic 1-step one-dimensional nilmanifold MX (Theo-
rem 6.4), and

� for every odometer O and adelic 1-step one-dimensional nilmanifold M which can appear in such
an MEF, there exists a minimal subshift with lim sup p(q)/q = 1 for which the MEF is the product
of a rotation on O and M. This limsup may take any prescribed value in [1, 3/2] as long as either
O is infinite or M is not a finite extension of a circle (Theorem 8.1).

In particular, X has measurably discrete spectrum for its unique invariant measure (Theorem 4.1), factors
onto an irrational circle rotation (Corollary 5.9), and every eigenfunction is continuous (Theorem 5.3).

Also, any two such subshifts are orbit equivalent iff they are strong orbit equivalent iff they have the same
additive eigenvalue group.

1.4 The Sarnak conjecture

The celebrated Sarnak conjecture states that for any zero entropy TDS (X,T ), any f ∈ C(X), and
any x ∈ X,

1

N

N−1∑
n=0

f(Tnx0)µ(n)→ 0, (1)

where µ is the Möbius function. A simple application of Theorem A is the following.

Corollary 1.1. For any subshift (X,σ) with lim sup p(q)/q < 3/2, any f ∈ C(X), and any x0 ∈ X, (1)
holds.

Proof. Assume that (X,σ) has lim sup p(q)/q < 3/2, and consider f ∈ C(X) and x0 ∈ X. The subsystem
X0 = {σnx0} is transitive by definition. If X0 is finite, then it is a finite union of periodic orbits, and it
is a simple consequence of the Prime Number Theorem that (1) holds for x0 in this case. If X0 is infinite,
transitive, and non-minimal, then by [OP19], x0 is eventually periodic in both directions, in which case
(1) holds for x0 for the same reason.

Finally, if X is infinite and minimal, then by Theorem A, there exists a factor π from (X0, σ) to a minimal
equicontinuous (M,η) which is a measure-theoretic isomorphism for the unique invariant measures on
both systems . But now the fact that (1) holds for x0 follows from two theorems from [DK15]: Theorem
4.2 (which shows that Sarnak’s conjecture holds for minimal equicontinuous systems) and Theorem

- 3 -



On minimal subshifts of linear word complexity with slope less than 3/2 D. Creutz and R. Pavlov

4.1, which shows that Sarnak’s conjecture is preserved under any topological extension which is also a
measure-theoretic isomorphism between a pair of minimal TDS with unique invariant measures.

Corollary 1.1 is, to our knowledge, the first result to show that sufficiently low word complexity (which
is just a stronger version of zero entropy) implies the conclusion of Sarnak’s conjecture.

1.5 Adelic groups

The MEF of a low-complexity minimal subshift can be interpreted in purely algebraic terms as a group
rotation, a viewpoint which relates to both class field theory and Lie theory. In this framework, the MEF
is a so-called (abelian) nilsystem, placing these objects in a greater context of recent work in ergodic
theory.

Before discussing the general case, a (relatively) simple example may be helpful. Let M2 = S1 × Z2

(here and elsewhere, Z2 are the 2-adic integers) and consider a distinguished element (α, a2) ∈M2. One
can define a skew product action on M2 by

(θ, z) 7→
{

(θ + α, z + a2) if θ + α < 1
(θ + α− 1, z + a2 + 1) otherwise

This action is not a rotation on M2 viewed as a product group, but it can be viewed as the restriction
of the rotation by (α, a2) on (R×Q2)/Z[1/2] to its natural fundamental domainM2 = S1×Z2. We note
that the projection to the real coordinate is precisely the factor map onto S1 under rotation by α.

The ring of adeles A over Q is R ×
∏
pQp where p ranges over the primes and Qp are the p-adic

numbers, restricted to elements where all but finitely many terms lie in Zp). The field Q sits naturally

as a lattice (discrete co-compact subgroup) diagonally in A, and its character group is Q̂ = A/Q.

The eigenvalue groups of the low complexity subshifts in Theorem A involve arbitrary subgroups of Q
containing Z, and describing the MEF via their character groups requires more refined techniques. It’s
not hard to check that such subgroups are in one-to-one correspondence with sequences (`p) in Z≥0∪{∞}
indexed by primes p, where Q(`p) := {mn : n =

∏
p p

tp such that 0 ≤ t ≤ `p}. This case (where infinitely
many `p are allowed to be nonzero) is often called the adelic case in the literature.

Adapting relevant proofs to the adelic setting requires a bit of care since Q(`p) generally does not sit as
a lattice in A (being of infinite covolume). We can define a natural substitute A(`p) for A, and we then

verify that Q̂(`p) = A(`p)/Q(`p). This also explains why adelic subgroups arise naturally in connection to
odometers (Proposition 6.9): for any odometer O = lim←−Z/okZ, if `p = sup{t : pt divides ok for some k},
then O ' Q̂(`p)/Z.

Theorem A shows that the character groups in question cannot be purely p-adic, i.e. must have nontrivial
real component. The phenomenon of nontrivial real component being more ‘natural’ in the study of Lie
groups/lattices is not new; one example is the generalization of the Margulis Arithmeticity Theorem
([Mar91]) proved in ([Oh01]).

1.6 Nilsystems

A quotient G/Γ of a nilpotent Lie group G (above A(`p)) by a lattice Γ (above Q(`p)) is called a nilman-
ifold, introduced by Mal’cev. When a nilmanifold is equipped with a translation action, it is called a
nilsystem. Nilsystems were introduced in breakthrough work by Host-Kra [HK05] and Bergelson-Host-
Kra [BHK05] to prove convergence of nonconventional ergodic averages, and since then they have proved
invaluable in ergodic theory and dynamical systems (e.g. [Lei05], [Zie07], [GTZ12], [BLM12], [Wal12],
[Zie14], [HK18], [BL18]).

Not every compact abelian group rotation (such as the MEF of a TDS) is a nilsystem, though all are
inverse limits of 1-step nilsystems. However, in our case we prove that the MEF is itself a (1-step) one-
dimensional nilsystem. Given the heuristic that nilsystems are the ‘simplest’ type of dynamical systems,
the phenomenon that irrational eigenvalues yield lower complexity than rational alone makes sense;
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when all eigenvalues are rational, the character group is purely p-adic, and so cannot have nilmanifold
structure.

Our Lie group can contain p-adic parts for infinitely many primes, and we refer to this case as an adelic
nilsystem. This is itself a generalization of the so-called ‘S-adic’ theory of nilmanifolds, in which p-adic
parts can exist for finitely many primes, and which was studied for instance in [BG21] and in [SY17] in
connection with solenoids.

1.7 Substitutions and the Pisot conjecture

As mentioned earlier, Ferenczi proved that all minimal subshifts of linear complexity have a so-called
S-adic structure, meaning that all x ∈ X have a recursive structure coming from a sequence (ρk) of
substitutions. As was done in [CP23], the main component of the proof of Theorem A is a proof
(Corollary 3.3) that low word complexity implies a very special type of S-adic structure, where all
substitutions (denoted by τmk,nk,rk in the proofs) have a very particular form.

Connections between substitutive structure and discrete spectrum have been known for many years, and
the most famous such connection is the so-called Pisot conjecture. A full treatment is beyond our
scope here, but informally it states that if X is defined by a single substitution (i.e. all ρk are the same
in the description above) and if that substitution has the Pisot property (this means that its associated
adjacency matrix has Perron eigenvalue which is a Pisot-Vijarayaghavan number) and is algebraically
irreducible, then X has measurably discrete spectrum. The conjecture remains open, though there has
been substantial progress, including a complete solution for X for alphabet of size 2 ([BD02], [HS03]).

Much more difficult is the general S-adic case; even finding a proper plausible formulation seems quite
difficult. There have been multiple impressive recent results in this direction, including a version of S-
adic Pisot for two-letter alphabets ([BMST16]). However, their result includes several hypotheses which
cannot hold even for all Sturmian subshifts, most notably recurrence, which means that for every m,
there exists n so that ρk = ρn+k for 1 ≤ k ≤ m. In particular, their results seemingly cannot be used to
verify discrete spectrum under any complexity hypothesis alone.

Another hypothesis required for previous versions of the S-adic Pisot conjecture is that such subshifts
are balanced on words, see Section 2 for a definition. This property is often difficult to verify, but we
do so (Theorem 7.1) in the course of finding the dimension group for minimal subshifts of low word
complexity (Theorem 7.2), which can be used to characterize orbit equivalence and strong orbit
equivalence for these shifts.

Our proof of Theorem A can then be, at least in part, thought of as a direct verification of a version
of the S-adic Pisot conjecture for only the restricted class of substitutions appearing in our S-adic
decomposition. In fact, the eigenvalue group and the nilmanifold M and odometer O appearing in the
MEF can be explicitly defined in terms of these substitutions; this is too technical to describe here, but
is done in Theorems 5.3 and 6.4. This allows us to explicitly define some simple examples (including
traditional substitutions rather than S-adic) which have certain MEFs which, to our knowledge, haven’t
appeared in the literature. (See Section 8 for proofs.)

Example 1.2. If ρ is the substitution on {0, 1} defined by ρ(0) = 001 and ρ(1) = 00001, and we define
X = {σnx} by x = limk ρ

k(0), then its MEF is a rotation of the adelic 1-step nilmanifold M2 as in
Section 1.5.

Example 1.3. If ρ is the substitution on {0, 1} defined by ρ(0) = 00000011 and ρ(1) = 0000000011,
and we define X = {σnx} by x = limk ρ

k(0), then its MEF is the product of the binary odometer with
a rotation of M2 as in Section 1.5.

Example 1.4. Let π be the substitution on {0, 1} defined by π(0) = a and π(1) = ab, let ω1 be the
substitution on {0, 1} defined by ω1(0) = 001 and ω1(1) = 00001, and let ω2 be the substitution on
{0, 1} defined by ω2(0) = 00001 and ω2(1) = 0000001. Define a sequence of substitutions ρk ∈ {ω1, ω2}
by ρk = ω1 if 2k+2 divides the length of (π ◦ ρ0 ◦ · · · ◦ ρk−1)(1), and ω2 otherwise. (For instance, ρ0 is
ω2 since 22 does not divide the length 2 of π(1) = ab, and ρ1 is ω1 since 23 does divide the length 8 of
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(π ◦ ρ0)(1) = bbbbbbab.) If we define X = {σnx} by x = limk(π ◦ ρ0 ◦ · · · ◦ ρk)(0), then its MEF is the
product of the binary odometer and an irrational circle rotation.

1.8 3/2 as a threshold

Several recent works have demonstrated that lim sup p(q)/q = 3/2 is an important threshold for several
different types of dynamical properties. First, Theorems 1.2 and 1.3 of [OP19] imply that if a subshift
X is transitive and nonminimal and has lim sup p(q)/q < 3/2, then it is the orbit closure of a sequence
which is eventually periodic in both directions. (In particular, this means that Theorem A automatically
applies to all transitive shifts not of this degenerate form.) We can rewrite as the following threshold
result.

Theorem 1.5.

3/2 = min{lim sup p(q)/q : X is transitive, not minimal, and contains a non-eventually periodic sequence}.

In [Cre23], it was shown (Theorem C) that every aperiodic rank-one subshift satisfies lim sup p(q)/q ≥
3/2, and an example was given there (Theorem D) of an aperiodic rank-one subshift with lim sup p(q)/q =
3/2. This immediately implies the following.

Corollary 1.6.

3/2 = min{lim sup p(q)/q : X is an aperiodic rank-one subshift}.

Theorem A implies similar results for different dynamical properties. Theorem A, when combined with
the weakly mixing example from [CP23] with lim sup p(q)/q = 3/2 mentioned above, yields the following
result, which shows that any bound on lim sup p(q)/q which implies existence of eigenvalues automatically
implies discrete spectrum.

Corollary 1.7.

3/2 = sup{lim sup p(q)/q : X has discrete spectrum} = min{lim sup p(q)/q : X is weakly mixing}.

Surprisingly, the same number is also the complexity threshold for Toeplitz subshifts. Our results already
show that lim sup p(q)/q < 3/2 precludes X being Toeplitz; all Toeplitz shifts are minimal, and have
no irrational continuous eigenvalues, so cannot have the structure of Theorem A. In the other direction,
[Sel20] gives word complexity estimates for a subclass called simple Toeplitz subshifts, and those estimates
show that there exist simple Toeplitz subshifts with lim sup p(q)/q = 3/2 (this happens whenever the
parameter sequence (nk) from that paper is unbounded). We now have the following.

Theorem 1.8.
3/2 = min{lim sup p(q)/q : X is Toeplitz}.

A nearly identical proof shows that 3/2 is a threshold for irrational continuous eigenvalues.

Corollary 1.9.

3/2 = min{lim sup p(q)/q : X is minimal, infinite, and has no irrational continuous eigenvalue}.

1.9 Summary

Section 2 contains definitions not fully given in the introduction. In Section 3, we describe and prove the
S-adic structure for minimal subshifts of low complexity. Sections 4, 5, 6, 7, 8 contain, respectively, proofs
of discrete spectrum, the eigenvalue group, the structure of the MEF, classification of orbit equivalence
and strong orbit equivalence, and realization of all possible M,O for all lim sup p(q)/q ≤ 1.5.
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2 Definitions

Let A be a finite subset of Z; the full shift is the set AZ equipped with the product topology and σ is
the left shift homeomorphism on AZ. A subshift is a closed σ-invariant subset X ⊂ AZ. The orbit of
x ∈ X is the set {σnx}n∈Z. In a slight abuse of notation, we sometimes define X as the orbit closure of
a one-sided sequence y ∈ AN; this can be interpreted in the obvious way using natural extensions.

A word is any element of An for some n ∈ N, referred to as its length and denoted by |w|. For any
word v, the number of occurrences of v as a subword of w is denoted |w|v. We say A∗ =

⋃
n≥1An and

represent the concatenation of words w1, w2, . . . , wn by w1w2 . . . wn.

The language of a subshift X on A, denoted L(X), is the set of all finite words appearing as subwords of
points in X. For any q ∈ N, we denote Lq(X) = L(X)∩Aq, the set of q-letter words in L(X), and define
the word complexity function of X to be p(q) := |Lq(X)|. For a subshift X and a word w ∈ L(X)
we denote by [w] the clopen subset in X consisting of all x ∈ X such that x0 . . . x|w|−1 = w.

A substitution (sometimes called a morphism) is a map τ : A → B∗ for finite alphabets A and
B. Substitutions can be composed when viewed as homomorphisms on the monoid of words under
composition, i.e. if τ : A → B∗ and π : B → C∗, then π ◦ τ : A → C∗ can be defined by (π ◦ τ)(a) =
π(b1)π(b2) . . . π(bk), where τ(a) = b1 . . . bk. When a sequence of substitutions τk : A → A∗ shares the
same alphabet, and when there exists a ∈ A for which τk(a) begins with a for all k, clearly (τ1◦· · ·◦τk)(a)
is a prefix of (τ1 ◦ · · · ◦ τk+1)(a) for all k. In this situation one may then speak of the (right-infinite) limit
of (τ1 ◦ · · · ◦ τk)(a).

For any subshift X, there is a convenient way to represent the n-language and possible transitions between
words in points of X by the Rauzy graphs: the nth Rauzy graph of X is the directed graph GX,n
with vertex set Ln(X) and directed edges from w1 . . . wn to w2 . . . wn+1 for all w1 . . . wn+1 ∈ Ln+1(X).
Then, a vertex with multiple outgoing edges corresponds to a word w = w1 . . . wn which is right-special,
meaning that there exist letters a 6= b for which wa,wb ∈ L(X). Left-special words are defined similarly,
and a word is bi-special if it is both left- and right-special. The reader is referred to Section 1 of [CP23]
for more details.

We will sometimes endow a subshift X with a measure µ; any such µ is understood to be a Borel
probability measure which is invariant under σ. A subshift has (measurably) discrete spectrum with
respect to a measure µ when the eigenfunctions span L2(X,µ). It is well-known, e.g. ([Wal82], Theorem
3.4), that:

Theorem 2.1. An ergodic transformation on a standard probability space with discrete spectrum is
measure-theoretically isomorphic to the space of characters of its (multiplicative) eigenvalue group, en-
dowed with the Haar measure, under the ergodic “rotation” of multiplication by the identity homomor-
phism.

A subshift X is balanced on words when for every word v ∈ L(X), there exists Cv > 0 such that for
any w,w′ ∈ L(X) with |w| = |w′|, ||w|v − |w′|v| < Cv, i.e. the number of occurrences of v in any two
words of the same length differs by less than Cv. We say that X is balanced on letters if the above
holds whenever v has length 1.

3 Substitutive structure of minimal subshifts with low complexity

This section is devoted to establishing the following proposition, which establishes a substitutive structure

for minimal subshifts with complexity lim sup p(q)
q < 1.5.

Proposition 3.1. Let X be an infinite minimal subshift with lim sup p(q)
q < 1.5. Then there exist ν > 0

and words uk and vk for k ≥ 0 such that, writing pk for the maximal common prefix of uk and vk and
sk for the maximal common suffix of v∞k and v∞k uk, the following hold:

� every x ∈ X is uniquely decomposable as a concatenation of vk and uk;

� |vk| < |uk| and vk is a suffix of uk;
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� |pk|+ |sk| < |vk|+ |uk|;
� for k ≥ 1, also |pk|+ |sk| < 2|vk|+ |vk−1| < 3|vk|; and

� p(q) < (1.5− ν)q for all q ≥ |v0|.
For each k, exactly one of the following holds:

� there exist positive integers mk < nk such that

vk+1 = vmk−1
k uk and uk+1 = vnk−1

k uk; or

� there exist positive integers rk < mk < nk such that

vk+1 = vmk−1
k ukv

rk−1
k uk and uk+1 = vnk−1

k ukv
rk−1
k uk.

Notation 3.2. For k such that rk does not exist, set rk = 0 and for all k set

1rk :=

{
1 rk > 0
0 rk = 0

.

The substitutive structure can be explicitly stated as follows:

Corollary 3.3. For integers 0 ≤ r < m < n, define the substitutions τm,n,r : {0, 1} → {0, 1}∗ by

τm,n,0 :

{
0 7→ 0m−11
1 7→ 0n−m0m−11

τm,n,r :

{
0 7→ 0m−110r−11
1 7→ 0n−m0m−110r−11

when r > 0.

Then X is the orbit closure of limπ ◦ τm0,n0,r0 ◦ · · · ◦ τmk,nk,rk(0) for π : {0, 1} → A∗ for some finite A.

Proof. Define π(0) = v0 and π(1) = u0. Write ξk = π ◦ τm0,n0,r0 ◦ · · · τmk−1,nk−1,rk−1
.

It follows immediately from Proposition 3.1 that if vk = ξk(0) and uk = ξk(1) then, when rk > 0,

vk+1 = vmk−1
k ukv

rk−1
k uk = (ξk(0))mk−1ξk(1)(ξk(0))rk−1ξk(1) = ξk ◦ τmk,nk,rk(0) = ξk+1(0)

and similarly for uk+1. Similar reasoning applies when rk = 0. The claim then follows by induction.

We first collect several several basic facts established in previous work of the authors.

Definition 3.4. A word v is a root of w if |v| ≤ |w| and w is a suffix of the left-infinite word v∞.

Lemma 3.5 ([Cre22] Lemma 5.7). If w and v are words with |v| ≤ |w| such that wv has w as a suffix
then v is a root of w.

Lemma 3.6 ([CP23] Lemma 2.5). Let u and v be words with |v| < |u| and let s be the maximal common
suffix of v∞ and v∞u. If |s| ≥ |vu| then u and v are multiples of the same word.

Lemma 3.7 ([CP23] Lemma 2.6). Let v and u be words with |v| < |u| which are not multiples of the
same word and where v is a suffix of u. Let s be the maximal common suffix of v∞ and v∞u. Then s is
a suffix of any left-infinite concatenation of u and v.

Lemma 3.8 ([CP23] Lemma 2.7). Let v and u be words and s be the maximal common suffix of v∞ and
v∞u. Let y and z be suffixes of some (possibly distinct) concatenations of u and v, both of length at least
|s|. Then for any word w, the maximal common suffix of yvw and zuw is sw.

Lemma 3.9 ([CP23] Lemma 1.4). Let X be a subshift on alphabet A, for all n let RSn(X) denote the
set of right-special words of length n in the language of X, and for all right-special w, let F (w) denote
the set of letters which can follow w, i.e. {a ∈ A : wa ∈ L(X)}. Then, for all q > r,

p(q) = p(r) +

q−1∑
i=r

∑
w∈RSi(X)

(|F (w)| − 1).
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Lemma 3.10. Let w and y be right-special words with |w| ≤ |y| and maximal common suffix s. Then

p(|w||)
|w|

≥ 1 +
|w| − |s|
|w|

.

Proof. For all |s| < q ≤ |w|, the suffixes of w and y of length q are distinct and are both right-special so

|{w ∈ RSq(X)}| ≥ 2. By Lemma 3.9, then p(|w|) ≥ p(|s|) +
∑|w|
q=|s|+1 2 = p(|s|) + 2(|w| − |s|).

Lemma 3.11 ([CP23] Lemma 2.8). If p(q + 1)− p(q) = 1 then there exists a bi-special word which has
length in [q, q + p(q)], has exactly two successors, and is the unique right-special word of its length and
also the unique left-special word of its length.

The starting off point for our construction of the words vk and uk is the following lemma.

Lemma 3.12. Let X be an infinite minimal subshift satisfying lim inf p(q)q < 2. For any Q > 0, there

exist words u and v with |v| ≥ Q such that, writing s for the maximal common suffix of v∞ and v∞u,

� u and v begin with different letters;

� v is a proper suffix of u;

� s is the unique left-special and unique right-special word of its length;

� every word which has s as a suffix is a suffix of a concatenation of u and v; and

� every x ∈ X can be written in exactly one way as a concatenation of u and v.

Proof. Since lim sup p(q)
q < 2, there exist infinitely many q such that p(q + 1)− p(q) = 1 and eventually

p(q) < 2q. By Lemma 3.11, there are then infinitely many q such that there exists a word wq which is
the unique left-special and unique right-special word of length q (which will have exactly two successors).

Let yq and zq, with |yq| ≤ |zq|, be the two shortest return words for wq which will be the labels of the
two paths from wq to itself in the Rauzy graph GX,|wq|. Then yq and zq begin with different letters and
every x ∈ X can be written in exactly one way as a concatenation of yq and zq since every x ∈ X must
label a path in the Rauzy graph. Since 2|yq| ≤ |yq|+ |zq| ≤ p(|wq|) + 1 < 2|wq|+ 1, we have |yq| ≤ |wq|
so by Lemma 3.5, yq is a root of wq. Since wqzq has wq as a suffix, it has yq as a suffix and as |yq| ≤ |zq|
then yq is a suffix of zq.

If |yq| = |zq| then |zq| ≤ |wq| so both yq and zq are suffixes of wq of the same length which would imply
yq = zq so |yq| < |zq|. Since yq is a suffix of wq, it is also a suffix of wq′ for q′ > q. Then yq must be a
suffix of yq′ since yq′ is a return word for wq′ hence for wq so |yq| ≤ |yq′ |. Suppose |yq| is bounded. Then
yq = yQ for some fixed Q eventually but that would make yQ a root of wq for arbitrarily long wq making
v∞Q ∈ X which contradicts that X is infinite and minimal.

Let sq be the maximal common suffix of y∞q and y∞q zq. Since yq and zq are return words for wq, then
wqy

t
qzq has wq as a suffix for all t ≥ 0 so wq is a suffix of y∞q zq. Since yq is a root of wq, then wq is a suffix

of sq. Since wq is left-special, the two words yqwq and zqwq differ on the letter prior to wq. Therefore
sq = wq. Then any word which has sq as a suffix must be a suffix of a concatenation of yq and zq as
those are the labels of the two return paths.

The inductive step in the construction of vk and uk comes from our next lemma.

Lemma 3.13. Let X be an infinite minimal subshift, and let u and v be words where all x ∈ X can be
written as a concatenation of u and v, |v| < |u|, v is a suffix of u but not a prefix of u, and p(q)/q < 1.5
for all q ≥ |v|. Let p be the maximal common prefix of u and v and s be the maximal common suffix of
v∞ and v∞u. Provided that |p|+ |s| < |u|+ |v|, exactly one of the following holds:

� there exist positive integers m < n such that every x ∈ X can be written as a concatenation of
vm−1u and vn−1u; or

� there exist positive integers r < m < n such that every x ∈ X can be written as a concatenation of
vm−1uvr−1u and vn−1uvr−1u.
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Proof. For brevity, we will use ‘concatenation’ to refer to a concatenation of u and v corresponding to
some x ∈ X. Consider the set S = {t ≥ 0 : uvtu appears in a concatenation}. If |S| = 1 then the
subshift would be periodic by minimality contradicting that X is infinite. If |S| = 2 then the first of the
two possible conclusions hold by setting m = min(S) + 1 and n = max(S) + 1 since every concatenation
is of the form . . . uvi1uvi2uvi3u . . . where all ij are either m− 1 or n− 1.

So we may assume that uvxu, uvyu, uvzu for x < y < z all appear in the concatenations and take x to
be the minimal such value and y to be the next smallest value.

Suppose that uvxuvxu appears in a concatenation. Then, using Lemma 3.6, svxuvxuvxp is right-special
as uvxuvxu must be preceded by vx due to the minimality of x and the vxuxxu pattern cannot continue
forever (by minimality) and when it is broken we see vxuvy. Also svxuvyp is right-special due to x being
minimal and z > y. By Lemma 3.8, the maximal common suffix of svxuvxuvxp and svxuvyp is svxp.

In the case when |svxuvyp| ≤ |svxuvxuvxp|, since x ≤ y − 1 and |p|+ |s| < |v|+ |u|, by Lemma 3.10,

p(|svxuvyp|)
|svxuvyp|

≥ 1 +
|u|+ y|v|

|p|+ |s|+ |u|+ (x+ y)|v|
> 1 +

|u|+ y|v|
2|u|+ (x+ y + 1)|v|

≥ 1 +
|u|+ y|v|

2|u|+ (y − 1 + y + 1)|v|
=

3

2
.

In the case when |svxuvxuvxp| < |svxuvyp|, since |u| > |v|, by Lemma 3.10,

p(|svxuvxuvxp|)
|svxuvxuvxp|

≥ 1 +
2|u|+ 2x|v|

|p|+ |s|+ 2|u|+ 3x|v|

> 1 +
2|u|+ 2x|v|

3|u|+ (3x+ 1)|v|
> 1 +

2|u|+ 2x|v|
4|u|+ 3x|v|

≥ 3

2
.

Since p(q) < 1.5q for q ≥ |v|, this is a contradiction and therefore uvxuvxu never appears in a concate-
nation.

Now suppose that vyuvy appears in a concatenation. Then svyuvxp is right-special as uvxu must be
preceded by vy as y is the next smallest value (and uvxuvxu does not appear). Also svxuvyp is right-
special as uvzu must be preceded by vx by minimality of x. By Lemma 3.8, the maximal common suffix
of svyuvxp and svxuvyp is svxp. Therefore, as x ≤ y − 1, by Lemma 3.10,

p(|svyuvxp|)
|svyuvxp|

≥ 1 +
|u|+ y|v|

|p|+ |s|+ |u|+ (x+ y)|v|

> 1 +
|u|+ y|v|

2|u|+ (x+ y + 1)|v|
≥ 1 +

|u|+ y|v|
2|u|+ (y − 1 + y + 1)|v|

=
3

2

which again contradicts that p(q) < 1.5q for q ≥ |v|; therefore vyuvy never appears. Then every
appearance of uvwu for w > x appears as part of uvxuvwuvxu. As uvxuvxu never appears, then every
occurrence of uvwu appears as part of vyuvxuvwuvxuvy by the minimality of y as the second smallest
possible value. By Lemma 3.7 then uvwu for w > x always appears as part of svyuvxuvwuvxuvyp.

Since z > x, then svyuvxuvzuvxuvyp appears in a concatenation. That word has svyuvxuvyv as a prefix
(as z > y) and svyuvxuvyuvxuvyp, which also appears, has svyuvxuvyu as a prefix so svyuvxuvyp is
right-special. If uvwu for w > z also appears then by the same reasoning, svyuvxuvzp is right-special.
By Lemma 3.8, the maximal common suffix of svyuvxuvyp and svyuvxuvzp is svyp so we would have,
by Lemma 3.10,

p(|svyuvxuvyp|)
|svyuvxuvyp|

≥ 1 +
(x+ y)|v|+ 2|u|

(x+ 2y)|v|+ 2|u|+ |p|+ |s|

> 1 +
(x+ y)|v|+ 2|u|

(x+ 2y + 1)|v|+ 3|u|
=

3

2
+

( 1
2x−

1
2 )|v|+ 1

2 |u|
(x+ 2y + 1)|v|+ 3|u|

≥ 3

2
+

1
2 |u| −

1
2 |v|

(x+ 2y + 1)|v|+ 3|u|
>

3

2
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contradicting that p(q) < 1.5q for q ≥ |v|; therefore |S| = 3. Therefore every concatenation is of the form

. . . uvxuvi0uvxuvi1uvxuxi2uvxuvi3uvxu . . .

where ij are all either y or z. Setting r = x+ 1 and m = y+ 1 and n = z + 1 then proves the claim.

We are now prepared to prove Proposition 3.1.

Proof of Proposition 3.1. Since lim sup p(q)
q < 1.5, there exists ν > 0 and q0 so that p(q) < (1.5− ν)q for

all q ≥ q0. Let u0 and v0 be the words guaranteed by Lemma 3.12 such that |v0| ≥ q0. Then p0 is empty
as u0 and v0 begin with different letters. Lemma 3.6 implies |s0| < |u0v0| so |p0|+ |s0| = |s0| < |u0|+ |v0|.
Proceed by induction assuming we have constructed the words uk and vk. By Lemma 3.13, there
either exist positive integers mk < nk such that every x ∈ X can be written as a concatenation of
vk+1 := vmk−1

k uk and uk+1 := vnk−1
k uk or there exist positive integers rk < mk < nk such that every

x ∈ X can be written as a concatenation of vk+1 := vmk−1
k ukv

rk−1
k uk and uk+1 := vnk−1

k ukv
rk−1
k uk.

Since vk+1 has vmk−1
k uk as a prefix and uk+1 has vmk−1

k vk as a prefix (as mk < nk), pk+1 = vmk−1
k pk.

Since v∞k+1 has ukvk+1 as a suffix and uk+1 = vnk−mk

k vk+1 has vkvk+1 as a suffix, by Lemmas 3.7 and
3.8, we have sk+1 = skvk+1. Therefore

|pk+1|+ |sk+1| = (mk − 1)|vk|+ |vk+1|+ |pk|+ |sk| < (mk − 1)|vk|+ |vk+1|+ |uk|+ |vk| = 2|vk+1|+ |vk|

and as |uk+1| ≥ |vk+1|+ |vk|, then |pk+1|+ |sk+1| < |uk+1|+ |vk+1|.
By induction on k, each x ∈ X can be decomposed uniquely into words vk and uk. For k = 0, this follows
from Lemma 3.12 since v0 and u0 were constructed using that lemma. If x can be uniquely represented
as a concatenation of vk and uk then the same must be true of v

mk−1

k uk and vnk−1
k uk, or of both followed

immediately by vrk−1k uk for k for which rk exists.

Remark 3.14. For all k, pk+1 = vmk−1
k pk and sk+1 = skvk+1 as shown in the proof of Proposition 3.1.

3.1 Complexity estimates

Having established the substitutive structure of low complexity minimal subshifts, we can now determine
what their right-special words are, which allows us to estimate word complexity using Lemma 3.9.

Proposition 3.15. Let X be an infinite minimal subshift satisfying the conclusions of Proposition 3.1.
For the words {uk} and {vk}, the following hold:

� the left-infinite word p∞ = lim skpk = lim s0v1 · · · vk+1v
mk−1
k v

mk−1−1
k−1 · · · vm0−1

0 is right-special;

� for each k, the word skv
nk−2
k pk is right-special and the maximal common suffix of it and p∞ is

skv
mk−1
k pk; and

� for k such that rk > 0, the word skv
rk−1
k ukv

rk−1
k pk is right-special and the maximal common suffix

of it and p∞ and of it and skv
nk−2
k pk is skv

rk−1
k pk.

Proof. Clearly pk is right-special as uk 6= vk and pk must be followed by different letters in each due to
maximality so Lemma 3.7 implies skpk is right-special. By Remark 3.14, sk+1pk+1 = skvk+1v

mk−1
k pk,

and as this, by Lemma 3.7, has skpk as a suffix, p∞ exists and is right-special.

Since vnk−1
k uk appears in a concatenation (if not then uk+1 never appears so the subshift would be

periodic) and is preceded by a concatenation of uk and vk, by Lemma 3.7, skv
nk−1
k uk appears. Since

skv
nk−2
k vk is a prefix of that word and skv

nk−2
k uk is a suffix of it, skv

nk−2
k pk is right-special.

Since sk+1pk+1 = skvk+1v
mk−1
k pk has skukv

mk−1
k pk as a suffix, by Lemma 3.8, the maximal common

suffix of p∞ and skv
nk−2
k pk is then skv

mk−1
k pk.
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For k such that rk > 0, the word vk+1 = vmk−1
k ukv

rk−1

k uk appears in a concatenation preceded by a con-

catenation of uk and vk showing that skv
rk−1
k ukv

rk−1
k uk appears (as rk < mk). The word ukv

rk−1

k ukv
mk−1
k

appears in a concatenation (in fact with the second uk being a suffix of any vk+1 or uk+1 that ap-
pears in a (k + 1)-concatenation) showing that skv

rk−1
k ukv

rk−1
k vk appears (as rk < mk). Therefore

skv
rk−1
k ukv

rk−1
k pk is right-special.

As both p∞ and skv
nk−2
k pk have vmk−1

k pk as a suffix and rk < mk, both have vkv
rk−1
k pk as a suffix. By

Lemma 3.8, the maximal common suffix of skv
rk−1
k ukv

rk−1
k pk and either of them is then skv

rk−1
k pk.

Lemma 3.16. Under the hypotheses of Proposition 3.15, every right-special word of length at least |s0|
is a suffix of one of those from that proposition, and so for q > |s0|,

p(q + 1)− p(q) = 1 +

∞∑
k=0

1
(|skv

mk−1

k pk|,|skv
nk−2

k pk|]
(q) +

∞∑
k=0

1rk1(|skv
rk−1

k pk|,|skv
rk−1

k ukv
rk−1

k pk|]
(q).

Proof. By Lemma 3.12, s0 is the unique right-special word of its length. Therefore every right-special
word of length at least |s0| has s0 as a suffix. Lemma 3.12 also implies every right-special word of length
at least |s0| is a suffix of a concatenation of u0 and v0. Assume that every right-special word of length
at least skpk is a suffix of a concatenation of uk and vk followed by pk. Let w be a right-special word of
length at least |sk+1pk+1|. Then w is a suffix of a concatenation of uk and vk followed by pk so has skpk
as a suffix.

By Remark 3.14, skpk = sk−1vkpk so w has vkpk as a suffix and also |w| ≥ |sk+1pk+1| = |skvk+1v
mk−1
k pk|.

Since vkuk only appears in a concatenation of vk and uk as a suffix either of vk+1 or of vk+1v
mk−1

k uk,
then w either has vk+1v

mk−1

k pk as a suffix or has vk+1pk as a suffix. Since vk+1uk only appears when

mk = 1 and since w is right-special, in both cases w has vk+1v
mk−1
k pk as a suffix. As the vk+1 is

preceded by a concatenation of uk+1 and vk+1 of length at least |sk|, by Remark 3.14, then w has
skvk+1v

mk−1
k pk = sk+1pk+1 as a suffix. By induction, every right-special word with length at least |skpk|

has skpk as a suffix and is a suffix of a concatenation of uk and vk followed by pk.

Let w be any right-special word with |w| ≥ |s0| = |s0p0| which is not a suffix of p∞. Let k maximal such
that |w| ≥ |skpk|. Then w = ypk where y is a suffix of a concatenation of uk and vk of length at least
sk. Since w is right-special, yuk and yvk must both appear in a concatenation. So y must share a suffix
either with vmk−1

k or with vrk−1k ukv
rk−1
k (in which case rk > 0).

When y shares a suffix with vmk−1
k , as w is not a suffix of p∞, then y has skv

mk−1
k as a proper suffix

and shares a suffix with skv
nk−1
k . If |y| > |skvnk−2

k | then w being right-special would force skv
nk−1

k pk or

skukv
nk−1
k pk to be right-special but skv

nk

k never appears in a concatenation. So when y shares a suffix

with vmk−1
k , w is a suffix of skv

nk−2
k pk.

When y shares a suffix with v
rk−1

k ukv
rk−1
k , since w is not a suffix of p∞ it must be that y has skv

rk−1

k

as a proper suffix. If w is not a suffix of skv
rk−1
k ukv

rk−1

k pk then y must have either ukv
rk−1
k ukv

rk−1
k or

vrkk ukv
rk−1

k as a suffix. In the first case w being right-special would force ukv
rk−1
k ukv

rk−1
k uk to appear,

which is impossible, and in the second case it would force vrkk ukv
rk
k to appear in a concatenation, also

impossible. So in the case y shares a suffix with vrk−1k ukv
rk−1
k , w is a suffix of skv

rk−1
k ukv

rk−1
k pk.

The right-special words of any length n > |s0| are then: the suffix of length n of p∞, the suffix of length
n of some skv

nk−2
k pk (which exists and is different from the first word iff n ∈ (|skvmk−1

k pk|, |skvnk−2
k pk|]),

and the suffix of length n of some (|skvrk−1k pk|, |skvrk−1k ukv
rk−1
k pk|] for which rk > 0 (which exists and

is different from the first and second words iff n ∈ (|skvrk−1k pk|, |skvrk−1k ukv
rk−1
k pk|]). The complexity

difference formula is now an immediate consequence of Lemma 3.9, along with the observation that there
is no overlap between the right-special words for distinct k, since by Lemma 3.8, the maximal common
suffix of skvkpk and sk+1vk+1pk+1 is skpk (recall that vk+1 has uk as a suffix).

Knowing the set of right-special words, we can write an explicit formula for the complexity function at
some specific lengths, which determine lim sup p(q)/q.
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Corollary 3.17. Let X be an infinite minimal subshift satisfying the conclusions of Proposition 3.1. Set

C = p(|s0|)− |s0|. Then for every k, writing `k =

{
min(|vnk−rk−1

k |, |vrk−1k uk|) if rk > 0
0 otherwise

,

p(|skvnk−2
k pk|) = |skvnk−2

k pk|+ 1rk`k +

k∑
j=0

(nj −mj − 1)|vj |+
k−1∑
j=0

((rj − 1)|vj |+ |uj |)1rj + C

and for k such that rk > 0,

p(|skvrk−1k ukv
rk−1
k pk|) = |skvrk−1k ukv

rk−1
k pk|+

k−1∑
j=0

(nj −mj − 1)|vj |+
k∑
j=0

((rj − 1)|vj |+ |uj |)1rj

+
∣∣(|skvmk−1

k pk|, |skvnk−2
k pk|] ∩ (1, |skvrk−1k ukv

rk−1
k pk|]

∣∣+ C

and lim sup p(q)
q is attained along some subsequence of these values.

Proof. This is a fairly immediate corollary of Lemmas 3.9 and 3.16; we note only that `k is, when rk > 0,
the number of elements of (|skvrk−1k pk|, |skvrk−1k ukv

rk−1
k pk|] which are less than |skvnk−2

k pk|.
The limsup must be attained along a subsequence of the indicated sequences since they are the right
endpoints of the intervals in the characteristic functions from Lemma 3.16.

Remark 3.18. We could make a similar formulation of lim inf p(q)/q using the left endpoints of the
intervals from Lemma 3.16, but since we do not have need of that in this work, we do not do so here.

3.2 Restrictions on the substitutions

By Corollary 3.3, the complexity hypothesis lim sup p(q)
q < 1.5 ensures that X is defined by substitutions

τmk,nk,rk . In this section, we give some restrictions on how these integers are related.

Throughout this section, X is an infinite minimal subshift with lim sup p(q)
q < 1.5 and ν > 0 and the

sequences of words {uk}, {vk}, {pk}, {sk} and integers {mk}, {nk}, {rk} are from Proposition 3.1.

Lemma 3.19. For all k,

|sk|+ |pk| < (mk−3 + 2)|vk−3|+mk−2|vk−2|+mk−1|vk−1|+ |vk|;
|sk|+ |pk| < (mk−2 + 2)|vk−2|+mk−1|vk−1|+ |vk|; and

|sk|+ |pk| < (mk−1 + 2)|vk−1|+ |vk|.

Proof. By Remark 3.14 applied three times and that |sk−3|+ |pk−3| < 3|vk−3|,

|sk|+ |pk| = |sk−1|+ |vk|+ |pk−1|+ (mk−1 − 1)|vk−1|
= |sk−2|+ |vk−1|+ |vk|+ |pk−2|+ (mk−2 − 1)|vk−2|+ (mk−1 − 1)|vk−1|
= |sk−3|+ (mk−3 − 1)|vk−3|+ (mk−2 − 1)|vk−2|+mk−1|vk−1|+ |vk|+ |pk−3|+ |vk−2|
< (mk−3 + 2)|vk−3|+mk−2|vk−2|+mk−1|vk−1|+ |vk|.

Since |sk−1|+ |pk−1| < 3|vk−1|, |sk−1|+ (mk−1 − 1)|vk−1|+ |pk−1|+ |vk| < (mk−1 + 2)|vk−1|+ |vk| and
since |sk−2|+ |pk−2| < 3|vk−2|, |sk−2|+(mk−2−1)|vk−2|+mk−1|vk−1|+ |pk−2|+ |vk| < (mk−2+2)|vk−2|+
mk−1|vk−1|+ |vk|.

Proposition 3.20. For k ≥ 2 such that nk > 2mk, exactly one of the following holds:

(i) nk = 2mk + 2, nk−1 = mk−1 + 1, nk−2 ≤ 4
3mk−2 + 1 and rk = 0 and rk−1 = 0;

(ii) nk = 2mk + 1, nk−1 ≤ 2mk−1 and rk = 0; or

(iii) nk = 2mk + 1, mk−1 = 1, nk−1 = 3, nk−2 = mk−2 + 1 and rk = rk−1 = rk−2 = 0.
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Proof. Let k such that nk > 2mk. Since |pk|+ |sk| < 3|vk|, Corollary 3.17 implies

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≥ 1 +
(nk −mk − 1 + 1rk)|vk|
(nk − 2)|vk|+ |pk|+ |sk|

> 1 +
nk −mk − 1 + 1rk

nk − 2 + 3
=

3

2
+

1
2nk −mk − 3

2 + 1rk

nk + 1

and therefore nk − 2mk − 3 + 2 · 1rk < 0. So if rk > 0 then nk < 2mk + 1, a contradiction, and if not
then nk < 2mk + 3.

By Corollary 3.17 and Lemma 3.19,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≥ 1 +
(nk −mk − 1)|vk|+ (nk−1 −mk−1 − 1 + 1rk−1

)|vk−1|
(nk − 2)|vk|+ |pk|+ |sk|

> 1 +
(nk −mk − 1)|vk|+ (nk−1 −mk−1 − 1 + 1rk−1

)|vk−1|
(nk − 2)|vk|+ |vk|+ (mk−1 + 2)|vk−1|

=
3

2
+

( 1
2nk −mk − 1

2 )|vk|+ (nk−1 − 3
2mk−1 − 2 + 1rk−1

)|vk−1|
(nk − 1)|vk|+ (mk−1 + 2)|vk−1|

and therefore (1
2nk −mk − 1

2 )|vk|+ (nk−1 − 3
2mk−1 − 2 + 1rk−1

)|vk−1| < 0.

If nk = 2mk + 2 then 1
2 |vk|+ (nk−1 − 3

2mk−1 − 2 + 1rk−1
)|vk−1| < 0 and since, |vk| = |v

mk−1−1
k−1 uk−1| >

mk−1|vk−1|, then nk−1 −mk−1 − 2 + 1rk−1
< 0 so rk−1 = 0 and nk−1 = mk−1 + 1. By Corollary 3.17

and Lemma 3.19,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≥ 1 +
(mk + 1)|vk|+ (nk−2 −mk−2 − 1)|vk−2|

(nk − 2)|vk|+ |vk|+ |vk−1|+ (mk−2 + 2)|vk−2|

=
3

2
+

1
2 |vk| −

1
2 |vk−1|+ (nk−2 − 3

2mk−2 − 2)|vk−2|
(2mk + 1)|vk|+ |vk−1|+ (mk−2 + 2)|vk−2|

.

Since |vk|− |vk−1| ≥ |uk−1|− |vk−1| = (nk−2−mk−2)|vk−2|, this implies 3
2nk−2−2mk−2−2 < 0 meaning

that nk−2 ≤ 4
3mk−2 + 1, putting us in case (i).

So we may assume from here on that nk = 2mk + 1. Since rk = 0, if nk−1 ≤ 2mk−1 then we are in
case (ii). So we may assume from here on that nk−1 = 2mk−1 + a+ 1 for some a ≥ 0. The above gives
that nk−1 − 3

2mk−1 − 2 + 1rk−1
< 0 so 1

2mk−1 + a− 1 + 1rk−1
< 0. Then rk−1 = 0 and 1

2mk−1 + a < 1
meaning that mk−1 = 1 and a = 0 so nk−1 = 3. By Corollary 3.17 and Lemma 3.19,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≥ 1 +
mk|vk|+ (nk−1 −mk−1 − 1)|vk−1|+ (nk−2 −mk−2 − 1 + 1rk−2

)|vk−2|
(nk − 2)|vk|+ |pk|+ |sk|

> 1 +
mk|vk|+ |vk−1|+ (nk−2 −mk−2 − 1 + 1rk−2

)|vk−2|
(2mk − 1)|vk|+ (mk−2 + 2)|vk−2|+ |vk−1|+ |vk|

=
3

2
+

1
2 |vk−1|+ (nk−2 − 3

2mk−2 − 2 + 1rk−2
)|vk−2|

2mk|vk|+ |vk−1|+ (mk−2 + 2)|vk−2|

and, since |vk−1| > mk−2|vk−2|, therefore nk−2 −mk−2 − 2 + 1rk−2
< 0. Then rk−2 = 0 and nk−2 =

mk−2 + 1, putting us in case (iii).

Proposition 3.21. For k ≥ 2 such that rk+1 > 0, nk ≤ 4
3mk + 1 and exactly one of the following holds:

(i) nk ≤ 3
2mk;

(ii) mk = 3, nk = 5, nk−1 = mk−1 + 1 and rk = 0 and rk−1 = 0;

(iii) mk = 1, nk = 2, nk−1 ≤ 2mk−1 and rk = 0; or

(iv) mk = 1, nk = 2, mk−1 = 1, nk−1 = 3, nk−2 = mk−2 + 1 and rk = 0 and rk−1 = 0.

- 14 -



On minimal subshifts of linear word complexity with slope less than 3/2 D. Creutz and R. Pavlov

Proof. Let k ≥ 2 such that rk+1 > 0. For brevity, we will write

Pk :=
p(|sk+1v

rk+1−1
k+1 uk+1v

rk+1−1
k+1 pk+1|)

|sk+1v
rk+1−1
k+1 uk+1v

rk+1−1
k+1 pk+1|

.

By Corollary 3.17 and Lemma 3.19,

Pk > 1 +
(rk+1 − 1)|vk+1|+ |uk+1|+ (nk −mk − 1 + 1rk)|vk|
2(rk+1 − 1)|vk+1|+ |uk+1|+ |vk+1|+ (mk + 2)|vk|

=
3

2
+

1
2 |uk+1| − 1

2 |vk+1|+ (nk − 3
2mk − 2 + 1rk)|vk|

(2rk+1 − 1)|vk+1|+ |uk+1|+ (mk + 2)|vk|

and, as |uk+1| − |vk+1| = (nk −mk)|vk|, therefore 3
2nk − 2mk − 2 + 1rk < 0. As nk is an integer, then

3nk + 2 · 1rk ≤ 4mk + 3 so in particular nk ≤ 4
3mk + 1.

Assume that nk ≥ 3mk+1
2 as otherwise we are in case (i). Then 9mk+3

2 + 2 · 1rk ≤ 4mk + 3 meaning that
mk

2 + 2 ·1rk ≤ 3
2 . So rk = 0 and mk ≤ 3. The only possibilities for (mk, nk) are then (3, 5) or (1, 2) since

3nk ≤ 4mk + 3 (and (2, 3) is ruled out by the assumption that nk ≥ 1
2 (3mk + 1)).

We now estimate using Corollary 3.17 again, knowing that rk = 0. By Corollary 3.17 and Lemma 3.19,

Pk > 1 +
(rk+1 − 1)|vk+1|+ |uk+1|+ (nk −mk − 1)|vk|+ (nk−1 −mk−1 − 1 + 1rk−1

)|vk−1|
2(rk+1 − 1)|vk+1|+ |uk+1|+ |vk+1|+mk|vk|+ (mk−1 + 2)|vk−1|

=
3

2
+

1
2 |uk+1| − 1

2 |vk+1|+ (nk − 3
2mk − 1)|vk|+ (nk−1 − 3

2mk−1 − 2 + 1rk−1
)|vk−1|

(2rk+1 − 1)|vk+1|+ |uk+1|+mk|vk|+ (mk−1 + 2)|vk−1|

and, as |uk+1| − |vk+1| = (nk −mk)|vk|, then(
3

2
nk − 2mk − 1

)
|vk|+ (nk−1 −

3

2
mk−1 − 2 + 1rk−1

)|vk−1| < 0. (†)

Consider first when (mk, nk) = (3, 5). Then (†) gives that 1
2 |vk|+ (nk−1− 3

2mk−1− 2 +1rk−1
)|vk−1| < 0

and, as |vk| > mk−1|vk−1|, then nk−1 −mk−1 − 2 + 1rk−1
< 0 meaning rk−1 = 0 and nk−1 = mk−1 + 1

so we are in case (ii).

Assume from here on that (mk, nk) = (1, 2). If nk−1 ≤ 2mk−1 then we are in case (iii) so we may also
assume nk−1 = 2mk−1+1+a for some a ≥ 0. Then (†) gives that nk−1− 3

2mk−1−2+1rk−1
< 0 meaning

that that 1
2mk−1 + a − 1 + 1rk−1

< 0. Then rk−1 = 0 and a = 0 and mk−1 = 1 and so nk−1 = 3. By
Corollary 3.17, as nk−mk− 1 = 0 and nk−1−mk−1− 1 = 1 and rk = 0 and rk−1 = 0, and Lemma 3.19,

Pk > 1 +
(rk+1 − 1)|vk+1|+ |uk+1|+ |vk−1|+ (nk−2 −mk−2 − 1 + 1rk−2

)|vk−2|
2(rk+1 − 1)|vk+1|+ |uk+1|+ |vk+1|+ |vk|+ |vk−1|+ (mk−2 + 2)|vk−2|

=
3

2
+

1
2 |uk+1| − 1

2 |vk+1| − 1
2 |vk|+

1
2 |vk−1|+ (nk−2 − 3

2mk−2 − 2 + 1rk−2
)|vk−2|

(2rk+1 − 1)|vk+1|+ |uk+1|+ |vk|+ |vk−1|+ (mk−2 + 2)|vk−2|

and, as |uk+1| − |vk+1| = |vk| and |vk−1| > mk−2|vk−2|, then nk−2 −mk−2 − 2 + 1rk−2
< 0. Therefore

rk−2 = 0 and nk−2 = mk−2 + 1, putting us in case (iv).

Remark 3.22. Any specific substitution of the form τm,n,r in Corollary 3.3, with parameters compatible
with Propositions 3.20 and 3.21, can be used infinitely often in the construction of a subshift with

lim sup p(q)
q < 1.5. Indeed, preceding that specific substitution by enough substitutions of the form

τm,m+1,0 for appropriate m will provide such a subshift; we do not elaborate further as we do not make
use of this.

Remark 3.23. The above reasoning can also be used to show that certain substitutions are ruled out
at various complexity cutoffs:

� τm,2m+2,0 cannot occur when lim sup p(q)
q < 1.4;
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� τn,m,r, r > 0 cannot occur when lim sup p(q)
q < 4

3 (c.f. [CP23]); and

� τm,2m+1,0 cannot occur when lim sup p(q)
q < 1.25.

We likewise do not elaborate as we do not make use of this.

Our last fact regarding the substitutive structure is that lim sup p(q)
q < 1.5 imposes a bound on nk

mk
.

Recall that p(q)
q < (1.5− ν)q for all q ≥ |v0|.

Proposition 3.24. There exists δ > 0 and N ∈ N such that for all k ≥ 2 where mk ≥ N , if rk+1 > 0
then nk <

3−δ
2 mk and if rk+1 = 0 then nk < (2− δ)mk.

Proof. By Proposition 3.21, if rk+1 > 0 then nk ≤ 4
3mk + 1 so if mk ≥ 8 then nk

mk
≤ 4

3 + 1
8 = 3

2 −
1
24 .

Take 1
24 > δ > 0 and N ≥ 8 such that δN+3

2(2−δ)N+2 ≤ ν.

Suppose that there exists k with rk = 0 and mk ≥ N and nk ≥ (2 − δ)mk. Then, since
1
2n−m−

3
2

n+1 is
increasing with n, by Corollary 3.17 and Remark 3.14,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

> 1 +
(nk −mk − 1)|vk|

(nk − 2)|vk|+ 3|vk|
=

3

2
+

1
2nk −mk − 3

2

nk + 1
≥ 3

2
− δmk + 3

2(2− δ)mk + 2
.

Therefore, as δm+3
2(2−δ)m+2 is decreasing with m,

p(|skv
nk−2

k pk|)
|skv

nk−2

k pk|
> 3

2 −
δN+3

2(2−δ)N+2 ≥
3
2 − ν contradicting that

p(q) < (1.5− ν)q for all q ≥ |v0|.

4 Discrete spectrum

The first consequence we derive from the substitutive structure and inequalities established in Section 3.2
is that infinite minimal low complexity subshifts have (measurably) discrete spectrum.

Theorem 4.1. Every infinite minimal subshift with lim sup p(q)
q < 1.5 has discrete spectrum.

(We remark that finite transitive subshifts have unique measure supported on a periodic orbit, and the
same is true for infinite transitive subshifts with lim sup p(q)/q < 1.5 by [OP19], and so Theorem 4.1 in
fact applies to all transitive subshifts.)

The key ingredient in this proof is the following proposition, which proves exponential decay of a sequence
related to the substitutive structure, and which plays the same role in our analysis as exponential decay
played in Host’s [Hos86] proof of the existence of eigenfunctions for subshifts coming from certain single
substitutions.

Proposition 4.2. Let X be an infinite minimal subshift with lim sup p(q)
q < 1.5. Let mk, nk and rk be

the sequences from Proposition 3.1. Then there exists εk with
∑∞
k=0 εk <∞ such that for all k,

2
∑k

j=0 1rj
∏k−1
j=0 (nj −mj)

|vk|
< εk.

The proof of Proposition 4.2 will first require a few technical lemmas. Throughout this section, let X be

an infinite minimal subshift with lim sup p(q)
q < 1.5 and uk and vk be the words from Proposition 3.1.

We define some auxiliary sequences which will be crucial throughout the remainder of the paper. For all
k ≥ 0, define

ak+1 = 21rk+1 (nk −mk), bk = mk + rk, and a0 = 21r0 . (2)

Also set βk = ak+1|vk|
|vk+1| > 0 for k ≥ 0.

Lemma 4.3. For all k ≥ 2, ak+1 ≤ bk + 2. If ak+1 = bk + 2 then rk+1 = 0 and nk = 2mk + 2.
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Proof. By Proposition 3.20, nk ≤ 2mk + 2 so if rk+1 = 0 then ak+1 = nk −mk ≤ mk + 2 ≤ bk + 2.

If rk+1 > 0 then by Proposition 3.21, either nk ≤ 3
2mk or (mk, nk) = (1, 2) or (mk, nk) = (3, 5), all of

which preclude ak+1 = bk+2. If nk ≤ 3
2mk then ak+1 = 2(nk−mk) ≤ mk ≤ bk. If (mk, nk) = (1, 2) then

ak+1 = 2(2−1) = 2 = mk+1 ≤ bk+1. If (mk, nk) = (3, 5) then ak+1 = 2(5−3) = 4 = 3+1 ≤ bk+1.

Lemma 4.4. For all k ≥ 1,
|vk+1| = bk|vk|+ ak|vk−1|.

Proof. Since |uk+1| − |vk+1| = (nk −mk)|vk|, if rk > 0 then

|vk+1| = (mk + rk − 2)|vk|+ 2|uk| = (mk + rk)|vk|+ 2(|uk| − |vk|)
= (mk + rk)|vk|+ 2(nk−1 −mk−1)|vk−1| = bk|vk|+ ak|vk−1|

and if rk = 0 then |vk+1| = (mk − 1)|vk|+ |uk| = mk|vk|+ (nk−1 −mk−1)|vk−1| = bk|vk|+ ak|vk−1|.

Lemma 4.5. For k ≥ 1,

βk =
ak+1

bk + βk−1
.

Proof. βk = ak+1|vk|
bk|vk|+ak|vk−1| = ak+1

bk+ak
|vk−1|
|vk|

= ak+1

bk+βk−1
.

The next several lemmas establish that the βk or products of them are always less than one, the first
step in establishing the desired exponential decay.

Lemma 4.6. If k ≥ 1 and ak+1 ≤ bk then βk < 1.

Proof. Since βk−1 > 0, by Lemma 4.5, βk = ak+1

bk+βk−1
< ak+1

bk
≤ 1.

Lemma 4.7. If k ≥ 1 and ak+1 ≤ bk + 1 and βk−1 < 1 then βkβk−1 < 1− 1−βk−1

2 < 1.

Proof. Since βk−1 < 1, 1− βk−1 > 0 and since b(1−βk−1)
b+1 is then increasing with b, by Lemma 4.5,

βkβk−1 =
ak+1βk−1
bk + βk−1

≤ (bk + 1)βk−1
bk + βk−1

= 1− bk(1− βk−1)

bk + βk−1
< 1− bk(1− βk−1)

bk + 1
≤ 1− 1− βk−1

2
< 1.

Lemma 4.8. If k ≥ 2 and nk = 2mk+1 and nk−1 ≤ 2mk−1 then ak ≤ bk−1 and βkβk−1 < 1− 1−βk−1

2 < 1.

Proof. By Proposition 3.21, rk+1 = 0. By Proposition 3.20 (cases (ii) and (iii)), rk = 0 so by Lemma
4.6, βk−1 < 1. As ak+1 = nk −mk = mk + 1 = bk + 1, Lemma 4.7 gives the claim.

Lemma 4.9. If k ≥ 2 and nk = 2mk + 1 and nk−1 > 2mk−1 then ak−1 ≤ bk−2 and βkβk−1βk−2 <

1− 1−βk−2

2 < 1.

Proof. By Proposition 3.21, rk+1 = 0. By Proposition 3.20 case (iii), rk = 0 and mk−1 = 1 and nk−1 = 3
and rk−1 = 0 and nk−2 = mk−2 + 1. So ak+1 = bk + 1 and ak = 2 and bk−1 = 1 and ak−1 = 1. By
Lemma 4.6, then βk−2 < 1. Then by Lemma 4.5,

βkβk−1βk−2 =
bk + 1

bk + 2
1+βk−2

2

1 + βk−2
βk−2 =

(2bk + 2)βk−2
bk + bkβk−2 + 2

= 1− (bk + 2)(1− βk−2)

bk + bkβk−2 + 2

and since βk−2 < 1 implies bk+2+bkβk−2 < 2bk+2 < 2(bk+2), then βkβk−1βk−2 < 1− 1−βk−2

2 < 1.

Lemma 4.10. If k ≥ 2 and rk+1 > 0, nk >
3
2mk and nk−1 ≤ 2mk−1 then ak ≤ bk−1 and βkβk−1 <

1− 1−βk−1

2 < 1.
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Proof. By Proposition 3.21, rk = 0 and either (mk, nk) = (1, 2) or (mk, nk) = (3, 5). By Lemma 4.6,
since nk−1 ≤ 2mk−1, then βk−1 < 1. When mk = 1, nk = 2, we have ak+1 = 2 and bk = 1 and when
mk = 3, nk = 5, we have ak+1 = 4 and bk = 3 so Lemma 4.7 gives the claim.

Lemma 4.11. If k ≥ 2 and rk+1 > 0, nk > 3
2mk and nk−1 > 2mk−1 then ak−1 ≤ bk−2 and

βkβk−1βk−2 < 1− 3(1−βk−2)
4 < 1.

Proof. By Proposition 3.21 case (iv), mk = 1 and nk = 2 and mk−1 = 1 and nk−1 = 3 and nk−2 =
mk−2 + 1 and rk = 0 and rk−1 = 0. So ak+1 = 2 and bk = 1 and ak = 2 and bk−1 = 1 and, by Lemma
4.6, βk−2 < 1. Then

βkβk−1βk−2 =
2

1 + 2
1+βk−2

2

1 + βk−2
βk−2 =

4βk−2
3 + βk−2

= 1− 3− 3βk−2
3 + βk−2

and since βk−2 < 1 implies 3 + βk−2 < 4, we have βkβk−1βk−2 < 1− 3(1−βk−2)
4 < 1.

Lemma 4.12. If k ≥ 2 and nk = 2mk + 2 then ak−1 ≤ bk−2 and βkβk−1βk−2 < 1− 2(1−βk−2)
3 < 1.

Proof. By Proposition 3.21, rk+1 = 0. By Proposition 3.20 case (i), rk = 0 and rk−1 = 0 and nk−1 =
mk−1 + 1, so ak = 1, and nk−2 ≤ 4

3mk−2 + 1 so nk−2 ≤ 2mk−2. Therefore ak+1 = bk + 2 and ak = 1 and
βk−2 < 1 by Lemma 4.6. Observe that

βkβk−1βk−2 =
bk + 2

bk + 1
bk−1+βk−2

1

bk−1 + βk−2
βk−2 =

(bk + 2)βk−2
bk−1bk + bkβk−2 + 1

which is decreasing in both bk and bk−1 so

βkβk−1βk−2 ≤
(bk + 2)βk−2

bk + bkβk−2 + 1
≤ 3βk−2

2 + βk−2
= 1− 2(1− βk−2)

2 + βk−2
< 1− 2(1− βk−2)

3
.

We now combine all of the above lemmas bounding βk or products of them by 1 into a single statement.

Lemma 4.13. For every k ≥ 2 there exists 0 ≤ ik ≤ 2 such that ak−ik+1 ≤ bk−ik and
∏k
j=k−ik βj <

1− 1
2 (1− βk−ik) < 1.

Proof. For k such that ak+1 ≤ bk, set ik = 0. Lemma 4.6 gives that βk < 1. Then 1 − 1
2 (1 − βk−ik) =

1
2 + βk

2 > βk =
∏k
j=k−ik βj .

By Lemma 4.3, ak+1 ≤ bk + 2 and they are only equal when nk = 2mk + 2 and rk+1 = 0. For k such
that ak+1 = bk + 2, set ik = 2 and the claim follows from Lemma 4.12.

Let k such that ak+1 = bk + 1. Consider first when rk+1 > 0. Then 2(nk −mk) = bk + 1 ≥ mk + 1 so
nk >

3
2mk. If nk−1 ≤ 2mk−1 then set ik = 1 and the claim follows from Lemma 4.10; if nk−1 > 2mk−1

then set ik = 2 and the claim follows from Lemma 4.11.

Now consider when rk+1 = 0 so nk −mk = mk + 1. If nk−1 ≤ 2mk−1 then set ik = 1 and the claim
follows from Lemma 4.8; if nk−1 > 2mk−1 then set ik = 2 and the claim follows from Lemma 4.9.

Our next pair of lemmas reframes the bound on nk

mk
established in Proposition 3.24 in terms of ak, bk,

and βk.

Lemma 4.14. For k ≥ 2, if ak+1 ≤ bk and βk ≥ 1− δ and βk−1 ≥ 1− δ then bk ≥ (1−δ)2
δ .

Proof. Since 1− δ ≤ βk ≤ bk
bk+βk−1

≤ bk
bk+1−δ , then bk(1− δ) + (1− δ)2 ≤ bk so (1− δ)2 ≤ δbk.

Lemma 4.15. There exists δ > 0 such that for k ≥ 2, if ak+1 ≤ bk then at least one of βk < 1 − δ or
βk−1 < 1− δ.
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Proof. By Proposition 3.24, there exists δ0 > 0 and N such that for k ≥ 2 and mk ≥ N , if rk+1 > 0
then nk <

3−δ0
2 mk in which case ak+1 = 2(nk − mk) < (1 − δ0)mk ≤ (1 − δ0)bk and if rk = 0 then

nk < (2− δ0)mk in which case ak+1 = nk −mk < (1− δ0)mk ≤ (1− δ0)bk. So for k such that mk ≥ N ,
by Lemma 4.5, βk = ak+1

bk+βk−1
< 1− δ0.

Let 0 < δ ≤ δ0 such that (1−δ)2
2δ ≥ N . Let k such that ak+1 ≤ bk and βk−1 ≥ 1 − δ. By the above, if

mk ≥ N then βk < 1− δ0 ≤ 1− δ. If mk < N then, as rk < mk, bk < 2mk < 2N ≤ (1−δ)2
δ so, by Lemma

4.14, βk < 1− δ.

We are now ready to prove exponential decay of the βk, from which Proposition 4.2 quickly follows.

Lemma 4.16. There exists 0 < κ < 1 and C > 0 so that for all k, we have
∏k
j=0 βj < Cκk.

Proof. By Lemma 4.15, there exists δ > 0 such that for k ≥ 2, if ak+1 ≤ bk then at least one of βk < 1−δ
or βk−1 < 1 − δ. Let k ≥ 3 such that βk ≥ 1 − δ. By Lemma 4.13, there exists 0 ≤ ik ≤ 2 such that∏k
j=k−ik βj < 1− 1

2 (1− βk−ik) < 1 and ak−ik+1 ≤ bk−ik .

If ik = 0 then we have ak+1 ≤ bk so βk−1 < 1 − δ (since βk ≥ 1 − δ). By Lemma 4.6, we have βk < 1
and therefore βkβk−1 < 1− δ.
If ik > 0 then ak−ik+1 ≤ bk−ik so at least one of βk−ik < 1− δ or βk−ik−1 < 1− δ holds. If βk−ik < 1− δ
then

∏k
j=k−ik βj < 1 − δ

2 and if βk−ik−1 < 1 − δ then, as Lemma 4.6 implies βk−ik < 1, we have∏k
j=k−ik−1 βj < βk−ik−1 < 1− δ.

So for all k ≥ 5, there exists 0 ≤ i′k ≤ 3 such that
∏k
j=k−i′k

βj < 1− δ
2 . Set κ0 = 1− δ

2 .

Let C > max{
∏k
j=0 βjκ

−k/4
0 : 0 ≤ k ≤ 5}. Then

∏k
j=0 βj < Cκ

k/4
0 for 0 ≤ k ≤ 5.

Assume now that for some k ≥ 6 we have
∏k′

j=0 βj < Cκ
k′/4
0 for all k′ < k. Then, since i′k ≤ 3,

k∏
j=0

βj =
( k∏
j=k−i′k

βj

)( k−i′k−1∏
j=0

βj

)
< κ0 · Cκ

(k−i′k−1)/4
0 = Cκ

(k+4−i′k−1)/4
0 ≤ Cκk/40

so the claim follows by induction and setting κ = κ
1/4
0 .

Proof of Proposition 4.2. Since ak+1 = 21rk+1 (nk −mk),

2
∑k

j=0 1rj

k−1∏
j=0

(nj −mj) =

k−1∏
j=0

aj+1 =
|vk|
|v0|

k−1∏
j=0

aj+1|vj |
|vj+1|

=
|vk|
|v0|

k−1∏
j=0

βj

so by Lemma 4.16, there exists C > 0 and 0 < κ < 1 such that for all k,

2
∑k

j=0 1rj
∏k−1
j=0 (nj −mj)

|vk|
=

1

|v0|

k−1∏
j=0

βj <
C

|v0|
κk−1

meaning εk := C
|v0|κ

k−1 proves the claim.

The other ingredient needed to prove discrete spectrum is a bound on how much the words vkuk and
ukvk differ.

Lemma 4.17. For all k ≥ 0, the words ukvk and vkuk differ on a number of locations less than

2|u0|2
∑k−1

j=0 1rj (n0 −m0)(n1 −m1) · · · (nk−1 −mk−1).

Proof. Let d be the Hamming distance: the metric defined on pairs of words of the same length by
d(w, x) = |{0 ≤ t < |w| : wt 6= xt}|. Note that for words w and x of the same length and any words p
and s, we have d(pws, pxs) = d(w, x).
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Since |u0v0| < 2|u0|, the claim is immediate for k = 0. Assume the claim holds for k.

Consider first the case when rk = 0. Then, using the triangle inequality,

d(vk+1uk+1, uk+1vk+1) = d(vmk−1
k ukv

nk−1
k uk, v

nk−1
k ukv

mk−1
k uk)

= d(ukv
nk−mk

k , vnk−mk

k uk)

≤
nk−mk−1∑

j=0

d(vjkukv
nk−mk−j
k , vj+1

k ukv
nk−mk−j−1
k )

=

nk−mk−1∑
j=0

d(ukvk, vkuk)

< (nk −mk)2|u0|2
∑k−1

j=0 1rj (n0 −m0)(n1 −m1) · · · (nk−1 −mk−1)

= 2|u0|2
∑k

j=0 1rj (n0 −m0)(n1 −m1) · · · (nk −mk).

Now consider the case when rk > 0. Here

d(vk+1uk+1, uk+1vk+1) = d(v
mk−1

k ukv
rk−1
k ukv

nk−1
k ukv

rk−1
k uk, v

nk−1
k ukv

rk−1
k ukv

mk−1
k ukv

rk−1
k uk)

= d(ukv
rk−1
k ukv

nk−mk

k , vnk−mk

k ukv
rk−1
k uk)

≤
nk−mk−1∑

j=0

(
d(vjkukv

rk−1
k ukv

nk−mk−j
k , vjkukv

rk
k ukv

nk−mk−j−1
k )

+ d(vjkukv
rk
k ukv

nk−mk−j−1
k , vj+1

k ukv
rk−1
k ukv

nk−mk−j−1
k )

)
=

nk−mk−1∑
j=0

2d(ukvk, vkuk)

< 2(nk −mk)2|u0|2
∑k−1

j=0 1rj (n0 −m0)(n1 −m1) · · · (nk−1 −mk−1)

= 2|u0|2
∑k

j=0 1rj (n0 −m0)(n1 −m1) · · · (nk −mk).

Therefore the claim follows by induction.

We are now in a position to prove discrete spectrum.

Proof of Theorem 4.1. Let X be an infinite minimal subshift with lim sup p(q)
q < 1.5. Let vk and uk be

the words from Proposition 3.1 with corresponding mk, nk and rk.

A subshift (X,σ) is mean almost periodic if for all ε > 0 and all x ∈ X, there exists a syndetic set S so
that for all s ∈ S, x and σsx differ on a set of locations with upper density1 less than ε. Mean almost
periodicity implies discrete spectrum; see e.g. Theorem 2.8 [LS09].

Let x ∈ X. Then x can be written as a bi-infinite concatenation of the words uk and vk. Without loss
of generality, we may assume that x contains uk+1 starting at the origin, since for any i, j, the set of
locations where σix and σj(σix) differ is just a shift of the set of locations where x and σjx differ. Then,
decomposing x into uk and vk, we have

x = . . . vkw1w2 . . .

σ|vk|x = . . . w1w2 . . .

where each wj ∈ {uk, vk}.
By definition, x does not contain three consecutive uk, i.e. there does not exist j so that wj = wj+1 =

wj+2 = uk. We can then decompose x into blocks of the form viku
j
k, i > 0, j ∈ {1, 2}, and then each such

block corresponds to a block vi−1k ujkvk (of the same length) within σ|vk|x. Therefore, these blocks occur
at the same locations in x and σ|vk|x, and the set of locations at which x and σ|vk|x differ is the union of

1The upper density of D ⊆ N is lim supN,M
1
N |D ∩ {M + 1,M + 2, . . . ,M +N}|.
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such locations in these pairs of blocks. This number of differences in such a pair is d(viku
j
k, v

i−1
k ujkvk) =

d(vku
j
k, u

j
kvk), which is bounded from above by 4|u0|2

∑k−1
j=0 1rj (n0 −m0)(n1 −m1) · · · (nk−1 −mk−1) by

Lemma 4.17. Since each of uk+1 and vk+1 contains at most two occurrences of uk, the density of locations
where a uk starts in x is bounded from above by 2

|vk+1| . Putting all of this together,

d({t : xt 6= (σ|vk|x)t}) ≤
8|u0|2

∑k−1
j=0 1rj (n0 −m0)(n1 −m1) · · · (nk−1 −mk−1)

|vk+1|

so by Proposition 4.2,

d({t : xt 6= (σ|vk|x)t}) <
8|u0||vk|
|vk+1|

εk

where
∑∞
k=0 εk <∞. Let

Sk =
{∑̀
i=k

pi|vi| : ` > k, 0 ≤ pi <
|vi+1|
|vi|

}
and observe that for all t ≥ 1, there exists 0 ≤ m ≤ |vk| such that t −m ∈ Sk so Sk is syndetic. Write
Ds = {t : xt 6= (σsx)t}. For s ∈ Sk, by the subadditivity of d,

d(Ds) ≤
∑̀
i=k

d(Dpi|vi|) ≤
∑̀
i=k

pid(D|vi|) <
∑̀
i=k

|vi+1|
|vi|

8|u0||vi|
|vi+1|

εi ≤ 8|u0|
∞∑
i=k

εi.

Since
∑
εk <∞, then limk sups∈Sk

d(Ds) = 0 so X is mean almost periodic, and therefore has discrete
spectrum.

5 The additive eigenvalue group

In this section, we explicitly compute the additive continuous eigenvalue group for low complexity min-
imal subshifts in terms of the ak and bk defined in Section 4, which is the first step in characterizing
the maximal equicontinuous factor. The main tools are the exponential decay already established and
approximation arguments along a similar line of reasoning as in [CP23], though more complex.

Throughout this section, let X be an infinite minimal subshift with lim sup p(q)/q < 1.5, which therefore
satisfies the conclusions of Propositions 3.1, 3.20, 3.21 and 4.2.

Let uk and vk be the words from Proposition 3.1 and (ak) and (bk) as in (2). Any reference to measure
refers to the unique σ-invariant measure µ. By minimality, the measure of any nonempty open set is
positive.

We first introduce the following notation for subgroups of (Q,+).

Definition 5.1. Let 0 ≤ `p ≤ ∞ for each prime p ∈ P. The (`p)-subgroup of Q is

Q(`p) = {q ∈ Q : ∃p1, . . . , pt ∈ P such that p1 · · · ptq ∈ Z and |{1 ≤ i ≤ t : pi = p}| ≤ `p for all p ∈ P}

That Q(`p) is a group under addition is easily verified.

The purpose of this section is to prove the following explicit description of the eigenvalue group. Our
description requires introducing the following standard notation.

Notation 5.2. For a prime p and a ∈ Qp a p-adic number, the p-adic fractional part is

{a}p =

−1∑
t=−m

atp
t

where a =
∑∞
t=−m atp

t is the p-adic expansion of ap.

Note that {a+ a′}p = {a}p + {a′}p (mod Z) and that for q ∈ Q, q =
∑
p{q}p (mod Z).
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Theorem 5.3. For each prime p ∈ P, let

LX(p) = sup{t ≥ 0 : pt divides
|v0|a0 · · · ak

gcd(|vk|, |vk+1|)
for some k ≥ 0}

RX(p) = sup{t ≥ 0 : pt divides gcd(|vk|, |vk+1|) for some k ≥ 0}

and let QX be the (LX(p))-subgroup of Q and RX be the (RX(p))-subgroup of Q. Let

α =
λ

|u0|λ+ |v0|(1− λ)
where λ =

a0

b0 + a1
b1+···

.

Then there exist ep ∈ Qp for each prime p such that

EX =

{
qα+

∑
p

{qep}p + r : q ∈ QX , r ∈ RX

}
.

In addition, all measurable eigenfunctions are continuous.

Before proceeding, we establish that the LX(p) are integers.

Lemma 5.4. For all k ≥ 0, gcd(|vk|, |vk+1|) divides |v0|a0 · · · ak.

Proof. Set g0 = gcd(|v0|, |u0| − |v0|) and gk = gcd(|vk|, |vk−1|) for k ≥ 1. Then g0 divides |v0| and

gk+1 = gk gcd(bk
|vk|
gk

+ ak
|vk−1|
gk

, |vk|gk ) = gk gcd(ak
|vk−1|
gk

, |vk|gk ) and since gcd( |vk|gk ,
|vk−1|
gk

) = 1, then gk+1

divides gkak so by induction gk+1 divides |v0|a0 · · · ak for all k.

5.1 Additive continuous eigenvalues

Our first step is establishing the existence of a family of irrational additive continuous eigenvalues, all of
which are explicitly defined in terms of generalized continued fractions using ak and bk.

Proposition 5.5. λ and α as defined in Theorem 5.3 are irrational.

Proof. Suppose that λ ∈ Q so 0 < λ = p
q for some p, q ∈ Z with p, q > 0. Define the sequence (pk) by

p−2 = q and p−1 = p and for k ≥ −1, pk+1 = −bk+1pk + ak+1pk−1. By construction, λ = λ0 = p−1

p−2
.

Assume that λk+1 = pk
pk−1

. Then, since λk+1 = ak+1

bk+1+
ak+2

bk+2+···
= ak+1

bk+1+λk+2
,

pk+1

pk
= −bk+1 + ak+1

pk−1
pk

= −bk+1 +
ak+1

λk+1
= λk+2

so by induction, λk = pk
pk−1

for all k. In particular, pk > 0 for all k since λk > 0 and p−1 > 0 so if there

were a minimal k such that pk < 0 then that λk < 0).

Now observe that

pk+1|vk+1|+ pk|vk+2| = −bk+1pk|vk+1|+ ak+1pk−1|vk+1|+ pkbk+1|vk+1|+ pkak+1|vk|
= ak+1(pk|vk|+ pk−1|vk+1|)

and since p−1(|u0| − |v0|) + p−2|v0| = p|u0|+ (q − p)|v0|, by induction then

pk+1|vk+1|+ pk|vk+2| = (p|u0|+ (q − p)|v0|)a0a1 · · · ak+1 < (p|u0|+ (q − p)|v0|)εk+1|vk+1|

where εk+1 is as in Proposition 4.2. Since pk, pk+1 ≥ 1,

|vk+1| < pk+1|vk+1|+ pk|vk+2| < (p|u0|+ (q − p)|v0|)εk+1|vk+1|

but then
1

p|u0|+ (q − p)|v0|
< εk+1 → 0
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which is impossible. Therefore λ /∈ Q hence α /∈ Q (as |u0| > |v0|).

Definition 5.6. For all k ≥ 0, define

λk =
ak

bk + ak+1

bk+1+···
and αk =

1

|vk|+ |vk−1|λk

(where |v−1| is defined as |u0| − |v0|, obtained by reversing the recursion from Lemma 4.4).

The eigenvalue family is the set {αk}k≥0.

We adapt the argument of Host [Hos86] using ‘approximate eigenfunctions’ and deduce convergence to
an actual eigenfunction from the exponential decay of Proposition 4.2.

Proposition 5.7. For k ≥ 0, αk is an additive continuous eigenvalue.

Proof. Fix k0 ≥ 0 and let k ≥ k0. Every x ∈ X can be written in a unique way as a concatenation of uk
and vk; we will refer to such as a k-concatenation. Let Bk be the set of x ∈ X such that x has uk or vk
at the origin when written as a k-concatenation. Let j(x, k) be the minimal j ≥ 0 such that σ−jx ∈ Bk.

Consider x which has uk at the origin. If rk = 0 then one of σ−(mk−1)|vk|x or σ−(nk−1)|vk|x is in Bk+1.
If rk > 0 then one of σ−(mk+rk−2)|vk|−|uk|x or σ−(nk+rk−2)|vk|−|uk|x is in Bk+1. For x that has vk at the
origin, there exists 1 ≤ p < nk + rk such that σ−p|vk|x or σ−p|vk|−|uk|x is in Bk+1. Therefore for every
x ∈ X, we have j(x, k+1)−j(x, k) = p|vk| or j(x, k+1)−j(x, k) = p|vk|+ |uk| for some 1 ≤ p < nk+rk.

Since |uk| = |vk|+ (nk−1 −mk−1)|vk−1|, in the latter case, j(x, k + 1)− j(x, k) = (p+ 1)|vk|+ (nk−1 −
mk−1)|vk−1|. Therefore

j(x, k + 1)− j(x, k) = p|vk|+ p′|vk−1| (‡)
for some 1 ≤ p ≤ nk + rk and p′ = 0 or p′ = nk−1 −mk−1 < nk−1.

Let fk(x) = exp(2πiαk0j(x, k)). Each fk is ‘approximately’ an eigenfunction: fk(σx) = exp(2πiαk0)fk(x)
except when σx ∈ Bk and µ(Bk) → 0 (since σiBk are disjoint for at least 0 ≤ i < |vk| and |vk| → ∞).
Observe that

|fk(x)− fk+1(x)| = | exp(2πiαk0j(x, k))− exp(2πiαk0j(x, k + 1))|
= | exp(2πiαk0j(x, k))(1− exp(2πiαk0(p|vk|+ p′|vk−1|))|
= |1− exp(2πiαk0(p|vk|+ p′|vk−1|)|
≤ |1− exp(2πiαk0p|vk|)|+ | exp(2πiαk0p|vk|)− exp(2πiαk0(p|vk|+ p′|vk−1|)|
= |1− exp(2πiαk0p|vk|)|+ |1− exp(2πiαk0p

′|vk−1|)|
≤ 2π〈αk0p|vk|〉+ 2π〈αk0p′|vk−1|〉.

Suppose we knew that there exist ε′k > 0 with
∑
ε′k < ∞ such that max1≤p≤nk+rk〈αk0p|vk|〉 < ε′k.

Since 〈αk0p′|vk−1|〉 = 0 when p′ = 0 and 〈αk0p′|vk−1|〉 < ε′k−1 when p′ > 0, then we would have∑∞
k=K |fk+1(x) − fk(x)| <

∑∞
k=K(ε′k + ε′k−1) which tends to zero uniformly over x ∈ X. So then

the fk(x) are uniformly Cauchy in the sup norm, and as each fk(x) is continuous, they converge to
a continuous limit f(x). Since fk(σx) = exp(2πiαk0)fk(x) on sets approaching full measure (and the
unique invariant measure necessarily has full support), by continuity f(σx) = exp(2πiαk0)f(x) for all x.
We will now show that such ε′k exist.

Set dk = |vk+k0+1| for k ≥ −2 (if k0 = 0 then set d−2 = |u0| − |v0| as v−1 is undefined). Then
dk+1 = bk+k0+1dk + ak+k0+1dk−1. Define sequences (ck) and (ek) by c−2 = 1, c−1 = 0, e−2 = 0, e−1 = 1
and the same recursion relation ck+1 = bk+k0+1ck + ak+k0+1ck−1 and ek+1 = bk+k0+1ek + ak+k0+1ek−1.
Standard continued fraction theory shows that ck

ek
→ λk0 . Since the sequences are all defined by the

same linear recurrence relation, dk = d−2ck + d−1ek for all k. Then

lim
ek
dk

= lim

(
d−1 + d−2

ck
ek

)−1
= (d−1 + d−2λk0)−1 =

1

d−1 + d−2λk0
= αk0
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It is easily verified by induction that ek+1dk − ekdk+1 = (−1)k|vk0−1|ak0ak0+1 · · · ak0+k+1 for all k.

Since ek+1dk − ekdk+1 alternates sign, e2k
d2k

approaches αk0 from below and e2k+1

d2k+1
approaches αk0 from

above. Therefore ∣∣∣∣αk0 − ek
dk

∣∣∣∣ < ∣∣∣∣ ek+1

dk+1
− ek
dk

∣∣∣∣ =
|vk0−1|ak0 · · · ak0+k+1

dkdk+1

Then |αk0dk − ek| <
|vk0−1|ak0

···ak0+k+1

dk+1
so for any p,

〈pαk0dk〉 <
p|vk0−1|ak0 · · · ak+k0+1

dk+1

By Proposition 4.2, there exists εk with
∑
εk <∞ such that

a0···ak+k0+1

dk
< εk+k0 .

For p ≤ nk+1 + rk+1 ≤ 2mk+1 + 2 + rk+1 ≤ 2bk+1 + 2, we have pdk
dk+1

≤ (2bk+1+2)dk
bk+1dk

≤ 4. Then

〈pαk0dk〉 <
pdk|vk0−1|εk+k0
dk+1a0 · · · ak0−1

≤ 4
|vk0−1|

a0 · · · ak0−1
εk+k0 .

Setting ε′k = 4|vk0−1|(a0 · · · ak0−1)−1εk+k0 completes the proof.

Corollary 5.8. α is an additive continuous eigenvalue.

Proof. Since λ = a0
b0+λ1

,

α =
λ

|v0|+ (|u0| − |v0|)λ
=

1

λ−1|v0|+ |u0| − |v0|
=

1
b0+λ1

a0
|v0|+ |u0| − |v0|

=
a0

b0|v0|+ λ1|v0|+ a0(|u0| − |v0|)
=

a0
|v1|+ λ1|v0|

= a0α1.

By Proposition 5.7, α1 is a continuous additive eigenvalue so α is as well.

Corollary 5.9. There is a continuous factor map (X,σ) → (S1, Rα) where Rα denotes rotation by
exp(2πiα). The same holds for (S1, Rαk

) for each k.

Proof. Let fα : X → S1 be a continuous eigenfunction for exp(2πiα). Then fα(σx) = exp(2πiα)fα(x)
so fα is the factor map. The same reasoning applies to αk.

Next we prove that every element of QXα is, up to a rational, an element of the additive continuous
eigenvalue group.

Proposition 5.10. For all q ∈ QX there exists rq ∈ Q such that qα+ rq ∈ EX .

Proof. Since λk = ak
bk+λk+1

, we have that λk+1 = akλ
−1
k − bk. Therefore, for k ≥ 1,

αk+1 =
1

|vk+1|+ |vk|λk+1
=

1

bk|vk|+ ak|vk−1|+ ak|vk|λ−1k − bk|vk|
=

λk
ak(|vk|+ |vk−1|λk)

=
αkλk
ak

.

We claim now that αkλk = (−1)k |vk|
|v0|a0···ak−1

α + rk for some rk ∈ Q. Clearly α0λ0 = α = |v0|
|v0|α + 0.

Observe that

α1λ1 =
λ1

|v1|+ |v0|λ1
=

a0λ
−1 − b0

b0|v0|+ a0(|u0| − |v0|) + a0λ−1|v0| − b0|v0|
=

a0 − b0λ
a0(|v0|+ (|u0| − |v0|)λ)

so we have

α1λ1 +
|v1|
|v0|a0

α− 1

|v0|
=
|v0|(a0 − b0λ) + |v1|λ− a0(|v0|+ (|u0| − |v0|)λ)

a0|v0|(|v0|+ (|u0| − |v0|)λ)
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=
−b0λ|v0|+ b0λ|v0|+ a0λ(|u0| − |v0|)− a0(|u0| − |v0|)λ

a0|v0|(|v0|+ (|u0| − |v0|)λ)
= 0.

Assume that αkλk = (−1)k |vk|
|v0|a0···ak−1

α+ rk and likewise for k − 1. Then

αk+1λk+1 =
akλ

−1
k − bk

bk|vk|+ ak|vk−1|+ ak|vk|λ−1k − bk|vk|
=

ak − bkλk
ak(|vk|+ |vk−1|λk)

= αk −
bkαkλk
ak

=
αk−1λk−1
ak−1

− bkαkλk
ak

= (−1)k−1
|vk−1|

|v0|a0 · · · ak−1
α+

rk−1
ak−1

− (−1)k
bk|vk|

|v0|a0 · · · ak
α− bkrk

ak

= (−1)k+1 ak|vk−1|+ bk|vk|
|v0|a0 · · · ak

α+
rk−1
ak−1

− bkrk
ak

= (−1)k+1 |vk+1|
|v0|a0 · · · ak

α+
rk−1
ak−1

− bkrk
ak

so by induction, the claim holds. Then

αk+1 =
αkλk
ak

= (−1)k
|vk|

|v0|a0 · · · ak
α+

rk
ak
.

We now prove that all rationals with denominator an eventual common divisor of |uk| and |vk| are
additive continuous eigenvalues.

Proposition 5.11. A rational number m/n is an additive continuous eigenvalue if n eventually divides
the lengths of both uk and vk, equivalently the lengths of both vk and vk+1.

Proof. Assume that n divides the length of uk and vk for some k. Let B be the clopen set of x ∈ X
such that as a k-concatenation, σsnx has vk or uk at the origin for some integer s. Then σnB = B,
and so e2πi/n has continuous eigenfunction

∑n−1
k=0 χσkBe

2πik/n. Therefore n−1 is an additive continuous
eigenvalue so m/n also is.

Proposition 5.12. The group of additive continuous eigenvalues EX contains {qα + rq + r : q ∈
QX , r ∈ RX}.

Proof. This is an immediate consequence of Propositions 5.10 and 5.11.

5.2 Additive measurable eigenvalues

We now prove that every additive measurable eigenvalue is contained in QXα+ Q.

Lemma 5.13. Define Rokhlin towers by, setting u′k such that uk = u′kvk,

Bk = {x ∈ X : x as a (k + 1)-concatenation has vk+1 at the origin, possibly as a suffix of uk+1},
B′k = {x ∈ X : x as a (k + 1)-concatenation has u′k+1 at the origin, as a prefix of uk+1},

and Tk =
⊔|vk+1|−1
j=0 σjBk and T ′k =

⊔|uk+1|−|vk+1|−1
j=0 σjB′k.

Then for all k, Tk t T ′k = X and µ(Tk) ≥ 1
4 .

Proof. Every x ∈ X is uniquely decomposable as a concatenation of uk+1 and vk+1 hence of u′k+1 and
vk+1 so the levels of the towers are disjoint and union to the entire space. Since nk+1 ≤ 2mk+1 + 2,
|uk+1| − |vk+1| = (nk − mk)|vk| ≤ (mk + 2)|vk| and |vk+1| = (mk − 1)|vk| + |uk| > mk|vk|, then
|uk+1|−|vk+1|
|vk+1| < mk+2

mk
≤ 3. Therefore µ(Tk) ≥ 1

4µ(Tk t T ′k).

Proposition 5.14. Let γ be an additive measurable eigenvalue. Then there exists q ∈ QX and r ∈ Q
such that γ = qα+ r.
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Proof. Let f be a measurable eigenfunction with eigenvalue exp(2πiγ). Let Bk and B′k as in Lemma
5.13. For each k, define

fk(x) =

|vk+1|−1∑
j=0

1

µ(Bk)

(∫
σjBk

f dµ

)
1σjBk

(x) +

|uk+1|−|vk+1|−1∑
j=0

1

µ(B′k)

(∫
σjB′k

f dµ

)
1σjB′k

(x).

Let Fk be the σ-algebra generated by the sets σjBk, 0 ≤ j < |vk+1|, and σjB′k, 0 ≤ j < |u′k+1|. Since
µ(Tk t T ′k) = 1 and µ(Bk), µ(B′k)→ 0 (since |uk+1| − |vk+1| ≥ |vk| → ∞), the σ-algebras Fk converge to
the σ-algebra of all measurable sets. Since each fk is Fk-measurable and E[f |Fk] = E[fk+1|Fk] = fk, by
the Martingale Convergence Theorem, fk converge almost everywhere to f .

For all t ≥ 0, we have that σ|vk+t+1| takes every occurrence of vk+t+1 to an occurrence of vk+t+1 except
those immediately followed by an occurrence of uk+t+1. Therefore σ|vk+t+1| takes every occurrence of
vk+1 in a vk+t+1 to an occurrence of vk+1 except for those in a vk+t+1 immediately followed by a uk+t+1.
Likewise, for 0 < ik+t+1, σik+t+1|vk+t+1| takes every occurrence of a vk+1 in a vk+t+1 to an occurrence of
vk+1 except for those in a vk+t+1 less than ik+t+1 words prior to a uk+t+1.

For any (k+t+2)-concatenation, since uk+t+2 has vk+t+2 as a suffix, the concatenation is a concatenation
of v

mk+t+1

k+t+1 u′k+t+1 and v
nk+t+1

k+t+1 u
′
k+t+1 and, if rk+t+1 > 0, v

rk+t+1

k+t+1 u
′
k+t+1 where u′k+t+1 is the prefix of

uk+t+1 such that uk+t+1 = u′vk+t+1. Since nk+t+2 ≤ 2mk+t+2 + 2, then |u′k+t+1| ≤ |vk+t+1|+ 2|vk+t| <
3|vk+t+1| so at least 1

4 of the vk+1 appearing in a (k + t+ 1)-concatenation are in a vk+t+1.

Let {ik} such that 0 < ik+t ≤ max(1, 0.5bk+t). Write dk = |vk+1|. For k + t such that bk+t > 1, then

µ(σik+tdk+tBk ∩Bk) ≥ bk+t − ik+t
bk+t

(
1

4
µ(Bk)

)
≥ 1

8
µ(Bk).

For k such that bk+t = 1, meaning rk+t = 0 and mk+t = 1, we have that σ|vk+t+1| = σ|uk+t| takes every
occurrence of vk+t which precedes a uk+t to the vk+t which is a suffix of that uk+t. Since nk+t ≤ 4, at
least 1

4 of the words in a (k + t+ 1)-concatenation are uk+t so at least 1
4 of the vk+t are taken to a vk+t

by σ|vk+t+1| (since uk+t is always preceded by vk+t, possibly as a suffix of another uk+t). Then,

µ(σdk+tBk ∩Bk) ≥ 1

4
µ(Bk).

Then fk(σik+tdk+tx) = fk(x) for a set of measure at least 1
8µ(Tk) ≥ 1

32 . Since fk → f almost everywhere,
there is then a positive measure set such that for any sufficiently small ε > 0 and almost every x in the
set, there exists k so that for all t, |f(σik+tdk+tx)− f(x)| < ε. Therefore exp(2πiγikdk)→ 1.

For large enough k (say k ≥ k0), 〈idkγ〉 < 1
160 for all 0 < i ≤ max(1, 0.5bk+1). Suppose that for all c ∈ Z,

we have |c − dkγ| ≥ 0.05 dk
dk+1

≥ 0.05(2bk+1 + 2)−1 (using that dk+1 = bk+1dk + ak+1dk−1 ≤ bk+1dk +

(bk+1 + 2)dk−1). Then |max(1, b0.5bk+1c)c − max(1, b0.5bk+1c)dkγ| ≥ 0.025max(1,b0.5(bk+1c)
bk+1+1 ≥ 1

160 , a

contradiction. This implies that for all k ≥ k0, there exists c′k ∈ Z, so that
∣∣∣γ − c′k

dk

∣∣∣ < 0.05(dk+1)−1.

We will prove that c′k+1 = bk+1c
′
k + ak+1c

′
k−1 for all k > k0.

For k > k0, let c′′k+1 = bk+1c
′
k + ak+1c

′
k−1. By the above,∣∣∣∣γ − c′k−1

dk−1

∣∣∣∣ < 0.05(dk)−1 and

∣∣∣∣γ − c′k
dk

∣∣∣∣ < 0.05(dk+1)−1 so

∣∣∣∣dk+1γ − c′k
dk+1

dk

∣∣∣∣ < 0.05.

Since |dk−1γ − c′k−1| < 0.05dk−1(dk)−1,∣∣ak+1dk−1γ − ak+1c
′
k−1
∣∣ < 0.05ak+1dk−1

dk
≤ 0.05(bk + 2)dk−1

dk
< 0.05(3) = 0.15.
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Similarly, since |dkγ − c′k| < 0.05dk(dk+1)−1,∣∣∣∣ak+1dk−1γ − c′kak+1
dk−1
dk

∣∣∣∣ =

∣∣∣∣ak+1dk−1

(
γ −

c′k−1
dk

)∣∣∣∣ < 0.05ak+1dk−1
dk+1

≤ 0.05(bk + 2)dk−1
dk+1

< 0.15.

Therefore,∣∣∣∣c′k dk+1

dk
− c′′k+1

∣∣∣∣ =

∣∣∣∣c′k (bk+1 +
ak+1dk−1

dk

)
− bk+1c

′
k − ak+1c

′
k−1

∣∣∣∣ =

∣∣∣∣c′kak+1
dk−1
dk
− ak+1c

′
k−1

∣∣∣∣
≤
∣∣∣∣c′kak+1

dk−1
dk
− ak+1dk−1γ

∣∣∣∣+
∣∣ak+1dk−1γ − ak+1c

′
k−1
∣∣ < 0.3.

Combining with |dkγ − c′k| < 0.05dk(dk+1)−1 via the triangle inequality yields∣∣dk+1γ − c′′k+1

∣∣ ≤ ∣∣∣∣dk+1γ − c′k
dk+1

dk

∣∣∣∣+

∣∣∣∣c′k dk+1

dk
− c′′k

∣∣∣∣ < dk+1

dk
|dkγ − c′k|+ 0.3 < 0.35.

Recall that by definition,∣∣∣∣γ − c′k+1

dk+1

∣∣∣∣ < 0.05(dk+2)−1, and so
∣∣dk+1γ − c′k+1

∣∣ < 0.05
dk+1

dk+2
< 0.05.

This implies that c′k+1 = c′′k+1 (since they are both integers).

For −2 ≤ k < k0, define c′k ∈ Q using the recursion relation c′k+1 = bk+1c
′
k + ak+1c

′
k−1 in reverse. Since

the recurrence relations defining ck, ek, dk and c′k are the same linear relation, c′k = c′−2ck + c′−1ek so

γ = lim
c′k
dk

= lim
c′−2ck + c′−1ek

ek

ek
d−2ck + d−1ek

=
c′−2λ+ c′−1
d−2λ+ d−1

.

Then

γ = c′−2α+
c′−1

d−2λ+ d−1
= c′−2α+

c′−1
d−1

d−1
d−2λ+ d−1

= c′−2α+
c′−1
d−1

(
1− d−2λ

d−2λ+ d−1

)
= c′−2α+

c′−1
d−1

(1− d−2α) =
(
c′−2 −

c′−1d−2

d−1

)
α+

c′−1
d−1

meaning that
d−1γ = (c′−2d−1 − c′−1d−2)α+ c′−1.

It is easily seen by induction that

c′kdk+1 − c′k+1dk

c′−2d−1 − c′−1d−2
= (−1)ka0 · · · ak+1 =

c′kck+1 − c′k+1ck

c′−2c−1 − c′−1c−2

and therefore, as c′k ∈ Z for k ≥ k0 and c−1 = 0 and c−2 = 1,

(c′−2d−1 − c′−1d−2)
a0 · · · ak0+1

gcd(dk0 , dk0+1)
, c′−1a0 · · · ak0 ∈ Z.

Then γ = qα+ r for some q ∈ gcd(dk0
,dk0+1)

d−1a0···ak0+1
Z and r ∈ Q.

5.3 Rational additive measurable eigenvalues

Next, we establish that the only rational additive measurable eigenvalues are those in RX .

Proposition 5.15. If a rational number m/n in lowest terms is an additive measurable eigenvalue then
n eventually divides the lengths of both uk and vk, equivalently the lengths of both vk and vk+1.

Proof. It suffices to prove the case when m = 1 and n is a prime power. Assume that p−r is an additive
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eigenvalue for a prime p and integer r ≥ 1. Then there exists a positive measure set A such that
σp

r

A = A and σp
r−1

A is disjoint from A. Let Bk and B′k as in Lemma 5.13. Since cylinder sets generate
the algebra of measurable sets, there exists Svk ⊆ {0, . . . , |vk+1| − 1} and Suk ⊆ {0, . . . , |u′k+1| − 1} such

that Ak =
⊔
j∈Sv

k
σjBk t

⊔
j∈Su

k
σjB′k has µ(Ak4A)→ 0. Since σp

r

A = A, supt∈Z µ(Ak4σp
rtAk)→ 0.

Set Avk = Ak ∩ Tk. Since µ(Tk) ≥ 1
4 and ‖1σTk

− 1Tk
‖2 → 0, by Lemma 3.6 [Dan16], lim inf µ(A∩ Tk) ≥

1
4µ(A). Then µ(Avk) is uniformly bounded above zero for sufficiently large k.

For pr ≤ j < |vk+1|, if j ∈ Svk and j − pr /∈ Svk then σjBk ⊆ Avk and σj−p
r

Bk ∩ Ak = ∅ so σjBk ⊆
Avk \ σp

r

Ak. Therefore, since µ(Avk) = |Svk |µ(Bk),

1

|Svk |
|{j < |vk+1| : j ∈ Svk , j − pr /∈ Svk}| ≤

pr

|Svk |
+
µ(Avk \ σp

r

Ak)

µ(Avk)
≤ pr

|Svk |
+
µ(Ak \ σp

r

Ak)

µ(Avk)
→ 0

so 1
|Sv

k |
|{j ∈ Svk : j − pr ∈ Svk}| → 1.

Choose tk ∈ Z such that prtk = |vk+1|+ `k for some 0 < `k ≤ pr. Then σp
rtkBk ⊆ σ`kBk tσ`kB′k. Since

the set of x ∈ X such that x has v2k at the origin is positive measure (as otherwise every x would be a
multiple of uk), the same reasoning as above gives that 1

|Sv
k |
|{j ∈ Svk : j + `k ∈ Svk}| → 1.

Since 0 < `k ≤ pr, there exists a constant 0 < ` ≤ pr such that `ki = ` for infinitely many ki
and we may assume ` is the minimal such constant. Let 0 ≤ z ≤ r maximal such that pz divides
`. Then there exist integers a < 0 and b > 0 such that apr + b` = pz. As a and b are fixed and

1
|Sv

ki
| |{j ∈ S

v
ki

: j + `, j − pr ∈ Svki}| → 1, we have 1
|Sv

ki
| |{j ∈ S

v
ki

: j + pz ∈ Svki}| → 1.

Let S′ki = {j ∈ Suki : j = j0 + |u′ki+1| − |vki+1| for some 0 ≤ j0 < |vki+1| − pz} and S′′ki = {j ∈ Suki :
j = j0 + |u′ki+1| − 2|vki+1| for some 0 ≤ j0 < |vki+1| − 2pz}. Since |uki+1| < 3|vki+1| (Remark 3.14),
|Suki \ (S′ki t S

′′
ki

)| ≤ 3pz.

Since u′ki+1, when it appears at the start of a uki+1 in a concatenation, is always followed by vki+1,

σ|u
′
ki+1|B′ki ⊆ Bki . For j = j0 + |u′ki+1| − |vki+1| ∈ S′ki , then σp

rtkiσjB′ki ⊆ σp
z+j0Bki which is a level

in Tki (as j0 < |vki+1| − pz) and for j = j0 + |u′ki+1| − 2|vki+1| ∈ S′′ki , then σ2prtkiσjB′ki ⊆ σ2pz+j0Bki
which is also a level in Tki .

Since µ(σp
rtkiAki4Aki) → 0, then 1

|S′ki
| |{j ∈ S

′
ki

: prtki + j − |u′ki+1| ∈ Svki}| → 1 and 1
|S′′ki
| |{j ∈ S

′′
ki

:

2prtki + j − |u′ki+1| ∈ Svki}| → 1. As 1
|Sv

ki
| |{j ∈ S

v
ki

: j + pz ∈ Svki}| → 1, then 1
|S′ki
| |{j ∈ S

′
ki

: j + pz ∈
S′ki}| → 1 and likewise for S′′ki so 1

|Su
ki
| |{j ∈ S

u
ki

: j + pz ∈ Svki}| → 1.

Then µ(Aki4σp
z

Aki) → 0 meaning that µ(A4σpzA) = 0. By choice of A then z = r. Therefore
prtki = |vki+1| + pr so pr divides |vki+1|. As ` was chosen minimally, then prtk = |vk+1| + pr for all
sufficiently large k so pr divides |vk| for all sufficiently large k. Since |uk+1| = |vk+1| + (nk −mk)|vk|,
then pr divides |uk| for all sufficiently large k as well.

5.4 The structure of the additive eigenvalue group

We are now ready to establish the relationship between QX , RX and EX .

Proposition 5.16. There exists a homomorphism φ : QX → Q/RX with φ(1) = φ(0) such that q 7→
qα+ φ(q) is an isomorphism QX → EX/RX .

Proof. By Proposition 5.10, for every q ∈ QX there exists rq ∈ Q such that qα + rq ∈ EX . Let
φ(q) = rq + RX . If r, r′ ∈ Q such that qα + r, qα + r′ ∈ EX then r − r′ ∈ EX ∩ Q = RX so for
every r ∈ Q such that qα + r ∈ EX , we have r ∈ φ(q). Since α ∈ EX , φ(1) = RX = φ(0). Since
rq+q′ − rq − rq′ = (q+ q′)α+ rq+q′ − (qα+ rq)− (q′α+ rq′) ∈ EX ∩Q = RX , φ is a homomorphism and
therefore q 7→ qα+ φ(q) is a homomorphism QX → EX/RX .

By Proposition 5.14, every γ ∈ EX is of the form qα + r for some q ∈ QX and r ∈ Q so q 7→ qα + φ(q)
is onto. Since α /∈ Q, the kernel of q 7→ qα+ φ(q) is {0} meaning q 7→ qα+ φ(q) is an isomorphism.
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To characterize the structure of EX , we need to establish the nature of such homomorphisms φ.

Proposition 5.17. Let 0 ≤ `p, rp ≤ ∞ and φ : Q(`p) → Q/Q(rp) be a homomorphism such that
φ(1) = φ(0). Then there exist ep ∈ Qp for each prime p such that for all q ∈ Q(`p),

φ(q) =
∑
p

{qep}p +Q(rp).

Proof. Since φ(1) = φ(0), there exists a homomorphism φ̃ : Q(`p)/Z→ Q/Q(rp) such that φ(q) = φ̃(q+Z).
As Q(`p)/Z is an abelian torsion group (since it is a subgroup of Q/Z), it is isomorphic to the direct
sum of its p-power torsion groups. Concretely speaking, adopting the convention that p−∞Z = Z [1/p],
the map i : Q(`p)/Z →

⊕
p p
−`pZ/Z given by i(q + Z) = ({q}p + Z)p is an isomorphism with inverse

map given by (xp + Z)p 7→
∑
p xp + Z. Likewise, Q/Q(rp) is a torsion group and j : Q/Q(rp) →⊕

Z [1/p] /p−rpZ by j(r + Q(rp)) = ({r}p + p−rpZ)p is the isomorphism. As p-power torsion elements

must map to p-power torsion elements, there exist homomorphisms φ̃p : p−`pZ/Z→ Z [1/p] /p−rpZ such

that φ̃ = j−1 ◦
(⊕

φ̃p

)
◦ i.

For p such that rp =∞, φ̃p maps to the trivial group so φ̃p(p
−t) = 0 for all t ≤ `p and we set ep = 0. For

p such that rp <∞ and `p =∞, for each n > 0, let cp,n ∈ φ̃p(p−n + Z). Then pncp,n ∈ φ̃p(Z) = p−rpZ
and pn+mcp,n+m − pncp,n ∈ pn(pmφ̃p(p

−n−m + Z)− φ̃p(p−n + Z)) = pnφ̃p(Z) = pn−rpZ. Then pncp,n is
a p-adic Cauchy sequence so pncp,n → ep ∈ Qp and since pncp,n ∈ p−rpZ, ep ∈ p−rpZp.
Let ep =

∑∞
t=−rp ep,tp

t and pncp,n =
∑∞
t=−rp dp,n,tp

t be the p-adic expansions. Since pn+mcp,n+m −
pncp,n ∈ pn−rpZ, ep,t = dp,n,t for t ≤ n − rp so ep,t = dp,n+rp,t for t ≤ n. Then pn{p−nep,t}p =∑n−1
t=−rp ep,tp

t =
∑n−1
t=−rp dp,n+rp,tp

t = pn{p−npn+rpcp,n+rp}p meaning that {p−nep}p = {prpcp,n+rp}p.
Now prpcp,n+rp − cp,n ∈ φ̃p(Z) = p−rpZ so {prpcp,n+rp}p − cp,n ∈ p−rpZ.

Since we have dealt with all possibilities for p, for every p and n we have {p−nep}p ∈ φ̃p(p−n).

For p such that `p < ∞ and rp < ∞, let cp,`p ∈ φ̃p(p−`p) and set ep = p`pcp,`p ∈ p−rpZ. For n ≤ `p,

{p−nep}p = {p−np`pcp,`p}p = {p`p−ncp,`p}p ∈ p`p−nφ̃p(p−`p) = φ̃p(p
−n). Therefore, for all p, there exist

ep ∈ p−rpZp such that {p−nep}p ∈ φ̃p(p−n) for all n ≤ `p meaning that φ̃p(x+ Z) = {xep}p + p−rpZ for
all x ∈ p−`pZ. Therefore for all q ∈ Q(`p),

φ(q) = φ̃ (q + Z) = j−1 ◦
(⊕

φ̃p

)
◦ i (q + Z)

= j−1 ◦
(⊕

φ̃p

)(
({q}p + Z)p

)
= j−1

((
{{q}pep}p + p−rpZ

)
p

)
.

Since q−{q}p ∈ Zp and {ep}p ∈ p−rpZ, {(q−{q}p)ep}p ∈ p−rpZ. As {qep}p = {(q−{q}p)ep}p+{{q}pep}p
(mod Z), then {qep}p = {{q}pep}p (mod p−rpZ). Therefore

φ(q) = j−1
((
{{q}pep}p + p−rpZ

)
p

)
= j−1

((
{qep}p + p−rpZ

)
p

)
=
∑
{qep}p +Q(rp).

Now we are in a position to prove the explicit description of the eigenvalue group and verify that all
eigenvalues are continuous.

Proof of Theorem 5.3. Consider any additive (measurable) eigenvalue γ. By Proposition 5.14, there exist
q ∈ QX and r ∈ Q so that γ = qα + r. By Proposition 5.12, qα + rq is an additive (even continuous)
eigenvalue. Therefore, r− rq is a rational additive eigenvalue, which must be in RX by Proposition 5.15,
and so γ = qα + rq + (r − rq) ∈ {qα + rq + r : q ∈ QX , r ∈ RX}. Therefore, by Proposition 5.12, γ
is also an additive continuous eigenvalue. Since all eigenspaces are one-dimensional by ergodicity of the
unique σ-invariant measure µ, all eigenfunctions of γ are continuous.

By Proposition 5.16, EX = {qα + r : r ∈ φ(q)} for some homomorphism φ : QX → EX/RX . By
Proposition 5.17, there exists ep ∈ Qp such that

∑
p{qep}p ∈ φ(q) for all q ∈ QX . Therefore EX =

{qα+
∑
p{qep}p + r : q ∈ QX , r ∈ RX}.
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6 The maximal equicontinuous factor

In this section, we characterize the maximal equicontinuous factors of low complexity minimal subshifts
as products of odometers and adelic nilsystems. We begin by describing the nilsystems and odometers
in question.

Definition 6.1. Let AX = {(a∞, (ap)) ∈ A : ap ∈ p−LX(p)Zp} with the convention that p−∞Zp = Qp
and identify QX with its diagonal embedding q 7→ (q, (−q)) as a lattice in AX . The adelic nilsystem
associated to X is the adelic nilmanifold MX = AX/QX equipped with the action of translation by
an element of MX equivalent to translation by the adele (α, (ep)) where α, ep are as in Theorem 5.3.

Remark 6.2. The simplest example is when LX(p) = 0 for all primes p, which for instance happens
for any Sturmian subshift. Here AX = R×

∏
p Zp and QX = Z so upon quotienting, MX = AX/QX =

R/Z = S1 and so the MEF is an irrational circle rotation.

An example of a p-adic MEF is when LX(2) =∞ and LX(p) = 0 for p 6= 2. Here AX = R×Q2×
∏
p>2 Zp

and QX = Z[1/2]. Upon quotienting,
∏
p>2 Zp disappears, and so MX = AX/QX = (R × Q2)/Z[1/2] =

M2. Therefore, the MEF is a rotation of M2 as described in Section 1.5. This MEF structure occurs
for Example 1.2, but could also occur for a subshift where rk = 1 and nk = mk + 1 for all k.

Definition 6.3. The odometer associated to X is

OX = lim←−
k→∞

Z
/

gcd(|vk+1|, |vk|)Z

under the natural (coordinatewise) +1 action where vk and vk+1 are the words from Proposition 3.1.

Theorem 6.4. Let X be an infinite minimal subshift with lim sup p(q)/q < 1.5. Then X is measurably
isomorphic to its maximal equicontinuous factor MX ×OX .

We start by characterizing the MEF as the group of characters on the multiplicative eigenvalue group.

Proposition 6.5. The maximal equicontinuous factor of X is ÊX equipped with Haar measure under
the action of multiplication by the identity character.

Moreover, (X,σ) is measurably isomorphic to ÊX under the action of multiplication by the identity
character.

Proof. By Theorem 2.21 in [BK13], the maximal equicontinuous factor is homeomorphic to ÊX under
multiplication by the identity character. Since X has discrete spectrum, Theorem 2.1 implies X is
measurably isomorphic to ÊX under that action.

Next we establish that the space of characters is a direct product of the spaces of characters on QX and
RX/Z. By slight abuse of notation, for χ ∈ ÊX and γ ∈ EX , we will write χ(γ) to mean χ(exp(2πiγ))
and treat χ as a character on EX which maps Z to 1.

Proposition 6.6. The space of characters ÊX is isomorphic as a topological group to Q̂X × R̂X/Z.

Let ep ∈ Qp and α be as in Theorem 5.3. The action of multiplication by the identity character on

ÊX maps to the action of multiplication by exp(2πi(qα +
∑
p{qep}p)) on Q̂X and multiplication by the

identity character on R̂X/Z.

Proof. By Theorem 5.3, EX = {qα +
∑
p{qep}p + r : q ∈ QX , r ∈ RX}. Let χ ∈ ÊX . For q ∈ QX , set

χQ(q) = χ(qα+
∑
p{qep}p). Since

∑
{(q+ q′)ep}p =

∑
{qep}p+

∑
{q′ep}p (mod Z), and since χ(1) = 1,

χQ(q + q′) = χ
(
qα+

∑
{qep}p

)
χ
(
q′α+

∑
{q′ep}p

)
χ
(∑

{(q + q′)ep}p −
∑
{qep}p −

∑
{q′ep}p

)
= χQ(q)χQ(q′) 1
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so χQ ∈ Q̂X . Therefore for any q ∈ QX and r ∈ RX ,

χ
(
qα+

∑
{qep}p + r

)
= χQ(q)χ(r)

so χ 7→ χQ · χ
∣∣
RX

defines a homomorphism ÊX → Q̂X × R̂X/Z. As every such product of characters
defines a character on EX , the homomorphism is onto and it is easily seen to be continuous and have
trivial kernel.

The action of multiplication by the identity character on EX on χ = χQ · χ
∣∣
RX

is

(χι)
(
qα+

∑
{qep}p + r

)
= χ

(
qα+

∑
{qep}p + r

)
exp

(
2πi

(
qα+

∑
{qep}p + r

))
= χQ(q) exp

(
2πi

(
qα+

∑
{qep}p

))
χ
∣∣
RX

(r) exp(2πir).

Our next task then is to characterize the character groups of Q(`p) and Q(rp)/Z. We begin with an
observation connecting such characters to p-adic integers.

Lemma 6.7. Let 0 ≤ `p ≤ ∞ for each prime p and χ ∈ Q̂(`p). Then there exists a unique θ ∈ [0, 1) and

unique zp ∈ Zp with 0 ≤ zp < p`p when `p <∞ such that for all q ∈ Q(`p),

χ(q) = exp
(

2πi
(
qθ +

∑
{qzp}p

))
.

Proof. Let θ ∈ [0, 1) be the unique value such that χ(1) = exp(2πiθ) and let χ′(q) = χ(q)/ exp(2πiqθ).

Then χ′ ∈ Q̂(`p) and χ′(1) = 1. For 0 < t ≤ `p,

(
χ′(p−t)

)pt
=

(
χ(p−t)

exp(2πip−tθ)

)pt
=

χ(1)

exp(2πiθ)
= 1

so there exist unique integers 0 ≤ zp,t < pt such that χ′(p−t) = exp(2πip−tzp,t). Since (χ′(p−t−1))p =
χ′(p−t), we have zp,t+1 (mod pt) = zp,t. For p such that `p < ∞, set zp,t = zp,`p for t > `p. Then
zp,t → zp ∈ Zp and 0 ≤ zp < p`p when `p <∞.

Since {p−tzp} = p−tzp,t, then χ′(p−t) = exp(2πi{p−tzp}p) for all p and t ≤ `p. Let q ∈ Q(`p). For each
prime p, q has p-adic expansion

∑∞
t=−m qp,tp

t for some m ≤ `p so

χ′({q}p) =

−1∏
t=−m

χ′(qp,tp
t) =

−1∏
t=−m

exp(2πi{qp,tptzp}p) = exp(2πi{qzp}p)

and as q =
∑
{q}p (mod Z),

χ(q) = exp(2πiqθ)χ′(q) = exp(2πiqθ)
∏

χ′({q}p)

= exp(2πiqθ)
∏

exp(2πi{qzp}p) = exp
(

2πi
(
qθ +

∑
{qzp}p

))
.

We can now characterize the character group of QX as an adelic nilmanifold.

Proposition 6.8. Let 0 ≤ `p ≤ ∞ for each prime p. Let A(`p) = {(a∞, (ap)) ∈ A : ap ∈ p−`pZp}
with the convention that p−∞Zp = Qp and identify Q(`p) with its diagonal embedding q 7→ (q, (−q)) as a
lattice in A(`p). Then there exists a topological group isomorphism

Q̂(`p) ' A(`p)

/
Q(`p)

.

Proof. For (a∞, (ap)) ∈ A(`p), let χa∞,(ap) ∈ Q̂(`p) by

χa∞,(ap)(q) = exp
(

2πi
(
qa∞ +

∑
{qap}p

))
.
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The mapping A(`p) → Q̂(`p) is clearly a continuous homomorphism and by Lemma 6.7, it is onto.

Let (a∞, (ap)) ∈ A(`p) such that χa∞,(ap) is the trivial character. Then exp(2πi(a∞ +
∑
{ap}p)) = 1 so

a∞ = −
∑
{ap}p (mod Z) hence a∞ ∈ Q. Then a∞ =

∑
{a∞}p (mod Z) so

χa∞,(ap)(q) = exp
(

2πi
(
qa∞ +

∑
{qap}p

))
= exp

(
2πi

(∑
{qa∞}p +

∑
{qap}p

))
= exp

(
2πi

∑
{q(a∞ + ap)}p

)
= χ0,(ap+a∞)(q).

Now a∞+ap = ap−
∑
p′{ap′}p′ (mod Z) = (ap−{ap}p)+

∑
p′ 6=p{ap′}p′ (mod Z) so, as {ap′}p′ ∈ Zp for

p′ 6= p, we have a∞ + ap ∈ Zp. By Lemma 6.7, there is a unique θ and zp such that the trivial character
is exp(2πi(qθ+

∑
{qzp}p)) which clearly must all be zero. Then ap + a∞ = 0 for all p which is precisely

the statement that (a∞, (ap)) = (a∞, (−a∞)) ∈ Q(`p) when embedded diagonally so the kernel of the

map A(`p) → Q̂(`p) is Q(`p).

Likewise, we can characterize the character group of RX/Z as an odometer.

Proposition 6.9. Let 0 ≤ `p ≤ ∞. Then Q̂(`p)/Z equipped with multiplication by the identity character
is isomorphic as a topological dynamical system to the odometer

O(`p) = lim←−
Z
/∏

p≤k p
min(k,`p)Z .

Proof. By Lemma 6.7, any χ ∈ Q̂(`p)/Z corresponds uniquely to θ ∈ [0, 1) and ap ∈ Zp. Since χ(1) = 1,
we have θ = 0. The p-adic expansions ap =

∑∞
t=0 ap,tp

t have the property that ap,t+1 (mod pt) = ap,t
so the values ap,t uniquely determine a point x ∈ O(`p) via the Chinese Remainder Theorem.

Conversely, given x ∈ O(`p), if one defines ap,t as above, then ap,t → ap ∈ Zp which uniquely determine

a character on Q(`p)/Z. We have then described a one-one onto mapping from Q̂(`p)/Z to O(`p), which
is easily checked to be continuous from the topology of pointwise convergence to the natural topology.

Let (ap) correspond to χ and ι be the identity character. Then for t ≤ `p,

(ιχ)(p−t) = exp(2πip−t)χ(p−t) = exp(2πip−t) exp(2πi{p−tap}p) = exp(2πi{p−t(ap + 1)}p).

As the natural action on O(`p) maps to the action ap,t 7→ ap,t + 1 (mod pt), the claim follows.

Finally we are in a position to prove the MEF has the claimed structure.

Proof of Theorem 6.4. By Proposition 6.5, X is measurably isomorphic to its maximal equicontinuous
factor ÊX under multiplication by the identity character. By Proposition 6.6, ÊX under multiplication
by the identity character is the direct product of Q̂X under multiplication by exp(2πi(qα +

∑
{qep}p))

and R̂X/Z under multiplication by the identity character.

By Proposition 6.9, R̂X/Z is isomorphic as a topological dynamical system to OX . By Proposition 6.8,

Q̂X is isomorphic as a topological group to the adelic nilmanifold M = A(LX(p))/QX and the action of

multiplication by the identity character on ÊX becomes multiplication by exp(2πi(qα+
∑
{qep}p)).

Set q0 =
∑
{ep}p. Since {ep′}p′ ∈ Zp for p′ 6= p, we have ep − q0 ∈ Zp and therefore (α+ q0, (ep − q0)) ∈

R ×
∏′ Zp ⊆ AX . Since

∑
{qep}p =

∑
{qq0}p +

∑
{q(ep − q0)}p (mod Z) = qq0 +

∑
{q(ep − q0)}p

(mod Z), for (a∞, (ap)) ∈M , the action on the corresponding character χa∞,(ap) is

χa∞,(ap)(q) exp
(

2πi
(
qα+

∑
{qep}p

))
= exp

(
2πi

(
qa∞ +

∑
{qap}p + qα+

∑
{qep}p

))
= exp

(
2πi

(
q(a∞ + α+ q0) +

∑
{qap}p +

∑
{q(ep − q0)}p

))
= exp

(
2πi

(
q(a∞ + α+ q0) +

∑
{q(ap + ep − q0)}p

))
= χa∞+α+q0,(ap+ep−q0)(q).
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Therefore the action on M is (a∞, (ap)) 7→ (a∞ + α+ q0, (ap + ep − q0)), i.e. translation by the element
(α+ q0, (ep − q0)) ∈ AX which is equivalent as a Q-adele to (α, (ep)).

7 Orbit equivalence and strong orbit equivalence

Orbit equivalence and strong orbit equivalence are two weakened versions of isomorphism which
are well-studied in dynamical systems. It was proved by Giordano, Putnam, and Skau in [GPS95] that
for minimal TDS on a Cantor set, the so-called dimension group (a unital ordered group K0(X,σ)) is
a complete invariant for strong orbit equivalence, and the reduced dimension group (a unital ordered

group K̂0(X,σ)) is a complete invariant for orbit equivalence.

In this section, we will give a description of the dimension group for our class of subshifts, and prove that
it is always equal to the reduced dimension group. As we do not make use of any nuanced properties
of the dimension groups, we omit definitions and refer the reader to e.g. [BCBD+21] for definitions and
details. The first step in characterizing the dimension groups is to show that our subshifts are balanced
on words.

7.1 The balanced property

Theorem 7.1. Any infinite minimal subshift X with lim sup p(q)/q < 1.5 is balanced on words.

Proof. We apply our S-adic decomposition from Corollary 3.3 and Theorem 5.8 from [BD14], which gives
a way to view balancedness for letters in terms of so-called incidence matrices of the substitutions.

For any substitution τ , the incidence matrix of τ is a square |A| × |A| matrix M with mij equal to
τ(j)|i, the number of times i appears in τ(j). A subshift X has uniform letter frequencies if, for
each letter a ∈ A, there exists f(a) which is the uniform limit of the proportion of a letters in k-letter
words in L(X), uniformly in k.

Theorem 5.8, [BD14] states that if X is generated by a sequence (τk) of substitutions with incidence
matrices (Mk), u has uniform letter frequencies with frequency vector f , and∑

k

‖(M0M1 . . .Mk−1)T ‖f⊥‖Mk‖ <∞,

then X is balanced on letters. (Here ‖M‖S =
∑
v∈S∗

‖Mv‖
‖v‖ represents the operator norm of M restricted

to a subspace S.)

Let Mj be the incidence matrix for τmj ,nj ,rj and M−1 be the incidence matrix for π.

Let dk = |vk+1| so that dk = bkdk−1 + akdk−2 for all k ≥ 0 (setting d−2 = |u0| − |v0|). Let gk = |vk+1|1
and g−2 = |u0|1 − |v0|1 so that gk = bkgk−1 + akgk−2. Let c−2 = e−1 = 1 and c−1 = e−2 = 0 and
define ck and ek via the same recurrence relation. As shown in the proof of Proposition 5.7, ck

dk
→ α and

ek
dk
→ α0. Then gk

dk
→ g−2α+ g−1α0. Set α? = g−2α+ g−1α0.

Therefore, the frequency of 1s in vk approaches α?, and so X has uniform letter frequencies given by
f = (1 − α?, α?). Then, f⊥ is spanned by (−α?, 1 − α?)T , meaning that ‖(M−1M0 . . .Mk−1)T ‖f⊥ ≤
‖(M−1 . . .Mk−1)T (−α?, 1 − α?)T ‖. It’s easily checked by induction that M−1 . . .Mk−1 is

(
|vk|0 |uk|0
|vk|1 |uk|1

)
.

Therefore,

(M−1 . . .Mk−1)T (−α?, 1− α?)T =
(
−|vk|0α?+|vk|1(1−α?)
−|uk|0α?+|uk|1(1−α?)

)
=
(
|vk|1−|vk|α?)
|uk|1−|uk|α?)

)
.

The top entry is, using the language above, |gk−1 − dk−1α?| = dk−1

∣∣∣ gk−1

dk−1
− α?

∣∣∣. It is easily checked by

induction that gk−1dk−gkdk−1 = (−1)ka0a1 · · · ak(g−2d−1−g−1d−2). Set C = |g−2d−1−g−1d−2|. Then

|gk−1 − dk−1α?| = dk−1

∣∣∣∣gk−1dk−1
− α?

∣∣∣∣ < dk−1

∣∣∣∣gk−1dk−1
− gk
dk

∣∣∣∣ =
|gk−1dk − gkdk−1|

dk
=
Ca0a1 · · · ak

dk
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= C
dk−1
dk

2
∑k

j=0 1rj
∏k−1
j=0 (nj −mj)

|vk|
< C

dk−1
dk

εk

where εk is as in Proposition 4.2.

Finally, we note that ‖Mk‖ is the largest entry of Mk, which is bounded by 2nk. Therefore,

‖(M−1M0 . . .Mk−1)T ‖f⊥‖Mk‖ ≤ C
2nkdk−1

dk
εk < C

2nkdk−1
mkdk−1

εk = C
2nk
mk

εk ≤ C
4mk + 4

mk
εk ≤ 8Cεk

so this series is summable and so X is balanced on letters. Finally, since our substitutions are each
right-proper, meaning that the image of every letter ends with the same letter, Corollary 4.3 from [PS22]
implies that X is balanced on words.

7.2 The dimension group is the eigenvalue group

We can now describe the dimension groups of any low-complexity infinite minimal subshift.

Theorem 7.2. The dimension group and reduced dimension group are both equal to (EX , EX ∩ R+, 1).

Proof. We claim first that for every word w, we have µ([w]) ∈ EX . If w /∈ L(X) then µ([w]) = 0 ∈ EX so
assume w ∈ L(X) and let k0 be minimal such that w is a subword of vk0 . Let ak, bk, ck, dk, ek be as in the
proof of Proposition 5.7. Define fk = |vk+k0+1|w for k ≥ −2. Then fk+1 = bk+1fk+ak+1fk−1 and f−2 = 0
(since k0 is minimal) and so fk = f−1ek for all k. Since ek

dk
→ αk0 ∈ EX , then fk

dk
→ |vk0 |wαk0 ∈ EX .

Since (X,σ) is uniquely ergodic, fk
dk

=
|vk+k0+1|w
|vk+k0+1| converges to µ([w]), and the claim is proved.

By section 2.4 of [BCBD+21], sinceX is minimal and uniquely ergodic, the dimension groupK0(X,σ) and

its group of infinitesimals Inf(K0(X,σ)) have the property that the reduced dimension group K̂0(X,σ) =
K0(X,σ)/Inf(K0(X,σ)) is isomorphic to the image group (I(X,σ), I(X,σ) ∩R+, 1). Proposition 2.6 in
[BCBD+21] states that I(X,σ) = {µ([w]) : w ∈ L(X)} so I(X,σ) ⊆ EX . Since EX is always a subgroup
of I(X,σ) (see e.g. [CDP16] Proposition 11), then I(X,σ) = EX . By Theorem 7.1, X is balanced on

words so Proposition 5.4 of [BCBD+21] implies there are no infinitesimals. Then K̂0(X,σ) = K0(X,σ) =
(EX , EX ∩ R+, 1).

The following corollary is now immediate, modulo the simple observation that if G,G′ are additive
subgroups of R containing 1, then (G,G ∩ R+, 1) and (G′, G′ ∩ R+, 1) are isomorphic as unital ordered
groups iff G = G′.

Corollary 7.3. Two minimal subshifts with complexity satisfying lim sup p(q)/q < 1.5 are orbit equiva-
lent if and only if they are strong orbit equivalent if and only if they have the same additive eigenvalue
group.

8 Existence of low complexity minimal subshifts for every odometer

We here demonstrate that there are no restrictions on the adelic nilmanifolds MX and odometers OX
which can appear in the MEF of an infinite low complexity subshift. Other than the case when MX is

a finite group extension of S1 and OX is finite, we show that lim sup p(q)
q can take any value in [1, 1.5)

for subshifts with that MEF.

Theorem 8.1. Let O be an odometer and M be an adelic 1-step one-dimensional nilmanifold. There
exists a infinite minimal subshift with lim p(q)/q = 1 which has maximal equicontinuous factor the product
of O and a rotation on M.

If M is not a finite group extension of S1 or O is infinite (or both), then for every 0 < δ < 1
2 , there

exists a minimal uniquely ergodic subshift with lim sup p(q)/q = 1 + δ which has maximal equicontinuous
factor of the same type.
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Remark 8.2. We make two comments about Theorem 8.1. First of all, it’s unavoidable that the second
statement excludes the case where bothM is a finite group extension of S1 and O is finite; in that case,
ak is eventually 1, meaning that the substitutions are eventually of the form τmk,mk+1,0 (say for k > k0).
In that case, X is the image of a Sturmian subshift under the substitution ρk0 . Such a subshift is called
quasisturmian, and is known to have p(q) ≤ q+C for a constant C ([Cas97]), and so is forced to have
lim sup p(q)/q = 1.

Secondly, we want to be clear that we are not characterizing the set of possible MEFs of infinite minimal
low-complexity subshifts, since we only show that a single adele (α, (ep)) can occur together with a pair
of a nilmanifold and an odometer; we do not currently know which rotations (α, (ep)) can be associated
with a specific group M×O.

Proof. Define a sequence (δk) of positive reals as follows: when δ > 0, set δk = δ, and when δ = 0, let
δk be any sequence approaching 0. We first consider the case when M is not a finite group extension of
S1. Let 0 ≤ xp ≤ ∞ such that M = A(xp)/Q(xp). Let sk = pqkk for pk ∈ P ∪ {1} and qk nonnegative
integers such that for each prime p,

∑
k:pk=p

= xp and such that sk →∞ (possible as M is not a finite

extension of S1). Let yk ∈ P ∪ {1} such that O = lim←−Z/y0 · · · ykZ.

We will define `k, mk, tk and jk inductively. Set `−1 = `0 = 1 and j0 = 0 and t0 = t1 = 1 and s−1 = 0.
For all k ≥ 1, we will set `k+1 = mk`k + tksk−1`k−1. For ease of notation, write gk = t0 · · · tk.

Choose m0 such that m0 > d(δ−10 −1)t1s0e and p0 does not divide m0 +1. Then `1 = m0`0 + t0s−1`−1 =
m0 + 1 so t1 divides `1

g0
and p0 does not divide `1

g1
. Also gcd(`1, `0) = 1 = g0.

Assume that tk divides `k
gk−1

and pk−1 does not divide `k
gk

and gcd(`k, `k−1) = gk−1. If yjk divides `k
gk

then

set tk+1 = 1 and jk+1 = jk. If not, set tk+1 = yjk and jk+1 = jk+1. Set m′k = d(δ−1k −1)tk+1ske > sktk+1.

The map m 7→ m `k
gk

+ sk−1
`k−1

gk−1
mod tk+1 is a cyclic onto homomorphism since gcd( `kgk , tk+1) = 1 (since

tk+1 is a prime power or 1). So there exists 0 ≤ i < tk+1 such that tk+1 divides (m′k − i)
`k
gk

+ sk−1
`k−1

gk−1
.

If pktk+1 were to divide both (m′k − i)
`k
gk

+ sk−1
`k−1

gk−1
and (m′k − i − tk+1) `kgk + sk−1

`k−1

gk−1
then pktk+1

divides tk+1
`k
gk

so pk divides `k
gk

but then pk divides both `k
gk

and sk−1
`k−1

gk−1
which is impossible as

gcd( `kgk , sk−1
`k−1

gk−1
) = 1. Therefore we may take mk such that m′k − 2tk+1 ≤ mk < m′k so that tk+1

divides `k+1

gk
and pk does not divide `k+1

gk+1
. We also have gcd(`k+1, `k) = gcd(mk`k + tksk−1`k−1, `k) =

gcd(tksk−1`k−1, `k) = gk−1 gcd(tksk−1
`k−1

gk−1
, tk

`k
gk

) = gk gcd(sk−1
`k−1

gk−1
, `kgk ) = gk.

Therefore the sequences exist by induction. Note that if yjk > 1 and tk+1 = 1 then necessarily tk+2 = yjk
as otherwise yjk divides `k

gk
and yjk divides `k+1

gk+1
but gcd(`k+1, `k) = gk. By the construction of jk, the

sequence (tk) is just the sequence (yj) with extra interspersed 1s, and so the sequence (tk) induces the
odometer Or. Set nk = mk+tk+1sk. Let X be the orbit closure of limπ◦τm0,n0,0 ◦· · ·◦τmk,nk,0(0) where

π(0) = 0 and π(1) = 01 so |vk| = `k. By Remark 3.14,
∑k−1
j=0 (nj −mj − 1)|vj | <

∑k−1
j=0 (mj − 1)|vj | =

|pk| < 3|vk|, so by Corollary 3.17,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≤ 1 +
(nk −mk − 1)|vk|+ |pk|+ C

(nk − 2)|vk|
≤ 1 +

tk+1sk + 3 + C
|vk|

δ−1k tk+1sk − 2tk+1 − 2
→ 1 + δ

since sk →∞. By Corollary 3.17 and Remark 3.14,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≥ 1 +
nk −mk − 1

nk + 1
≥ 1 +

tk+1sk − 1

δ−1k tk+1sk + 2
→ 1 + δ.

Since lim sup p(q)
q is attained along the sequence |skvnk−2

k pk|, lim sup p(q)
q = 1 + δ.

By construction, gcd(|vk+1|, |vk|) = t1 · · · tk, and so OX = O. Similarly, a0 · · · ak = (n0−m0) · · · (nk−1−
mk−1) = s0 · · · sk−1t1 · · · tk so |v0|a0···ak

gcd(|vk|,|vk+1|) = s0 · · · sk−1, implying that MX = M. Therefore by

Theorem 6.4, the subshift X defined as the orbit closure of limπ ◦ τm0,n0,0 ◦ · · · ◦ τmk,nk,0(0) has the
claimed properties.
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Now consider when M is a finite group extension of S1 and O is infinite. Let tk such that O =
lim←−Z/t0 · · · tkZ and let M = S1 × Z/qZ. Let π(0) = 0q and π(1) = 0q1. Let j0 = 0 and s0 = 1.

Given jk and |vk|, choose sk+1 = tjktjk+1 · · · tjk+1−1 such that sk+1

sk|vk| ≥ k. Choose mk+1 such that

gcd(mk+1, sk|vk|) = sk and 0 ≤ mk+1 − (δ−1k+1 − 1)sk+1 ≤ sk|vk| and set nk+1 = mk+1 + sk+1. Then, as

above, since sk−1|vk−1|
sk

→ 0,

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≤ 1 +
(nk −mk − 1)|vk|+ |pk|+ C

(nk − 2)|vk|
≤ 1 +

sk + 3 + C
|vk|

δ−1k sk − 2
→ 1 + δ and

p(|skvnk−2
k pk|)

|skvnk−2
k pk|

≥ 1 +
nk −mk − 1

nk + 1
≥ 1 +

sk − 1

δ−1k sk + sk−1|vk−1|+ 1
→ 1 + δ,

so lim sup p(q)
q = 1 + δ. By construction, |v0|a0 · · · ak = qs0 · · · sk−1 and |vk+1| = mk|vk| + (nk−1 −

mk−1)|vk−1| = sk−1yk|vk| + sk−1|vk−1|, where gcd(yk, |vk−1|) = 1 since gcd(mk, sk−1|vk−1|) = sk−1.
Then gcd(|vk+1|, |vk|) = sk−1 gcd(|vk|, |vk−1|) so by induction gcd(|vk+1|, |vk|) = s0 · · · sk−1. For X
defined in the usual way, since the sequence of partial products of (sk) is a subsequence of partial

products of (tk), OX = O, and since |v0|a0···ak
gcd(|vk|,|vk+1|) = q, MX = M. Therefore, X has the claimed

properties by Theorem 6.4.

Finally, consider when both M = S1 × Z/qZ and O = Z/rZ. Let π(0) = 0qr and π(1) = 0qr1r. Let
mk = nk = 1 for all k. Then it’s an immediate implication of Lemma 3.16 that p(q + 1) − p(q) is
eventually 1, and so lim sup p(q)/q = 1.

Also, |v0|a0 · · · ak = qr and gcd(|vk+1|, |vk|) = gcd(|vk|+ |vk−1|, |vk|) = gcd(|vk−1|, |vk|) for all k. Then,
since gcd(|v1|, |v0|) = gcd(qr + qr + r, qr) = r, gcd(|vk+1|, |vk|) = r for all k. Therefore, X defined as
above has the claimed properties by Theorem 6.4.

Finally, we address Examples 1.2-1.4 from the introduction. Example 1.2 is fairly straightforward; it
is determined by substitutions with |u0| = |v0| = 1, mk = 3 and nk = 5. Therefore, by (2), a0 = 1,
all other ak = 2, and all bk = 3. The verification that lim sup p(q)/q < 3/2 follows from Corollary
3.17 and Remark 3.14. Namely, by Corollary 3.17, the limsup of p(q)/q is achieved along the sequence

qk = |skvnk−2
k pk| = |sk| + 3|vk| + |pk|, which equals

∑k−1
i=0 3|vi| + 4|vk| by Remark 3.14. The value of

p(qk) is equal to qk +
∑k
i=0(nk − mk − 1)|vi| =

∑k−1
i=0 4|vi| + 5|vk| + C for some constant C. Finally,

we note that by the Perron-Frobenius theorem, the lengths |vi| grow exponentially with base the Perron

eigenvalue of the incidence matrix ( 2 4
1 1 ), which is κ = 3+

√
17

2 . Therefore,
∑k−1

i=0 |vi|
|vk| → 1

κ−1 =
√
17−1
8 , and

so

p(qk)/qk =

∑k−1
i=0 4|vi|+ 5|vk|+ C∑k−1
i=0 3|vi|+ 4|vk|

→ 4(
√

17− 1)/8 + 5

3(
√

17− 1)/8 + 4
=

105 +
√

17

86
≈ 1.2689 < 3/2.

It remains to verify that the MEF is a rotation of M2 = (R × Q2)/Z [1/2]. As noted above, a0 = 1
and all ak for k > 0 equal 2. Also, |v0| = 1, and it is easily checked by induction that all |vk| are odd;
since gcd(|vk+1|, |vk|) divides |v0|a0 . . . ak = 2k by Lemma 5.4, all gcd(|vk+1|, |vk|) = 1. Therefore, in the
language of Theorem 6.4, OX is trivial and MX is M2.

Since the computations are significantly more unpleasant, we omit details of Example 1.3, except to note
the following differences from Example 1.2. First, the limsup of p(q)/q is now achieved along the sequence
qk = |skvrk−1k ukv

rk−1
k pk| = |skukpk|. Second, now every ak for k > 0 is equal to 2rk(nk −mk) = 4, and

gcd(|vk|, |vk+1|) = 2k, which implies by Theorem 6.4 that MX =M2 and OX is the binary odometer.

For Example 1.4, we cannot solve exactly for lim sup p(q)/q since we do not have a closed form for mk

and nk. However, we note that by Corollary 3.17, increasing mk while keeping nk −mk and rk constant
can only decrease this limsup; since (mk, nk) is always either (3, 5) or (5, 7), this limsup is then clearly

less than or equal to 105+
√
17

86 from Example 1.2. As in Example 1.2, a0 = 1 and all other ak = 2. It
is easily checked by induction and the definition of the ρk that for all k, |vk| is divisible by 2k, but not
by 2k+1. Therefore, gcd(|vk|, |vk+1|) = 2k = |v0|a0 · · · ak, and so by Theorem 6.4, MX is R/Z = S1 and
OX is the binary odometer.
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Ergodic Theory Dynam. Systems 6 (1986), no. 4, 529–540. MR 873430

[HS03] Michael Hollander and Boris Solomyak, Two-symbol Pisot substitutions have pure discrete spectrum,
Ergodic Theory Dynam. Systems 23 (2003), no. 2, 533–540. MR 1972237

[Lei05] A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on
a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201–213. MR 2122919

[LS09] Daniel Lenz and Nicolae Strungaru, Pure point spectrum for measure dynamical systems on locally
compact abelian groups, J. Math. Pures Appl. (9) 92 (2009), no. 4, 323–341. MR 2569181

[Mar91] Gregory Margulis, Discrete subgroups of semisimple Lie groups, Springer-Verlag, 1991.

[MH38] Marston Morse and Gustav A. Hedlund, Symbolic Dynamics, Amer. J. Math. 60 (1938), no. 4,
815–866. MR 1507944

[Oh01] Hee Oh, Adelic version of Margulis arithmeticity theorem, Math. Ann. 321 (2001), no. 4, 789–815.
MR 1872530

[OP19] Nic Ormes and Ronnie Pavlov, On the complexity function for sequences which are not uniformly
recurrent, Dynamical systems and random processes, Contemp. Math., vol. 736, Amer. Math. Soc.,
[Providence], RI, [2019] ©2019, pp. 125–137. MR 4011909
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