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Abstract We prove results about subshifts with linear (word) complexity, meaning that
lim sup@ < 00, where for every n, p(n) is the number of n-letter words appearing in
sequences in the subshift. Denoting this limsup by C, we show that when C' < %, the subshift
has discrete spectrum, i.e. is measurably isomorphic to a rotation of a compact abelian group
with Haar measure. We also give an example with C' = % which has a weak mixing measure.
This partially answers an open question of Ferenczi, who asked whether C' = g was the min-
imum possible among such subshifts; our results show that the infimum in fact lies in [3, 3].

All results are consequences of a general S-adic/substitutive structure proved when C < %.

Introduction

The main objects of study in symbolic dynamics are subshifts, which are dynamical systems defined
by a finite alphabet A, a closed shift-invariant set of sequences X C A%, and the left-shift map 0. We
sometimes speak of subshifts as measure-theoretic dynamical systems by associating a measure p; in this
case p is always assumed to be a Borel probability measure invariant under ¢. One of the most basic
ways to measure the ‘size’ of a subshift X is the word complexity function p(n), which measures the
number of finite words of length n which appear within points of X. In addition to being intimately
connected with the fundamental notion of topological entropy (the entropy h(X) is just the exponential
growth rate of p(n) when p(n) grows exponentially), many recent works prove that slow growth of p(n)
forces various strong structural properties of X.

The well-known Morse-Hedlund theorem implies that if X is infinite, then p(n) > n + 1 for all n. There
are subshifts which achieve this minimal value (i.e. p(n) =n + 1 for all n), which are called Sturmian
subshifts. We do not give a full treatment here, but briefly say that Sturmian subshifts are defined by
symbolic codings of orbits for irrational circle rotations, and in fact are measure-theoretically isomorphic
to these rotations (associated with Lebesgue measure).

Slightly above the minimum possible complexity is the property of linear complexity, meaning that
limsup p(n)/n = C < oco. This implies a great deal about X; a full list is beyond this work, but we list
a few such results here. In the following, X is transitive when there exists € X whose orbit {c"z}
is dense in X, and minimal when every x € X has dense orbit.

1. If X is transitive, then the number of ergodic measures on X is bounded from above by |C|. If
C < 3, then in fact there is only one o-invariant measure on X, in which case X is said to be
uniquely ergodic. ([Bos92|, [DOP22])

2. For all X, the number of nonatomic generic measures on X is bounded from above by |C| ([CK19])

3. If X is minimal, then the automorphism group of X is virtually Z (in particular, there are at most
|C| cosets once one mods out by the shift action) ([CK15], [DDMP16])

4. If X is minimal, then X has finite topological rank ([DDMP21])

5. X cannot have any nontrivial strongly mixing measure ([Fer96])
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6. If X is transitive and C' < 1.5, then X is minimal ([OP19)])

(In fact, the weaker condition liminf p(n)/n < oo is sufficient for some of the structure above, but as our
results don’t involve this quantity, we don’t comment on it further here.) The final item above is one
of surprisingly few results proved about subshifts with C close to 1, and understanding more about the
structure of such shifts was a main motivation of this work. In a sense, we show that for C sufficiently
close to 1, a subshift must have structure more and more similar to the Sturmian subshifts, which achieve
minimal possible complexity. Recall that Sturmian subshifts are measure-theoretically isomorphic to a
(compact abelian) group rotation; this property is called discrete spectrum. In fact this property is
equivalent to L?(X) being spanned by the measurable eigenfunctions of o (i.e. f for which f(oz) = \f(z)
for some A). When X has no eigenfunctions at all, it is said to be weak mixing, which is in a sense an
opposite property to discrete spectrum.

Ferenczi ([Fer96]) proved that the property of strong mixing (which means that y(ANo"B) —
w(A)p(B) for all measurable A, B) cannot hold for any nontrivial measure on a linear complexity subshift.
He also gave an example of X with a strongly mixing measure and p(n) quadratic and asked whether
this complexity was the lowest possible. This was proved not to be the case in [Cre22a] and [CPR22],
which provided examples first on the order of nlogn, and then below any possible superlinear growth
rate, establishing linear complexity as the ‘threshold’ for existence of such a measure. In a different
work, Ferenczi ([Fer95]) examined the same question for weakly mixing measures, where it is known that
linear complexity can occur via the well-known Chacon subshift. He there gave an example of X with
a nontrivial weakly mixing measure and C' = 5/3, and again asked whether this was minimal. This was
shown not to be the case in [Cre22b], where examples were given of C arbitrarily close to (but above)
3/2.

Our main results are the following.

r(q)

Theorem 1. If X is an infinite transitive subshift with limsup = < %, then X is uniquely ergodic

with unique measure which has discrete spectrum.

Theorem 2. There exists an infinite transitive subshift X which is uniquely ergodic, has unique measure

plg) _ 3

which is weak mixing, and for which lim sup i T

In [Cre22b], it was also suggested that perhaps a subshift X having a nontrivial weakly mixing measure
forces lim sup @ > %; Theorem 2 answers this negatively. In fact, the examples from Theorem 2 satisfy
lim p(q) —1.5¢ = —o0, in contrast to Theorem C from [Cre22b], which showed that for rank-one subshifts,
even total ergodicity implies lim sup p(¢) — 1.5g = 0o. The examples also satisfy lim inf @ = 1 and for

any f(q) — oo, there exist examples such that p(q) < ¢ + f(¢) infinitely often.

The proof of Theorem 1 depends on proving a substitutive structure for subshifts with C' < %. In fact,
for any C < 2, Corollary 5.28 from [PS22] already implies that X can be generated by a sequence of
substitutions 73 on the alphabet {0,1}; this is known as having alphabet rank two. Similar results
from [DDMP21] prove that even liminf p(n)/n < co implies finite alphabet rank. However, in general it
is not so easy to prove dynamical properties of a subshift purely from such a structure; the key of our
arguments is that when C is closer to 1, these substitutions come from a very restricted class.

Specifically, our Proposition 2.1 shows that any such subshift is induced by a sequence of substitutions of
the form Ty, ny, 1 0 0111 — 0" =11 where n < 2m for m > 1 and n < 3 for m = 1. This is related
to the well-known Pisot conjecture for subshifts, which states that a subshift generated by iterating a
single substitution 7 should have discrete spectrum if the associated matrix (in which the (a,b) entry is
the number of occurrences of b in 7(a)) has largest eigenvalue which is a Pisot number (i.e. a complex
number with modulus greater than 1 all of whose conjugates have modulus less than 1).

The Pisot conjecture has been proved in some settings, including when |A| = 2 ([HS03]) and whenever
the so-called balanced pair algorithm terminates ([SS02]). Our proof of Theorem 1 is in fact based on
this algorithm.

In our case, the substitutive structure comes from a sequence of substitutions and not a single one;
this is sometimes called the S-adic Pisot conjecture, based on the often-used term ‘S-adic’ (among other
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references, see [DLR13]) to refer to sequences obtained by a sequence of substitutions on a fixed alphabet.
This is much more difficult. The strongest result is due to [BST19], which is too long to state formally
here, but which proves discrete spectrum in a fairly general S-adic setting. They do require, however,
that the sequence of substitutions (7,,) be recurrent, meaning that for every k, there exists L so that
Ti = Ti+L fOI‘].SZSk

We cannot enforce any such condition on our substitutions, as it’s quite possible to have low complexity
for Ty, n, all distinct (for instance, consider Sturmian subshifts, which can be generated by an infinite
sequence of distinct substitutions if the digits of its continued fraction expansion are distinct). Never-
theless, due to the extremely simple form of 7,,, n, (in which both 0 and 1 are mapped to words of the
form 0%1), we are able to prove discrete spectrum.

We note that indeed our substitutive structure is in some sense Pisot; the associated matrix for 7, ,

. — . m2+4(n—m)+m . . .
is (™21 1), whose eigenvalues are VP mER - Phis matrix is Pisot when m < n < 2m. Our

Proposition 2.1 implies m < n < 2m, with the possible exception m = 1,n = 3. Though this substitution
is not Pisot, Proposition 2.1 implies that when it occurs, the previous substitution has n = m + 1, and

the composition of those substitutions has matrix (9 1) (m;;l %) = ( 32 é), which is always Pisot.

One of course should not expect that simply assuming each 7; to be Pisot should guarantee discrete spec-
trum; informally, if the second eigenvalues have moduli each less than 1 but which converge to 1 quickly,
then the ‘average behavior’ will be that of a non-Pisot number. This is essentially the construction of
our example from Theorem 2, which not only does not have discrete spectrum, but is weak mixing (i.e.
has no eigenvalue at all).

1 Definitions and preliminaries

Let A be a finite subset of Z; the full shift is the set A% associated with the product topology. We use
o to denote the left shift homeomorphism on A%. A subshift is a closed o-invariant subset X C A%
The orbit of € X is the set {oc"z}nez. A subshift X is transitive when it is the closure of the orbit
of a single sequence z, and minimal when it is the closure of the orbit of every x € X. For a minimal
subshift X, in a slight abuse of notation, we sometimes refer to X as the orbit closure of a one-sided
sequence y € AY; this simply means that X is the orbit closure of a two-sided sequence # € X containing
Y.

A word is any element of A" for some n € N, referred to as its length and denoted by |w|. We denote
A* =, A". We represent the concatenation of words wi,ws, ..., w, by wiws...w,.

The language of a subshift X on A, denoted L(X), is the set of all finite words appearing as subwords
of points in X. For any n € N, we denote L, (X) = L(X) N A", the set of n-letter words in L(X).
For a subshift X, the word complexity function of X is defined by p(n) := |L,(X)|. For a subshift
X and word w € L(X) we denote by [w] the clopen subset in X consisting of all z € X such that
Zg-- - 1‘|w|_1 =w.

One way to generate subshifts is via substitutions. A substitution (sometimes called a morphism)
is a map 7 : A — B* for finite alphabets A and B. Substitutions can be composed when viewed as
homomorphisms on the monoid of words under composition, i.e. if 7: A — B* and p : B — C*, then
po1 : A — C* can be defined by (po7)(a) = p(b1)p(bs) ... p(by), where 7(a) = by ...b,. When a sequence
of substitutions 7, : A — A* shares the same alphabet, and when there exists a € A for which 7 (a)
begins with a for all k, clearly (11 0---07)(a) is a prefix of (110 -+ 0 7i41)(a) for all k. In this situation
one may then speak of the (right-infinite) limit of (71 0 --- o 73)(a).

For any subshift X, there is a convenient way to represent the n-language and possible transitions

between words in points of X by a directed graph called the Rauzy graph.

Definition 1.1. For a subshift X and n € N, the nth Rauzy graph of X is the directed graph Gx ,, with
vertex set L, (X), and directed edges from wy ... wy, to wa ... wp4q for all wy ... wyy1 € Lpt1(X).

Example 1.2. If X is the golden mean subshift consisting of bi-infinite sequences on {0,1} without
consecutive 1s, and n = 3, then Gx 3 is the following directed graph:
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There is a natural association from bi-infinite paths on the Rauzy graph to sequences in A%; a sequence
of vertices (v;) corresponds to the sequence x € A% defined by z(k)...z(k +n — 1) = v for all k.
The main usage of the Rauzy graph is that every point of X corresponds to a bi-infinite path in the
Rauzy graph. However, the opposite is not necessarily true; if X has restrictions/forbidden words of
length greater than n + 1, then there may be paths in the Rauzy graph whose associated sequences are
not in X. However, when X has low word complexity function, the set of paths in the Rauzy graph is
sufficiently restrictive to give us useful information about (but not necessarily a complete description of)
X.

0101

We note that when X is transitive, G x ,, is strongly connected for all n, i.e. there is a path between any
two vertices. Rauzy graphs are particularly useful for working with so-called left/right special words in
L(X).

Definition 1.3. A word w € L(X) is left-special (resp. right-special) if there exist a # b € A so
that aw,bw € L(X) (resp. wa, wb € L(X)). A word is bi-special if it is both left- and right-special.

For a given n, the left- and right-special words in L, (X) correspond to vertices of Gx , with multiple
incoming/outgoing edges respectively. When Gx, has relatively few such vertices, large portions of
bi-infinite paths are ‘forced’ in the sense that when such a path visits a vertex which is not right-special,
there is only one choice for the following edge. Note that if X contains no right-special words of some
length n, then any edge of G'x ,, forces all subsequent edges, meaning that G'x ,, has only finitely many
bi-infinite paths and X is finite. Therefore every infinite subshift X has right-special words of every
length, and a similar argument shows that it has left-special words of every length as well.

A particularly simple case that we deal with repeatedly is when p(n + 1) — p(n) = 1; this means that
G x n has exactly one more edge than the number of vertices, which means that it has a single vertex
r with two outgoing edges and a single vertex ¢ with two incoming edges (¢ and r may be the same
vertex), which correspond to the unique right- and left-special words in L, (X). It’s not hard to show
that when X is transitive and p(n + 1) — p(n) = 1, the structure of the Rauzy graph Gx , must be a
(possibly empty) path from ¢ to r and two edge-disjoint paths from r to £.

We will frequently make use of the following standard lemma for estimating word complexity.
Lemma 1.4. Let X be a subshift on alphabet A, for all n let RS,(X) denote the set of right-special

words of length n in the language of X, and for all right-special w, let F(w) denote the set of letters
which can follow w, i.e. {a : wa € L(X)}. Then, for all ¢ > r,

o) =)+ S (P - 1),

i=r weRS,(X)

Proof. Counsider the map f : L.+1(X) — L.(X) obtained by removing the final letter, i.e. f(wa) = w.
It’s clear that f is surjective and that |f~!(w)| = 1 for w which is not right-special and |f~(w)| =
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|F(w)| for w € RS, (X). The result for ¢ = r + 1 follows immediately, and the general case follows by
induction. O

The following corollary is immediate.

Corollary 1.5. If X is an infinite subshift and T C N denotes the set of lengths n for which |RS,(X)| >
1, then for all g > r,

p(g) Zp(r)+ (g —r)+[TN{r,...,q = 1}].
If |[RSi(X)| <2 for allm < i < n and |F(w)| = 2 for all right-special w with lengths in [r,q), then the
inequality above is an equality.

2 Structure of subshifts with C' < 4/3

As mentioned above, our results rely on a substitutive/S-adic structure for subshifts with sufficiently
low complexity. The substitutions in question all have the same form. Namely, for all positive integers
m < n, define the substitution
{0 — 0m=11
T

10711,
When mq,...,mg and nq,...,n; are understood, we use the shorthand notation
Pk = Tming © " O Tmy,ny-

Proposition 2.1. If X is an infinite transitive subshift with lim sup pla) o %, then there exists a sub-
stitution 7 : {0,1} — A* where m(0),7(1) begin with different letters and |w(0)| < |w(1)] < 2|7(0)| and
sequences (my), (ng) satisfying 0 < my < ny so that X is the orbit closure of

x(mk))(nk) — h,Icn(ﬂ OTmymg OO kank)(()) = hin W(pk(()))

In addition,
o ny < 2my whenever my > 1;
e n; < 1.9my whenever my > 4;
e n; < 3 whenever my = 1;
o if mpi1 =1,ng1 =3 then n, = my +1; and
e cvery right-special word of length at least |s(m(0))™ ~1|, where s is the mazimal common suffix of

(7(0))*° and (7(0))>°w(1), is a suffix of a concatenation of w(0) and w(1).

Definition 2.2. A word v is a root of w if |v| < |w| and w is a suffix of the left-infinite word v>°. The
minimal root of w is the shortest v which is a root of w.

Every word w has a unique minimal root since it is a root of itself (and all roots of w are suffixes of w).

Lemma 2.3 ([Cre22a] Lemma 5.7). If w and v are words with |v| < |w| such that wv has w as a suffiz
then v is a Toot of w.

Lemma 2.4 ([Cre22a] Lemma 5.8). If uv = vu then u and v are multiples of the same word, i.e. there
exists a word vy and integers t, s > 0 such that u = v§ and v = v§.

Lemma 2.5. Let u and v be words with |v| < |u|. Let s be the maximal common suffiz of v™° and v™u.
If |s| > |vu| then w and v are multiples of the same word.

Proof. 1f |s| > |vu| then s has vu as a suffix. Since v is a root of s, v is a root of u so u = u/v* for some
t > 1 and suffix v’ of v. Then s has u/vtv as a suffix since that is a suffix of v>° and |s| > |u’v*v|. Then
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uv is a suffix of s so uv = vu as they are both suffixes of s and have the same length so Lemma 2.4 gives
the claim. 0

Lemma 2.6. Let v and u be words with |v| < |u| which are not multiples of the same word and where v is
a suffix of u. Let s be the mazimal common suffiz of v™° and v™u (which must be finite by Lemma 2.5).
Then s is a suffix of any left-infinite concatenation of u and v.

Proof. By Lemma 2.5, |s| < |vu| so we need only verify that s is a suffix of uv? for ¢ > 1 and of wu.
Since v is a suffix of u, uu has vu as a suffix hence has s as a suffix. If |s| > |u| then v is a root of u so
u=vu'vt and uv? = v'vtv? is a suffix of v so s is a suffix of uv?. If |s| < |u| then u = ugs’v? for some
(possibly empty) suffix s’ of v and ¢t > 1 (as s = s'v! has v as a root and |s| > |v] as v is a suffix of u).
Then wv? = ugs’v!T9 has s = s’v? as a suffix. O

Lemma 2.7. Let v and u be words and s be the maximal common suffix of v™° and v™>°u. Lety and z
be suffizes of some (possibly distinct) concatenations of u and v, both of length at least |s|. Then for any
word w, the mazximal common suffiz of yvw and zuw is sw.

Proof. Since y is a suffix of a concatenation of u and v, so is yv. Then yv has sv as a suffix by Lemma
2.6. Likewise zu has su as a suffix. As s is a suffix of v*°, then so is yv. Likewise, zu is a suffix of v>°u.
Therefore the maximal common suffix of yv and zu is s (as they are both at least as long as s). O

Lemma 2.8. Ifp(q+1)—p(q) = 1 then there exists a bi-special word which has length in [q,q+p(q)], has
ezactly two successors, and is the unique right-special word of its length and also the unique left-special
word of its length.

Proof. Let w be the unique right-special word of length ¢ (which must have exactly two successors) and
y be the unique left-special word and write z for the label of the path from y to w in the Rauzy graph.
Then |z| < p(Jw]). The word yz is left-special and right-special and |yz| = |y| + |2| < ¢ + p(q).

If z is a word of the same length as yz which is right-special then z must have w as a suffix. Then
x = zow and |zo| = |z|. Since there is only one path in the Rauzy graph ending at w of length |z| (due
to y being the unique left-special word), we have that z = yz.

Lemma 2.9. Let X be an infinite transitive subshift with p(q) < %q for all sufficiently large q. Then
there exist words a and b which begin with different letters with |a| < |b| < 2|a| and p(q) < 3q for
all ¢ > |a| and where a is a root of b such that every x € X can be written in exactly one way as a
concatenation of a and b. If we define s to be the mazimal common suffix of a® and a®b, there exists
t > 0 so sal is the unique right-special and left-special word of its length.

Proof. There exist infinitely many ¢ such that p(¢+1) — p(¢) = 1 by Corollary 1.5. By Lemma 2.8, there
exists a bi-special word w with |w| arbitrarily large which is the unique left-special and right-special
word of its length and which has exactly two successors. We may assume p(q) < %q for all ¢ > |w|. We
note that by [OP19], X is infinite and minimal.

Let u and v be the shortest two return words for w (meaning wu and wv both have w as a suffix) which
will be the labels of the two paths from w to itself in the Rauzy graph Gx |, for words of length |wl|,
with v being the shorter of the two. All bi-infinite words in X can be written in exactly one way as a
concatenation of v and u, as every such word must be the label of a path in the Rauzy graph (which
visits the vertex w infinitely many times by minimality of X), and the only two such paths have labels
v and u.

Since [u| + [v] < p(Jw|) + 1 < F|w| + 1, we have 2Jv| < 3|w| + 1 so |v| < 2jw| + 5. This is less than |w|
(since |w| > 1), and so v is a root of w by Lemma 2.3. Note that v cannot be a proper multiple of any
word since if v = v(t) then wvg has w as a suffix so vy is a root of w making vy a return word for w which
is shorter than v.
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Observe that if |w| < 3Jv| then |u| < §|w|+ 1 — |v| < §|w| — 3|w| + 1 so u is a suffix of w making v a
root of u. We write u = u*v® for some proper suffix «* of v (which cannot be empty as u and v start
with different letters) and define a = v and b = vw*v. Then as before, every bi-infinite word in X can be
written uniquely as a concatenation of v = a and u = ba®~!, hence the same is true of a and b (since
a =v). Clearly a is a root of b, and |a| < |b| < 2|a] as 0 < |u*| < |a].

So assume from here on that |w| > 3|v|.

Suppose now that for every suffix wy of w with |v| < |wg| < 2|v|, we have p(Jwg| + 1) — p(Jwo])
Then, by Corollary 1.5, p(2[v]) = p(2[v]) = p([v]) +p([v]) > 2(2[] = [v]) + [v] + 1 = 3[v| + 1 so EF
contradicting our hypothesis.

2.
3
2

Therefore there exists wg a suffix of w with |v| < |wy| < 2|v| which is the unique right-special word of
its length and it has exactly two successors.

Since wy is a suffix of w, v is a root of wy. As there must also be a unique left-special word of the same
length as wq, wy extends to a bi-special word wgy which is the unique left-special and right-special word
of its length and which has exactly two successors (Lemma 2.8). Now |wgg| < |wo| + |v| since the path
from the left-special to the right-special vertex in the Rauzy graph for words of length |wg| must be no
longer than v (as wev must have wy as a suffix). Then |wgg| < 2|v| + |v] = 3|v| < |w| so woo is a proper
suffix, and prefix, of w.

Let vy and wug be the shortest return words for woo with vy beginning with the same letter as v (and ug
beginning with a different letter). Then all bi-infinite words in X are concatenations of ug and vg. Since
v i8 a return word for wgg, v must be a concatenation of ug and vy which means that vy must be a prefix
of v by virtue of sharing a common first letter. Likewise uo must be a prefix of w.

Since v is a suffix of w, then vvy has v as a suffix so vy is a root of v by Lemma 2.3. Write v = v'v{ for

some t > 1 and v’ a proper suffix of vg. Then vy = v"v’ so v has v'vg = v/v""v’ as a prefix. But vy is also

a prefix of v so both v/v” and v"v" are prefixes of v. Therefore they are equal so by Lemma 2.4 both are
multiples of the same word. But then v is a multiple of that word and it cannot be a proper multiple of

any word so either v or v" is empty and so vy = v.

If |ug| < |v| then wg is a root of wgo hence of v. Write v = v*uf for some proper suffix v* of uy (which
cannot be empty as v begins with a different letter than u) and s > 1. Taking a = ug and b = v*uy,
then every bi-infinite word in X is a concatenation of ug = a and v = ba®~!. Clearly a is a root of b and
la] < 16| < 2]al.

So we are left with |ug| > [v]. Here |ug| < p(Jwoo|) +1 — [v] < Flwool + 1 — §|woo| as [woo| < 3[v].
Therefore |ug| < |woo|. So wup is a suffix of w hence v is a root of ug. Writing ug = u*v® for some proper
suffix u* of v and s > 1 then taking a = v and b = u*v, just as before we have that every bi-infinite word
in X is a unique concatenation of v = a and ug = ba*~!, hence of a and b. As before, clearly a is a root
of b and |a| < |b] < 2]al.

In all cases, one of a,b is a prefix of u and the other is a prefix of v. Since u and v begin with different
letters, a and b begin with different letters. It remains to verify the claim about the maximal common
suffix s and that a may be taken arbitrarily long.

In the case when a is a root of w (and wyy was not introduced), set wgp = w and ¢ = 0. Then in all
cases, a is a root of wgg as a is either v or ugy so wyp is a suffix of a®. In all cases, ba’ is the other return
word for wgg for some t > 0. Then wooabat has wy as a suffix for all £ > 0 so wqg is a suffix of a*>bat.
Since wqq is left-special and a and ba' are its two return words, the maximal common suffix of a® and
a®ba’ must be no longer than wgg. Therefore wyy = sa’ where s is the maximal common suffix of a™
and a*>°ba.

Let {we} be a sequence of such bi-special words with |wy| increasing to co and let {a,;} and {v;} be the
corresponding a and v above. Since either a = v or a = ug, and in both cases it is a root of wgg, ay is a
root of vy.

Since wy is the unique right-special word of its length, it is a suffix of wyy; and therefore v, is a suffix
of vet1. If |ug| were bounded then there would exist L such that vy = vy, for £ > L but then vy, would
be a root of wy for £ > L so v° € X, a contradiction. So |vs| — oco. Likewise, since a; is a root of vy, if
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|ag| were bounded then for some L we would have a3° € X. Therefore |ay| — 0o so we may take a and b
such that for all ¢ > |a|, we have p(q) < %q, 0

The following lemma is our main tool to recursively demonstrate the structure from Proposition 2.1.
The key is control over the lengths of the suffixes from Lemmas 2.5 and 2.6.

Lemma 2.10. Let X be an infinite transitive subshift with @ < % for g > N. Let u and v be words
with N < |v| < |u| such that v is a suffiz of u and v is not a prefix of u. Let s be the mazimal common
suffiz of v°° and v™®u and let p be the maximal common prefix of u and v.

Assume that |p| + |s| < |u] + |v| and |p| + |s| < 3|v| and that every bi-infinite word in X can be written
as a concatenation of u and v. Then there exist 0 < m < n such that every concatenation of u and v
which represents a point in X has only v™ ! and v~ appearing between nearest occurrences of v and
satisfying:

e n < 2m whenever m > 1;
e n < 1.9m whenever m > 4;

o n <3 whenever m =1

and the words sv™2p and sv™ Luv™

~1p are right-special.

Proof. For brevity, whenever we refer to a ‘concatenation’ in the following, it is a concatenation of u,v
which represents a point of X or a subword of such a point. We again note that by [OP19], X is infinite
and minimal, and so no concatenation can contain infinitely many consecutive v. Similarly, if there was
only a single number of v which may occur between nearest occurrences of u, then X would be finite,
contradicting our assumptions. So there are at least two different numbers of v which can occur between
nearest occurrences of u.

Suppose for a contradiction that uv®u and wv¥Yu and wv®u all appear in some concatenations and that
T <y < z. We may assume that z is the minimal value such that uv®u appears in a concatenation. Since
uv®u and wvYu are necessarily preceded by v* (due to z being minimal), then v*uv*u and v*uv*v both
appear in concatenations (as y > x). By Lemma 2.6 (as v is not a prefix of u, they cannot be multiples
of the same word), s is a suffix of every left-infinite concatenation. This means that v*uv®u and v*uv*v
are both preceded by s in the bi-infinite concatenations they respectively appear in, and so sv*uv® can
be followed by either u or v, meaning that sv®uv®p is right-special (since the letters appearing after p in
u and v are distinct by maximality of p).

Likewise, v*uv¥u and v*uvYv appear in some concatenations (due to z > y) so sv¥uv¥p is also right-
special. By Lemma 2.7, the maximal common suffix of svuv®p and sv”uvYp is sv”p. Therefore there
are at least two right-special words of length ¢ for |sv®p| < ¢ < |sv®uv®p| (namely, the unequal suffixes
of sv*uv®p and sv”uv¥p of length ¢). Then, since |p| + |s| < |v| + |u| < 2|ul, by Corollary 1.5

p(|sv*uv®p|)

|sv”uv®p| — |svTp| _ 1+ z|v| + |ul z|v| + |ul
|svruv®p

>1+4+ .
|svPuvp| Pl + [s] + 2z|v] + |u| 2|ul + 2z|v] + [u]

The final expression is increasing for « > 0, hence is at least % (its value at = = 0), contradicting our
hypothesis that p(q)/q < % for ¢ > N. Therefore such z < y < z cannot exist so there are only two
distinct values = and y. Writing z = m — 1 and y = n — 1 then shows that v™~! and v~ ! are the only
words appearing between occurrences of u in a concatenation.

By similar reasoning as above, we observe that sv™ 'uv™ p is right-special and that sv™ 2p is also

right-special since sv™'u appears in a concatenation and it has sv” 2v as a prefix and sv” 2u as a
suffix. Again by similar reasoning as above, their maximal common suffix is sv™ p.

Suppose |sv™ luv™ 1p| < |sv™ 2p|. Then there are at least two right-special words of length ¢ for

|sv™~1p| < £ < |sv™~tuv™~1p| so, by Corollary 1.5 and the fact that |p| + |s| < |u| + |v]| < 2]u],

m—1 m—1

-1 -1 4
psv™twwm ) D4l (ne Dl 4
[svm—Tupm=1p| Ip| + [s] +2(m — 1)|v| + |u] 2(m = 1)Jv| +3[ul — 3
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which contradicts our hypothesis.

So instead |sv""2p| < [sv™ Luv™1p|. Then there are at least two right-special words of length ¢ for

|su™~1p| < £ < |sv™2p| so, by Corollary 1.5 and the fact that |p| + |s| < 3|v],

P p]) gy _n=m =1l (n=m=-Vpl 4 n-m=1
lson=2p] = [pl+ 8| + (n — 2)[v] o[+ (n—2)jv| n+1

Consider first when m = 1. If n > 4 then "7”7111’1 = Z—f > % > % which contradicts our hypothesis.
Now consider when m > 1. If n > 2m+1 then 2 L> Q’S;}szfl = 27;”” > 2(2§+2

our hypothesis. So n < 2m when m > 1.

= % contradicting

T
Finally, consider when m > 5. Suppose n > 1.9m. Then
n—m-—1 19m—-—m—-1 09m—1 _ 45-1 1
> = >

n+l = 19m+1  19m+1-95+1 3

contradicting our hypothesis. So n < 1.9m whenever m > 4. O

Proof of Proposition 2.1. We prove by induction that such sequences exist, using the notation vy :=
m(pr—1(0)) and ug := m(pr—1(1)).

By [OP19], X is minimal. Write s; for the maximal common suffix of v;® and vp°uj and py for the
maximal common prefix of vy and uy.

Our inductive hypotheses are the following:
e all x € X can be written as concatenations of u and wvy;

e v} is a suffix of ui and is not a prefix of uy;

Ipk| + [sk| < min(|vg| + [url, 3[vk]);

® Vg = (ﬂ- ©Tmim O 0 ka—l,nk—l)(o) = ﬂ-(pkfl(o)) and uy = <7T' ©Tmim O © ka—hnk—l)(l) =
m(pr-1(1)).
4

Since lim SLlp# < 3, eventually p(q) < %q. Lemma 2.9 gives v; and u; with v; a suffix of u; and
|v1] < |ui| < 2|vi| which start with different letters such that every infinite word is a concatenation of
up and vy. By Lemma 2.5, |s1] < |viui| < 3|vi|. As uy and vy begin with different letters, p; is empty.
Therefore the base case is established by setting 7(0) = v; and 7(1) = uy. Lemma 2.9 ensures that
plg) < 4q for all ¢ > [x(0)].

Given v and ug, by Lemma 2.10 there exist 0 < my < ny such that every infinite word is a concatenation
of vp1 = Uzl""fluk and upyq = vZ’“iluk. Observe that ug1 = v,?"*luk = (m(pr—1(0)))™tr(pr_1(1)) =
m(pk-1(0"711)) = T(pr—1(Timy i (1)) = 7(px(1)) and similarly vgi1 = 7(px(0)).

Clearly vj1 is a suffix of up41. If vg41 were a prefix of uyq; then uy, would be a prefix of v;* ™"y, but

that would make v a prefix of ug. So vg41 is not a prefix of ugy1, and pry1 = v,'cn’“_lpk.

By definition, sg41 is the maximal common suffix of vgS, and vpg ury1. We can rewrite these as
Yy = ...ukv,T’“_luk and z = ...vkvL’Lk_luk. These share a suffix of v,T’“_luk, so we must just find the
maximal common suffix of the portions with this removed, i.e. ¥’ = ...uy, a concatenation ending with
ug, and 2’ = ... v, a concatenation ending with v,. But y’ then agrees with vp°u; on a suffix of length
|ug|+|sk| > |sk| by Lemma 2.6 and 2" agrees with v;° on a suffix of length |v|+|sg| > |si| by Lemma 2.6,
meaning that 3’ and 2’ have maximal common suffix si. Therefore, sp11 = s;gv;"’rluk = SgUk+1. LThen,

Ipr+1| + [skt1] = |pe| + [sk] + 2(mp — D)vk| + Jug| < (2my — 1)|vk| + 2Juk| = 2|vg 1| + [vi|

and since |vgy1| + |vg] < |ukr1| and |vg| < |vg41], the inductive hypotheses are verified.

Lemma 2.10 gives that n; < 2my when my > 1 and ng < 1.9m; when my > 4 and that n;, < 3 when
my = 1.

Suppose that m; = 1 and np = 3 and ng_1 > mr—1 + 2. By Lemma 2.10, the words sxvipr and
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sk_lei‘llfzpk and spurpr are right-special. By Lemma 2.7, the maximal common suffix of spvgpk

and spurpr 18 sgpr. Using Lemma 2.6 and that pr = v,T_’“l‘lflpk_l, both spvppr and spuipy have

sk_luk_lv,:l_’“l‘lflpk_l as a suffix. By Lemma 2.7, the maximal common suffix of either of them and
mk_lfl

12 .
sk_leill Pk—1 is then sp_1v, "' "pr—1. Therefore there are least [spvgppr| + [skvrpr| — [Skpr| +

|sk_1v,:f‘1171pk_1| — |5k_1v;n_k1‘171pk_1| right-special words of length at most |s;vgpg|-
Since pr = v 'pr—1, sk = sp—10% and |pr_1| + [sx—1| < 3lvk_1],
Ipr| + |sk| = (ma—1 — D|vr—1| + [vr| + [pr—1] + [sk—1| < |v] + (mr—1 + 2)[ve—1] = 2|vr| — |ug| + 3|vg—1].

Therefore, since ng_1 > mg_1 + 2,

nk—2

p([skvg" " prl)

|skvp* 2 pi|

V| + (N1 — mp—1 — 1)|vg_ V| + |vp— 1
|k|(k1 k—1 )|k1|>1Jr |k||k1| >14 =

>1+
k| + [pr| + skl 3lor] = |uk—1] + 3[ve—1] 3

contradicting our hypothesis. So if my =1 and ny = 3 then ng_1 = mg_1 + 1.

Since s1v! is the unique right-special and unique left-special word of its length for some ¢ > 0 (Lemma
2.9) and u1vt and v; are the two return words for s;vf, we have that t < m; — 1 as u; is always followed
by v!. Since sjv! is left-special, ujv’s;v! must appear meaning that ¢ = my — 1. Therefore any right-
special word of length at least |51v1"1_1| must have slv{nl_l as a suffix. As the return words for syv;
are vy and ulv{'“_l, then every right-special word of at least that length is a suffix of a concatenation

of u; and vy.

Finally, since vy, is in the language for all k, there exists a two-sided sequence containing z("#):(") =
limv;,. Then since X is minimal, X is the orbit closure of z("#):(") O

Remark 2.11. In future arguments, for any subshift X satisfying the structure of Proposition 2.1, we use
the notation of the proof, i.e. up = m(pr—1(1)), v = 7(pr—1(0)), px is the maximal prefix of v;, and wuy,
and sy, is the maximal suffix of v7° and v;°uy. In addition, as shown in the proof of Proposition 2.1, the
sequence (py) satisfies the recursion py1q = vZ"“_lpk = vppr+1, the sequence (si) satisfies the recursion
Sk+1 = SkUk+1, and |pg| + |sg| < min(|ug| + |vg|, 3|vg|) for all k.

Remark 2.12. By induction on k, each substitution 7 o py is uniquely decomposable, in the sense
that each © € X can be decomposed uniquely into words (7 o py)(a) for a € {0,1}. For k = 0,
this follows from Lemma 2.9 since w(0) = v; and (1) = u; were constructed using that lemma. If
7o py, is uniquely decomposable, then every z is representable uniquely as a concatenation of (7 o p)(0)
and (7 o py)(1), and then the same must be true of (7 o pry1)(0) = (7 0 px)(0)™ 171 (7 0 pr)(1) and
(7m0 pra1)(1) = (70 pr)(0)™+17 (7 0 pi)(1) (since each of these contains (7 o py)(1) exactly once.)

3 Subshifts with C' < 4/3 have discrete spectrum

Theorem 1. If X is an infinite transitive subshift with lim sup pla) - %, then X is uniquely ergodic with

. . . q
unique measure which has discrete spectrum.

Our proof relies on first proving exponential decay of some quantities, which will later be used to verify
discrete spectrum via so-called mean almost periodicity.

Proposition 3.1. Let X be the orbit closure of x(™+) (") where (my), (ng) satisfy the conclusions of
Proposition 2.1. Then there exist €, which converge to 0 exponentially so that for every k,

(i1 + D|m(0)| TIE, (ns — my)
(70 i) (0)]

< €k.

Proof. We first set some preliminary notation. Define a; = 1 and ap = nx_1 — mg—1 and by = my for
k > 0. Note that by Proposition 2.1, all b and ay, are positive; ax+1 < by, whenever by > 1; ag4+1 < 0.9b;

- 10 -
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whenever by > 4; and ap41 < 2 whenever b, = 1. We also define dj, = |(7 o px)(0)|, and note that (d)
satisfies the recursion
di+1 = brr1dy + apg1di—1 (1)
where d_1 = |7(1)| — |7 (0)| and dy = |7 (0)].
For ease of notation, define
5 — aj+1d;—1
=

d;
and observe that, by (1),
ﬁ-+1 _ aj+2dj _ aj+2 _ Clj+2 .
! dj-‘rl bj+1 + aj+1df17;l bj+1 + ﬁj
ard_ d_
Note that 8y = % = IW(OI)I' Then
m(O)ar - aper 7O 1 agradis _ 7(O)] T :
p) = 11 A B 18 =115 (2)
k -1 v -1 - .
7=0 j=1 j=1
Claim. 0 < g; <2 for all j > 0.
Proof. Since aj1 < b; + 1 for all j, B; < ;;5;1;3 <l+4<2 0
Claim. If Aj+1 < bj then ﬂj < 1.
Proof. Since B;_1 >0, §; = bj[fgjil < a’g}” <1. O

Claim. If a;4; = b; + 1 then at least one of 8; <1 or 5;8;_1 < 1.

Proof. When aj41 = 2 and b; = 1, by Proposition 2.1, 73 cannot occur for consecutive values so we

have a; < b; so B;_1 < 1. Since 3; = ﬁ > 1, we have 8;8;_1 =2—; < 1. O

This implies [[5_; 8; < p1 < 2.

By the assumptions on (my) and (ng), we see that agy1 < by when b > 1 and ag41 < 2 when by = 1
and ax4+1 < 0.9b; when by > 4. We now break into several cases.

Case 1: If b; > 4 then 3; < 0.9.
Proof. Tt b; > 4 then, as d; > b;d; 1 by (1), B; = =L < 0.9. O
Case 2: If aj41 <b; <4 and bj_; <4 then 5; < 0.96.

Proof. If aj41 < b; <4 and b;_q <4 then by (1),
dj = bjdj_1 + ajdj_z < bjdj_1 + (bj—l + l)dj_g < bjdj_l + dj_l + dj_g < (b] + 2)dj_1 < Gdj_l.

Then, again by (1), using that a;+1 <b;,

dj a'd‘_g 1 1

=b; + 22 bj+ = >aj; —.

4 ;i + 4 > b + 6= Q41+ 6

Therefore, since a;j41 < b; < 4,
gy = Gmidict o G <1+1 )1<<1+1)1096 O
J dj aj+1+ (1/6) 6a;1 24 o

- 11 -
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Case 3: If aj41 <b; <4 and b;_; > 4 then at least one of 5; < 0.96 or 8;5;—1 < 0.5 holds.

Proof. Consider when a;j41 < b; <4 and bj_; >4 so §;_1 < 0.96. Suppose 3; > %. Then

| co

Aj41 < bj < 4
bj+Bj—1 ~ bj+Bi—1 T 44+ 851

so 84281 <9s0 Bj_1 < % Then 3;8;-1 < Bj—1 < 0.5 since a1 < b; implies 8; < 1. So at least
one of #; < % < 0.96 or 3;3;—1 < 0.5 must hold. O

<

Any j where aj1 < b; is covered by Case 1if b; > 4 and Case 2 or 3 if b; < 4. The only remaining case
is then a;11 > b;, which happens only if a;11 = 2 and b; = 1.

Case 4: If aj41 = 2 and b; = 1 then at least one of 5;3,_1 < % or 3;8;-1B8j—2 < 0.52 holds.

Proof. Consider any such j. By Proposition 2.1, 7y 3 cannot occur consecutively so a; < b;_1, and so
Jj — 1 is in one of Cases 1-3. If 8;_; < 0.96, then
Bi1—1 0.96 -1 48

28;_
i _ g <l =
148 —1 Bi1+1 0.96+1 49

N T & o N S
ﬁjﬁj_l bj +ﬂj716]_1

If Bj_1 > 0.96, then j — 1 must be in Case 3 and 8;_13;_2 < 0.5. Then

1 1
———Bj—18j-2 < < < 0.52. O

Bibi-1Pj-2 = 1481~ 1+0.96

1+ﬁ],

Claim. For all k> 1,
k k/2
1 <2(5)""

Proof. All j > 2 are in one of the cases above, and so at least one of the following hold: 8; < 0.96,
BiBi—1 < %, or 3;8;-18j—2 < 0.52. For every k, we can group the product H§:1 B; into products of
one, two, or three consecutive terms bounded from above in this way, with the possible exception of 8y

or 5182. As 0.96 < 48 and 0.52 < (48)3/2 and since 182 < 1 whenever 81 > 1, this yields

Hﬁ <6( )’€/2<2(48)k/2 O
S 49/ -
Since g1 < 2mprq1 + 1 = 2bgp11 + 1, we have (nkgljll)dk < (le’j:::ii)dk =2+ bkz+1 <4, and so
k/2
mrat [T (O Iy (i = m0) i [r(O)]ar - angs 4H 4 <8 <48> !
diy1 diy1 dy, ! 49
Defining €, := 8(35)*/2 completes the proof. O

Proof of Theorem 1. Our technique for verifying discrete spectrum of X is by using mean almost peri-
odicity, which requires a definition. The upper density of A C N, denoted d(A), is lim sup M
It’s easy to check that upper density is subadditive, i.e. d(AU B) < d(A) + d(B) for every A, B.

A subshift X is mean almost periodic if for all € > 0 and all x € X, there exists a syndetic set S so
that for all s € S, z and o®z differ on a set of locations with upper density less than e. It is well-known
that mean almost periodicity implies discrete spectrum; see for instance Theorem 2.8 of [LS09].

By Proposition 2.1, X is the orbit closure of

x(Mk%(nk) = lim (ﬂ- O Tmi,ny © Tma,ng © 700 kamk)(o) = lim (71' © pk)(o)
k—o0 k—o0

- 12 -
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for some 7 : {0,1} — A* where 7(0), 7 (1) begin with different letters and |7 (0)| < |w(1)| < 2|x(0)| and
some sequences (my), (ng) satisfying 0 < my < ng < 2my or (mg,ng) = (1, 3).

We again use the notations a1 = ni —my and di, = |(7 o p)(0)| as in the proof of Proposition 3.1.

For any k£ > 0 and p € N, define the words

Yo.k,p = (70 px)(0))P (7 0 pi) (1), 20,k,p = (70 pi) (1) ((7 0 pi)(0))?,
Y1,kp = (70 pr) (1) (70 px)(0), 21,k = (70 pi)(0)((7 0 pi)(1))".

We will prove the following by induction:

Yik.ps Zik,p differ on fewer than 2|7 (1)|pas ... ar41 locations (¢ € {0,1}). (3)

The base case k = 0 trivially holds, since the lengths of ¥o.0.p, 20,0,ps ¥1,0,p; 21,0,p are less than 2p|mr(1)].
Assume now that (3) holds for some k — 1 (and all p).
Consider first the case when nj < 2my.

Then by definition of 7,,, ,, if we write u = (70 pr_1)(1), v = (70 pr_1)(0), m = my, and n = ny, then
yO,k,p — (vmflu)pvnflu and ZO,k,p — ,Unfl,u(vmflu)p.

Since v is a suffix of u, write u = w’v. Then, using that m < n < 2m,

Yokp = (Umfl )p,unfl _ (,Um 1u'v) Umflvnfmu _ Umfl(ulvm)pvnfmu

m—l(u/vn mv2m n)pvn—m

=v
20.kp = ,Un—l (,Um—l )p _ vm—lvn—m(u/vm)pu _ Um—lvn—m(u/v2m—nvn—m)pu

:Umfl(vn mulv2m n)pvnfmu'

u,

Since |w/v" ™| = [v™~™/|, this means yo k., and 2ok, differ at a number of locations equal to p times
the number of locations where w'v™ ™ and v ™/ dlffer Clearly u'v™™™ and v~ ™/ differ on the same
number of locations as v/'v™ ™ ™v = ww™ ™™ and v "u'v = V™ ™y differ. Since V™™ = 20 k-1 n—m and
V™Y = Yo k—1,n—m, the inductive hypothesis gives that they differ on fewer than 2|7 (1)|(n—m)ay - - - ay,
locations. Then o, and zg,, differ on fewer than 2|7 (1)|p(n — m)aq - - - ay locations. Since ap41 =
n — m, this proves the claim. Similarly,

Yikp = ( ) m— 1u:vn—1(ulvn)p 1ulvmu

= ™M 1,Un m(u/mnm)pl/m

— — '
™ u'v™u = o™ (T ™) P,

Z1,kp = vmflu(vnflu)p — Umfl(u vn)pu — vmfl( /. n—m m)pu.

S0 Y1 k,p and z1 i, differ on fewer than 2|m(1)|pa; - - - ag+1 locations.

Consider now the case when n, = 3 and m; = 1. Here
(0 px)(0) = (w0 pr—1)(1), (m 0 pr)(1) = (7 © p-1)(0))*(m 0 p—1)(1)

By Proposition 2.1, ng—1 = mg_1 + 1 so we have (70 pr—1)(1) = (70 pr—2)(0)(7 0 pr—1)(0).
First consider when my_1 > 1. Here (7 o pr—2)(0) is a prefix of (m o py_1)(0) so there are words
g = (mo pr_2)(0) and h such that (7w o pr_1)(0) = gh and (7 0 px—_1)(1) = ggh. Then (7 o p)(0) = ggh
and (7 o pi)(1) = (gh)*ggh so

Yok = (99h)” (ghghggh) = ggh(ggh)?~* ghghggh

Z0.p = (9hghggh)(ggh)” = ghg(hgg)"~" hgghggh
which differ on two pairs of gh and hg and on p — 1 pairs of ggh and hgg.

Our inductive hypothesis does apply directly to gh and hg, however gh and hg differ on the same number
of letters as ggh = (m 0 p—2)(0)((7 © pr—2)(0))™ =~ (7 0 p—2)(1) and ghg = ((7 0 p—2)(0))™ 2~ (w0
pPr—2)(1)(m 0 p_2)(0). Those words differ on the same number of letters as (7 o pr—2)(0)(7 0 pr—2)(1)

- 13-
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and (7o pg—_2)(1)(7 o pr—2)(0), and by hypothesis they differ on fewer than 2|w(1)|a; - - - ar—1 locations.
Similarly, gggh = (7 © pp—2)(0))™* =" (m o pr_2)(1) and ghgg = (o pr—2)(0))™ (w0 pr_2)(1)((m o
pr—2)(0))? differ on the same number of letters as (7 o px_2)(1)((7 0 pr—2)(0))? and ((7 0 pr_2)(0))?(7 o
pr—2)(1) which by hypothesis is fewer than 2|7 (1)|2a; - - - ax—1 locations.

Therefore yo 1, and zg x,p differ on fewer than 2-2|7w(1)]aq - - - ag—1 +2(p — 1)2|7(1)|as - - - ax—1 locations.
Since a = 1 and agy; = 2, they differ on fewer than 2|7 (1)|pa; - - - ax4+1 locations. Similarly,

y1kp = (ghghggh)? ggh = ghg(hgghghg)"~'hgghggh

21k = 99h(ghghggh)? = ggh(ghghggh)?~* ghghggh
differ on two pairs of gh and hg and on p — 1 pairs of hgghghg and ghghggh. As hgghghg and ghghggh
differ on two pairs of gh and hg, the total number of differences is 2p times the number of differences
between gh and hg. Since gh and hg differ on fewer than 2|7 (1)|a; - - - ax—1 locations, and since a; = 1
and ag+1 = 2, Y1,k,p and 21y p differ on fewer than 2|7(1)|pa; - - - ary1 locations.
Now consider when my_1 = 1. Here (mop_1)(0) = (mopi_2)(1) so (mopr_2)(0) is a suffix of (mopr_1)(1).

So there are words g = (7 o pr—2)(0) and h such that (7 o pp—1)(0) = hg. Then (7 o p)(0) = ghg and
(m 0 pi)(1) = (hg)*ghg so

Yo.k,p = (9hg)Phghgghg = gh(ggh)?~ ' ghghgghg
20,.k,p = hghgghg(ghg)” = hg(hgg)?~'hgghgghg

which differ on two pairs of gh and hg and on p— 1 pairs of ggh and hgg. Since gghg = (70 pj_2)(0)?(7o
pr-1)(0) = (7 0 pr—2)(0)2(m o p—2)(1) and hggg — (7 o pr—2)(1)((7 © py—2)(0))2, by hypothesis they
differ on fewer than 2|7 (1)|2a; - - - ax—1 locations. Then, as above, yo k., and zo,, differ on fewer than
2|m(1)|pas - - - ag+1 locations. Similarly,

Y1.kp = (hghgghg)?ghg = hg(hgghghg)?~'hgghgghg
21kp = ghg(hghgghg)? = gh(ghghggh)?~ ghghgghg
differ on 2p pairs of gh and hg so yi1 x,p and zi i, differ on fewer than 2|7w(1)|pa; - - - ax+1 locations.

We will now prove that X is mean almost periodic. Fix any k, and as before, define u = (7 o pr_1)(1),
v = (70 pr—1)(0), m = mg, and n = ng. Choose any y € X; by minimality of X, y can be written as
a bi-infinite concatenation of the words (7 o p;)(0) = v™ 1u and (7 o pi)(1) = v lu. We may assume
without loss of generality that y contains v™~'u starting at the origin, since any syndetic set S as in the
definition of mean almost periodicity for y also works for any shift of y. Since dy = [v™ ul, let us write

y=... 0" tup T lyptzt

Jd’“y = .. o ey
where each iy is either m or n. We can rewrite as
= .11"“1(uvil*m)vmfl(uv”*m)vmfl .
gdk ) 'vmfl(,Uilfmu)vmfl(vigfmu)vmfl

The words inside parentheses are unequal exactly when i; = n, in which case they are the pair uv" =™,

v~ ™u. Since the lengths of uv™™™ and v”~™u are the same, this means that the only differences
in y and 0%y occur within pairs wv™™™, v"~™u. By (3), the number of differences in any such pair
is bounded from above by 2|7 (1)|(n — m)a; ...ar = 2|7(1)|a; ...aky1. When y is partitioned into its
level-(k + 1) words (7 0 px11)(0) and (7 o pry1)(1) (and o9 is partitioned at the same locations), each
partitioned segment contains exactly one such pair uv™™"™, v~ ™u. Since each such segment has length
at least |(m o prs1)(0)| = dg11,

A(1t 5 ylt) # oy} < ATl e,
di+1
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For ease of notation, we define D, = {t : y(t) # y(t + q)} for every g¢; by the above,

2lr(1)]ay .. ARQkt1

dit1

Now, fix any k and consider the set

T
Sk = {Zpidi cr>k,0<p; <nip +1}~
i=k

We claim that Sy, is syndetic. To see this, note that n;y1d; > d;11 for all @ since d;11 = m;p1d; + (n; —
mi)di,l < mi+1di + (mz + ]-)difl < mi+1di +d;+d;_1 < (mi+1 + 2)d1 < (niJrl + ].)d“ and so a simple
greedy algorithm shows that for all M € N, there exists s € S with M < s < M + dj.

Finally, choose any s = >_._, p;d; € Sk. For any {1, € N, Dy, ¢, C Dy, U (Dy, — £1) since t € Dy, 1,

implies at least one of y(t) # y(t +£1) or y(t+ 1) # y(t+ €1+ £2) , and so d(Dg, +¢,) < d(Dy,) +d(Dy,).
Using this repeatedly implies

_ _ 27r Nj+1a .a
d(D.) =d(Dssr pa) sz (Da.) <Z| |Z+1+11 i+

(nit1+1D)[7(0)|ar---ait1
dit1
Then d(Dy) < >0, 2|‘:((01)| €. Since (¢;) is summable, the right-hand side becomes arbitrarily small as

k — 00, and so X is mean almost periodic, and therefore has discrete spectrum. O

Proposition 3.1 implies that < ¢; for a sequence ¢; which is exponentially decaying.

Remark 3.2. We remark that in fact this proof yields an explicit formula for an eigenvalue of X.
Namely, define a sequence (c¢) by c—1 = 1, ¢g = 0, and the same recursion cxi1 = bgy1¢k + Akt1CK—1-
Basic continued fraction theory implies that g—i approaches a limit «, and that for all k,

k
_mO)a1 - apa _ [7(O0) [ TTimy (i — ma)
dkdk+1 dkdk+1

7w (0) T3 1(nz mi)

Ck Ck+1

di,  dit

Ck
dy,

Therefore, the distance from dra to the nearest integer is less than , which decays

diy
exponentially by Proposition 3.1. If we define A = e?™®, then \% = AKWPU(O)' approaches 1 with
exponential rate. By definition, |(wopg)(1)] = di+ (nk fmk)dk_l. The distance from (ng —my)dg_1c to

| m(O)| [TEZ) (ns—ma)
di

Therefore, Al(orx)(I approaches 1 with exponential rate as well.

the nearest integer is less than

, which again decays exponentially by Proposition 3.1.

From this, an essentially identical argument to that of Host from [Hos86] (see also p. 170-171 from
[Quel0]) shows that A is an eigenvalue (in fact a continuous one). (His argument was for a single
substitution 7, but the construction can be done virtually without change with 7% replaced by 7 o py.)

We can even represent « (and therefore \) in terms of generalized continued fractions. If we defined
an alternate sequence (eg) by the same recursion with e_; = 0 and ey = 1, then 5—’; is just the kth
convergent to the generalized continued fraction

a1 1
/8: Qa - n m
2 1= 1
as Nng —Mma
by + mo + ———
63+.'~ m3+"

In particular, z—t — . Since c_1 = 1,¢9g = 0,e_1 = 0,67 = 1 and ¢, di and e are all defined by the
same (linear) recursion, dj = d_icy + doey, for all k. Then, as d_; = |7(1)| — |7 (0)| and dy = |7 (0)],

B
[m(DIB + [x(0)|(1 = B)

o= limg—: = lim (d_1 + do(g: — 1)>_1 =(d-1 + 610(571 —-1))7t =
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Therefore, the eigenvalue A can be written as exp (27m (\w(l)\5+|w(o)|(1—ﬁ)))'

4 A weak mixing subshift with C' = 3/2

Theorem 2. There exists an infinite transitive subshift X which is uniquely ergodic, has unique measure
which is weak mizing, and for which lim sup pla) %

q
The complexity estimates in Theorem 2 will follow from a general formula for word complexity of subshifts
with the structure from Proposition 2.1, which may be of independent interest.

Proposition 4.1. Let X be the orbit closure of ™)("%) for 7 and (Tmp,ny) Satisfying the conclusions
of Proposition 2.1. Then there exists a constant K such that for k > 2,

k . .—2 Mmpg1—1
@ =149 > jma(nj —my — Dv;| + K if [skvg* ™ prl < @ < Iskr1vy T Pra]
= 1 k—1 . 1 —2
2q — [skv™ " k| + 30520 (g —my — D|oj| + K if [sio™ ™ pkl < g < [skopt pal.
Proof. We claim first that the words po, := limsgpr = lim51v2~~vkv,7€”’“_lvzl_’“l‘171~~v§nl_1 and
skvzrzpk for k > 0 are right-special.
Since vg11 = vg”“_luk and ug1 = v,?’“_luk, Pri1 = v?k_lpk. By induction then pyy1 = vzm—l e v{”l_l

as p; is empty. By Lemma 2.6, sipy is a suffix of sg11pp+1 = skv?’“_lukv,'fnk_lpk. As |sg+1| > |sk/|, this
shows p, exists and is left-infinite.

By definition of py as the maximal common prefix, pim(0) and pi7(1) are both in the language since each
of u and vg must have one of them as a prefix and they cannot have the same one. So pj is right-special
for each k (as w(0) and (1) begin with different letters) hence po, is right-special. That sivp*2py, is
right-special follows from Lemma 2.10.

Next we claim that every right-special word is a suffix of p,, or of skv,?’“_zpk for some k > 0.

Since every right-special word of length at least |51v71m*1| is a suffix of a concatenation of u; and vy, any
right-special word with sopy = slvlnl_lulv’f“_l as a suffix is of the form xulv{nl_l where z is a suffix
of a concatenation of u; and v;. If x were not a suffix of a concatenation of vy and uy then ujvju; for
r #mi —1,n; — 1 must appear somewhere in = but this is impossible by definition of 7,,,, ,,. So every
right-special word with seps as a suffix is of the form xps where z is a suffix of a concatenation of vo and
Uus.

Assume that any word with sipy as a suffix is necessarily of the form xp; where x is a concatenation of
ug and vg. Let w be a word which has si11pr+1 as a suffix. Since sgr1pr+1 = skkav;”k_lpk which
has sppr as a suffix, w = ka+1v,Tk_1pk where z is a suffix of a concatenation of uy and vi. If z were
not a suffix of a concatenation of up41 and vy then somewhere in zv4 there must appear u,v;uy for
r # ng — 1,my — 1 or v}, for t > ny — 1. But this is impossible by definition of 7, ,,. By induction,
then for all k, any word with suffix sipj is of the form zps where z is a suffix of a concatenation of uy
and vy.

Since vy, is a suffix of uy, for k > 1, write ug = u%vi’“ for ¢, > 1 maximal. Note that s; has vi’“ as a suffix.

Let w be a right-special word with |w| > |s1p1|. Take k > 1 maximal so that w has sgpy as a suffix.
By the above, w = zpy is where x is a suffix of a concatenation of uj and vy in any left-infinite word.
Choose t > 0 maximal so that v,’;pk is a suffix of w.

Suppose w is not a suffix of skv,tc_e’“ pr. Then ukvz_e’“ pr must be right-special since all letters to the left of
s are forced to come from uy by maximality of £;. As the pr must appear as a prefix of both vy and uy,
then ukv,t;e’“ ug and ukv,t;l’“ Vi are in the language so t — £, = my — 1. But then w has vzlrlpk = Pk+1
as a suffix, contradicting the maximality of k.

So w is a suffix of skv,tc%’“pk. Suppose t — £, > ni — 1. Then w has vzrlM’“pk as a suffix. As w is
right-special, this requires U,Zk_lHk v be in the language. But that is only possible if uy has v,i’““ as a

suffix, contradicting the maximality of ¢j.
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Sot —{r <np—2. Then w, being a suffix of skvi_z’“pk, is a suffix of skvgk_zpk.

Finally, we establish the complexity function is as claimed. Since po has sg11pk+1 = Sk;'UkJ,_l'UZLk_lpk;
as a suffix, by Lemma 2.6, it has skukvzlrlpk as a suffix. By Lemma 2.7, the maximal common
suffix of p,, and ska’rzpk is then skv;nrlpk. Likewise the maximal common suffix of skvzkﬁpk and
sk/vz,’“'fzpk/ for ¥ > k is skv;;”_lpk as vpy1 has uy as a suffix. Therefore each skvz’“_zpk provides
(ny — 2 — (my, — 1))|vg| right-special words (with lengths in (|spvy™* " pil, [sxvp*~>px|]) which are not

suffixes of pso. Set K = p(|sz2pa|) — |s2p2| and the claim follows. O

Proof of Theorem 2. Define any increasing (ny), (mg) so that ny = 2my for all k, m; = 1, and the
sum Zk(nk)’l < 00. Then define m to be the identity, define 7., n,, Pk, ak, bk, Ck, dr as in the proof
of Proposition 3.1, and note that apy; = ng — my = my = by for all k and Zk(bk)_l < oo. Just as
before, di, = |pi(0)| for all k, and we wish to impose the additional condition that dj, is prime for every
k > 1. This is easily achieved via induction. First, dy = d; = 1, so do = bady + a2dy = mo + 1, which
can clearly be chosen prime. Then, assume that dj, is prime, and recall that diy1 = bgy1di + ap+1di—1.
Both ax4+1 = by and di_; are positive and less than the prime dj, (since dy = brdi—1 + ardi—o and di_o
is positive for k > 1), meaning that dj and agy1di_; are positive and coprime. Then by Dirichlet’s
theorem, there exist infinitely many choices of by 1 so that dj41 is prime. As long as the sequence (by)
is chosen large enough at each step, we will maintain the condition _, (by) ™! < oo.

Let X be the orbit closure of #("#):("¥) X is minimal by construction so by [Bos92], X is uniquely
ergodic with unique measure .

Suppose for a contradiction that X is not weak mixing, and so there is an eigenvalue A # 1 with
measurable eigenfunction f. The following is somewhat classical and so we elide some details; see
[Hos86].

One can define Rokhlin towers by By = [pr(0)], hr = |pr(0)|, and Ty, = U;Ligl 07 By; since my, ny — 0o,
w(Tx) — 1. By Remark 2.12, X is uniquely decomposable so the levels of the towers are disjoint. Then,
for each k, define

hr—1

fela) =3 == ([ 1)l @)

=0
ie., fr(z) = (M(Bk))_l(ijBk f dp) for x € 69 By, and fi,(x) = 0 for = & Ty,

By the Lebesgue Differentiation Theorem, as u(Ty) — 1 and u(o?By) — 0, fi converge almost every-
where to f.

Observe that 0% = glP+(0) takes every occurrence of py(0) to an occurrence of py(0) except for those
which are immediately prior to an occurrence of pi(1) in some pr4+1(0) or pr41(1). Then for all t > 0,
odk+t takes all occurrences of p;(0) appearing in a pi1¢(0) to an occurrence of p;(0) except possibly for
those appearing in a pg1+(0) immediately prior to a pxy+(1).

Let {ix} be any sequence such that 0 < ix < 0.5(myy1 — 1). Then as above, for all ¢ > 0, gir+tdr+t
takes all occurrences of pg(0) in a pr1+(0) to an occurrence of py(0) except possibly for those appearing
in a pg4++(0) less than i1+ occurrences before a pgy+(1) in some pgy141(0) or prie+1(1). We also note
that since ngiyrr1 = 2mgyi41, at least one-third of the pi(0) appearing in any « € X are part of some
prk+(0). Therefore,

(e B O] 1 [pi(0)]) > Pkt (;quk(m]))

so, since g+t < 0.5(mp4e — 1),
. . . 1
p(ot+tdere (I By N (07 By)) > éu(ajBk).

Then fi(co+9+1z) = fi.(z) for a set of measure at least §u(T}). Since fr — f almost everywhere and
w(Ty) — 1, there is then a positive measure set such that for any sufficiently small ¢ > 0 and almost
every x in the set, there exists k so that for all ¢, |f(o%+tdr+tx) — f(x)| < e. Therefore A% — 1.
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We will prove that this is impossible. Define r € (0,1) by A = €>™"; then (irdyr) — 0 whenever
0 < i < 0.5(mgy1 — 1), which implies that for large enough k (say k > ko), (dpr) < 0.05(mp1 — 1)1
Clearly r cannot be rational, since all d are 1 or prime. Since 5ngy; = 10mgr; < 20(mgy; — 1),
for k > ko, (dpr) < 0.2(ngy1)~'. This implies that for all & > ko, there exists ¢, € Z, so that

‘T - (CT’;‘ < 0.2(dknk+1)_1 < 0.2(d;€+1)_1. (Recall that diy1 = bg1di + ag+1dr—1 < 2bg1dy, = nk+1dk.)
We will prove the following: for all k > kg,

/ / /
Ch1 = brt1Cg + Qg6 y- (5)

Assume that k > ko, and denote the right-hand side of (5) by ¢;/, ;. Then,

/ C/
r— S < 0.2(dper) " and |r — 7L < 0.2(dg) "L, (6)
k k—1
and so J
dpgrr — ¢l =L < 0.2, (7)
dy,

We can simplify

ar+1dig—1 / /
Crk+17 5= = Ak+1Ck—1| - (8)
k

dy

’ +1 " ’ / /

k| Oks1 + —a. )~ brt1¢y — Qrt1¢p
k

Ck le — Ck+1

By the second inequality in (6),

0.2 dp_ 0.2bdy,—
|ak+1dk—17"*ak+10§c—1| < ak;lrkl = flkk <02, 9)

Similarly, by the first inequality in (6),

dj— 0.2 dj— 0.2bsdj—
Opt1dg—17 — C%ak-H bl Q101 = Rkl < 0.2. (10)
di, drt1 di+1
Therefore, by the triangle inequality and (8)-(10),
d
Ck 2:1 — | <04,
Combining with (7) via the triangle inequality yields
|dis1r — cilyq] < 0.6. (11)
Recall that by definition,
Cht1 -1 / di+1
r— < 0.2(dps2) ", and so |dyi17 — cfyq| < 0.2 <0.2. (12)
dis1 dp+2

Finally, (11) and (12) imply that ¢}, = ¢}/, ; (since they are both integers), completing the proof that
(5) holds for k > ky.

Since r is irrational and g—i — 7, we may also assume without loss of generality (by increasing kg) that

Sho £ Sltko  Then it is easily proved by induction that for all k > ko,

di, di4kg

/ /
Cr  Ckt1

di,  dpyr

A4 kg -+ - Ok+1
drdiq1

o /
- ‘Cl+k0 dko - ck0d1+k0|

We abbreviate Q = |¢] y dk, — ¢}, d1+k,|, and note that @ # 0 by the assumption that % ko We
0

di14kg

- 18 -



Low complexity subshifts have discrete spectrum Darren Creutz and Ronnie Pavlov

can now bound the distance from above using that aj41d;—1 < dj:

k 0o
i _ ot _ Qa11k, - - apt1 _ Q H ajy1dj—1 S Q H aj+1dj71' (13)
dp  di41 didy+1 dig—1dpt1 ~3 d; dro—1dk41 —3 d;
J=FKo J=Fo
Note that
dj _ bj 4 ajdj_g < bj i bj_ldj_g < bj +1 < bj _ bj _ (1 B b»_l)il '
ajpidj—1r ajp o iadia T agpn o gadia e agp— 10 b =1 !

Therefore, the product []72, % is greater than []52, (1 - %)7 which converges to a positive
J J

limit L by the assumption that > b,' < co. Combining with (13) yields that there exists a positive
constant K = d,?Ll so that for all & > ko,

K
dig1

/ /
¢, Ckn1

di,  di+r

(14)

However, recall that [r — 22| < 0.2(dgng41) " meaning [rdyyinp1 — chngsa| < 0.2 50 ¢jnpi is the

closest integer to rdiiingr1. Since (0.25ng1dkr) — 0, this implies there exists k1 > ko such that
|rdkt1ng+1 — Cngs1| < 0.5K. Then |r — §—Z| < 0.5K (npy1d)~ . Since dgy1 < npy1dy, then |r — z—t\ <
0.5K (dgy1)~t. Then for k > ki,

/
C
S
k

/

c

k1
p— k1

k+1

< 0.5K (dy41)"" and < 0.5K (dpy2) " < 0.5K (djy1) ™",

which contradicts (14) by the triangle inequality. Therefore, our original assumption is false and X is
weak mixing.

It remains only to show that the complexity function satisfies the claimed bounds. Since |p1| = 0 and
by Remark 2.11, pgi1 = v;nk_lpk, we have |py| = 25;11 (m; — 1)|v;| and therefore, since n; —m; = m;,

k k
> (g —my = Do =D (my — Dloy| = (mx — V)fox] + [pxl-
j=1 j=1
By Proposition 4.1, then
2my—2 _ 2(my—1) _ 2my—2
p([skvy,™*  “prl) = [skvy, pil + (mue = 1)|vi| + [p| + K = 1.5[spvi™* ™ “pr| — 0.5(|sk| — [px]) + K.

2my —2
Uskve " "pil)

Since |pg| + |sk| < 3|vk| and my — oo, lim pl T e 1.5. Proposition 4.1 implies that the limsup
Sk, Pk

of %q) is achieved along some subsequence of |skv2’“72pk|, so lim sup %q) =1.5. O
Remark 4.2. The examples in Theorem 2 also satisfy p(q) — 1.5¢ — —oc and lim inf @ = 1. For any
f(q) — oo, such a subshift exists which also satisfies p(¢q) < ¢ + f(¢) infinitely often.

Proof. By Remark 2.11, s;11 = $kUg+1, so we have |sg| — |px| < |sk|—|vk| = |sk—1| = 00 so p(q) —1.5¢ —
—o00. By Proposition 4.1,

k—1
Py pel) = [op okl + > (ny —my — Dol + K = o) pe| + o] + K
j=1

and |pg| < 3|vk| so since my — oo, liminf@ = 1. Now let f(¢) — oo be arbitrary. For all k, if vy
and py are given, we can choose by = my, large enough so that f((my — 1)|vk| + |px]) > |px| + K, which

mk—l

implies that p(|v,"™* ™ "pr|) < |v,2n’“_1pk| + f(|U;T’“_1pk|). O
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