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Abstract. We bound the number of distinct minimal subsys-
tems of a given transitive subshift of linear complexity, continu-
ing work of Ormes and Pavlov [7]. We also bound the number of
generic measures such a subshift can support based on its com-
plexity function. Our measure-theoretic bounds generalize those
of Boshernitzan [1] and are closely related to those of Cyr and Kra
[2].

1. introduction

In this work, we study symbolically defined dynamical systems called
subshifts. A subshift is defined by a finite set A (called an alphabet),
the (left) shift action σ on AZ, and a set X ⊂ AZ of sequences that
is closed in the product topology and σ-invariant. For convenience, we
will refer to a subshift (X, σ) only as X since the dynamics are always
understood to come from σ. (See Section 2.1 for more details.)

Given a subshift X, let cX(n) denote the number of words of length
n that appear in X, i.e., the complexity function of X. Assuming that
X is transitive and cX(n) grows linearly, we ask: what is the interplay
between cX(n) and the structure of the sub-dynamical systems of X?
We study this question in both the topological and measure-theoretic
categories.

In the topological category, we provide bounds on how large cX(n)
must be in order to accommodate a given number of minimal sub-
systems in X. If X contains only one minimal subsystem, then, by
the Morse-Hedlund Theorem (Theorem 3.2), either X is periodic or
cX(n) ≥ n+ 1 for every n. In [7], Ormes and Pavlov show that, if X is
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transitive and not minimal, then

(1.1) lim sup
n→∞

(cX(n)− 1.5n) =∞.

Moreover they show that the bound (1.1) is sharp in the sense that the
threshold 1.5n cannot be increased by any nondecreasing, unbounded
function g : N→ N; for any such g, there is an example of a transitive
non-minimal subshift X where

lim sup
n→∞

(cX(n)− (1.5n+ g(n))) <∞.

For X containing two or more minimal subsystems, in Section 3 we
establish the following.

Theorem 1.2. Let X be a transitive subshift which is the orbit closure
of a recurrent point x, where X has j ≥ 2 proper minimal subsystems,
exactly i of which are infinite (0 ≤ i ≤ j). Then the following bounds
hold and are sharp:

(1) lim supn→∞(cX(n)− (j + i+ 1)n) =∞, and
(2) lim infn→∞(cX(n)− (j + i)n) =∞.

The notion that the bounds in Theorem 1.2 are sharp is the same as
for (1.1), namely, that for any nondecreasing unbounded g : N → N,
there exists X satisfying the hypotheses of the theorem for which the
bounds do not hold when g is added to (j+i+1)n or (j+i)n respectively.

In Section 4 we consider the case of a general (not necessarily re-
current) transitive subshift. We establish bounds on the growth rate
of cX(n) in the special cases where X contains one or two minimal
subsystems and then prove the following.

Theorem 1.3. Let X be a transitive subshift where X has j ≥ 3 min-
imal subsystems, exactly i of which are infinite (0 ≤ i ≤ j). Then

lim inf
n→∞

(cX(n)− (j + i)n) =∞.

Of course, Theorem 1.3 implies that

lim sup
n→∞

(cX(n)− (j + i)n) =∞

for transitive X as well, and we show that this bound is sharp in the
same sense as above.

Turning our attention to the measure-theoretic category, we consider
the well-studied problem of bounding the number of ergodic measures
that a given subshift can support. For example, in [1], Boshernitzan
shows that if X is minimal and

lim inf
n→∞

(cX(n)−Kn) = −∞,
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then X can support at most K − 1 ergodic measures. He also shows,
again assuming minimality, that X is uniquely ergodic provided that

lim sup
n→∞

cX(n)

n
< 3.

Cyr and Kra, motivated by work of Katok [4] and Veech [9] on interval
exchange transformations, extended Boshernitzan’s work by consider-
ing arbitrary (not necessarily minimal) subshifts and nonatomic generic
(not necessarily ergodic) measures [2]. Note that because they are
working in such a general setting, their results cannot establish bounds
on the number of atomic measures. Indeed, given any subshift X, one
can always union X with a fixed point to obtain a new subshift Y with
an additional (atomic) ergodic measure, where cY (n) = cX(n) + 1.

In this paper we consider transitive systems and obtain bounds on
the number of generic measures. In particular, we show the following
in Section 5.

Theorem 1.4. Let X = O(x) be a transitive subshift where x is recur-
rent and aperiodic. If

lim sup
n→∞

cX(n)

n
< 3,

then X is uniquely ergodic.

The following result is similar to a result obtained in [2]; see Section 5
for more details.

Theorem 1.5. Let X = O(x) be a transitive subshift where x is not
eventually periodic in both directions. If

lim inf
n→∞

(cX(n)− gn) = −∞

for g ∈ N, then X has at most g − 1 generic measures.

Note that Theorem 1.5 does not imply Theorem 1.3. Indeed, if X
contains g minimal subsystems, then there are least g generic measures
on X. Theorem 1.5 would then imply that

lim inf
n→∞

(cX(n)− gn) > −∞,

whereas Theorem 1.3 gives the stronger conclusion

lim inf
n→∞

(cX(n)− gn) =∞.
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2. preliminaries

2.1. Subshifts. We recall some basic definitions; for more information,
see [5].

A full shift is a pair (AZ, σ) where A is a finite alphabet, AZ has
the product of the discrete topology on A, and σ : AZ → AZ is the
left-shift defined by σ(x)i = xi+1 for each x = (xi)i∈Z ∈ AZ. A subshift
is a pair (X, σ) where X is a closed and σ-invariant subset of some
AZ. To conserve notation, we will often refer to the subshift (X, σ) as
simply X.

A subshift X is transitive if there exists x ∈ X such that X = O(x),
the closure of the orbit O(x) = {σn(x) : n ∈ Z}. We call such a

point x ∈ X a transitive point. If X = O(x) for every x ∈ X, then
X is minimal. A transitive subshift X is periodic if it has a transitive
point x which is periodic, meaning that there exists p ∈ Z such that
σp(x) = x. Note that a transitive subshift X is periodic if and only if
X has finite cardinality.

Given a subshift X, a word of length n in X is a block of symbols w =
w1w2 · · ·wn that occurs in some point x ∈ X, i.e., w = xixi+1 · · ·xi+n−1
for some i ∈ Z. Let Ln(X) denote the set of all words of length n
occuring in some point in X, and L(X) =

⋃∞
n=1 Ln(X). The complexity

function of X is the function cX(n) : N→ N that gives the cardinality

of Ln(X). If X is transitive, then X = O(x) for some x ∈ X, and in
this case cX(n) is equal to the number of words of length n in x.

For a symbol a ∈ A and n ≥ 1, the expression an denotes the word
of length n formed by concatenating a with itself n times. Correspond-
ingly, a∞ denotes the infinite concatenation of a with itself. Depending
on the situation, a∞ may denote a bi-infinite sequence, a left-infinite
sequence, or a right-infinite sequence. The choice of meaning should
be clear from context.

A point x ∈ X is recurrent if every word in x occurs at least twice
(equivalently, infinitely often). If every word in x occurs infinitely often
with uniformly bounded gaps between occurrences, then x is uniformly
recurrent. Note that x is uniformly recurrent if and only if X = O(x)
is minimal.

If X and Y are subshifts, then for any continuous f : X → Y such
that f ◦ σ = σ ◦ f , there exist m, a ∈ N such that for every x ∈ X,
f(x)0 is determined by the word x−m · · ·x0 · · ·xa. In this case f is
called an (m + a + 1)-block map with memory m and anticipation a.
If such a map f is surjective then it is a factor map. In this paper,
when we define a factor map f on a subshift X, it is understood to
have codomain f(X). In addition, any (m + a + 1)-block map has an
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obvious associated action on finite words as well (for any n-letter word
w, f(n) has length n−m− a); we use f to refer to this function also
since usage should always be clear from context.

A word w in L(X) is right-special if there exist a, b ∈ A such that
wa,wb ∈ L(X) with a 6= b. Similarly, w is left-special if there exist
a, b ∈ A such that aw, bw ∈ L(X) with a 6= b. Let RSX(n) (or just
RS(n) if X is understood) denote the set of right-special words in X.

Let x be an element of a subshift X. By the omega-limit set of x,
we mean the set

ω(x) =
⋂
N≥1

{σn(x) : n ≥ N}

For any x ∈ X, the set ω(x) is a closed and shift-invariant subset of
X, so is itself a subshift.

We say that a point x in a subshift X is eventually periodic to the
right if there exist integers p > 0 and N > 0 such that for all i > N ,
xi = xi+p. Similarly, we say that x is eventually periodic to the left
if there exist integers p > 0 and N > 0 such that for all i < −N ,
xi = xi−p.

2.2. Sturmian subshifts. There are several different approaches to
defining Sturmian subshifts (see [3] for an introduction). We outline
one such approach here.

For any irrational β, define the map Rβ : [0, 1)→ [0, 1) by Rβ(x) =
x+β mod 1. For any x ∈ (0, 1), define the sequence s(x) ∈ {0, 1}Z by

sn(x) =

{
1 if Rn

β(x) ∈ [0, β)

0 if Rn
β(x) ∈ [β, 1).

The bi-infinite sequence s(x) is called a Sturmian sequence for β. For
any two-element set {a, b}, we call a subshift X ⊂ {a, b}Z a Sturmian
subshift ifX can be obtained as the orbit closure of a Sturmian sequence
with 0 replaced by a and 1 by b.

2.3. Bounds on the Complexity Function. Here we introduce short-
hand notation for bounds on the complexity function.

Definition 2.1. Given a function f : N→ R, write cX(n) � f(n) if

lim sup
n→∞

(cX(n)− f(n)) =∞.

Definition 2.2. Given a function f : N→ R, write cX(n) � f(n) if

lim inf
n→∞

(cX(n)− f(n)) =∞.

Note that the bounds in Theorem 1.2 can be rewritten using this no-
tation as
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(1) cX(n) � (j + i+ 1)n and
(2) cX(n) � (j + i)n,

and the bound in Theorem 1.3 can be rewritten as cX(n) � (j + i)n.
As mentioned in the introduction, throughout this work we will say

that a bound of the form cX(n) � f(n) (or cX(n) � f(n)) which holds
under some hypotheses on X is sharp if it fails when any nondecreas-
ing unbounded g : N → N is added to f(n), i.e., if for any such g
there exists a subshift X satisfying the relevant hypotheses for which
cX(n) � f(n) + g(n) (or cX(n) � f(n) + g(n)) is false.

3. Transitive systems with a recurrent transitive point

The main goal of this section is to prove Theorem 1.2, which assumes
that X contains two or more minimal subsystems. But first we recall
some existing results that can be used to treat X containing a single
minimal subsystem.

3.1. Single minimal subsystem. If X is itself minimal and not a
periodic orbit, then the following two results establish that

cX(n) ≥ n+ 1

for all n ≥ 1 and that this bound cannot be improved.

Theorem 3.1 ([6]). If X is a Sturmian subshift, then

cX(n) = n+ 1 for all n ≥ 1.

Theorem 3.2 ([6]). Let X be any subshift. If there exists n ≥ 1 such
that cX(n) ≤ n, then X is a finite set of periodic points.

Thus the Sturmian subshifts are examples of the lowest complexity
subshifts that are not periodic (see [8] for more). If X is transitive and
not minimal, then the following (sharp) bound was proved in [7].

Theorem 3.3 ([7]). Suppose X is a transitive subshift with a recurrent
transitive point x. If X is not minimal, then

cX(n) � 1.5n,

and this bound is sharp.

Combining the results of [7] and techniques of the proof of Theorem
1.2, we will be able to establish the following.

Theorem 3.4. Suppose X is a transitive subshift with a recurrent tran-
sitive point x. If X properly contains an infinite minimal subsystem,
then

cX(n) � 2.5n,

and this bound is sharp.
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We postpone the proof of Theorem 3.4 until after the proof of The-
orem 1.2.

3.2. Multiple minimal subsystems. For j ≥ 2 and 0 ≤ i ≤ j,
consider the set of subshifts S = S(j, i), where X ∈ S(j, i) if and only
if X is transitive with a recurrent transitive point, and X has j distinct
minimal subsystems, exactly i of which are infinite. To prove Theorem
1.2 for X ∈ S(j, i), we first reduce to the i = 0 case via factor maps.

3.2.1. Reduction to the i = 0 case. We define a factor map π that
maps the j distinct minimal subsystems of X to j distinct points,
which are fixed by σ. Lemma 3.5 will provide an inequality between
the complexity sequences for X and π(X), which will allow us to simply
work with π(X) moving forward.

Let M1, . . . ,Mj denote the minimal subsystems of X, where, without
loss of generality, M1, . . . ,Mi are infinite and Mi+1, . . . ,Mj are finite.
Since the sets M1, . . . ,Mj are pairwise disjoint closed subsets of X,
there is an r ≥ 1 such that the sets Lr(M1), . . . ,Lr(Mj) are pairwise
disjoint. Fix such a value of r; pick j distinct symbols a1, . . . , aj that do
not occur in x; and define an r-block map φ with domain X, memory
zero, and anticipation (r − 1) as follows:

φ(y)q =

{
ap if yq · · · yq+r−1 ∈ Lr(Mp);

yq otherwise.

Now pick a symbol b that does not occur in φ(x), and define a 2-block
map ψ with domain φ(X), memory zero, and anticipation 1 as follows:

ψ(z)q =

{
b if zqzq+1 ∈ {aps, sap} for some p and s 6= ap;

yq otherwise.

Note that post-composing φ with ψ has the effect of ensuring that
words of the form anp are always preceded and followed by the “marker”
symbol b. Define π = ψ ◦ φ. Then the minimal subsystems of π(X)
are simply the one-point sets π(Mp) = {a∞p }. If X ∈ S(j, i), it follows
that π(X) ∈ S(j, 0).

Lemma 3.5. If X ∈ S(j, i) with j ≥ 2 and π is the factor map defined
above, then, for every n > r, cX(n) ≥ cπ(X)(n− r) + in.

Proof. Note that for any q-block factor map from a subshift X onto
a subshift Y , a word of length m in X determines a word of length
m− q + 1 in Y . It follows that cX(m) ≥ cY (m− q + 1).

Applying this to our situation, since ψ is a 2-block map, cφ(X)(n) ≥
cπ(x)(n− 1). To complete the proof, it is enough to show that cX(n) ≥
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cφ(X)(n − r + 1) + in. For any n, let W0 denote the set of words
in φ(X) of the form an−r+1

p where n ≥ r and 1 ≤ p ≤ i, and let
W1 = Ln−r+1(φ(X))\W0. Each word in W1 has at least one φ-preimage
in Ln(X), but each an−r+1

p ∈ W0 has at least n+1 preimages in Ln(Mp),

since any word in Ln(Mp) is a preimage of an−r+1
p , and cMp(n) ≥ n+ 1

for all n, using Theorem 3.2 and the fact that Mp is infinite. �

Lemma 3.6. For each p ∈ {1, . . . , j} and n ∈ N, anp is both right- and
left-special in π(X).

Proof. Since a∞p ∈ π(X), anp can be followed by ap. Assume for a
contradiction that anp is not right-special, i.e., it can only be followed
by ap. Since π(X) 6= {a∞p }, there must exist m ∈ Z so that

σm(x) = · · · y−3y−2y−1.a∞p ,
where y−1 6= ap. Since x is recurrent, y−k · · · y−k+n = y−1a

n
p for some

k ≥ n+2. Then −k+n ≤ −2, so there is some smallest q ≥ 1 such that
y−k+n+q 6= ap. Then y−k+q · · · y−k+n+q−1 = anp and y−k+n+q 6= ap, imply-
ing that anp is right-special, a contradiction. Our original assumption
was then false, i.e., anp is right-special; a symmetric argument shows
that anp is left-special. �

To establish that (1) and (2) from Theorem 1.2 hold, first observe
that, by Lemma 3.5, it is enough to show only that (1) and (2) hold
for π(X). Indeed, if we prove that cπ(X)(n) � (j + 1)n, then there is a
strictly increasing sequence (nk) such that cπ(X)(nk− r) > (j+ 1)(nk−
r) + k for all k. So by Lemma 3.5,

cX(nk) ≥ cπ(X)(nk − r) + ink

> (j + 1)(nk − r) + k + ink

= (j + i+ 1)nk + k − r(j + 1),

which implies cX(n) � (j+i+1)n. By a similar argument, cπ(X)(n) � jn
implies cX(n) � (j + i)n.

Because of this, to simplify notation we will replace π(X) with X
and make the following assumptions:

• (A1): X ∈ S(j, 0);
• (A2): the minimal subsystems of X are the one-point systems
M1 = {a∞1 }, . . . ,Mj = {a∞j }; and
• (A3): for any word in X of the form aps or sap, s = b.

3.2.2. Proof that (1) and (2) from Theorem 1.2 hold when i = 0. As-
sume X is as above. Then there is a transitive point x for X that is
recurrent, and that therefore cannot be both eventually periodic to the
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left and eventually periodic to the right. Without loss of generality,
assume that x is not eventually periodic to the right. Our proof will
involve bounding from below the number of right-special words in X
of various lengths (were x eventually periodic to the right, we would
instead count left-special words). The following elementary lemma will
be used to verify that cX(n) � (j + 1)n.

Lemma 3.7. For each n ≥ 2, cX(n) ≥ cX(n − 1) + #RS(n − 1).
Therefore, for m < n, cX(n) ≥ cX(m) +

∑n−1
`=m #RS(`).

Proof. For every n, each word of length n − 1 can be extended to at
least one word of length n, while each right-special word of length
n − 1 can be extended to at least two words of length n. This yields
cX(n) ≥ cX(n− 1) + #RS(n− 1). Applying this recursively, we obtain
the inequality cX(n) ≥ cX(m) +

∑n−1
`=m #RS(`) for m < n. �

We begin by considering the set of right-special words provided by
Lemma 3.6, which we will call B:

B := {anp : 1 ≤ p ≤ j and n ∈ N}.

By just considering the elements of B, we see that #RS(n) ≥ j for all
n.

By combining the inequality #RS(n) ≥ j with Lemma 3.7, we can
show that the bound cX(n) � (j + 1)n would imply cX(n) � jn. In-
deed, note that cX(n) � (j+1)n implies that there exists an increasing
sequence of integers (nk) such that cX(nk) ≥ (j+1)nk. Thus for n > nk,

cX(n) ≥ cX(nk) +
n−1∑
`=nk

#RS(n)

≥ (j + 1)nk + j(n− nk)
≥ jn+ nk,

which gives cX(n) � jn.
Thus we will be done if we establish the bound cX(n) � (j + 1)n.

We divide the proof into cases, beginning with the simplest case.

Case (i): For all sufficiently large n, #RS(n) ≥ j + 1 and there is
a strictly increasing sequence (nk) where #RS(nk) ≥ j + 2 for all k.

The assumptions imply that, for n > nk,

n∑
`=1

#RS(`) ≥ (j + 1)n+ k.
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This implies that cX(n) � (j + 1)n, which completes the proof of The-
orem 1.2 in Case (i).

We now assume that the hypotheses of Case (i) do not hold. That
is, precisely one of the following two conditions holds.

Case (ii): There is a strictly increasing sequence (nk) such that
#RS(nk) = j, i.e., RS(nk) = B, for all k;

Case (iii): for all sufficiently large n, #RS(n) = j + 1.

Lemma 3.8. In Case (ii) or (iii), for each k, after re-indexing the

minimal subsystems M1, . . . ,Mj if necessary, there exist words w
(k)
12 ,

w
(k)
23 , . . . , w

(k)
j1 , each of which begins and ends with the symbol b, such

that the transitive point x ∈ X has one of the following forms:

x = · · · a≥nk
1 w

(k)
12 a≥nk

2 w
(k)
23 · · · a

≥nk
j w

(k)
j1 a≥nk

1 w
(k)
12 · · · or

x = a∞1 w
(k)
12 a≥nk

2 w
(k)
23 · · · a

≥nk
j w

(k)
j1 a≥nk

1 w
(k)
12 · · · ,

where each a≥nk
p represents a word of the form anp for some n ≥ nk.

Proof. Recall that x is a transitive point that is not eventually periodic
to the right. For all p ∈ {1, . . . , j} and all n ≥ 1, anp occurs in x. Since
x is not eventually periodic to the right, anpb must occur as well. Since
x is recurrent, anpb occurs infinitely many times in x. It follows that
banp also occurs infinitely many times in x.

Assume the hypothesis of Case (ii), and fix k ≥ 1 and p ∈ {1, . . . , j}.
Define w1 = b. Since we are in Case (ii), ank−1

p w1 6∈ RS(nk), so there is

only one symbol, call it w2, that can appear after ank−1
p w1. Similarly

there is only one symbol that can appear after ank−2
p w1w2. Continuing

in this way, each successive symbol wi is forced (at least) until some
wi · · ·wi+nk−1 ∈ RS(nk), i.e., wi · · ·wi+nk−1 = ank

r for some r. There
must exist some smallest i for which this is true, since the omega-limit
set ω(x) must contain one of the minimal subsystems M1, . . . ,Mj. Set
w(p) = w1w2 · · ·wi−1. Note that w(p) is the only word that begins
with b that can follow ank

p in x, and that ank
r is the only word that can

follow w(p). Set f(p) = r.
Since 1 ≤ p ≤ j was arbitrary, we obtain a function f : {1, . . . , j} →
{1, . . . , j}. Since bank

p appears in x for each p, each p ∈ {1, . . . , j} is
equal to f(q) for some q ∈ {1, . . . , j}, i.e. f is a bijection and thereby
a composition of cyclic permutations. If f were the composition of
two or more cyclic permutations, then x would not contain all ank

p for
1 ≤ p ≤ j, a contradiction to transitivity of x. Therefore, f must
cyclically permute the elements of {1, . . . , j}. Re-indexing if necessary,
we may assume that f(p) = p + 1 for p < j and f(j) = 1. For
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p ∈ {1, . . . , j}, set w
(k)
pf(p) = w(p). After re-indexing again in the case

where x is eventually left-asymptotic, it follows that x has one of the
two prescribed forms.

Now assume the hypothesis of Case (iii). By the assumptions on
x, there must exist a strictly increasing sequence (nk) such that bank

1 b
occurs in x for all k. Because bank+1

1 also occurs in x, we know that
bank

1 is right-special for every k. By deleting the first few terms of the
sequence (nk) if necessary, this together with the assumption of Case
(3) implies that

RS(nk + 1) = {bank
1 , a

nk+1
1 , . . . , ank+1

j }

for every k. The word ank
1 b 6∈ RS(nk + 1), so, as in Case (ii), the

word ank
1 b forces a transition word w(1) (whose first symbol is b). But

note that the only symbols that can follow bank
1 are also a1 or b, which

similarly implies that the word bank
1 b forces the same transition word

w(1). The rest of the argument from Case (ii) carries through with nk
replaced by nk + 1. We obtain the same possible forms of x as in Case
(ii). �

We proceed assuming the conclusion of Lemma 3.8. For each p ∈
{1, . . . , j} and k ∈ N, define

`k,p := min{` ≥ nk : ba`pb ∈ L(X)},
and set `0,p := 0. Consider the following set of words:

E(k) := {a`k,11 w
(k)
12 a

`k,2
2 , . . . , a

`k,j
j w

(k)
j1 a

`k,1
1 }.

It follows from Lemma 3.8 that, if u ∈ E(k), then any suffix of u
is right-special. Some of these suffixes, namely, the constant suffixes

a
`k,2
2 , . . . , a

`k,1
1 , are in B. But many of these suffixes are not constant

and therefore not in B.
For example, let E1(k) denote the set of suffixes of a

`k,1
1 w

(k)
12 a

`k,2
2 that

are longer than `k,2 but no longer than `k,2 + `k,1. Then each u ∈ E1(k)
is right-special and not in B.

In general, for 1 ≤ p ≤ j, let Ep(k) denote the set of suffixes of

a
`k,p
p w

(k)
pq a

`k,q
q that are longer than `k,q but no longer than `k,q + `k,p,

where q = p + 1 if 2 ≤ p < j and q = 1 if p = j. Note that #Ep(k) =
`k,p, and therefore

(3.9)

j∑
p=1

#Ep(k) = `k,1 + · · ·+ `k,j.

Also, each Ep(k) ∩B = ∅, and, for r 6= p, Ep(k) ∩ Er(k) = ∅.
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Proposition 3.10. For each k ∈ N,

cX(`k,1 + · · ·+ `k,j) ≥ (j + 1)(`k,1 + · · ·+ `k,j) + (`k−1,1 + · · ·+ `k−1,j).

Proof. To simplify notation, let Lk = `k,1 + · · · + `k,j. We proceed
by induction, where, since L0 = 0, the base case is the assertion that
cX(L1) ≥ (j + 1)L1. This assertion follows from Lemma 3.7 together
with the following observations:

• for 1 ≤ ` ≤ L1 − 1, there are j right-special words of length `
in B;
• there are L1 (distinct) right-special words in

⋃j
p=1Ep(1), none

of which are in B.

Now assume cX(Lk−1) ≥ (j + 1)Lk−1 + Lk−2, and observe that, by
Lemma 3.7 together with Equation (3.9),

cX(Lk) ≥ cX(Lk−1) +

Lk−1∑
`=Lk−1

#RS(`)

≥ [(j + 1)Lk−1 + Lk−2] + [j(Lk − Lk−1) + Lk]

≥ (j + 1)Lk + Lk−1.

�

Since (`k−1,1 + · · · + `k−1,j) → ∞ as k → ∞, it follows from Propo-
sition 3.10 that cX(n) � (j + 1)n, which by our earlier discussion com-
pletes the proof of Theorem 1.2 in Cases (ii) and (iii).

3.2.3. Sharpness of Theorem 1.2 when i = 0. Here we define a family
of examples that demonstrates the sharpness of the bounds in Theorem
1.2. We will consider the i = 0 cases first, and then show how to modify
the argument for i > 0. Let g : N → N be a given nondecreasing
unbounded function.

Define a sequence ω = ω1ω2ω3 · · · via the rule that ω2mk+m = m for
m ≥ 1 and k ≥ 0, so that ω = 1213121412131215 · · · . Then, define a
doubly-infinite sequence

x = j∞. (1n
1
12n

2
1 · · · jn

j
1)(1n

1
22n

2
2 · · · jn

j
2)(1n

1
12n

2
1 · · · jn

j
1)(1n

1
32n

2
3 · · · jn

j
3) · · · ,

for a doubly-indexed sequence npk satisfying

n1
1 << n2

1 << · · · << nj1 << n1
2 << n2

2 · · · << nj2 << · · · .
(The pattern of npk within x is as follows: the superscript p is always
the same as the letter being repeated, and the subscript k comes from
ω, in that it is ω1 = 1 for the first j exponents, then ω2 = 2 for the
next j, then ω3 = 1 for the next j, and so on.) Note that while ω
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is fixed, different sequences (npk) give rise to different sequences x. In
other words, x represents a family of examples parametrized by (npk).

Regardless of choice of (npk), the transitive subshift X = O(x) has
j minimal subsystems: M1 = {1∞},. . . , Mj = {j∞}. Also, we can
enumerate the right-special words in X as follows.

All words in the previously-defined set B are again right-special, and
any right-special word not in B must end with a word from the set

C = {12n
2
k , 23n

3
k , . . . , j1n

1
k : k ∈ N}.

For 1 ≤ p ≤ j − 1 and for any given k, the word

pn
p
k(p+ 1)n

p+1
k

is maximally right-special in the sense that:

• any suffix of pn
p
k(p+ 1)n

p+1
k is right-special; and

• for any symbol s, the word spn
p
k(p + 1)n

p+1
k fails to be right-

special.

Let D = D(k) denote the set of words that are not in B and are suf-
fixes of one of these. Each n in an interval of the form

(
np+1
k , np+1

k + npk
]

corresponds to the length of a word in D. Moreover, we can ensure that
these intervals are disjoint by requiring that

n3
k > n2

k + n1
k , n4

k > n3
k + n2

k , . . . , njk > nj−1k + nj−2k .

Now consider right-special words ending in j1n
1
k . In ω, the left-most

occurrence of k is ω2k−1; any occurrence of a symbol m ≥ k in ω is
directly preceded by the word ω1 · · ·ω2k−1−1; and any occurrence of the
word ω1 · · ·ω2k−1−1 is directly followed by a symbol m ≥ k. Moreover,
any occurrence of the word kω1 · · ·ω2k−1−1 must be followed by a symbol
m > k, and any occurrence of the word mω1 · · ·ω2k−1−1 for m > k must
be followed by k.

It follows from these observations about ω that, in x, there is a
unique word u = u(k) of length

L = L(k) =

j∑
i=1

(
niω1

+ niω2
+ · · ·+ niω

2k−1−1

)
,

namely,

u := x0 · · ·xL−1 = (1n
1
1 · · · jn

j
1)(1n

1
2 · · · jn

j
2) · · · (1n1

1 · · · jn
j
1)︸ ︷︷ ︸

2k−1 parenthetical blocks

that directly precedes any occurrence of 1n
1
k . It follows that jn

j
ku1n

1
k is

maximally right-special.
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Let F = F (k) denote the set of words that are not in B and are

suffixes of jn
j
ku1n

1
k , and note that F ∩ D = ∅. Then, for each n ∈

(n1
k, n

1
k + njk + L(k)], there is exactly one word of length n in F , and

that word is right-special.
We have established the following.

Proposition 3.11. The set of right-special words in X is

∞⋃
n=1

RS(n) = B ∪
∞⋃
k=1

(D(k) ∪ F (k)).

Moreover,

#RS(n) ≤


j if njk + n1

k + L(k) < n ≤ n1
k+1 for some k;

j + 2 if npk < n ≤ npk + np−1k for some k and 2 ≤ p ≤ j;

j + 1 otherwise.

Set nj0 = 0. Since g is nondecreasing and unbounded, we can choose
the sequence n1

1 < n2
1 < · · · < nj1 < n1

2 < · · · to grow fast enough so
that for each k ∈ N, and p ∈ {1, . . . , j}, g(npk) is larger than the sum
of all nq` smaller than npk. More specifically, choose (npk) so that for all
k ≥ 1 and p ∈ {1, . . . , j}

g(npk) >
k−1∑
`=1

j∑
q=1

nq` +

p−1∑
q=1

nqk.

Note that the right-hand side above provides an upper bound on the
number of n ∈ [1, np+1

k ) with #RS(n) = j+2. Lemma 3.7 then implies

that for n ∈ [npk, n
p+1
k ),

cX(n) ≤ (j + 1)n+ g(npk) ≤ (j + 1)n+ g(n).

Similarly, if n ∈ [njk−1, n
1
k) for some k ≥ 1, then

cX(n) ≤ (j + 1)n+ g(njk−1) ≤ (j + 1)n+ g(n).

We’ve shown that cX(n) ≤ (j + 1)n + g(n) for all n. Since g was
arbitrary, this shows that the bound cX(n) � (j + 1)n is sharp.

To see that the bound cX(n) � jn is sharp, we consider the complex-
ity along the subsequence (n1

k). If we choose (npk) to grow fast enough,
then for all k ≥ 1,

g(n1
k+1) > (j + 2)(njk + n1

k + L(k)).



SUBSYSTEMS OF TRANSITIVE SUBSHIFTS WITH LINEAR COMPLEXITY 15

Then Lemma 3.7 and Proposition 3.11 imply that

cX(n1
k+1) ≤ cX(njk + n1

k + L(k)) + j(n1
k+1 − (njk + n1

k + L(k)))

≤ (j + 2)(njk + n1
k + L(k)) + jn1

k+1 − j(n
j
k + n1

k + L(k))

≤ g(n1
k+1) + jn1

k+1 − j(n
j
k + n1

k + L(k)).

Since cX(n) ≤ jn + g(n) along the sequence n1
k and g was arbitrary,

the bound cX(n) � jn is sharp.

3.2.4. Sharpness of Theorem 1.2 when i > 0. We now wish to show
that the sharp examples constructed in Section 3.2.3 can be extended to
the i > 0 case. For this, first consider a system X ∈ S(j, 0) constructed
using the form from Section 3.2.3, i.e., X is the orbit closure of a
sequence of the form

x = j∞.(1n
1
12n

2
1 · · · jn

j
1)(1n

1
22n

2
2 · · · jn

j
2)(1n

1
12n

2
1 · · · jn

j
1)(1n

1
32n

2
3 · · · jn

j
3) · · · .

Now let 1 ≤ i ≤ j, and let Sj−i+1, . . . , Sj be arbitrary Sturmian sub-
shifts with alphabets disjoint from each other and from {1, . . . , j − i}.
Our goal is to replace constant strings of symbols from {j−i+1, . . . , j}
with sequences chosen from Sj−i+1, . . . , Sj to create X ′ ∈ S(j, i) in such
a way that the complexity is increased by exactly in. We begin with
an elementary observation about minimal subshifts, which applies in
particular to Sj−i+1, . . . , Sj.

Lemma 3.12. Given a minimal subshift S and a word w ∈ L(S), there
exist arbitrarily long words v with the property that wvw ∈ L(S).

Proof. By minimality, every point in x ∈ S contains w infinitely many
times. Therefore, we can find two instances of w in x occurring at
indices that are arbitrarily far apart. �

To stitch Sj−i+1, . . . , Sj into X, we need to impose a further assump-
tion on the sequences (nim)m∈N. By Lemma 3.12, we can recursively de-
fine n1

1, n
2
1, . . . , n

j
1, n

1
2, n

2
2, . . . , n

j
2, n

1
3, . . . in such a way that, associated

to each p ∈ {j− i+ 1, . . . , j} and k ∈ N, there is a word wpk ∈ Lnp
k
(Sp),

and every such wpk is both a prefix and suffix of wpk+1. The proof of
sharpness only required rapid growth of the sequence (npk), and Lemma
3.12 ensures that we may recursively choose npk with arbitrarily rapid
growth such that the words wpk have the desired conditions. Since each

wjk is a suffix of wjk+1, the sequence wjk has a left-infinite limit (as
k →∞), which we denote by wj∞.

Now define

x′ = wj∞.
(
1n

1
1 · · · (j−i)n

j−i
1 wj−i+1

1 · · ·wj1
)(

1n
1
2 · · · (j−i)n

j−i
2 wj−i+1

2 · · ·wj2
)
· · · ,
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the sequence obtained by replacing each pn
p
k in x by wpk, and replacing

j∞ by wj∞. Then each Sp for p ∈ {j−i+1, . . . , j} is an infinite minimal

subsystem of X ′ := O(x′), and each {p∞} for p ∈ {1, . . . , j − i} is a
finite minimal subsystem of X ′. It is not hard to check that X ′ contains
no other minimal subsystems, and so X ′ ∈ S(j, i). It remains to show
that cX′(n) = cX(n) + in.

For this, consider the following 1-block factor map φ applied to X ′.
Since the alphabets of the Sp are disjoint, we may map any letter in
the alphabet of Sp to p, and leave other letters (for p ∈ {1, . . . , j − 1})
unchanged. The map φ induces a surjection from Ln(X ′) to Ln(X) for
all n. We claim that every word in L(X) which is not constant has
only a single φ-preimage. To see this, consider w ∈ L(X) containing
multiple letters. Without loss of generality, we can extend w on the
left and right so that w contains some an

a
m as a prefix and bn

b
m as a

suffix; if the extension has only one preimage, then of course w did as
well. Then, by construction of x′, the only subword of x′ mapping to
w under φ is obtained by replacing every maximal subword of the form
pn

p
k in x by wpk for p ∈ {j − i+ 1, . . . , j}. (The only possible ambiguity

comes from an
a
m and bn

b
m , but recall that wpk is a prefix and suffix of wpk′

for all k′ > k, and so even if an
a
m and/or bn

b
m were portions of longer

runs of a’s or b’s in x, the corresponding word in x′ still contains wam
and/or wbm at those locations if a and/or b are in {j − i+ 1, . . . , j}.)

On the other hand, for k ∈ {j − i + 1, . . . , j}, any constant word of
the form kn has every word in Ln(Sk) as a preimage, since Sk ⊂ X ′,
and all words in Ln(Sk) map to kn under φ. Since cSk

(n) = n + 1 for
all n, this means that all such words have n + 1 preimages under φ.
Combining this yields cX′(n) = 1 · (cX(n)− i) + (n+ 1)i = cX(n) + in
for all n.

Now, the proof from Section 3.2.3 provides examples of X ∈ S(j, 0)
demonstrating sharpness of the bounds

cX(n) � (j + 1)n and cX(n) � jn

in the i = 0 case. The procedure above yields, for any 0 ≤ i ≤ j,
X ′ ∈ S(j, i) with cX′(n) = cX(n) + in, and so such X ′ demonstrate the
sharpness of the more general bounds (1) and (2) from Theorem 1.2.

3.3. Proof of Theorem 3.4. We sketch the proof of Theorem 3.4
here. Suppose X is a transitive subshift X with a recurrent transitive
point x such that X properly contains an infinite minimal subshift M .
Because M 6= X, there is an r ≥ 1 such that Lr(M) 6= Lr(X). Then
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define a factor map π on X such that

π(z)k =

{
0 if zk · · · zk+r−1 ∈ Lr(M)

1 otherwise.

The image π(x) is a recurrent transitive point for π(X), and the sub-
shift π(X) contains a unique minimal subshift π(M) = {0∞}. Since
π(X) 6= {0∞}, Theorem 3.3 gives cπ(X)(n) � 1.5n. Using an estimate as
in Lemma 3.5 with i = 1 yields cX(n) � 2.5n. Finally, Theorem 3.3 also
implies that there exist examples of such π(X) demonstrating sharpness
of cπ(X)(n) � 1.5n, and the reader may check that the examples con-
structed in [7] were similar to those from Section 3.2.3, relying only on
rapid growth of an auxiliary sequence. Therefore, the same technique
used in Section 3.2.4 yieldsX demonstrating sharpness of cX(n) � 2.5n.

4. General transitive systems

Our main theorem in the recurrent case, Theorem 1.2, provides
bounds in terms of i and j for subshifts in the sets S(j, i). Our main the-
orem in the general transitive case, Theorem 1.3, offers similar bounds
in terms of sets that we will refer to as T (j, i). Here T (j, i) ⊃ S(j, i)
is the set of all transitive subshifts with j ≥ 1 minimal subsystems,
exactly i of which are infinite where 0 ≤ i ≤ j.

4.1. Two or fewer subsystems. We first tackle the cases where j ≤
2. When j = 1, the results of Theorems 3.1 and 3.2 yield the minimal
complexity sequence of cX(n) = n+ 1 for X not periodic.

When j = 2, the orbit closure of the sequence

x = . . . 0000.11111 . . .

produces a transitive system in T (2, 0) satisfying cX(n) = n+ 1 for all
n.

Theorem 4.1. Let X ∈ T (2, i) where i > 0. Then

lim inf
n→∞

(cX(n)− (i+ 1)n) > −∞.

Moreover, this bound is optimal in that the −∞ cannot be replaced by
any integer.

Proof. Suppose X contains two minimal subsystems M1 and M2. Then
there is an r > 0 such that Lr(M1)∩Lr(M2) = ∅. Define a factor map
π on X such that

π(z)k =

{
i if zk · · · zk+r−1 ∈ Lr(Mi), for i = 1, 2

0 otherwise.
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Let y = π(x). Then, for all n ≥ 1, the words 1n and 2n occur in y.
This means that y is not periodic, so, by the Morse-Hedlund Theorem,
cY (n) ≥ n + 1 for all n. Since i > 0, we may assume without loss of
generality thatM1 is infinite, and so again by Morse-Hedlund, cM1(n) ≥
n + 1 for all n. Since π is an r-block map, for n ≥ r, the word 1n−r+1

has at least cM1(n) ≥ n+ 1 π-preimages, so we obtain

cX(n) ≥ cπ(X)(n− r + 1) + n > 2n− r + 1.

If M2 is also infinite, then both 1n−r+1 and 2n−r+1 have at least n+1
preimages, and all of those preimages are distinct. Therefore,

cX(n) ≥ cπ(X)(n− r + 1) + 2n > 3n− r + 1.

We also claim that the −∞ in Theorem 4.1 cannot be replaced by
any integer. We first treat the i = 1 case: choose any N > 3 and define
a Sturmian subshift Z ⊂ {0, 1}Z created by β where 1

N+1
< β < 1

N
.

Then 10k1 ∈ L(Z) if and only if k = N − 1 or N . Consider a right-
infinite word s in Z, let

x = 0∞.s,

and let X = O(x). Then, for 1 ≤ n < N , there is only one right-special
word in Ln(X), namely, 0n. Therefore cX(N) = N + 1. Sturmian
systems contain exactly one right-special word of length n for every
n ≥ 1. Therefore, when n ≥ N , there are two right-special words in X:
0n and a different one that is a subword of s. Lemma 3.7 then implies
that cX(n) = 2n−N + 1 for n ≥ N , so lim inf cX(n)− 2n = −N + 1.
Since N could be arbitrarily large, there is no uniform lower bound in
the i = 1 case of Theorem 4.1.

For the i = 2 case, consider two Sturmian subshifts Z1, Z2 ⊂ {0, 1}Z
created by distinct β1, β2 ∈

(
1

N+1
, 1
N

)
for any N > 3. Consider a

left-infinite word r ∈ Z1 ending in 1 and a right-infinite word s ∈ Z2

beginning with 1. Let

x = r.s,

and let X = O(x).
There are three types of words in x: subwords of r, subwords of s,

and words that contain the word 11. For n ≥ 2 there are exactly n− 1
subwords of x that contain 11. For 1 ≤ n ≤ N , Ln(Z1) = Ln(Z2); both
of these equal the set of words of length n in {0, 1}n that contain at
most one 1. Therefore cX(n) = (n− 1) + (n+ 1) = 2n for 1 ≤ n ≤ N .

For n > N , there are at most three right-special words: a single
word w1 in Ln(Z1) that can be extended in two ways in L(Z1), a single
word w2 in Ln(Z2) that can be extended in two ways in L(Z2), and
the n-letter suffix w3 of r. Therefore, by Lemma 3.7, cX(n) = 3n−N
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for n > N , and so lim inf cX(n)− 3n = −N , implying that there is no
uniform lower bound in the i = 2 case of Theorem 4.1. �

4.2. Three or more subsystems. We now proceed with the proof of
Theorem 1.3, which gives the bound cX(n) � (j + i)n for X ∈ T (j, i)
with j ≥ 3. For such an X, let x ∈ X be a transitive point. Con-
sider the same r-block factor map π as constructed in Section 3.2.1.
Then π(X) ∈ T (j, 0) for j ≥ 3. Set y = π(x) and note that y is a
transitive point for π(X). We also note that y cannot be eventually
periodic in both directions, or else π(X) would have at most two mini-
mal subsystems (the periodic alpha-limit and omega-limit sets of y), a
contradiction.

We then assume without loss of generality that y is not eventually
periodic to the right. (If y were eventually periodic to the right, then
below we would consider left-special, as opposed to right-special words,
and arrive at the same conclusion.)

For each p ∈ {1, . . . , j} and n ∈ N, we claim anp is right-special.

Indeed, an+1
p must occur in y for all p since {a∞p } is a minimal subsystem

of π(X). Since y is not eventually periodic to the right, the word anpb
must also occur in y.

Therefore cπ(X)(n) ≥ jn for all n ≥ 1. By Lemma 3.7, we may estab-
lish cπ(X)(n) � jn by finding an infinite set of n for which #RSπ(X)(n) ≥
j+1. Fix p so that {a∞p } is in the omega-limit set ω(y). Then there exist

infinitely many n for which banpb occurs in y. Recall that ban+1
p occurs

in y for all n ≥ 1, so banp ∈ RSπ(x)(n+ 1), i.e. #RSπ(x)(n+ 1) ≥ j + 1,
for infinitely many n.

We then have cπ(X)(n) � jn. Finally, as in Lemma 3.5, for every p
with π−1{a∞p } infinite, the number of π-preimages of an−r+1

p is at least
n, establishing

cX(n) � (j + i)n.

Remark 4.2. The proof above also works ifX ∈ S(2, i) has a transitive
point x such that π(x) is not both eventually periodic to the right and
eventually periodic to the left.

Theorem 4.3. Let X ∈ T (j, i) where j ≥ 3. Then the bound

cX(n) � (j + i)n

holds and is sharp.

Proof. The bound itself follows immediately from Theorem 1.3. To
see that the bound is sharp, let g : N → N be any nondecreasing
unbounded function. Consider a point of the form

(4.4) x = 0∞.1n12n2 · · · (j − 1)nj−11nj2nj+1 · · · (j − 1)n2j−2 · · · ,



20 DYKSTRA, ORMES, AND PAVLOV

where n1 << n2 << n3 << · · · , and set X = O(x).
For any n ≥ 1, 0n, 1n, · · · , (j − 1)n are all right-special in X. No

word in X containing 01 is right-special, nor is any word that contains
three distinct symbols. The only other right-special words are of the
form

pm(p+ 1)nk where k ≡ (p+ 1) mod (j − 1), 1 ≤ m ≤ nk−1

or
(j − 1)m1nk where k ≡ 1 mod (j − 1), 1 ≤ m ≤ nk−1.

In other words, we have #RS(n) = j + 1 only for n ∈ (nk, nk + nk−1].
Therefore, if n ∈ [nk, nk+1), the number of right-special words of length

less than n which are not of the form an is at most
k−1∑
i=1

ni. If the

sequence (nk) grows sufficiently fast, then g(nk) >
k−1∑
i=1

ni, and then

Lemma 3.7 implies that

cX(n) < jn+ g(n)

for all n.
For the T (j, i) bound where j ≥ 3 and i > 0, consider the family of

examples obtained by replacing the blocks 0∞, 1n1 , 2n2 , ..., (i− 1)ni−1 ,
1nj , 2nj+1 , ..., (i− 1)nj+i−2 , ... with blocks from Sturmian sequences as
in Section 3.2.4. Then the estimate in Lemma 3.5 gives the sharpness
of the bound. �

5. Generic Measures

We say that a point x in a subshift X is generic for a measure µ if
the measures νn(x) := 1

n

∑n−1
i=0 δσix converge to µ in the weak topology,

i.e., if

lim
N→∞

1

N

N−1∑
i=0

f(σi(x)) =

∫
f dµ

for all continuous f : X → R. The pointwise ergodic theorem implies
that whenever µ is ergodic, µ-almost every x ∈ X is generic for µ. We
say that a measure µ is a generic measure on X if there exists x ∈ X
that is generic for µ. All ergodic measures are clearly generic by the
pointwise ergodic theorem, but generic measures are not necessarily
ergodic; for instance, it is easily checked that

x = 0∞.011000111100000111111 . . .

is generic for µ = δ0∞+δ1∞
2

.
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Our goal is to provide bounds on the number of generic measures a
transitive subshift can support. One of the more general results in this
vein is the following theorem of Cyr and Kra, which does not assume
transitivity of the subshift, but also does not control for the number of
atomic measures supported on periodic subshifts.

Theorem 5.1 ([2]). Suppose X is a subshift, and there exists k ≥ 3
such that

lim sup
n→∞

cX(n)

n
< k.

If X has a generic measure µ and there is a generic point z ∈ X for µ
such that the subshift Z = O(z) is not uniquely ergodic, then X has at
most k − 2 distinct, nonatomic, generic measures.

Combining the Cyr-Kra result above with others in this paper we
obtain the same conclusion under a different hypothesis.

Theorem 5.2. Suppose X is a transitive subshift which is the orbit
closure of a recurrent point and there exists k ≥ 3 such that

lim sup
n→∞

cX(n)

n
< k.

Then X has at most k − 2 distinct, nonatomic, generic measures.

Proof. Let X be a transitive subshift with a recurrent transitive point.
Fix a generic measure µ for X, and let z be a generic point for µ. If
O(z) is not uniquely ergodic, then we are done by Theorem 5.1. Thus

we may assume that Z = O(z) is uniquely ergodic. Since Z is uniquely
ergodic, it follows that every point x ∈ Z is generic for µ (see, for
instance, [10]).

Now assume for a contradiction that X has (k− 1) ≥ 2 generic mea-
sures µ1, . . . , µk−1, with respective generic points z1, . . . , zk−1. Then
by the preceding paragraph, we obtain (k − 1) disjoint subsystems
Z1 . . . , Zk−1 such that for all x ∈ Zi, x is generic for µi. Each Zi
contains a distinct minimal subsystem. Therefore, by Theorem 1.2,

lim sup
n→∞

(cX(n)− kn) =∞,

a contradiction. �

In general, there does not appear to be a simple way to combine our

results with those of [2] in order to use an upper bound on lim supn→∞
cX(n)
n

to bound the number of generic (not necessarily nonatomic) measures
in the transitive case. However, with some effort, we are able to show
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that in the case where k = 3, i.e., when X is transitive with a recurrent
transitive point and

lim sup
n→∞

cX(n)

n
< 3,

then X is uniquely ergodic; this is our Theorem 1.4.

5.1. Proof of Theorem 1.4. If X is minimal, then this is Theorem
1.5 from [1]. If X is not minimal, then it cannot be the case that X
contains two or more minimal subsystems, since our Theorem 1.2 would

imply that cX(n) � 3n, which would contradict lim supn→∞( cX(n)
n

) < 3.
So X contains a unique minimal subsystem M1. By Theorem 1.5

from [1], there is a unique (ergodic) measure µ supported on M1. Con-
sider the factor map π (as defined in sub-section 3.2.1); then µ pushes
forward under π to δa∞1 in π(X), and it is the only measure which does
so. So, if we are able to prove that π(X) is uniquely ergodic, then its
unique measure is δa∞1 , which implies that µ is the unique measure on
X.

Since the hypotheses of Theorem 1.4 are preserved under application
of a factor map, we can assume without loss of generality that X has a
unique minimal subsystem {a∞1 }. We can further reduce (by applying
a 1-block factor map sending a1 to 0 and all other letters to 1) to the
case where X ⊆ {0, 1}Z and that X has unique minimal subsystem
{0∞}. Toward a contradiction, suppose that such an X has an ergodic
µ 6= δ0∞ .

Lemma 5.3. Let (nk) ⊆ N be a strictly increasing sequence and x a
generic point for µ. Then for all sufficiently large k, x[0,∞) has the form

x[0,∞) = .w
(k)
0 0≥nk w

(k)
1 0≥nk w

(k)
2 · · · ,

where every w
(k)
i begins and ends with 1 and does not contain 0nk .

Moreover,
|w(k)

0 |
nk
→∞.

Proof. We first note that since x is generic for µ 6= δ0∞ , x[0,∞) contains
infinitely many 1s. Moreover, since 0∞ is the only minimal subsystem
of X, the omega-limit set of x must contain 0∞, i.e. x[0,∞) contains 0n

for arbitrarily large n. Therefore, x[0,∞) has the claimed form, and it

remains only to show that
|w(k)

0 |
nk
→∞.
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By genericity,

µ([0]) =

∫
χ[0] dµ

= lim
N→∞

1

N

N−1∑
i=0

χ[0](σ
i(x))

= lim
N→∞

# zeros in x0 · · ·xN−1
N

.

Observe that µ([0]) < 1 since we are assuming µ 6= δ0∞ . It follows

that |w(k)
0 | → ∞. Therefore, if we let rk = |w(k)

0 | and zk denote the

number of zeros in w
(k)
0 , then

lim
k→∞

zk
rk

= µ([0]) and lim
k→∞

zk + nk
rk + nk

= µ([0]).

Through some algebraic manipulation,

0 = lim
k→∞

(
zk
rk
− zk + nk
rk + nk

)
= lim

k→∞

((
nk

nk + rk

)(
zk − rk
rk

))
.

Now,

lim
k→∞

(
zk − rk
rk

)
= lim

k→∞

(
zk
rk
− 1

)
= µ([0])− 1 6= 0,

so lim
k→∞

(
nk

nk + rk

)
= 0, which implies that

rk
nk
→∞. �

Lemma 5.4. If x is a sequence which is not eventually periodic to the
right, n ∈ N, and w is a subword of x with length at least cX(n) + n,
then w contains an n-letter right-special word.

Proof. Assume that x and w are as in the lemma. By assumption, w
contains more than cX(n) subwords of length n, and therefore one is
repeated, call it u. If no n-letter subword of w is right-special, then for
every n-letter subword of w, there is only one choice of a letter which
may follow it in x. However, this would mean that the portion of x
between the two occurrences of u would have to repeat indefinitely to
the right, a contradiction to the assumption that x is not eventually
periodic to the right. Therefore, w contains an n-letter right-special
word. �

Lemma 5.5. There does not exist a strictly increasing sequence (nk)
such that #RS(nk) = 1 for all k.

Proof. If such a sequence (nk) exists, then for every k, the only right-
special word of length nk is 0nk . Let x be generic for µ. We note that x
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cannot be right-asymptotic to a periodic point: if that periodic point
were 0∞, then by genericity µ = δ0∞ ; and if it were not 0∞, then X
would contain a minimal subsystem other than {0∞}.

Consider w
(k)
0 as defined in Lemma 5.3. We note that w

(k)
0 cannot

contain a right-special word of length nk, since by definition it would

not be 0nk , a contradiction. Therefore, by Lemma 5.4, |w(k)
0 | < cX(nk)+

nk.
Next we observe that there exists K ∈ N such that cX(n) < Kn for

all n. To see this, note that, since lim supn→∞( cX(n)
n

) < 3, there exists
N ∈ N such that cX(n) < 3n for all n ≥ N . And for 1 ≤ n ≤ N−1, we
can simply let K(n) ∈ N be any value such that K(n) > cX(n). Then
just define

K := max{3, K(1), . . . , K(N − 1)}.
Then |w(k)

0 | < cX(nk) + nk < (K + 1)nk for all k, which contradicts

the conclusion from Lemma 5.3 that
|w(k)

0 |
nk
→∞.

�

Following [1], we define a strictly increasing sequence (nk) to be

logarithmically syndetic if there exists M such that
nk+1

nk
< M for all

k.

Lemma 5.6. There is a logarithmically syndetic sequence (nk) such
that #RS(nk) ≤ 2 for all k. Moreover, if RS(nk) = {0nk , bk} for some
k and bk 6= 0nk , then bk cannot be followed by three or more symbols.

Proof. Let ε = 3 − lim supn→∞( cX(n)
n

). Then there exists N such that
cX(n)
n

< 3− ε/2 for all n ≥ N . We claim that any interval of the form[
i,
(
6
ε

)
· i
]

where i ≥ N must contain a value of n such that c(n+ 1)−
c(n) ≤ 2. The statement of Lemma 5.6 then follows immediately by
Lemma 3.7.

To prove the claim, let i ≥ N and suppose cX(n + 1) − cX(n) ≥ 3
for all n ∈ [i, j], where j =

(
6
ε

)
· i. Then

cX(j) ≥ cX(i) + 3(j − i)
> 3(j − i)
= j(3− ε/2).

But cX(j)
j

< 3− ε/2 since j ≥ N . �

Let (nk) be a fixed logarithmically syndetic sequence as given by
Lemma 5.6, and let M > 1 be a constant such that nk+1

nk
< M . By

Lemma 5.5, by deleting a finite number of terms in (nk) if necessary,
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we can assume that #RS(nk) = 2 for all k. Let bk denote the only right-
special word of length nk other than 0nk . By passing to a subsequence
and increasing M to 10M if necessary, we can assume that

(5.7) 10 <
nk+1

nk
< M for all k.

Since
|w(k)

0 |
nk
→ ∞ and lim supk→∞

cX(nk)
nk
≤ lim supn→∞

cX(n)
n

< 3, we

see that |w(k)
0 | > cX(nk) + nk for sufficiently large k. By Lemma 5.4,

w
(k)
0 contains a right-special word of length nk, which cannot be 0nk ,

so w
(k)
0 contains at least one occurrence of bk.

Define ak to be the shortest (possibly empty) word such that

(5.8) w
(k)
0 = akbkrk

for some word rk, and define dk to be the shortest word such that

(5.9) w
(k)
0 = `kbkdk

for some word `k. Therefore we can write

w
(k)
0 = akbkukdk

for some (possibly empty) word uk. Observe that |ak|, |dk| < cX(nk) +
nk < 4nk for all sufficiently large k, since otherwise, by Lemma 5.4,
ak or dk would contain bk, contradicting minimality of length in their

definitions. By definition, bk is a suffix of akbkuk, but since
|w(k)

0 |
nk
→∞,

for sufficiently large k we can assume that

|w(k)
0 | > 13nk

= 4nk + nk + 4nk + 4nk

> |ak|+ |bk|+ |dk|+ cX(nk) + nk,

which implies that |uk| > cX(nk) + nk. Therefore, by Lemma 5.4, uk
contains at least one copy of bk.

Remark 5.10. Let p > 0 be an arbitrary positive integer. As above,
for sufficiently large k we have

|w(k)
0 | > (13 + 4p)nk

> |ak|+ |bk|+ |dk|+ p(cX(nk) + nk).

Applying Lemma 5.4, we see that for sufficiently large k, uk contains
at least p copies of bk.

Observe that bk is a suffix of akbkuk, and bk is the only word inRS(nk)

that appears in w
(k)
0 . Also, ak and dk are the shortest words that satisfy
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(5.8) and (5.9), and (by Lemma 5.6), bk can only be followed by two

distinct symbols. Therefore w
(k)
0 must have the form

(5.11) w
(k)
0 = akbk(ekbk)

mkdk,

where ek is the shortest (possibly empty) word such that w
(k)
0 = akbkekbkqk

for some word qk.
In the form (5.11), observe (by Lemma 5.4) that

(5.12) |ek| < cX(nk) + nk < 4nk

for all sufficiently large k since ek does not contain any right-special
word of length nk. Also, mk → ∞ by Remark 5.10. Therefore, by
deleting a finite number of terms from the beginning of (nk) if necessary,
we can assume that

(5.13) mk > M2 + 1 for all k ≥ 1.

Observe that the first symbols of ek and dk must be different: if they
were the same, then, since bk is the only word in RS(nk) that appears

in w
(k)
0 , we would have ek = dk and x[0,∞) = akbk(ekbk)

∞. As noted,
for example, in the proof of Lemma 5.5, this cannot happen because x
cannot be eventually periodic to the right.

Now observe that all suffixes of (ekbk)
mk−1 of length at least nk are

right-special: this is due to the fact that any such suffix can be followed
by either ek or dk, and, as we just noted, the first symbols of ek and
dk must be different. By construction, none of these suffixes have the
form 0n. Therefore #RS(n) ≥ 2 for each n ∈ (nk, (mk − 1) · |ekbk|].

Lemma 5.14. For all k, both bk+1 and bk+2 are suffixes of (ekbk)
mk−1.

Proof. Using (5.7) and (5.13), observe that

|bk+1| = nk+1

< M · nk
< (mk − 1) · nk
≤ (mk − 1) · |ekbk|.

Therefore |bk+1| ∈ (nk, (mk − 1) · |ekbk|). And bk+1 is the only right-
special word of length nk+1 other than 0nk+1 , which implies that bk+1

is a suffix of (ekbk)
mk−1.
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Next, observe that by (5.7) and (5.13),

|bk+2| = nk+2

< M · nk+1

< M2 · nk
< (mk − 1) · nk
≤ (mk − 1) · |ekbk|.

Therefore bk+2 is also a suffix of (ekbk)
mk−1. �

Lemma 5.15. For all k, ekbkekbk is a suffix of bk+1.

Proof. By Lemma 5.14, bk+1 is a suffix of (ekbk)
mk−1, so it is enough

to show that |bk+1| ≥ |ekbkekbk|. To see this, observe that, using (5.7)
and (5.12),

|bk+1| = nk+1

> 10nk

= 4nk + nk + 4nk + nk

> |ek|+ |bk|+ |ek|+ |bk|
= |ekbkekbk|.

�

Proposition 5.16. For all k, ek+1bk+1ek+1bk+1 is a suffix of (ekbk)
mk−1.

Proof. If we apply Lemma 5.15 to k + 1 instead of k, we see that
ek+1bk+1ek+1bk+1 is a suffix of bk+2, which, by Lemma 5.14, is a suffix
of (ekbk)

mk−1. �

Finally, to arrive at a contradiction, we will use the words ekbkekbk
to construct a minimal subsystem of X other than {0∞}. To do this,
first define Lk to be the length of the longest block of zeros occurring
in ekbkekbk. Then Lk is also the length of the longest block of zeros in
(ekbk)

mk−1 (assuming mk ≥ 3, which is trivial since mk →∞).

Proposition 5.17. (Lk) is a constant sequence.

Proof. By Proposition 5.16, ek+1bk+1ek+1bk+1 is a suffix of (ekbk)
mk−1,

so Lk+1 ≤ Lk. On the other hand, by Lemma 5.15, ekbkekbk is a suffix
of bk+1, so Lk ≤ Lk+1. �

For each k, define y(k) to be any point in X of the form

y(k) = `k ek bk . ek bk rk,

where `k and rk are left- and right-infinite sequences. By compactness,
a subsequence of (y(k)) converges to a point y ∈ X. But by construction
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(and applying Proposition 5.17), O(y) is a subsystem of X that is

disjoint from {0∞}. Therefore O(y) contains a minimal subsystem
other than {0∞}, a contradiction, completing the proof of Theorem 1.4.

�

Remark 5.18. The assumption of recurrence was only used above to
establish that X has a single minimal subsystem. Our results in this
paper show that the only transitive X with more than one minimal

subsystem and lim supn→∞

(
cX(n)
n

)
< 3 are of the following types.

• X has two periodic minimal subsystems (e.g. the orbit closure
of x = . . . 000.1111 . . . or x = 1∞.0n110n210n31 . . .)
• π(X) is eventually periodic in both directions and X has one

infinite subsystem (e.g., x = . . . 000.s . . . where s is a one-sided
sequence from a Sturmian system).

We now conclude with a proof of Theorem 1.5, which establishes
an upper bound of g − 1 on the number of generic measures when
X = O(x) for some x that is not eventually periodic in both directions
and

lim inf(cX(n)− gn) = −∞.

5.2. Proof of Theorem 1.5. Assume that X is as above and x is
not eventually periodic to the right. Since lim inf(cX(n)− gn) = −∞,
Lemma 3.7 implies that the number of n-letter right-special words is
strictly less than g for infinitely many n. Therefore, there exists C ≤
g−1 and a strictly increasing sequence (nk) such that there are exactly

C right-special words of length nk; call them b
(i)
k for 1 ≤ i ≤ C. We

may further assume that

cX(nk) < 2gnk

for every k by considering values of n where cX(n)− gn is smaller than
all previous values cX(i) − gi for i < n; see the discussion following
Theorem 2.2 in [1] for details. Therefore, by Lemma 5.4, every word

of length (2g + 1)nk contains at least one word b
(i)
k .

For each k and i, choose a point x
(i)
k with the word b

(i)
k appearing in

coordinates 0 through nk − 1, and define the measure ν
(i)
k := ν

x
(i)
k
nk as

discussed at the start of Section 5, i.e.,

ν
(i)
k =

1

nk

nk−1∑
j=0

δ
σjx

(i)
k
.
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By compactness, we can pass to a subsequence and assume without

loss of generality that for all i,
(
ν
(i)
k

)
k

converges to a limit ν(i). We

claim that every generic measure is some ν(i). For this, assume that µ
is an arbitrary generic measure, and let x ∈ X be generic for µ.

For each k, the word x0 · · ·x(2g+1)nk−1 contains some b
(ik)
k by Lemma 5.4,

and by again passing to a subsequence, we can assume that ik is al-
ways equal to some fixed i. For each k, define mk ≤ 2gnk so that

xmk
. . . xmk+nk−1 = b

(i)
k .

Since x is generic for µ, both νxmk
and νxmk+nk−1 converge to µ in the

weak topology. This topology is induced by the metric

d(µ, ν) :=
∑
n∈N

2−n|µ([wn])− ν([wn])|,

where {wn} is an arbitrary enumeration of the set of finite words on
{0, 1}. Then for any ε > 0, we may choose K so that for all k > K,
d(νxmk

, µ), d(νxmk+nk
, µ) < ε. This implies that

d(mkν
x
mk
,mkµ) < mkε and d((mk+nk)ν

x
mk+nk

, (mk+nk)µ) < (mk+nk)ε,

which together imply that

d((mk + nk)ν
x
mk+nk

−mkν
x
mk
, nkµ) < (2mk + nk)ε.

Therefore

d(νσ
mkx

nk
, µ) <

2mk + nk
nk

ε ≤ (4g + 1)ε.

Since ε > 0 was arbitrary, νσ
mkx

nk
→ µ. Recall that σmkx begins with

b
(i)
k , and so νσ

mkx
nk

→ ν(i) by definition of ν(i). Therefore, µ = ν(i), and
since µ was an arbitrary generic measure, every generic measure is one
of the ν(i). Since there are C ≤ g − 1 such measures, the proof is
complete.

�
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