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Abstract. For any stationary Zd Gibbs measure that satisfies strong spatial
mixing, we obtain sequences of upper and lower approximations that converge

to its entropy. In the case d = 2, these approximations are efficient in the sense
that they are accurate to within ϵ and can be computed in time polynomial in
1/ϵ.

1. Introduction

The entropy of a stationary Zd Markov random field (MRF) is notoriously dif-
ficult to compute. Recently, Gamarnik and Katz [3] developed a technique for
estimating entropy, and more generally pressure, for certain MRF’s. Their ap-
proach built on earlier work of Weitz [20] who gave an algorithm for efficiently
counting the number of independent sets in finite graphs. The algorithm was based
on the construction of a computation tree and the proof of efficiency relied on the
concept of strong spatial mixing (SSM) [11, Part 2, Section 2]. Coming from the
direction of ergodic theory, we showed that a variant of the transfer matrix method
provides efficient algorithms for estimating entropy for certain Z2 MRF’s [14], [10].
Our argument relied on a version of SSM implied by a disagreement percolation
condition developed in [18] (see Proposition 2.4 below). We regard an algorithm
as “efficient” if it computes upper and lower bounds accurate to within ϵ in time
polynomial in 1/ϵ.

While both approaches made use of SSM, they both required other assumptions
as well, some involving the existence of certain kinds of periodic configurations. The
purpose of this paper is to give approximations, using only SSM as a hypothesis,
which estimate the entropy of Zd MRF’s (and do so efficiently in the case d = 2).
General sufficient conditions for SSM can be found in the literature, e.g., [2] and [18];
one of these is reviewed in Section 2.

Assuming a standard version of SSM (at exponential rate), we obtain upper
and lower bounds that are exponentially tight (see Lemma 3.1 and Theorem 3.2).
While these bounds are not explicitly computable in all cases, we believe them to
be of independent interest. Of special interest are nearest-neighbor stationary Zd

Gibbs measures, which are MRF’s given by nearest-neighbor interactions. For these
measures, assuming SSM, we obtain an algorithm that approximates our bounds
with specified precision (Theorem 4.5). Combining all of these results, we obtain
an algorithm for approximating entropy of a nearest-neighbor stationary Zd Gibbs

measure that is accurate to within ϵ in time eO((log(1/ϵ))(d−1)2 ) (see Corollary 4.7).
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Specializing to d = 2, the algorithm runs in time polynomial in 1/ϵ. We also show
how to modify the algorithm to approximate the pressure of the interaction that
defines the Gibbs measure (Corollary 4.13).

We emphasize that our algorithms are deterministic and establish rigorous es-
timates, as opposed to randomized algorithms, based on Monte Carlo simulation,
which establish estimates which are frequently better, but are only guaranteed with
prescribed high degree of probability (for instance see [8]). Though our algorithm
requires SSM as a hypothesis, it does not depend on knowledge of the rate of
correlation decay in the definition of SSM.

Classical examples of Gibbs measures include the Ising model and Potts model;
see [12, Chapter 2] for an introduction to models of interest in statistical mechanics.

In Section 2 we introduce many of the concepts used in the paper. In Section 3,
we establish the upper and lower bounds for MRF’s. In Section 4, we give algorithms
to approximate these bounds for Gibbs measures.

2. Background

We focus on Markov random fields on the d-dimensional cubic lattice, the

graph defined by vertex set Zd and edge set {{u, v} :
∑d

i=1 |ui − vi| = 1}. The
boundary of a set S, which is denoted by ∂S, is the set of v ∈ Zd \ S which are
adjacent to some element of S.

An alphabet A is a finite set with at least two elements. For a non-empty
subset S ⊂ Zd, an element u ∈ AS is called a configuration; here, S is called
the shape of u. For any configuration u with shape S and any T ⊆ S, denote
by u|T the restriction of u to T , i.e. the sub-configuration of u occupying T . For
S, T disjoint sets, x ∈ AS and y ∈ AT , xy denotes the configuration on S ∪ T
defined by (xy)|S = x and (xy)|T = y, which we call the concatenation of x and
y. We will sometimes informally identify a configuration x on a shape S with the
corresponding configuration on a translate S + v, namely the configuration y on
S + v defined by yu = xu−v.

We use σ to denote the Zd shift action on AZd

defined by (σv(x))u = xu+v.

The set AZd

is a topological space when endowed with the product topology (where
A has the discrete topology), and any subset inherits the induced topology. By a

Zd-measure, we mean a Borel probability measure on AZd

. This means that any

µ is determined by its values on the sets [w] := {x ∈ AZd

: x|S = w}, where w is
a configuration with arbitrary finite shape S ⊆ Zd. Such sets are called cylinder
sets. Note that for configurations x and y on disjoint sets, we have [xy] = [x]∩ [y].
For notational convenience, rather than referring to a cylinder set [w] within a
measure or conditional measure, we just use the configuration w. For instance,
µ(w, v | u) represents the conditional measure µ([w] ∩ [v] | [u]). A Zd-measure µ is
translation-invariant (or stationary) if µ(A) = µ(σvA) for all measurable sets
A and v ∈ Zd. A Zd-measure is fully supported if it assigns strictly positive

measure to every cylinder set in AZd

.

Definition 2.1. A Zd-measure µ is a Zd Markov random field (or MRF) if,
for any finite S ⊂ Zd, any η ∈ AS, any finite T ⊂ Zd s.t. ∂S ⊆ T ⊆ Zd \ S, and
any δ ∈ AT with µ(δ) > 0,

(1) µ(η | δ|∂S) = µ(η | δ).
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Informally, µ is an MRF if, for any finite S ⊂ Zd, configurations on the sites in
S and configurations on the sites in Zd \ (S ∪ ∂S) are µ-conditionally independent
given a configuration on the sites in ∂S. In many papers, the MRF condition is
defined in terms of a parameter r, and the set of all sites in Zd \ S that are within
distance r of S plays the role of ∂S. Obviously our definition corresponds to the
case r = 1 (a “nearest-neighbor” MRF).

Another commonly used variant on our definition of MRF involves conditioning,
in the right-hand side of (1), on an entire configuration on Zd \ S a.e. rather than
arbitrarily large finite configurations. However, the definitions are equivalent (one
can just take weak limits) and the finite approach is a bit more concrete.

For two configurations y, z ∈ AT on a finite set T , let D(y, z) = {v ∈ Zd : yv ̸=
zv}. Let d(·, ·) denote the L1 distance on Zd.

Definition 2.2. A stationary Zd MRF µ satisfies strong spatial mixing (SSM)
if there exist constants C,α > 0, such that for any finite V ⊂ Zd, u ∈ V , ∂V ⊆
T ⊂ V ∪ ∂V , x ∈ A{u}, and y, z ∈ AT satisfying µ(y), µ(z) > 0,∣∣µ(x | y)− µ(x | z)

∣∣ ≤ Ce−αd({u},D(y,z)).

This definition of SSM is actually equivalent to a more general condition where
the single site u is replaced with an arbitrary finite subset of sites U . For complete-
ness we give a proof.

Lemma 2.3. For any stationary Zd MRF that satisfies SSM, there exist constants
C,α > 0, such that for any finite V ⊂ Zd, U ⊆ V , ∂V ⊆ T ⊂ V ∪ ∂V , x ∈ AU ,
and y, z ∈ AT with µ(y), µ(z) > 0,

(2)
∣∣µ(x | y)− µ(x | z)

∣∣ ≤ |U |Ce−αd(U,D(y,z)).

(The constants C, α can be taken to be those in the definition of SSM.)

Proof. Arbitrarily order the sites in U as 1, 2, . . . , |U |. Then

∣∣µ(x | y)−µ(x | z)
∣∣ =

∣∣∣∣∣∣
 |U |∏

i=1

µ(xi | y, x1, . . . xi−1)

−

 |U |∏
i=1

µ(xi | z, x1, . . . xi−1)

∣∣∣∣∣∣
≤

[ |U |∑
i=1

i−1∏
j=1

µ(xj | y, x1, . . . xj−1)

 |U |∏
j=i+1

µ(xj | z, x1, . . . xj−1)


∣∣µ(xi | y, x1, . . . xi−1)− µ(xi | z, x1, . . . xi−1)

∣∣] ≤ C|U |e−αd(U,D(y,z)).

�
We note that strong spatial mixing can be defined for probability measures on

fairly arbitrary undirected graphs. Sometimes strong spatial mixing, as we have
defined it, is called “strong spatial mixing with exponential rate.”

There are a variety of conditions in the literature which guarantee SSM of an
MRF: for example, see [2], [4], [6], [16], [18], and [20]. We present the one from [18]
here as one of the most general and easy to state.

Let µ be a stationary MRF. Let

q(µ) = max
y,z∈A∂0: µ(y),µ(z)>0

ρ(µ(· | y), µ(· | z))
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where ρ denotes total variation distance of distributions on A0. Let pc = pc(Zd)
denote the critical probability for site percolation in Zd. (We will not define pc(Zd)
or discuss percolation theory here; for a good introduction to the subject, see [7].)

Proposition 2.4. If q(µ) < pc, then µ satisfies SSM.

This result is essentially contained in [18, Theorem 1]; see [10, Theorem 3.10] for
more explanation.

The following is the standard notion, in ergodic theory and information theory,
of entropy.

Definition 2.5. Given a Zd-measure µ and a finite set S ⊂ Zd, one defines the
entropy of µ on S as:

Hµ(S) =
∑

w∈AS

−µ(w) log(µ(w))

where terms with µ(w) = 0 are omitted.

We also have the notion of conditional entropy.

Definition 2.6. Given a Zd-measure µ and disjoint finite sets S, T ⊂ Zd, one
defines the conditional entropy of µ on S, given T , as:

Hµ(S | T ) =
∑

w∈AS∪T : µ(w|T )>0

−µ(w) logµ(w|S | w|T )

where again terms with µ(w) = 0 are omitted.

Let µ be a stationary Zd-measure. The following monotonicity property is well
known: if S, T, T ′ ⊂ Zd are finite, T ′ ⊂ T and S ∩ T = ∅, then Hµ(S | T ) ≤
Hµ(S | T ′). We can now extend Definition 2.6 to infinite T by defining

Hµ(S | T ) = lim
n

Hµ(S | Tn)

for a nested sequence of finite sets T1 ⊂ T2 ⊂ . . . with ∪nTn = T ; by the monotonic-
ity property just mentioned, the limit exists and does not depend on the particular
choice of sequence Tn. With this definition, it is clear that the previously mentioned
monotonicity also holds for infinite T and T ′:

Lemma 2.7. Let µ be a stationary Zd-measure. If S, T, T ′ ⊂ Zd, S is finite, T ′ ⊂ T
and S ∩ T = ∅, then

Hµ(S | T ) ≤ Hµ(S | T ′).

We will find the following notation useful later. Let S and T be disjoint finite
sets. For a stationary Zd MRF µ and a fixed configuration y ∈ AT , with µ(y) > 0,
we define

Hµ(S | y) =
∑
x∈AS

−µ(x | y) logµ(x | y).

Thus, we can write

(3) Hµ(S | T ) =
∑

y∈AT , µ(y)>0

µ(y)Hµ(S | y).

If T is the disjoint union of T1 and T2, we can write

(4) Hµ(S | T1 ∪ T2) =
∑

y∈AT1 : µ(y)>0

µ(y)
∑

w∈AT2 : µ(wy)>0

µ(w | y)Hµ(S | wy).
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We can also define the entropy of a stationary Zd-measure itself, also known as
entropy rate in information theory.

Definition 2.8. The measure-theoretic entropy of a stationary Zd-measure µ

on AZd

is defined by

h(µ) = lim
j1,j2,...,jd→∞

Hµ(Sj1...jd)

j1j2 · · · jd
,

where Sj1j2...jd denotes the j1 × j2 × . . .× jd rectangular prism
∏d

i=1[1, ji].

It is well known that the limit exists independent of the rates at which each
j1, j2, . . . , jd approach infinity [5, Theorem 15.12].

There is also a useful conditional entropy formula for h(µ). For this, we consider
the usual lexicographic order on Zd: x ≺ y if for some 1 ≤ k ≤ d, xi = yi for
i = 1, . . . , k − 1 and xk < yk. Let P− = {z ∈ Zd : z ≺ 0}. where 0 denotes the
origin.

Theorem 2.9. [5, Equation 15.18] Let µ be a stationary Zd-measure. Then

h(µ) = Hµ(0 | P−).

When d = 1, Zd = Z can represent time, with the site 0 representing the present
and P− representing the past. The preceding result generalizes the interpretation of
h(µ) as the average uncertainty of the present, conditioned on the past [19, Chapter
4].

Finally, we state a simple technical lemma that we will need.

Lemma 2.10. Given constants C,α > 0, there exists a constant C ′ > 0 such that
if 0 < a, b < 1 and |a− b| ≤ Ce−αn for some n ∈ N, then

|a log a− b log b| ≤ C ′ne−αn.

Proof. Clearly, without loss of generality that 0 < b ≤ a < 1. We first show that
this implies

(5) |a log a− b log b| ≤ (a− b)(1− log(a− b)).

To see this, observe

|a log a− b log b| ≤ |a log a− b log a| + |b log a− b log b|

= (a− b)(− log a) + b log

(
1 +

a− b

b

)
≤ (a− b)(− log(a− b)) + (a− b) = (a− b)(1− log(a− b)).

Using (5) and the monotonicity of the function x(1− log x) on (0, 1], we see that if
|a− b| ≤ Ce−αn, then

|a log a− b log b| ≤ Ce−αn(1− log(Ce−αn)) = Ce−αn(1− logC + αn) ≤ C ′ne−αn

for some C ′ depending only on C and α. �
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3. Entropy bounds for stationary MRF’s

Let P+ = {z ∈ Zd : z ≽ 0}. Then P+ = Zd \ P−. Let Bn denote the d-
dimensional cube of side length 2n + 1 centered at 0. Let Sn = Bn ∩ P+, and
Un = Bn ∩ ∂P+.

We claim that Un ⊂ ∂Sn. To see this, note that, by definition, if x ∈ ∂P+, then
x ∈ P− and x has a nearest neighbor y ∈ P+. It follows that for some 1 ≤ k ≤ d,
we have xi = yi for all i ̸= k and either (xk = −1 and yk = 0) or (xk = 0 and
yk = 1). In either case, if x ∈ Un = Bn ∩ ∂P+, then y ∈ Bn and so y ∈ Sn. Thus,
x ∈ ∂Sn. Figure 1 shows these sets for d = 2.

Figure 1. Un, Sn, and ∂Sn. Here, the vertical axis represents the
first coordinate and the horizontal axis represents the second co-
ordinate.

Lemma 3.1. Let µ be a stationary Zd MRF. Then

(6) Hµ(0 | ∂Sn) ≤ h(µ) ≤ Hµ(0 | Un).

Proof. Since h(µ) = Hµ(0 | P−) and Un ⊂ P−, it follows from Lemma 2.7 that

(7) Hµ(0 | ∂Sn ∪ P−) ≤ h(µ) ≤ Hµ(0 | Un).

But since 0 ∈ Sn, Sn ∩ P− = ∅ and µ is a Zd MRF, it follows that the left-hand
sides of (6) and (7) agree. �

We remind the reader of standard notational conventions. For a function f on
the integers, we write f = O(n) to mean there exists a constant C > 0 such that
for sufficiently large n, |f(n)| ≤ Cn and f = Ω(n) to mean there exists a constant
C > 0 such that for sufficiently large n, f(n) ≥ Cn.

Theorem 3.2. Let µ be a stationary Zd MRF that satisfies SSM. Then∣∣Hµ(0 | Un)−Hµ(0 | ∂Sn)
∣∣ = O(n)e−αn, where α is the exponent in the definition

of SSM.
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Proof. The main idea is that the SSM condition forces the probability of a letter on
0, conditioned on a configuration y on Un, to be approximately the same as when
conditioned on any extension of y to a configuration on ∂Sn.

Let Ln = ∂Sn \Un. Note that ∂Sn is the disjoint union of Un and Ln. For every
configuration y ∈ AUn such that µ(y) > 0, let

E(y) = {w ∈ ALn : µ(yw) > 0}.
By (3) and (4), we can write

(8) Hµ(0 | Un) =
∑

y∈AUn : µ(y)>0

µ(y)Hµ(0 | y) and

(9) Hµ(0 | ∂Sn) =
∑

y∈AUn : µ(y)>0

µ(y)
∑

w∈E(y)

µ(w | y)Hµ(0 | yw).

Fix y as above. Let C and α be the positive constants for SSM. For any config-
uration y on Un and w,w′ ∈ E(y), we have d({0}, D(w,w′)) ≥ n. By SSM applied
to V = Sn, T = ∂Sn, we have that for all x ∈ A0, y ∈ AUn , and w,w′ ∈ E(y),∣∣µ(x | yw)− µ(x | yw′)

∣∣ ≤ Ce−αn.

Now,

µ(x | y) =
∑

w∈E(y)

µ(w | y)µ(x | yw),

and so for all w ∈ E(y),

∣∣µ(x | y)− µ(x | yw)
∣∣ =

∣∣∣∣∣∣
 ∑

w′∈E(y)

µ(w′ | y)µ(x | yw′)

− µ(x | yw)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

w′∈E(y)

µ(w′ | y)(µ(x | yw′)− µ(x | yw))

∣∣∣∣∣∣
≤

∑
w′∈E(y)

µ(w′ | y)
∣∣µ(x | yw′)− µ(x | yw)

∣∣ ≤ Ce−αn.

By Lemma 2.10, there is a constant C ′ depending only on C and α such that∣∣µ(x | y) logµ(x | y)− µ(x | yw) logµ(x | yw)
∣∣ ≤ C ′ne−αn

for some C ′ > 0.
Thus,∣∣∣∣∣∣Hµ(0 | y)−

∑
w∈E(y)

µ(w | y)Hµ(0 | yw)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

w∈E(y)

µ(w | y)
(
Hµ(0 | y)−Hµ(0 | yw)

)∣∣∣∣∣∣
≤

∑
w∈E(y)

µ(w | y)
∣∣Hµ(0 | y)−Hµ(0 | yw))

∣∣
≤
∑
x∈A0

∑
w∈E(y)

µ(w | y)
∣∣µ(x | y) logµ(x | y)− µ(x | yw) logµ(x | yw)

∣∣
≤
∑
x∈A0

∑
w∈E(y)

µ(w | y)C ′ne−αn ≤ |A|C ′ne−αn.
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Applying (8) and (9), we get∣∣Hµ(0 | Un)−Hµ(0 | ∂Sn)
∣∣ ≤ |A|C ′ne−αn.

�

By combining Lemma 3.1 and Theorem 3.2, we obtain exponentially accurate
upper and lower approximations to h(µ) for any stationary Zd MRF µ which satisfies
SSM. In the following section, we show that when the MRF is a (nearest-neighbor)
Gibbs measure (defined in the next section) and d = 2, there is an efficient algorithm
to approximate these bounds. A version of the well-known Hammersley-Clifford
theorem [15] shows that any fully supported (nearest-neighbor) MRF is a (nearest-
neighbor) Gibbs measure. However, that result can fail in general; see [1] for an
example based on a construction for finite graphs given in [13].

4. Computation of entropy bounds for stationary Gibbs measures

Let γ : A → (0,∞), βi : A× A → [0,∞), i = 1, . . . , d. For a finite V ⊂ Zd and
w ∈ AV , let

I(w) =

(∏
v∈V

γ(v)

)
d∏

i=1

∏
{v∈V :v+ei∈V }

βi(v, v + ei).

In statistical physics, often log I(w) is referred to as the energy of the configura-
tion w, and log γ and log βi correspond to external fields and interaction strengths,
respectively.

A configuration δ ∈ A∂V is called V -admissible if there exists at least one
w ∈ AV such that I(wδ) > 0.

Definition 4.1. Given γ, βi as above, for all |V | < ∞ and V -admissible δ, define
for all w ∈ AV ,

Λδ(w) =
I(wδ)∑

x∈AV I(xδ)
.

The collection {Λδ}V,δ is called a stationary Zd Gibbs specification for the
local interactions γ, βi.

Note that each Λδ is a probability measure on AV , and for U ⊂ V and w ∈ AU ,

Λδ(w) =
∑

c∈AV \U

Λδ(wc).

Also, we can regard Λδ as a probability measure on configurations y ∈ AV ∪∂V that
agree with δ on ∂V .

Many classical models can be expressed using this framework (see [12, Chapter
2].)

• Ising model: A = {±1}, γ(a) = eEa, βi(a, b) = eJab for constants E
(external magnetic field) and J (coupling strength).

• n-state Potts model: A = {1, . . . , n}, γ(a) = 1, βi(a, b) = eJδab , where δab
is the Kronecker delta.

• n-coloring shift: A = {1, . . . n}, γ(a) = 1, βi(a, b) = 1 − δab; this can be
thought of as the limiting case of the n-state Potts model as J → −∞.
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• Hard square model: A = {0, 1}, γ(a) = 1, βi(a, b) = 1−ab. In other words,
the hard square model weights nearest-neighbor configurations equally, sub-
ject to the “hard constraint” that nearest neighbor sites cannot both be
occupied by 1.

Definition 4.2. A stationary Zd Gibbs measure for a stationary Zd Gibbs

specification is a stationary Zd MRF µ on AZd

such that for any finite set V and
δ ∈ A∂V , if µ(δ) > 0 then δ is V -admissible and for all x ∈ AV

µ(x | δ) = Λδ(x).

Specifications can be used to define MRF’s, not just Gibbs measures (see [5]).
However, we find the concept of specification most useful for Gibbs measures.

Gibbs measures, as defined here, are often referred to as “nearest-neighbor”
Gibbs measures in the literature. Note that since the βi are allowed to take on the
value 0, a Gibbs measure need not be fully supported. Also, note that, by definition,
a necessary condition for µ(δ) > 0 is V -admissibility of δ. While there may be no
finite procedure for determining if a configuration δ has positive measure, there is
a finite procedure for determining if δ is V -admissible. For this reason, we impose
an SSM condition on the specification that defines a Gibbs measure, rather than
the Gibbs measure itself.

Definition 4.3. A stationary Zd Gibbs specification Λ satisfies strong spatial
mixing (SSM) if there exist constants C,α > 0, such that for all finite V ⊂ Zd,
u ∈ V , ∂V ⊆ T ⊂ V ∪ ∂V , x ∈ A{u}, y, z ∈ AT , such that δ = y|∂V and η = z|∂V
are V -admissible and Λδ(y),Λη(z) > 0, then∣∣Λδ(x | y)− Λη(x | z)

∣∣ ≤ Ce−αd({u},D(y,z)).

Note that if the specification of a Gibbs measure µ satisfies SSM, then the mea-
sure µ itself satisfies SSM as an MRF. It is well known that when the specification
satisfies SSM there is a unique Gibbs measure corresponding to the specification.
In fact, a weaker notion of spatial mixing, known as weak spatial mixing [11], is
sufficient.

Just as in the case of MRF’s, the single-site version of SSM for Gibbs specifica-
tions implies a finite-set version, and the proof, which we omit, is very similar to
that of Lemma 2.3.

Lemma 4.4. For any stationary Zd Gibbs specification that satisfies SSM, there
exist constants C,α > 0, such that for any finite V ⊂ Zd, U ⊆ V , ∂V ⊆ T ⊂ V ∪∂V ,
x ∈ AU , y, z ∈ AT , such that δ = y|∂V and η = z|∂V are V -admissible and
Λδ(y),Λη(z) > 0, then

(10)
∣∣Λδ(x | y)− Λη(x | z)

∣∣ ≤ |U |Ce−αd(U,D(y,z)).

(The constants C, α can be taken to be those in the definition of SSM.)

We note that there are conditions, such as one analogous to Proposition 2.4, that
imply SSM for stationary Gibbs specifications.

The following is the main result of this section.

Theorem 4.5. Let µ be a stationary Zd Gibbs measure whose specification satisfies
SSM. Let (Kn), n ∈ N, be a sequence of sets satisfying Kn ⊂ Bn and |Kn| =
O(nd−1). Then there is an algorithm which, on input n, computes upper and lower

bounds to Hµ(0 | Kn) in time eO(n(d−1)2 ) to within tolerance e−nd−1

.
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Remark 4.6. For this and all subsequent results involving running time of algo-
rithms involving µ, we do not count computation of the Gibbs parameters γ and βi

towards the claimed running time. (In other words, we assume that we are given
approximations to γ and βi with arbitrarily good precision before performing any
computation.) We also note that the algorithms here do not depend on knowledge
of specific values of the parameters C and α of SSM.

As an immediate consequence of Lemma 3.1, Theorem 3.2, and Theorem 4.5
(applied to Kn = ∂Sn−1 and Kn = Un), we have:

Corollary 4.7. Let µ be a stationary Zd Gibbs measure whose specification satisfies
SSM. Then there is an algorithm which, on input n, computes upper and lower

bounds to h(µ) in time eO(n(d−1)2 ) to within tolerance e−Ω(n).

Note that for d = 2 this gives an algorithm to compute h(µ) to within O(1/n)
in polynomial time (in n).

For the proof of Theorem 4.5, we will need the following result.

Lemma 4.8. Let µ be a stationary Zd Gibbs measure. Let (Kn), n ∈ N, be a
sequence of sets satisfying Kn ⊂ Bn and |Kn| = O(nd−1). Then for any sequence
(mn)n∈N of positive integers, there is an algorithm which, on input n, determines
which δ ∈ A∂Bn+mn are Bn+mn-admissible and, for those which are, computes

Λδ(w) for all w ∈ AKn , in running time eO((n+mn)
d−1).

Proof. For simplicity, we prove this only for d = 2. The general case follows along
similar lines.

Fix sequences (Kn) and (mn) as in the statement of the lemma, a particular
value of n, a Bn+mn -admissible δ, and w ∈ AKn . Define

Iδ(w) :=
∑

c∈ABn+mn
\Kn

I(wcδ).

We will show that

(11) Iδ(w) = I(δ)xTM−n−mn
M−n−mn+1 · · ·Mn+mn−1y,

where eachM i is a square matrix and x, y are vectors, all indexed byA[−n−mn,n+mn].
For a, b ∈ A[−n−mn,n+mn], we write a = a−n−mn , . . . an+mn , b = b−n−mn , . . . bn+mn ,

and

γ(a) =

n+mn∏
j=−n−mn

γ(aj), β1(a, b) =

n+mn∏
j=−n−mn

β1(aj , bj), β2(a) =

n+mn−1∏
j=−n−mn

β2(aj , aj+1).

For i = −n−mn, . . . , n+mn, define the transfer matrix Mi by

(Mi)(a,b) = γ(a)β1(a, b)β2(a)β2(δi,−n−mn−1, a−n−mn)β2(an+mn , δi,n+mn+1)

for a, b ∈ A[−n−mn,n+mn]. Let Vi = {i} × [−n−mn + 1, . . . n+mn − 1] and let

(M i)(a,b) = (Mi)(a,b)

except if a, b are such that Vi ∩Kn ̸= ∅ and a|{j:(i,j)∈Kn} ̸= w|Vi∩Kn , in which case

we set (M i)(a,b) = 0. Let δL = δ|{−n−mn−1}×{[−n−mn,n+mn]} and
δR = δ|{n+mn+1}×{[−n−mn,n+mn]} be the restrictions of δ to the left and right sides
of ∂Bn+mn . We define vectors x, y by

xa = β1(δL, a), ya = (Mn+mn)(a,δR) for a ∈ A[−n−mn,n+mn].
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To see that the expression (11) holds, observe that the interactions that make
up Iδ(w) are assembled one column at a time by each matrix M i, with adjustments
on the border of Bn+mn

contributed by I(δ), x, and y.

Note that each M i can be constructed in time
(
eO(n+mn)

)2
= eO(n+mn), x and y

can be constructed in time eO(n+mn), and I(δ) can be constucted in time O(n+mn).

Each matrix multiplication takes time at most
(
eO(n+mn)

)3
= eO(n+mn). Thus,

Iδ(w) can be constructed in time eO(n+mn). This can be done for all w ∈ AKn in
time eO(n+mn)eO(n) = eO(n+mn) (this is the only part of the proof where we use
the assumption on the size of Kn).

Since

Λδ(w) =
Iδ(w)∑

x∈AKn Iδ(x)
,

we can compute Λδ(w) for all w ∈ AKn and all Bn+mn-admissible δ ∈ A∂Bn+mn in

time
(
eO(n+mn)

)2
= eO(n+mn).

For d > 2, the proof follows along similar lines using transfer matrices indexed
by configurations on (d− 1)-dimensional arrays.

�

Proposition 4.9. Let µ be a stationary Zd Gibbs measure whose specification sat-
isfies SSM with constants C and α. Let (Kn), n ∈ N, be a sequence of sets satisfying
Kn ⊂ Bn and |Kn| = O(nd−1). Then for any sequence (mn) of positive integers,
there is an algorithm which, on input n, computes upper and lower bounds µ+(w)

and µ−(w) to µ(w), for all w ∈ AKn , in time eO((n+mn)
d−1), such that

µ+(w)− µ−(w) ≤ Ce−αmn |Kn|.

Proof. Fix sequences (Kn) and (mn) as in the statement of the proposition, a
particular value of n, and w ∈ AKn . Observe that

µ(w) =
∑

δ∈A∂Bmn+n : µ(δ)>0

µ(w | δ)µ(δ).

Let δw be a configuration δ which achieves max{Bn+mn-admissible δ} Λδ(w) and

let δw be a configuration δ which achieves min{Bn+mn-admissible δ} Λδ(w). Since

strict positivity of µ(δ) implies Bn+mn -admissibility, it follows that

Λδw(w) ≤ µ(w) ≤ Λδw(w).

Since µ satisfies SSM, it follows by Lemma 2.3 (applied to V = Bn+mn , T = ∂V
and U = Kn) that

(12) 0 ≤ Λδw(w)− Λδw(w) ≤ Ce−αmn |Kn|.

By Lemma 4.8, we can identify all Bmn+n-admissible δ and compute Λδ(w) for

all such δ and all w ∈ AKn in time eO((n+mn)
d−1). Thus in time eO((n+mn)

d−1) we
can identify, for all w ∈ AKn , δw, and δw and compute the upper and lower bounds
Λδw(w) and Λδw(w).

This, together with (12), completes the proof. �

Similarly, we have:
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Proposition 4.10. Let µ be a stationary Zd Gibbs measure whose specification
satisfies SSM with constants C and α. Let (Kn), n ∈ N, be a sequence of sets
satisfying Kn ⊂ Bn \ {0} and |Kn| = O(nd−1). Then for any sequence (mn) of
positive integers, there is an algorithm which, on input n, computes upper and lower
bounds µ+(x0 | w) and µ−(x0 | w) to µ(x0 | w) for all x0 ∈ A and w ∈ AKn with

µ(w) > 0 in time eO((n+mn)
d−1) such that

µ+(x0 | w)− µ−(x0 | w) ≤ Ce−αmn .

Proof. Fix sequences (Kn) and (mn) as in the statement of the proposition, a
particular value of n, and w ∈ AKn . Write

µ(x0 | w) =
∑

δ∈A∂Bmn+n : µ(wδ)>0

µ(x0 | w, δ)µ(δ | w).

As in the proof of Proposition 4.9, we can find Bn+mn
-admissible δx0,w and δx0,w

such that

Λδx0,w(x0|w) ≤ µ(x0 | w) ≤ Λδx0,w

(x0|w) and

0 ≤ Λδx0,w

(x0|w)− Λδx0,w(x0|w) ≤ Ce−αmn .

(here, we apply SSM to V = Bn+mn , T = (∂V ) ∪ Kn, U = {0}). Then ap-
ply Lemma 4.8 to compute these bounds, i.e., compute Λδx0,w

(x0w), Λδx0,w

(w),
Λδx0,w(x0w), and Λδx0,w(w). �

Proof of Theorem 4.5. Let (Kn), n ∈ N, be a sequence of sets satisfying Kn ⊂ Bn

and |Kn| = O(nd−1).
Fix any sequence (mn), a particular value of n, and w ∈ AKn . Let µ+(w), µ−(w),

µ+(x0|w), µ−(x0|w) be as in Propositions 4.9 and 4.10. We will use these to obtain
upper and lower estimates to Hµ(0 | Kn) and bound the error. Later, we will
describe how to select values of (mn) that will yield our algorithm with the asserted
properties.

Let f(x) = −x log x. Let µ−−(x0 | w) denote whichever of µ+(x0 | w), µ−(x0 | w)
achieves min

(
f(µ+(x0 | w)), f(µ−(x0 | w))

)
. Using concavity of f and Lemma 2.10,

there exists C ′ > 0 (independent of n and mn) such that

(13) 0 ≤ f(µ(x0 | w))− f(µ−−(x0 | w)) ≤ C ′mne
−αmn .

Recall that

Hµ(0 | Kn) =
∑

w∈AKn

µ(w)
∑

x0∈A0

f(µ(x0 | w)).

Let H−
µ (0 | Kn) denote the expression obtained by substituting µ−(w) for µ(w)

and µ−−(x0 | w) for µ(x0 | w):

H−
µ (0 | Kn) =

∑
w∈AKn

µ−(w)
∑

x0∈A0

f(µ−−(x0 | w)).

Then H−
µ (0 | Kn) ≤ Hµ(0 | Kn).
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Now, we estimate the difference between Hµ(0 | Kn) and H−
µ (0 | Kn). We have:

(14) Hµ(0 | Kn)−H−
µ (0 | Kn)

=
∑

w∈AKn

µ(w)
∑
x0∈A

f(µ(x0 | w))−
∑

w∈AKn

µ−(w)
∑

x0∈A0

f(µ−−(x0 | w))

=
∑

w∈AKn

µ(w)
∑

x0∈A0

(f(µ(x0 | w))− f(µ−−(x0 | w)))

+
∑

w∈AKn

(µ(w)− µ−(w))
∑

x0∈A0

f(µ−−(x0 | w))

≤ |A|C ′mne
−αmn+|A||Kn||Kn|e−1|A|Ce−αmn ≤ |A|C ′mne

−αmn+eηn
d−1

Ce−αmn

for some constant η (depending on the upper bound of |Kn|
nd−1 ); here, we have used

(13) and Proposition 4.9 in the first inequality.
The reader can check that there then exists a constant L, depending on |A|, C ′, C, α,

and η, so that for every n, if mn = Lnd−1, then Hµ(0 | Kn) − H−
µ (0 | Kn) <

0.5e−nd−1

.
We also note that the computation time of H−

µ (0 | Kn) is eO((n+mn)
d−1) (the

total amount of time to compute µ−(w) and f(µ−−(x0 | w)) for all w ∈ AKn and
x0 ∈ A0.)

For the upper bound, let µ++(x0 | w) be whichever of µ+(x0 | w), µ−(x0 | w)
achieves max

(
f(µ+(x0 | w)), f(µ−(x0 | w))

)
if x, y ≤ 1/e or x, y ≥ 1/e, and 1/e

otherwise. Using Lemma 2.10 and the fact that f(x) achieves its maximum at
x = 1/e, we have:

(15) 0 ≤ f(µ++(x0 | w))− f(µ(x0 | w)) ≤ C ′mne
−αmn .

(the C ′ is the same as above). Then

H+
µ (0 | Kn) =

∑
w∈AKn

µ+(w)
∑

x0∈A0

f(µ++(x0 | w))

is an upper bound for Hµ(0 | Kn).
Using (15), we see that

(16) H+
µ (0 | Kn)−Hµ(0 | Kn)

=
∑

w∈AKn

µ+(w)
∑

x0∈A0

f(µ++(x0 | w))−
∑

w∈AKn

µ(w)
∑

x0∈A0

f(µ(x0 | w))

=
∑

w∈AKn

µ(w)
∑

x0∈A0

(f(µ++(x0 | w))− f(µ(x0 | w)))

+
∑

w∈AKn

(µ+(w)− µ(w))
∑

x0∈A0

f(µ++(x0 | w))

≤ |A|C ′mne
−αmn+|A||Kn||Kn|e−1|A|Ce−αmn ≤ |A|C ′mne

−αmn+eηn
d−1

Ce−αmn .

For every n, if mn = Lnd−1 (the L is the same as for the lower bound), then

H+
µ (0 | Kn) − Hµ(0 | Kn) < 0.5e−nd−1

. The time to compute H+
µ (0 | Kn) is

eO((n+mn)
d−1), the same as for H−

µ (0 | Kn).
We now describe the algorithm for choosing the values (mn). We note that

without knowledge of the explicit constants C and α from the strong spatial mixing
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of µ, we cannot explicitly compute the constant L. However, for our purposes,
knowledge of L is unnecessary.

The algorithm uses parameters n and j which both start off equal to 1, though
they will be incremented later. The algorithm consists of one main loop which is
run repeatedly. At the beginning of the loop, the above bounds H−

µ (0 | Kn) and

H+
µ (0 | Kn) are computed for mn = jnd−1. If the bounds are not within e−nd−1

of
each other, then j is incremented by 1 and the algorithm returns to the beginning

of the loop. When the bounds are within e−nd−1

of each other (which will happen
for large enough j by the comments following (14) and (16)), then mn is defined
to be jnd−1, the value of n is incremented by 1, and the algorithm returns to the
beginning of the loop.

By the above discussion, there exists L so that j will never be incremented beyond
L in this algorithm. This means that there exists J so that for all sufficiently large
n, mn = Jnd−1. Therefore, for all n, the algorithm yields upper and lower bounds

to within tolerance e−nd−1

in time eO((n+Jnd−1)d−1) = eO(n(d−1)2 ).
�

Remark 4.11. We remark that the algorithms in Propositions 4.9 and 4.10 can be
simplified if one uses knowledge of specific values of the constants C and α in the
definition of SSM. Namely, one can compute Λδ(w) (or Λδ(x0 | w)) for any fixed
Bn+mn-admissible configuration δ and then set the upper and lower bounds µ±(w)
(or µ±(x0 | w)) to be Λδ(w)± Ce−αmn |Kn| (or Λδ(x0 | w)± Ce−αmn).

In theory, we can also dispense with the auxiliary sequence (mn) in Propo-
sition 4.10: we could instead bound µ(x0 | w) by the minimum and maximum
possible values of µ(x0 | w, δ) for configurations δ on ∂Bn, which would give ap-

proximations of tolerance Ce−αn in time O(en
d−1

). A similar simplification could
be done for Proposition 4.9 as well, but it would not be useful for our proof of Theo-
rem 4.5: note that in formula (14), the upper bound on µ(w)−µ−(w) is multiplied

by |A||Kn|, and so this upper bound must be at most e−Ω(nd−1). Therefore, the
described simplification for Proposition 4.10 would not reduce the overall order of
computation time for Theorem 4.5, since the algorithm from Proposition 4.9 would

still require time eO(n(d−1)2 ).
Finally, we note that in Proposition 4.10 when Kn = ∂Sn−1, there is no need to

bound the conditional probabilities µ(x0 | w), as they can be computed exactly (by
using the methods of Lemma 4.8).

We will now describe how to extend Theorem 4.5 and Corollary 4.7 to give
bounds for pressure in addition to entropy. Given local interactions γ, βi, define:

X = {x ∈ AZd

: for all v ∈ Zd and 1 ≤ i ≤ d, βi(xv, xv+ei) > 0}.

X is the set of configurations on Zd defined by nearest-neighbor constraints and so
belongs to the class of nearest-neighbor (or 1-step) shifts of finite type [9].

Let f : X → R be defined by

(17) f(x) = log γ(x0) +

d∑
i=1

log βi(x0, xei).
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Definition 4.12. Let X and f be as above. Define the pressure of f by

P (f) = max
ν

h(ν) +

∫
fdν,

where the max is taken over all stationary measures ν with support contained in
X. A measure which achieves the max is called an equilibrium state for f .

Alternatively, pressure can be defined directly in terms of X and f , without
reference to stationary measures. The definition of pressure which we have used
is a corollary of the well-known variational principle [19, Chapter 9]. For general
dynamical systems, the max is merely a sup; however, in our context, the sup is
always achieved.

It is well known that any equilibrium state for f is a Gibbs measure for the
specification defined by the interactions γ, βi [17, Chapter 4]. As mentioned earlier,
when the specification satisfies SSM, there is only one Gibbs measure µ that satisfies
that specification, and so µ is an (unique) equilibrium state for f .

Corollary 4.13. Let γ, βi be local interactions which define a stationary Zd Gibbs
specification that satisfies SSM. Let f be as in (17). Then there is an algorithm

to compute upper and lower bounds to P (f) in time eO(n(d−1)2 ) to within tolerance
e−Ω(n).

Proof. Let µ be the unique Gibbs measure that satisfies the specification. Then
Corollary 4.7 applies to compute such bounds for h(µ).

It follows from Proposition 4.9 that for any configuration w on a single site or

edge of Zd, one can compute upper and lower bounds to µ(w) in time eO(nd−1) to
within tolerance e−Ω(n) (in fact, this follows easily from weak spatial mixing). Thus
one can compute upper and lower bounds to

∫
fdµ in the same time with the same

tolerance.
Finally, recall that µ is an equilibrium state since its specification satisfies SSM,

and so we can compute the desired bounds for h(µ) +
∫
fdµ = P (f).

�
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