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Abstract

We find sufficient conditions for bounded density shifts to have a
unique measure of maximal entropy. We also prove that every mea-
sure of maximal entropy of a bounded density shift is fully supported.
As a consequence of this, we obtain that bounded density shifts are
surjunctive.

1 Introduction

The concept of entropy is of particular interest when trying to define formally
how a system behaves at equilibrium. Given a dynamical system, we say that
an invariant measure is a uniform equilibrium state if it achieves the maximal
possible entropy. It has been of interest to physicists and mathematicians
to determine whether a system has a unique equilibrium state or not. When
this happens, mathematicians say the system is intrinsically ergodic and
physicists sometimes say that the system does not have a phase transition.

In this paper we are interested in trying to determine if bounded density
shifts are intrinsically ergodic. Bounded density shifts were introduced by
Stanley in [16]. These subshifts are defined somewhat similarly to the classi-
cal β-shifts in that they both are hereditary ([9]), meaning that membership
in the shift is preserved under coordinatewise reduction of letters. Whereas
β-shifts are ‘bounded from above’ by a specific sequence coming from a β-
expansion, bounded density shifts are restricted by length-dependent bounds
on the sums of letters in subwords.

*Institute of Physics, Universidad Autónoma de San Luis Potośı
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Stanley proved characterizations of when bounded density shifts are
shifts of finite type, sofic, or specified which are remarkably similar to those
proved in [15] for β-shifts.

A very effective way of proving that a transitive β-shift is intrinsically
ergodic is using the Climenhaga-Thompson decomposition [5] (see Section
2.3), which uses specification of a sub-language. Using this powerful result
one can prove that β-shifts (and their factors) are intrinsically ergodic in a
few lines (see [5, Section 3.1]).

Proving that bounded density shifts are intrinsically ergodic seems much
more mysterious. In this paper we also use Climenhaga-Thompson’s theorem
to prove a fairly general sufficient condition (Theorem 3.5), though checking
the conditions is more complicated than for β-shifts.

It is not difficult to find examples satisfying our sufficient condition
(Corollary 3.7), and in fact we do not know if any bounded density sub-
shift fails to satisfy it (Question 3.6). We conjecture that the answer of this
question is positive at least for binary subshifts and that every bounded
density shift is intrinsically ergodic.

This is not the first paper to study intrinsic ergodicity of bounded density
shifts. This has been done in [4, 14]. We are able to prove intrinsic ergodicity
under different assumptions than those in those papers. Our hypotheses are
also much simpler, and provide proofs of intrinsic ergodicity for new classes
of bounded density shifts.

Furthermore, we prove that every measure of maximal entropy of a
bounded density shift (with positive entropy) is fully supported. This prop-
erty is sometimes known as entropy minimality because it is equivalent to
having lower topological entropy on every proper subshift. As a consequence
of this we prove that synchronized bounded density shifts are always intrin-
sically ergodic, and we also obtain surjunctivity of bounded density shifts.

Acknowledgments: The authors would like to thank Dominik Kwiet-
niak for rewarding conversations and insights. The first author was sup-
ported by the Excellence Initiative Strategic Program of the Jagiellonian
University with grant number U1U/W16/NO/01.03. The second author
gratefully acknowledges the support of a Simons Collaboration Grant.
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2 Definitions and preliminary results

2.1 Subshifts

We devote this section to collect some basic definitions in symbolic dynamics.
For a broader introduction to subshifts, languages and their properties, see
[10].

Let A a finite set of symbols. We say that w is a word if there exists
n ∈ N such that w ∈ An and we denote the length of w by |w|. Let ε denote
the empty word, i.e. the word with no symbols. A word u is a subword of
w if u = wkwk+1 . . . wl for some 1 ≤ k ≤ l ≤ |w|. For words w(1), . . . , w(n),
we use w(1) . . . w(n) to represent their concatenation. We say that a word
u is a prefix of w if u = w1 . . . wk for some 1 ≤ k ≤ |w| and a suffix if
u = wk . . . w|w| for some 1 ≤ k ≤ |w|, denote by Suf(w) and Pre(w) the sets
of nonempty suffixes and prefixes respectively for w.

We endow AZ with the product topology. When describing a point
x ∈ AZ as a sequence, we use a dot to indicate the central position as
follows, x = . . . x−1.x0x1 . . ., where xi to represent the ith coordinate of x.
We represent intervals of integers with [i, j], and x[i,j] = xixi+1...xj .

The shift map σ : AZ → AZ is defined by σ(x) = . . . x−1x0.x1x2 . . .. We
say that a set X ⊆ AZ is a subshift if it is closed and invariant under σ.

For any subshift X,let

Ln(X) = {w ∈ An : ∃x ∈ X and i, j ∈ Z s.t x[i,j] = w}.

We define L(X) =
⋃∞
i=0 Ln(X) as the language of the subshift X. Given

a word w, we define its cylinder set as [w] = {x ∈ X : x[0,|w|−1] = w}. The

cylinder sets form a basis of the topology of AZ.

2.2 Specification properties

A subshift X is specified if there exists M ∈ N such that for all u,w ∈ L(X),
there is a v ∈ LM (X) such that uvw ∈ L(X). Following [5], we also define
specification for subsets of the language.

Definition 2.1. Let X be a subshift, G ⊂ L(X) and n, t ∈ N0. We say that
G has specification (with gap size t) if for all m ∈ N and w(1), . . . , w(m) ∈
G, there exist v(1), . . . , v(m−1) ∈ Lt(X) such that

w = w(1)v(1)w(2)v(2) · · · v(m−1)w(m) ∈ L(X).
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2.3 Measures of maximal entropy

For any subshiftX, we denote byM(X) the set of Borel probability measures
on X. Equipped with the weak* topology M(X) is a compact topological
space.

For any µ ∈ M(X) and any finite measurable partition ξ of X, the
entropy of ξ (with respect to µ), denoted by Hµ(ξ), is defined by

Hµ(ξ) = −
∑
A∈ξ

µ(A) logµ(A),

where terms with µ(A) = 0 are omitted.
Given a subshift X we denote the σ-invariant Borel probability measures

with M(X,σ). For µ ∈ M(X,σ), the entropy of µ (for the shift map σ) is
defined by

hµ(X) = lim
n→∞

−1

n

∑
w∈Ln(X)

µ ([w]) logµ ([w]) = lim
n→∞

−1

n
Hµ(ξ(n)), (1)

where ξ(n) represents the partition of X into cylinder sets from the first n
letters, i.e. ξ(n) = {[w] : w ∈ An}.

We note for future reference that ξ(n) =
∨n−1
i=0 σ

−iξ(1), where ξ(1) is the
partition based on x0 and ∨ is the join of partitions. We will later need to
make use of the following basic facts about entropy; for proofs and general
introduction to entropy theory, see [18].

Theorem 2.2 (Theorem 4.3 [18]). For any subshift X, µ ∈ M(X), and ξ,
η finite partitions of X, Hµ (ξ ∨ η) ≤ Hµ (ξ) +Hµ (η).

Theorem 2.3 (Corollary 4.2.1 [18]). For any subshift X and µ ∈ M(X),
if ξ is a finite measurable partition of X with k sets, then Hµ(ξ) ≤ log(k),
with equality only when µ(A) = k−1 for all A ∈ ξ.

Theorem 2.4 ([18], p. 184). For any subshift X, finite measurable partition
ξ of X, measures µi ∈ M(X), and pi ≥ 0 (1 ≤ i ≤ n) with

∑n
i=1 pi = 1,

H∑n
i=1 piµi

(ξ) ≥
∑n

i=1 piHµi(ξ).

By the well-known Variational Principle, the supremum of hµ(X) over
all µ ∈ M(X,σ) is the topological entropy htop(X) of X. For any subshift
X, we have that

htop(X) = lim
n→∞

1

n
log |Ln(X)|. (2)
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For general topological dynamical systems, the supremum above may not
be achieved. However, every subshift has at least one measure of maximal
entropy, that is ν ∈M(X,σ) achieving the supremum above, meaning that
hν(X) = htop(X).

We say a subshift is intrinsically ergodic if there is only one (probability)
measure of maximal entropy.

Every specified subshift is intrinsically ergodic ([1]). This result has been
generalized in several works, including [5] and [13]. Before stating the result
we need some extra definitions.

Given a collection of words D ⊆ L(X) and n ≥ 1, we define Dn =
D ∩ Ln(X). We denote the growth rate of D by

h(D) = lim sup
n→∞

1

n
log |Dn|. (3)

Note that h(L(X)) = htop(X).
Following [5], we say that L(X) admits a decomposition CpGCs for Cp,G, Cs ⊂

L(X) if every w ∈ L(X) can be written as uvw for some u ∈ Cp, v ∈ G,
w ∈ Cs. For such a decomposition, we define the collection of words G(M)
for each M ∈ N by

G(M) = {uvw : u ∈ Cp, v ∈ G, w ∈ Cs, |u| ≤M, |w| ≤M}. (4)

Theorem 2.5 (Climenhaga and Thompson [5]). Let X be a subshift whose
language L(X) admits a decomposition CpGCs, and suppose that the follow-
ing conditions are satisfied:

1. G has specification.

2. h(Cp ∪ Cs) < htop(X).

3. For every M ∈ N, there exists τ such that given v ∈ G(M), there exist
words u,w with |u| ≤ τ, |w| ≤ τ for which uvw ∈ G.

Then X is intrinsically ergodic.

Remark. Using results from [12], Climenhaga explained in a blog post [3]
that condition 3 is actually not required to prove uniqueness of the measure
of maximal entropy. However, this condition is not difficult to check for
bounded density shifts with positive entropy (Lemma 3.4) and so we verify
it regardless.
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2.4 Bounded density shifts

Bounded density shifts were introduced in [16].
Let f : N0 → [0,∞) be a function. We say f is canonical if

� f(0) = 0,

� f(m+ 1) ≥ f(m) for all m ≥ 0, and

� f(m+ n) ≤ f(m) + f(n) for all n,m ∈ N.

The bounded density shift associated to a canonical function, f , is
defined as follows:

Xf =

{
x ∈ (N0)

Z : ∀p ∈ N and ∀i ∈ Z
i+p−1∑
r=i

xr ≤ f(p)

}
. (5)

Note that Xf is a subshift on the alphabet A = {0, 1, ..., bf(1)c}.
Actually, bounded density shifts can be defined for any function f :

N0 → [0,∞), but it was shown in [16] that every bounded density shift can
be defined by some canonical f .

Definition 2.6. Let Xf be a bounded density shift, the limit

lim
n→∞

f(n)

n
(6)

is called the limiting gradient and is denoted by α.

The existence of the limit is given by Fekete’s lemma and the definition of
canonical function; furthermore, the limit is an infimum, and so f(n) ≥ αn
for all n.

There exist bounded density shifts with α = 0 but they are fairly trivial
systems where the upper density of non-zero coordinates is always 0. A
bounded density shift has positive topological entropy if and only if α > 0
(see [9, Theorem 12]) if and only if it is coded (determined by a labeled irre-
ducible graph with possibly countably many vertices) ([16, Theorem 3.1]).

As we mentioned in the previous section, the specification property guar-
antees intrinsic ergodicity. For bounded density shifts, Xf is specified with
specification constant M if and only if 0M is intrinsically synchronizing (see
Definition 3.12 in [16, Theorem 5.1]). Bounded density shifts with positive
topological entropy without specification can easily be constructed ([16]).

A subshift X with alphabet {0, 1, ..., n} is hereditary if every time there
is x ∈ X and y ∈ AZ with yi ≤ xi ∀i ∈ Z, then y ∈ X. It is not difficult to
check that bounded density shifts are hereditary.
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3 Intrinsic ergodicity

In this section we fix a bounded density shift Xf with α > 0. We define

G =

w ∈ L(Xf ) : if u ∈ Pre(w) ∪ Suf(w), then
1

|u|

|u|∑
i=1

ui < α

 , and

B = Cp = Cs =

v ∈ L(Xf ) :
1

|v|

|v|∑
i=1

vi ≥ α

 ∪ {ε},
where ε denotes the empty word.

Lemma 3.1. The language L(Xf ) admits a decomposition BGB.

Proof. Let z ∈ L (Xf ). Define u to be the prefix of z in B of maximal
length (which may be the empty word ε), and denote its length by M ≥ 0.
Similarly, define w to be the suffix of z in B of maximal length (which may
be the empty word ε), and denote its length by N ≥ 0.

Suppose that z[M+1,N−1] /∈ G. Then by definition, there exists a word
v ∈ Pre

(
z[M+1,N−1]

)
∪ Suf

(
z[M+1,N−1]

)
with

1

|v|

|v|∑
i=1

vi ≥ α.

Without loss of generality we can assume that v ∈ Pre
(
z[M+1,N−1]

)
, it

means that v ∈ B, but it is not possible because then uv would be a prefix
of z in B longer than u. Therefore v ∈ G.

Lemma 3.2. The set G has specification.

Proof. We will show that G has specification with gap size t = 0. Let m ∈ N,
w(1), . . . , w(m) ∈ G, and z = w(1) · · ·w(m). We compute

n∑
i=1

zi =

n1∑
i=1

w
(1)
i +

n2∑
i=1

w
(2)
i + . . .+

nm∑
i=1

w
(m)
i

< n1α+ n2α+ . . .+ nmα

= α

(
m∑
i=1

ni

)
= αn

≤ f(n).

This implies that z ∈ L(Xf ).
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Proposition 3.3. There exists µ ∈ M(Xf , σ) with
∑bf(1)c

i=0 iµ([i]) ≥ α and
h(B) ≤ hµ(Xf ).

Proof. For each n ∈ N and w ∈ Ln(Xf ) ∩ B, consider the set:

Kn = {∞0.w0∞ : w ∈ Ln(Xf ) ∩ B}.

By construction |Kn| = |Ln(Xf ) ∩ B|. Let νn ∈ M(Xf ) be the atomic
measure concentrated uniformly on the points of Kn, i.e.

νn =
1

|Kn|
∑
x∈Kn

δx.

Let µn ∈M(Xf ) be defined by

µn =
1

n

n−1∑
j=0

νn ◦ σ−j .

Note that

bf(1)c∑
i=0

iµn([i]) =

bf(1)c∑
i=0

i

n

n−1∑
j=0

νn ◦ σ−j([i])

=

bf(1)c∑
i=0

i

n

n∑
j=1

|{w ∈ Ln(Xf ) ∩ B : wi = i}|
|Kn|

=
1

|Kn|
∑

w∈Ln(Xf )∩B

 1

n

n∑
j=1

wj


≥ α.

Since M(Xf ) is compact (in the weak* topology), we can choose a sub-
sequence such that

lim
j→∞

1

nj
log |Lnj (Xf ) ∩ B| = lim sup

n→∞

1

n
|Ln (Xf ) ∩ B| = h(B), (7)

and µnj → µ ∈ M(Xf ). By the definition of µn, it is routine to check that
µ ∈M (Xf , σ), i.e. µ is σ-invariant.

We will use techniques from the proof of the variational principle in [11]
to prove that
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hµ (Xf ) ≥ lim sup
n→∞

1

n
log |Ln(Xf ) ∩ B| = h(B). (8)

Firstly, since
∑bf(1)c

i=0 iµnj ([i]) ≥ α and µnj → µ, we also have that
∑bf(1)c

i=0 iµ([i]) ≥
α. Consider the partition given by the alphabet ξ = {[0], . . . , [bf(1)c]}. Since
all w ∈ Lnj (Xf ) ∩ B have equal measure νnj ([w]) = |Knj |−1 and all other
w ∈ Anj have νnj ([w]) = 0, by Theorem 2.3,

Hνnj

nj−1∨
i=0

σ−iξ

 = −
∑

w∈Lnj (Xf)∩B

νnj ([w]) log νnj ([w])= log|Lnj (Xf )∩B|.

(9)
Let q, n ∈ N with 1 < q < n and define a(t) = bn−tq c for 0 ≤ t < q. Note

that a(0) ≥ a(1) ≥ · · · ≥ a(q − 1). For every 0 ≤ t ≤ q − 1, we define

St = {0, 1, . . . , t− 1, t+ a(t)q, t+ a(t)q + 1, . . . , n− 1}.

So, for any such t, we can rewrite {0, 1, . . . , n− 1} as follows

{0, 1, . . . , n− 1} = {t+ rq + i|0 ≤ r < a(t), 0 ≤ i < q} ∪ St. (10)

Observe that

t+ a(t)q = t+

⌊
n− t
q

⌋
q ≥ t+

(
n− t
q
− 1

)
q = t+ n− t− q = n− q.

Thus, the cardinality of St is at most 2q.
Using (10) we get

nj−1∨
i=0

σ−iξ =

a(t)−1∨
r=0

σ−(rq+t)
q−1∨
i=0

σ−iξ

 ∨ ∨
l∈St

σ−lξ. (11)

Combining (9), (11) and Theorem 2.2 we obtain

log |Lnj (Xf ) ∩ B| = Hνnj

nj−1∨
i=0

σ−iξ


≤

a(t)−1∑
r=0

Hνnj

(
σ−(rq+t)

q−1∨
i=0

σ−iξ

)
+
∑
l∈St

Hνnj

(
σ−lξ

)

≤
a(t)−1∑
r=0

Hνnj ◦σ−(rq+t)

(
q−1∨
i=0

σ−iξ

)
+ 2q log(l). (12)
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For the inequality
∑

l∈St
Hνnj

(σ−lξ) ≤ 2q log(l) we apply Theorem 2.3.
We note that for each 0 ≤ t ≤ q − 1, we have

(a(t)− 1) q + t ≤
⌊
n− t
q
− 1

⌋
q + t = n− q. (13)

Summing the first term in the last line of (12) over t from 0 to q − 1, and
using that the numbers {t + rq : 0 ≤ t ≤ q − 1, 0 ≤ r ≤ a(t) − 1} are all
distinct and are all no greater than n− q, yields

q−1∑
t=0

a(t)−1∑
r=0

Hνnj ◦σ−(rq+t)

(
q−1∨
i=0

σ−iξ

) =

a(0)−1∑
r=0

Hνnj ◦σ−(rq)

(
q−1∨
i=0

σ−iξ

)
+ · · ·

· · ·+
a(q−1)−1∑
r=0

Hνnj ◦σ−(rq+q−1)

(
q−1∨
i=0

σ−iξ

)

=

nj−1∑
p=0

Hνnj ◦σ−p

(
q−1∨
i=0

σ−iξ

)
. (14)

Using (12) and (14) we get

q log |Lnj (Xf ) ∩ B| ≤
nj−1∑
p=0

Hνnj ◦σ−p

(
q−1∨
i=0

σ−iξ

)
+

2q2

nj
log(l).

Now, we divide by nj and apply Theorem 2.4 (with pi = 1
nj

), to obtain

q

nj
log |Lnj (Xf ) ∩ B| ≤ Hµnj

(
q−1∨
i=0

σ−iξ

)
+

2q2

n2j
log(l). (15)

We will also use that

lim
k→∞

Hµnjk

(
q−1∨
i=0

σ−iξ

)
= Hµ

(
q−1∨
i=0

σ−iξ

)
, (16)

which is obtained using the definition of weak* convergence. Then, combin-
ing (15) and (16) yields
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qh(B) = lim
k→∞

q

njk
log |Lnjk

(Xf ) ∩ B|

≤ lim
k→∞

Hµnjk

(
q−1∨
i=0

σ−iξ

)
+ lim
k→∞

2q2

njk
log(l)

= Hµ

(
q−1∨
i=0

σ−iξ

)
.

Now, by definition of hµ(Xf ),

h(B) ≤ lim
q→∞

1

q
Hµ

(
q−1∨
i=0

σ−iξ

)
= hµ(Xf ).

Lemma 3.4. For every M ∈ N, there exists τ such that given v ∈ G(M),
there exist words u,w with |u| ≤ τ , |w| ≤ τ for which uvw ∈ G.

Proof. Let M ∈ N and v ∈ G(M). This implies that there exist u′, w′ ∈
B, v′ ∈ G such that v = u′v′w′ and |u′| ≤M, |w′| ≤M . Choose u = w = 0τ ,

with τ =

⌈
2Mbf(1)c

α

⌉
.

Let z ∈ Pre(0τu′v′w′0τ ). Consider the following sets, N1 = [1, τ ], N2 =
[τ + 1, τ + |u′|]∪[τ + |u′v′|+ 1, τ + |u′v′w′|] andN3 = [τ + |u′|+ 1, τ + |u′v′|].
Note that N2 corresponds to the section where u′ and w′ appear and N3

where v′ appears. Also, we can assume that |z| ≥ τ (otherwise we are
considering that z ∈ Pre(0τ )), then
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1

|z|

|z|∑
i=1

zi =
1

|z|

 ∑
i∈N1∩[1,|z|]

zi +
∑

i∈N2∩[1,|z|]

zi +
∑

i∈N3∩[1,|z|]

zi


=

1

|z|

 |N1 ∩ [1, |z|]|
|N1 ∩ [1, |z|]|

∑
i∈N2∩[1,|z|]

zi +
|N3 ∩ [1, |z|]|
|N3 ∩ [1, |z|]|

∑
i∈N3∩[1,|z|]

zi


≤ 1

|z|

(
|N1 ∩ [1, |z|]|
|N1 ∩ [1, |z|]|

2Mbf(1)c+ α|N3 ∩ [1, |z|]|
)

=
1

|z|

(
|N1 ∩ [1, |z|]|2Mbf(1)c

τ
+ α|N3 ∩ [1, |z|]|

)
≤ 1

|z|
(α|N1 ∩ [1, |z|]|+ α|N3 ∩ [1, |z|]|)

= α

(
|N1 ∩ [1, |z|]|+ |N3 ∩ [1, |z|]|

|z|

)
≤ α

Here, the first inequality holds since v′ ∈ G, the second equality holds be-
cause |N1∩ [1, |z|]| = τ (using |z| ≥ τ), and the second inequality holds since

τ ≥ 2Mbf(1)c
α

.

The proof for z ∈ Suf(0τu′v′w′0τ ) is similar.

Our main result is the following.

Theorem 3.5. Let Xf be a bounded density shift. If for every measure of

maximal entropy µ, we have that
∑bf(1)c

i=0 iµ([i]) ≥ α, then Xf is intrinsically
ergodic.

Proof. If α = 0, then since all sequences have frequency 0 of non-0 symbols,
the unique invariant measure is the delta measure of ∞0∞ .

If α > 0 we will obtain the result using Theorem 2.5. First note that
B = Cp = Cs. Using Lemma 3.1 we obtain L(X) = CpGCs. Now we will
check the numbered hypotheses of Theorem 2.5.

1. Lemma 3.2 gives us that G has specification.

2. Let µ′ be the measure constructed in Proposition 3.3. By hypothesis it
cannot be a measure of maximal entropy. Thus, h(Cp ∪ Cs) = h(B) ≤
hµ′(Xf ) < htop(Xf ).
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3. We obtain this property using Lemma 3.4.

Question 3.6. Is it true that for every binary bounded density shift we have
that µ([1]) ≥ α for every measure of maximal entropy?

Is it true that for every bounded density shift we have that

bf(1)c∑
i=0

iµ([i]) ≥ α

for every measure of maximal entropy?

A simple condition that easily provides several examples is the following.

Corollary 3.7. Let Xf be a bounded density shift. If α ≥
∑bf(1)c

i=1
i
i+1 then

Xf is intrinsically ergodic.

Proof. Using [8, Corollary 4.6] and the fact that bounded density shifts
are hereditary we have that for any measure of maximal entropy µ([i]) ≤
µ([i−1]). Since µ is a probability measure this implies that µ([i]) ≤ 1/(i+1).
Thus,

bf(1)c∑
i=1

i · µ([i]) ≤
bf(1)c∑
i=1

i

i+ 1
.

We obtain the result using Theorem 3.5.

Remark. In particular, every binary bounded density shift with α ≥ 1/2 is
intrinsically ergodic.

We will now prove a property called entropy minimality for all bounded
density shifts for α > 0 using results from [8]. We first need some definitions.

Definition 3.8. A subshift X is entropy minimal if every subshift strictly
contained in X has lower topological entropy.

Equivalently, X is entropy minimal if every measure of maximal entropy
on X is fully supported.

Definition 3.9. Let X be a subshift and v ∈ L(X). The extender set of
v in X is defined by

EX(v) = {y ∈ {0, 1, . . . , bf(1)c}Z : y(−∞,0]vy[1,∞) ∈ X}.
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Theorem 3.10 (Garćıa-Ramos and Pavlov [8]). Let X be a subshift with
htop(X) > 0, µ a measure of maximal entropy and v, w ∈ L(X). If EX(v) ⊆
EX(w) then

µ(v) ≤ µ(w)ehtop(X)(|w|−|v|).

Theorem 3.11. Every bounded density shift (with α > 0) is entropy mini-
mal.

Proof. Let Xf be a bounded density shift, µ ∈ M(Xf , σ) a measure of
maximal entropy and w ∈ L(Xf ). Since the topological entropy of Xf is
positive then 1 ∈ L(Xf ), and µ([1]) > 0 (otherwise µ([0]) = 1 and the
entropy cannot be positive). By Poincaré’s recurrence theorem, there exists
v′ ∈ L(Xf ) for which µ([v′]) > 0 and

|v′|∑
i=1

v′i >

|w|∑
i=1

wi.

We can then define v which is coordinatewise less than or equal to w with

|v|∑
i=1

vi =

|w|∑
i=1

wi.

By the fact that Xf is hereditary, EXf
(v′) ⊂ EXf

(v), and so by Theo-
rem 3.10, µ([v]) ≥ µ([v′]) > 0.

We want to prove that EXf
(v) ⊆ EXf

(0|v|w0|v|). Let y ∈ EXf
(v), with

x = y(−∞,0].vy[1,∞) ∈ Xf , and x′ = y(−∞,0].0
|v|w0|v|y[1,∞). Let n < m ∈ Z.

We consider two cases, when x′[n,m] is a subword of 0|v|w0|v| and when it is

not. If x′[n,m] is subword of 0|v|w0|v|, then x′[n,m] ∈ L(Xf ) since w ∈ L(Xf )

([16, Lemma 2.3]). Otherwise, there exists p ∈ Z such that

m∑
i=n

x′i ≤
m+p∑
i=n+p

xi ≤ f(m− n).

This implies that x′[n,m] ∈ L(Xf ). Thus, x′ ∈ Xf , and so y ∈ EXf
(0|v|w0|v|).

Since y was arbitrary, EXf
(v) ⊆ EXf

(0|v|w0|v|). Using Theorem 3.10 we
conclude that

µ([w]) ≥ µ([0|v|w0|v|]) ≥ µ([v])e−htop(X)(|w|−|v|) > 0.

Therefore, µ is fully supported.
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Definition 3.12. Let X be a subshift. A word v ∈ L(X) is intrinsically
synchronizing if uv, vw ∈ L(X) then uvw ∈ L(X).

A subshift is synchronized if there exists v ∈ L(X) such that v is an
intrinsically synchronizing word.

Every entropy minimal synchronized subshift is intrinsically ergodic ([17,
8]) and every synchronized subshift is coded ([7]). Hence, we obtain the
following corollary.

Corollary 3.13. Every synchronized bounded density shift is intrinsically
ergodic.

3.1 Surjunctivity

Another application of entropy minimality is surjunctivity. Given a subshift
X, we say φ : X → X is a shift-endomorphism if it’s continuous and it
commutes with the shift. If a shift-endomorphism is bijective we say it is a
shift-automorphism.

A subshiftX is said to be surjunctive if every injective shift-endomorphism
of X is a shift-automorphism. Every full shift is surjunctive ([6, Chapter 3].
The following result is known (e.g. see [2]) but it is not explicitly stated.
We write the proof since the argument is simple.

Lemma 3.14. Every entropy minimal subshift is surjunctive.

Proof. Let X be a subshift and φ : X → X an injective shift-endomorphism.
This implies that φ(X) is a subshift which is topologically conjugate to
X. Since topological entropy is conjugacy-invariant, φ(X) has the same
topological entropy as X. If X is entropy minimal then φ(X) = X.

Using this and Theorem 3.11 we obtain the following.

Corollary 3.15. Every bounded density shift with positive topological en-
tropy is surjunctive.
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[8] Felipe Garćıa-Ramos and Ronnie Pavlov. Extender sets and measures
of maximal entropy for subshifts. Journal of the London Mathematical
Society, 100(3):1013–1033, 2019.

[9] Dominik Kwietniak. Topological entropy and distributional chaos in
hereditary shifts with applications to spacing shifts and beta shifts.
Discrete and Continuous Dynamical Systems, 33(6):2451–2467, 2013.

[10] Doug Lind and Brian Marcus. An introduction to Symbolic Dynamics
and Coding. Cambridge University Press, 1995.

[11] Michal Misiurewicz. A short proof of the variational principle for a Zn+
action on a compact space. Asterisque, 40:147–157, 1976.

[12] Maria Jose Pacifico, Fan Yang, and Jiagang Yang. Existence and
uniqueness of equilibrium states for systems with specification at a
fixed scale: an improved climenhaga–thompson criterion. Nonlinearity,
35(12):5963, 2022.

[13] Ronnie Pavlov. On controlled specification and uniqueness of the equi-
librium state in expansive systems. Nonlinearity, 32(7):2441–2466,
2019.

[14] Ronnie Pavlov. On subshifts with slow forbidden word growth. Ergodic
Theory and Dynamical Systems, 42(4):1487–1516, 2022.

16



[15] Jörg Schmeling. Symbolic dynamics for β-shifts and self-normal num-
bers. Ergodic Theory Dynam. Systems, 17(3):675–694, 1997.

[16] Brett Stanley. Bounded density shifts. Ergodic Theory and Dynamical
Systems, 33(6):1891–1928, 2013.

[17] Klaus Thomsen. On the ergodic theory of synchronized systems.
Ergodic Theory and Dynamical Systems, 26(4):1235–1256, 2006.

[18] Peter Walters. An Introduction to Ergodic Theory. Springer, 1975.

17


