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Abstract. In this paper, we characterize precisely the possible sets of periods and least
periods for the periodic points of a shift of finite type (SFT). We prove that a set is the set
of least periods of some mixing SFT iff it is either {1} or cofinite, and the set of periods
of some mixing SFT iff it is cofinite and closed under multiplication by arbitrary natural
numbers. We then use these results to derive similar characterizations for the class of
irreducible SFTs and the class of all SFTs. Specifically, a set is the set of (least) periods
for some irreducible SFT iff it can be written as a natural number times the set of (least)
periods for some mixing SFT, and a set is the set of (least) periods for an SFT iff it can
be written as the finite union of the sets of (least) periods for some irreducible SFTs.

1. Introduction

The results in this paper are about dynamical systems. Modern dynamical systems the-
ory has a relatively short history, though scientists from many disciplines have begun to
use nonlinear dynamics techniques to describe problems ranging from physics and chem-
istry to ecology and economics. Fundamentally, a dynamical system is a set or space with
structure, usually denoted by X, partnered with a function or map, usually denoted by
f , that preserves that structure through repeated iterations. This function f can then be
applied arbitrarily many times to subsets or elements of X, which incites certain possible
patterns. One of the simplest is when a point returns to itself after some number (say n)
of iterations of f ; such a point is said to be periodic with period n. Different points of
the system can have different periods, and so a simple natural object of study is the set
of periods of points of a given dynamical system. The celebrated Sharkovsky’s Theorem
gave some surprising information about this set of periods for dynamical systems given by
continuous self-maps of intervals.

Sharkovsky’s Theorem ([6]). For any interval I in R, if f : I → I is continuous and
has a point of least period k, then there exist points of all least periods less than k in the
Sharkovsky ordering, where the ordering is as follows:

3 > 5 > 7 > 9 > 11...
> 6 > 10 > 14 > 18 > 22...
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> 12 > 20 > 28 > 36 > 44...
...
... > 16 > 8 > 4 > 2 > 1.

In particular, Sharkovsky’s Theorem implies that for any such f , the set of natural numbers
which are least periods of periodic points for f is a downward closed set with respect to
the Sharkovsky ordering. In fact, examples are also constructed in [6] which, given any
such (nonempty) downward closed set, yield f which realizes that set as the least periods
of periodic points. This then yields a complete characterization of which sets can appear
as the sets of least periods for such f . The goal of the present work is to obtain such a
characterization for a completely different class of dynamical systems, called the shifts of
finite type.

Here we step into the realm of symbolic dynamics. For symbolic dynamical systems, one
begins with a finite set of symbols called the alphabet and denoted by A. Elements of A
are called letters and can be combined to form “words” or “blocks.” A symbolic dynamical
system, or shift space, is a subset of all possible bi-infinite sequences created with the
alphabet A based on a collection of “forbidden blocks” F , essentially rules on what words
or symbols can and cannot appear in these bi-infinite sequences. For shift spaces, the
dynamics are always given by the shift map σ, which shifts a sequence in the space one
unit to the left. A shift space described by a finite set of forbidden blocks is called a shift
of finite type (SFT). An example of an SFT would be where X is the set of all binary
sequences with no two 1s next to each other, induced by F = {11}. This is known as the
golden mean shift. Because they have a simple representation using a finite, directed graph
(see Section 3), SFTs are attractive to study, as questions about the SFT can typically be
phrased as questions about the graph which can be translated back to the original shift.

A periodic point of a shift space is just a bi-infinite sequence made only of a word w
of length p repeated bi-infinitely with no additional words, which is then said to have
period p. In this work, we study periodic points in SFTs as, though they are in some sense
the “simplest” shifts, they play an important role in dynamical systems by facilitating
the study of more complex systems. The main results of this work are a characterization
for shifts of finite type analogous to Sharkovsky’s Theorem, along with a corresponding
characterization for the sets of (not necessarily least) periods for shifts of finite type. Unlike
the f : I → I case above, our characterizations do not come from any ordering of N, but
rather from structural properties of the sets.

Theorem 1.1. A set S is closed under N-multiples and cofinite if and only if ∃ a topolog-
ically mixing SFT such that S is the set of periods of its periodic points.

Theorem 1.2. A set R can be written as p · S, where p ∈ N and S is a cofinite set which
is closed under N-multiples, if and only if ∃ a topologically transitive SFT such that R is
the set of periods of its periodic points.

Theorem 1.3. A set Q can be written as
∪n

i=1 pi · Si for some pi ∈ N and cofinite sets
Si which are closed under N-multiples if and only if ∃ an SFT such that Q is the set of
periods of its periodic points.
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Theorem 1.4. A set S is either {1} or cofinite if and only if ∃ a topologically mixing SFT
such that S is the set of least periods of its periodic points.

Theorem 1.5. A set R is either a singleton or can be written as p · S, where p ∈ N and
S is a cofinite set, if and only if ∃ a topologically transitive SFT such that R is the set of
least periods of its periodic points.

Theorem 1.6. A set Q can be written as U ∪
∪n

i=1 pi · Si for some finite set U , pi ∈ N,
and cofinite sets Si, if and only if ∃ an SFT such that Q is the set of least periods of its
periodic points.

In addition to the relation to Sharkovsky’s theorem already outlined, these results also
connect to other characterizations of various other important objects for SFTs, most no-
tably topological entropy ([4]) and the Artin-Mazur zeta function ([3]). The latter is most
relevant to our work, due to the connection of the zeta function to periodic points. The
zeta function is a formal power series defined by

ζ(z) = exp

( ∞∑
n=1

pn
zn

n

)
,

where pn is the number of points of period n in the system. For SFTs, the zeta-function
always has the form 1

p(z) for some polynomial p (see [1]), and the classification from [3] is

in terms of these p(z), more specifically in terms of the sets of non-zero complex numbers
(with multiplicity) which can be realized as the roots of such p(z). Relevant for this work is
the fact that knowledge of the zeta function is theoretically equivalent to knowledge of pn
for all n, and the set of periods is the set of exponents with positive coefficients. Therefore,
theoretically speaking, the classification from [3] contains enough information to derive a
classification of the sets of periods for SFTs. However, practically speaking, it is not at all
simple to turn information about roots of p(z) into information about the set of exponents
with positive coefficients for the power series expansion of 1

p(z) .

Finally, we note that the possible sets for a generalized notion of least periods for multi-
dimensional SFTs (which consist of Zd-indexed arrays of letters rather than sequences)
were recently characterized in [2]. As is often the case for multidimensional SFTs, their
characterization is in recursion-theoretic terms and much more complicated than the ones
we derive in one dimension. It is noted in [2] that the set of least periods for a (one-
dimensional) SFT must be semi-linear, and this is true. However, as our results show, not
all semi-linear sets are realizable in this way; for instance, the set of positive odd integers
is not the set of least periods of any (one-dimensional) SFT. It is strange that the much
more complicated and difficult results of [2] appeared even though the one-dimensional
characterization does not seem to be present anywhere in the literature; we hope that our
results fill this gap.

2. Definitions

Definition 1. A topological dynamical system is a pair (X,T ) where X is a compact
metric space and T : X → X is a continuous map.



4 MADELINE DOERING AND RONNIE PAVLOV

Definition 2. For any finite set of symbols, A (which we call an alphabet), the full A-
shift is the collection AZ = [x = (xi)i∈Z : xi ∈ A for all i ∈ Z] of all bi-infinite sequences
of symbols from A.

Definition 3. The shift map σ on the full shift AZ maps a point x to the point y = σ(x)
whose ith coordinate yi is xi+1, the (i+ 1)th coordinate of x.

Definition 4. A point x is periodic for σ if σn(x) = x for some n ≥ 1. x is said to have
period n under σ.

Definition 5. For a point x that is periodic, the smallest positive integer n for which
σn(x) = x is the least period of x.

Definition 6. Let (X,T ) and (Y, S) be two topological dynamical systems. (X,T ) and
(Y, S) are conjugate if there exists between them a homeomorphism h : X → Y such that
h(T (x)) = S(h(x)) for all x ∈ X.

We note that if (X,T ) and (Y, S) are conjugate via h : X → Y , then Tnx = x iff
Snh(x) = h(x), and so conjugacy preserves the number of points of (least) period n in any
dynamical system.

Definition 7. A shift space is a subset X of a full shift AZ such that for some collection
F of forbidden blocks over A, X = X(F), the set of all possible bi-infinite sequences that
do not contain any blocks from F .

Whenever X is a shift space, (X,σ) is a topological dynamical system when X is given
the induced product topology from AZ.

Definition 8. A shift of finite type is a shift space equal to X(F) for some finite
collection of forbidden blocks.

Definition 9. The language is the set of all possible blocks of length n ∈ N of a shift
space X, denoted B(X).

Definition 10. A shift space X is irreducible if for every ordered pair of blocks u, v ∈
B(X) there exists w ∈ B(X) such that uwv ∈ B(X).

Definition 11. A shift space X is mixing if, for every ordered pair u, v ∈ B(X), there is
an N such that for each n ≥ N there exists w ∈ Bn(X) such that uwv ∈ B(X).

Definition 12. A graph G consists of a finite set V = V (G) of vertices (or states)
together with a finite set E = E(G) of edges. All of the graphs discussed in this paper are
directed graphs, meaning that each edge goes from one vertex to another, called the initial
and terminal vertices of the edge, respectively.

Definition 13. A cycle C of an arbitrary graph G is called non-elementary if C is com-
prised of a single smaller cycle followed two or more times. A cycle is called elementary
if it is not non-elementary.

Definition 14. A graph G is irreducible if for every ordered pair of vertices I and J
there is a path in G starting at I and terminating at J .
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Definition 15. Given an irreducible graph G, the period of G, denoted per(G), is the
greatest common divisor of its cycle lengths.

Definition 16. An irreducible graph is aperiodic if per(G) = 1.

Definition 17. A graph is primitive if it is irreducible and aperiodic.

Definition 18. A set S is closed under N-multiples if for all n ∈ S, mn is also in S
for all m ∈ N.

3. Preliminaries

The following theorems, definitions, and descriptions are used extensively in the proofs
of our results. We will see that any SFT can be studied by way of an associated graph,
every graph can be broken down into primitive pieces, and from these primitive graphs we
can build our results.

Definition 19. For an arbitrary graph G with set of edges E(G), the edge shift χG, is
the shift space over the alphabet A = E(G) consisting of all bi-infinite sequences of edges
which are connected end-to-end in G.

By Proposition 2.2.6 from [5], for any graph G, the associated edge shift χG is an SFT.
Surprisingly, every SFT can also be depicted as a graph.

Proposition 3.1. For any SFT X, there exists a graph G such that X is conjugate to the
edge shift χG. In addition, if X is transitive, then G can be taken to be irreducible, and if
X is mixing, then G can be taken to be primitive.

Proof. The first sentence follows from Theorem 2.3.2 from [5]. The reader may check that
the remaining statements hold for the construction done there. �

This then allows a connection to be made between the periodic points of an SFT and
the cycle lengths of its associated graph G:

Proposition 3.2. For any SFT X, there exists a graph G such that for all p ∈ Z, the
number of points of (least) period p in X equals the number of (elementary) cycles of length
p in G.

Proposition 3.3. For any topologically transitive SFT X, there exists an irreducible graph
G such that for all p ∈ Z, the number of points of (least) period p in X equals the number
of (elementary) cycles of length p in G.

Proposition 3.4. For any topologically mixing SFT X, there exists a primitive graph G
such that for all p ∈ Z, the number of points of (least) period p in X equals the number of
(elementary) cycles of length p in G.

Proof. By Proposition 3.1, for any SFT X we can find a graph G such that X ∼= χG.
Then by Proposition 2.2.12 from [5], the number of cycles of length m in G is equal to the
number of points in the edge shift χG with period m. To prove this, Lind and Marcus use
an object called the adjacency matrix, but we will not need this object in our work. X is
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conjugate to χG, and as we defined, conjugacy preserves periodic points, completing the
proof. The proofs of Propositions 3.3 and 3.4 follow similarly. �

Thus, in light of Propositions 3.1 - 3.4, the following six theorems are equivalent to
Theorems 1.1 - 1.6:

Theorem 3.5. A set S is closed under N-multiples and cofinite if and only if ∃ a primitive
graph G such that S is the set of cycle lengths in G.

Theorem 3.6. A set R can be written as p · S, where p ∈ N and S is a cofinite set which
is closed under N-multiples, if and only if ∃ an irreducible graph H such that R is the set
of cycle lengths in H.

Theorem 3.7. A set Q can be written as
∪n

i=1 pi · Si for some pi ∈ N and cofinite sets
Si which are closed under N-multiples if and only if ∃ a graph F such that Q is the set of
cycle lengths in F .

Theorem 3.8. A set S is either {1} or cofinite if and only if ∃ a primitive graph G such
that S is the set of elementary cycle lengths in G.

Theorem 3.9. A set R is either a singleton or can be written as p ·S, where p ∈ N and S
is a cofinite set, if and only if ∃ an irreducible graph H such that R is the set of elementary
cycle lengths in H.

Theorem 3.10. A set Q can be written as U ∪
∪n

i=1 pi · Si for some finite set U , pi ∈ N,
and cofinite sets Si, if and only if ∃ a graph F such that Q is the set of elementary cycle
lengths in F .

Now, the graphs themselves can be decomposed into irreducible and primitive compo-
nents, the consequences of which will be used extensively in the proofs of our results.

Proposition 3.11. For every graph G, there exist irreducible subgraphs G1, G2, ..., Gk

such that the set of (elementary) cycles that appear in G is the disjoint union of the sets
of (elementary) cycles that appear in the Gi.

Proof. Begin by separating G into communicating classes Ci ⊂ V (G) defined by the collec-
tions of vertices such that for each pair of vertices I and J within a collection, there exists
a path I to J and J to I. Let Gi be the subgraph G|Ci . We claim that no cycles of G
can contain vertices from two different communicating classes. To see this, let C,B be two
communicating classes. Then suppose for a contradiction there exists an edge connecting
a vertex of C to a vertex of B and another edge connecting a vertex of B to a vertex of C.
This would create a larger communicating class, which is a contradiction by definition. By
again considering the definition of communicating classes, we see the Gi are irreducible. It
is clear that every cycle of G is part of some Gi, thus the set of cycles that appear in G is
the disjoint union of the sets of cycles that appear in the Gi. �
Proposition 3.12. Any irreducible graph G has an associated primitive graph G′ for which
the set of (elementary) cycles of G is p·S, where p = per(G) and S is the set of (elementary)
cycle lengths of G′.
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Proof. Let G be irreducible. By Proposition 4.5.6 from [5], V(G) can be grouped into
exactly p period classes which can be ordered as D0, D1, ..., Dp−1 so that every edge that
starts in Di terminates in Di+1 (or in D0 if i = p−1). The comment following Proposition
4.5.6 states that there is an associated graph Gp, called the higher power graph, that
consists of p primitive (aperiodic and irreducible), disjoint subgraphsG1, ..., Gp. In Exercise
4.5.6 from [5], it is shown that the edge shifts XGi associated to each Gi are conjugate to
each other, and therefore contain the same numbers of points with (least) period n for
every n. Then by Propositions 3.1 and 3.2, the Gi all contain the same (elementary) cycle
lengths.

Since all Gi have the same (elementary) cycle lengths, we consider any Gi. By definition
of the higher power graph (not given here), the set of (elementary) cycle lengths in G is
p-times the set of (elementary) cycle lengths in Gi, thus there exists a cycle in Gi of length
k if and only if there exists a cycle in G of length pk. �

Any SFT X can therefore be represented by an associated graph G. Through use of
the irreducible components and higher power graph, this G can be reduced to a primitive
graph which is far simpler to work with. This will be an advantage in the following results.

4. Results on General Cycle Lengths

4.1. Primitive Graphs. The proof of Theorem 3.5, which is equivalent to Theorem 1.1
as noted in Section 3, now follows.

Proof. ⇒ Let S be a set closed under N-multiples and cofinite. We will now construct a
graph G with the set S as the set of cycle lengths of G. Since S is cofinite, ∃N ∈ S such
that ∀n ≥ N,n ∈ S. Build a cycle of length N . ∀s ∈ S such that s < N , build a cycle of
length s such that it shares a vertex with the N -cycle, but does not share a vertex with
any other cycle of length less than N . This is possible as the N -cycle has N vertices and
there exist at most N -1 s ∈ S such that s < N . Call these cycles of length less than N
the “small cycles.” Then, on the smallest cycle k, build cycles of length N + i such that
i ∈ 1, ..., k − 1 each sharing a unique vertex with the k-cycle. Call these cycles of length
greater than N the “large cycles.” Call the resulting graph G.

Every cycle shares a vertex with either the N -cycle or the k-cycle, the N -cycle and the
k-cycle themselves sharing a vertex. Thus, there exists a path between vertices in any two
cycles, and so G is irreducible. The gcd of the cycles of G is 1 since G contains cycles of
length N and N + 1. Thus G is aperiodic. Therefore, G is primitive.

Let P be the set of cycle lengths of G. Then let s be any element of S. By construction,
∀s ∈ S such that s ≤ N , ∃ cycles of length s. Thus if s ≤ N , the s-cycle already exists
within G by construction. Else, s > N . Then ∃i such that 0 ≤ i ≤ k−1 such that s ≡ N+i
(mod k) since the N + i cover all k residue classes. Thus s = N + i+mk. If m < 0, then
s < N + i and because i ∈ 1, ..., k − 1, s < N . This violates the assumption of s > N ,
hence m ≥ 0. Thus if s > N , the s-cycle can be achieved by going around the N + i cycle
once and the k-cycle m times. Therefore, s ∈ P and since s ∈ S was arbitrary, S ⊆ P .



8 MADELINE DOERING AND RONNIE PAVLOV

Let c be any element of P , where C is an associated cycle of G with length c.
There are two cases we consider:

1. C contains at least one edge from a large cycle.
Then by construction C must contain the entire large cycle. If C contains even one large
cycle, c ≥ N and thus C ∈ S as S is cofinite.

2. C contains no edges from any large cycle.
Then C must be made up entirely of small cycles. By construction no small cycles share

a vertex, thus C is a cycle of length c = ms, where m ∈ N and s ∈ S. Hence c ∈ S as S is
closed under N-multiples.
Thus, since C was arbitrary, P ⊆ S, and therefore S represents the set of cycles of G.

⇐ Let G be a primitive graph and T be the set of cycle lengths of G. ∀n ∈ N, if ∃ a
cycle in G of length z ∈ N, ∃ a cycle of length nz obtained by going around the cycle of
length z n-times. Hence, T is closed under N-multiples. As well, G being primitive implies
it is both irreducible and aperiodic. Thus, by Theorem 4.5.8 and Proposition 2.2.12 from
[5], if G is primitive, then T is cofinite. �

4.2. Irreducible Graphs. The proof of Theorem 3.6 now follows.

Proof. ⇒ Let R = p · S, where p ∈ N and S is a set closed under N-multiples and cofinite.
By Theorem 1, there exists a primitive graph G such that the set of cycle lengths of G is S.
Take this graph G and for every directed edge between two vertices I and J in G, create
a path of p directed edges and p− 1 vertices beginning at I and ending at J ; all such sets
of newly created vertices are disjoint. Call the new graph Gp.

Each cycle length of G has been multiplied by p in Gp, thus per(Gp) = p since per(G)
= 1 as G is primitive. Then take I and J , two vertices of Gp. There are three cases:
1. Both exist in G.
Then there exists a path in G starting at I and terminating at J . Such a path then also
exists in Gp, but its length has been multiplied by a factor of p.
2. One vertex exists in G.
Assume I exists in G and J exists only in Gp. By construction, there exist p− 1 directed
edges forming a path starting at a vertex V existing in G and terminating at J . By the
previous case there exists a path in Gp starting in I and terminating in V . Then V was at
most p− 1 directed edges away from J , thus there is a path from I to J consisting of the
path I to V then V to J .
Assume I exists only in Gp and J exists in G. The proof is similar.
3. Both exist only in Gp.
Then by construction there exist at most p− 1 directed edges forming a path starting at I
and terminating at a vertex existing in G, call it A, and there exist at most p− 1 directed
edges forming a path starting at a vertex existing in G, call it B, and terminating at J .
By case 1 there exists a path starting at A and terminating at B. Then there are at most
p− 1 edges I to A and p− 1 edges B to J , thus there exists a path from I to J consisting
of the combination of paths I to A, A to B, B to J .
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In each case, for any two vertices I and J there exists a path in Gp starting at I and
terminating at J . Therefore Gp is irreducible.

⇐ Let H be an irreducible graph with period p. By Proposition 3.12, H can be asso-
ciated to a primitive graph G with set of cycle lengths T so that the set of cycle lengths of
H is p · T where, by Theorem 3.5, T is a set closed under N-multiples and cofinite. �

4.3. Arbitrary Graphs. The proof of Theorem 3.7 now follows.

Proof. ⇒ Let Q =
∪n

i=1 Ri where Ri = pi · Si, where pi ∈ N and Si is closed under N-
multiples and cofinite. By Theorem 3.6, for each i ∈ 1, ..., n, there exists an irreducible
graph Gi such that each Gi has set of cycle lengths Ri. Place them together, with no edges
connecting any Gi to any other, and call the resulting graph G. As there do not exist
any edges connecting vertices from different Gi, the cycles of G are only the cycles of the
individual Gi, thus the set of cycles of G is Q =

∪n
i=1 Ri.

⇐ Let F be an arbitrary graph. By Proposition 3.11, F can be broken down into ir-
reducible subgraphs Fi for 1 ≤ i ≤ n. By Theorem 3.6, the set of cycle lengths of each
Fi can be written as Ri = pi · Ti, where Ti is a set that is closed under N-multiples and
cofinite and pi is the period of Fi. Hence the set of cycle lengths of F =

∪n
i=1 Ri. �

5. Results on Elementary Cycle Lengths

5.1. Primitive Graphs. The proof of Theorem 3.8 now follows.

Proof. ⇒ Let S′ be either {1} or cofinite. If S′ is {1}, then we can create the primitive graph
consisting of a single vertex with a self-loop; this graph clearly has only one elementary
cycle, with length 1. We then assume S′ is a cofinite set. By the same construction found
in the proof of Theorem 3.5, use S′ to construct a primitive graph G′. Let P ′ be the set of
elementary cycle lengths of G′. The reader can note, since S ⊂ P in Theorem 3.5 and all
cycles created were elementary cycles, S′ ⊂ P ′.

Then let c′ be an element of P ′, where C ′ is an elementary cycle of G′ of length c′. The
two cases seen in the proof of Theorem 3.5 hold, except for a nuance of case 2. Here - the
case where C ′ contains no edges from any large cycle - we need only consider m = 1, else
C ′ is not elementary. Since this was the only instance where the fact that S was closed
under N-multiples (something not necessarily true of S′) was used, P ′ ⊆ S′.

⇐ Let G be a primitive graph. By definition, as G is primitive, G is irreducible and
aperiodic. By Lemma 4.5.6 from [5], since G is irreducible, for an arbitrary v ∈ V (G), the
gcd of all lengths of cycles starting and ending at v is per(G). Since per(G) = 1, there
exist cycles D1, D2, ..., Dl beginning and ending at v such that gcd(|Dj |) = 1.

Without loss of generality, we can first remove duplicate cycles. Removing duplicate
cycles does not change gcd(|Dj |) = 1, as no cycle length was removed from the gcd cal-
culation. Should a cycle Di visit v more than only at the beginning and end, it can be
written as a concatenation of cycles C1

i , C
2
i , ..., C

m
i , each of which visits v only at the
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beginning and end. Then, |Di| = |C1
i | + ... + |Cm

i |, and we claim that we maintain
gcd(|C1

i |, ..., |Cm
i |, |D1|, ..., |Di−1|, |Di+1|, ..., |Dl|) = 1. To see this, assume for a contra-

diction gcd(|C1
i |, ..., |Cm

i |, |D1|, ..., |Di−1|, |Di+1|, ..., |Dl|) ̸= 1. Then ∃ a factor q such that
gcd(|C1

i |, ..., |Cm
i |, |D1|, ..., |Di−1|, |Di+1|, ..., |Dl|) = q. Since |C1

i |+ ...+ |Cm
i | = |Di| and q is

a factor of all the |Cj
i |, q is a factor of |Di|. Thus gcd(|Dj |) = q, but this is a contradiction

since gcd(|Dj |) = 1. We have shown that we can reduce the D1, ..., Dl to distinct cycles
C1, ..., Ck which only contain v at their beginning and end.

We then break into two cases: k = 1 or k > 1. If k = 1, then |D1| = 1, indicating a
self-loop exists at v. Assume for a contradiction that G contains a different elementary
cycle C. Then by irreducibility of G, a cycle exists that begins at v and traverses C
before returning to v; this path is not just a repeated traversal of the self-loop since we
assumed C non-elementary. Then there exists a subcycle C ′ which contains v only at the
beginning and end which is not the self-loop, contradicting k = 1. Thus, in this case the
only elementary cycle in G is the self-loop at v, and therefore the set of elementary cycle
lengths is {1}.

For the remaining case, assume k = 1, and let S1 = {n1|C1| + ... + nk|Ck| : ni ≥ 0}.
It is well-known that S1 is cofinite in N and so ∃N such that ∀n ≥ N , n ∈ S1. Let
S2 = {n1|C1| + ... + nk|Ck| : ∃j, j′ st nj , nj′ > 0}; we will show that S2 is also cofinite.
Choose an n bigger than N and all possible |Ci||Cj | for 1 ≤ i, j ≤ k. Then ∃ni ≥ 0 such
that n = n1|C1|+ ...+ nk|Ck|. We then break into subcases:
1. If at least 2 of the ni > 0, n ∈ S2 by definition.
2. Else, since k > 1, ∃i such that ∀j ̸= i, nj = 0. Then choose any of the j ̸= i.
n = |Cj ||Ci| + |Ci|(ni − |Cj |). Recall n > |Ci||Cj |. As n = ni|Ci|, this implies ni > |Cj |.
Thus ni − |Cj | > 0. Then nj = |Ci| and n ∈ S2.
In either case, n ∈ S2, therefore S2 is cofinite.

For all n ∈ S2, n = n1|C1| + ... + nk|Ck|, we now construct a cycle of length n by
beginning at v and following C1 n1-many times, then C2 n2-many times ... and finally Ck

nk-many times. Call this cycle C. We can then write C = Ct1
i1
Ct2
i2
...Ctℓ

iℓ
where ℓ > 1 and

all ti > 0.
We claim C is elementary. If C is not an elementary cycle, there exists C ′ starting and

ending at v such that C = (C ′)p for some p > 1. Then Ct1
i1
Ct2
i2
...Ctℓ

iℓ
= (C ′)p. As each

Cij only visits v at the beginning and end of the cycle it must be that either C ′ = Cm
i1

or C ′ = Ct1
i1
...C

tj
ij
Cm
ij+1

, where j ≥ 1 and 0 ≤ m < tj+1. In the first case, C ′ consists of

m-many Ci1 , thus (C
′)p = Cmp

i1
. However, we know Ci2 is the next cycle to be followed in

order to return to v after Ct1
i1
. Then Ci1 = Ci2 , however, the Cij are distinct, thus this is

a contradiction. In the second case, (C ′)p = (Ct1
i1
...Cti

ij
Cm
ij+1)

p, though again we know the

after C ′, Cij+1 is the next cycle to be followed before returning to v. Thus Ci1 = Cij+1

for some j ≥ 1. Again, this is a contradiction as the Cij are distinct. Hence, C is an
elementary cycle. Therefore, given a primitive graph G, the set of elementary cycle lengths
of G is cofinite. �

5.2. Irreducible Graphs. The proof of Theorem 3.9 now follows.
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Proof. ⇒ Let R = p ·S where p ∈ N and S is either {1} or a cofinite set. In both cases, we
can use Theorem 3.8 and the same construction as in the proof of Theorem 3.6 to construct
an irreducible graph H whose set of elementary cycle lengths is R.

⇐ Let G be an irreducible graph where R is the set of elementary cycle lengths of G.
Let p = per(G). By Proposition 3.12, G has an associated primitive graph G′ where the
set of elementary cycle lengths of G = p · S, S being the set of elementary cycle lengths of
G′. By Theorem 3.8, S is {1} or cofinite. Since R = p · S, either R = {p} or R = p · S for
S cofinite. �
5.3. Arbitrary Graphs. The proof of Theorem 3.10 now follows.

Proof. ⇒ Consider any set Q which can be written as U ∪
∪n

i=1 pi · Si for some finite set
U , pi ∈ N, and cofinite sets Si. Then Q can be written as a finite union of singletons and
sets of the form pi ·Si, each of which is the set of elementary cycle lengths of an irreducible
graph by Theorem 3.9. We can use the same construction as in the proof of Theorem 3.7
to construct a graph F whose set of elementary cycle lengths is Q.

⇐ Let F be an arbitrary graph. By Proposition 3.11, F can be broken down into ir-
reducible subgraphs Fi. By Theorem 3.9, the set of elementary cycle lengths of each Fi

can be written as pi · Ti, where Ti is a cofinite set or a singleton and pi = per(Fi). Hence
the set of elementary cycle lengths of F is the union U ∪

∪n
i=1 pi · Si, where U is the finite

union of the singletons and {Si}ni=1 is the collection of all Ti which are cofinite. �
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