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Abstract. For a class of Z2 Markov Random Fields (MRFs) µ, we show that

the sequence of successive differences of entropies of induced MRFs on strips
of height n converges exponentially fast (in n) to the entropy of µ. These

strip entropies can be computed explicitly when µ is a Gibbs state given by

a nearest-neighbor interaction on a strongly irreducible nearest-neighbor Z2

shift of finite type X. We state this result in terms of approximations to the

(topological) pressures of certain functions on such an X, and we show that

these pressures are computable if the values taken on by the functions are
computable. Finally, we show that our results apply to the hard core model

and Ising model for certain parameter values of the corresponding interactions,

as well as to the topological entropy of certain nearest-neighbor Z2 shifts of
finite type, generalizing a result in [P].

1. Introduction

The concept of entropy is fundamental to the study of dynamical systems both in
topological dynamics, where it arises as topological entropy for continuous maps,
and in ergodic theory, where it arises as measure-theoretic entropy for measure-
preserving transformations.

Of particular interest in symbolic dynamics are dynamical systems known as
shifts of finite type. We restrict our attention to nearest neighbor Zd shifts of finite
type (n.n. Zd-SFT); such an SFT X is specified by a finite alphabet A and a set of

translation-invariant adjacency rules: X is the subset of AZd of all configurations on
Zd which satisfy the adjacency rules. Here, the underlying dynamics are given by
the group of translations by vectors in Zd. The topological entropy h(X) is defined
as the asymptotic growth rate of the number of configurations on finite rectangles
that extend to elements of X (more precise definitions for n.n. Zd-SFT, topological
entropy and other concepts used in this introduction are given in Section 2).

The most prominent non-trivial example in dimension d = 1 (i.e. n.n. Z-SFT)
is the golden mean shift, defined as the set of all bi-infinite 0 − 1 sequences that
do not contain two adjacent 1’s. Its two-dimensional analogue, known as the hard
square shift H, is defined as the set of all 0 − 1 configurations on Z2 such that 1’s
are never adjacent horizontally or vertically.

The topological entropy of a n.n. Z-SFT X is easy to compute: namely, h(X)
is the log of the largest eigenvalue of a nonnegative integer matrix defined by the
restricted adjacency rules. The topological entropy of the golden mean shift turns
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out to be the log of the golden mean (hence the name for this SFT). However, it is
very difficult in general to compute the topological entropy of a n.n. Z2-SFT, and
exact values are known in only a handful of cases. Even for the hard square shift,
the topological entropy is not known.

Given a n.n. Z2-SFT X, the allowed configurations on a strip of height n form
what is effectively a n.n. Z-SFT Xn; here, the alphabet consists of columns of
height n that obey the vertical adjacency rules, with two adjacent columns required
to satisfy the horizontal adjacency rules. In [P], Pavlov proved that for the hard
square shift X = H, the sequence of differences h(Xn+1)−h(Xn) not only converges
to h(X) but does so exponentially fast (as a function of n). While this does not
give an exact expression for h(X), it does show that h(X) can be approximated
relatively well. In particular, a consequence of the approximation result from [P] is
that there is a polynomial time algorithm which on input k produces an estimate
of h(H) guaranteed to be accurate within 1/k. This is in stark contrast to the
main result from [HM], which implies that there exist numbers which occur as the
topological entropy of a n.n. Z2-SFT and are arbitrarily poorly computable.

While topological entropy can be viewed as a purely combinatorial object, the
proof in [P] uses measure-theoretic tools. For a translation-invariant measure µ on

AZ2

, there is an analogous notion of measure-theoretic entropy h(µ). If the support
of µ is contained in a n.n. Z2-SFT X, then h(µ) ≤ h(X) and there is always at least
one measure µ such that h(µ) = h(X). For X = H, there is a unique measure of
maximal entropy µmax. There is also a unique measure of maximal entropy µn for
each Hn. Using results on “disagreement percolation” from [vdBS], it was shown
that the sequence of differences h(µn+1) − h(µn) converges exponentially fast to
h(µmax), and one concludes that h(Hn+1)− h(Hn) converges exponentially fast to
h(H), as desired.

Of critical importance to the proof is the fact that µmax is a Z2-Markov random

field (MRF), which is, roughly speaking, a measure on AZ2

such that for any finite
subset S ⊂ Z2 the conditional probability distribution on configurations on S given
a configuration u on Z2 \S depends only on the restriction of u to the boundary of
S. For µmax, these conditional probabilities are uniform over allowed configurations
on S given u.

In this paper, we generalize the main result of [P] to more general translation-
invariant Z2-MRFs µ, with non-uniform conditional probabilities. Using results
from [vdBM], instead of [vdBS], we give, in Section 3, a measure-theoretic analogue
for certain Z2-MRFs. Namely, our Theorem 3.22 asserts that for sufficiently large
n, the MRF µ induces MRFs µn on strips of height n, with appropriate boundary
conditions, such that the sequence of differences h(µn+1) − h(µn) converges expo-
nentially fast to h(µ) (here, µn is viewed as a one-dimensional stationary process
on sequences of configurations of n-high columns); this result requires the existence
of suitable boundary rows for sufficiently large n and a condition on the proba-
bility distributions on configurations at a site in Z2, conditioned on configurations
on its four nearest neighbors. The condition (which is from [vdBM]) is that any
two such (conditional) probability distributions should not be too different – more
precisely, the total variation distance between any such distributions should be less
than the critical value for site percolation in Z2. This condition is similar in spirit
to the classical Dobrushin uniqueness criterion. The induced MRF µn is defined by
restricting the conditional probability specifications of µ to the strip of height n,
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with appropriate boundary conditions imposed on the row immediately above the
top row of the strip and the row immediately below the bottom row of the strip.
We note, in particular, that µn is not the usual marginalization of µ to the strip;
this latter process is typically not even an MRF.

This all becomes more concrete when the MRF µ is a Gibbs state for a n.n.
interaction Φ on a n.n. Z2-SFT X which satisfies a strong irreducibility condition
(Gibbs states are discussed in Section 4 and the strong irreducibility condition and
consequences are discussed in Section 5). In this case, the induced MRFs µn are
translation-invariant first-order Markov chains whose transition probabilities are
easily computed from the interaction (Proposition 6.3 in Section 6). There is a
simple closed form for the entropy of such a Markov chain, which in spirit is similar
to the closed form for topological entropy of a n.n. Z-SFT.

The interaction Φ defines a continuous function fΦ on X. The pressure PX(fΦ)
of such a function is defined as the asymptotic growth rate of arrays which are,
roughly speaking, weighted by exp(fΦ). Using an equivalent variational formula for
PX(fΦ), given in terms of translation-invariant measures supported within X, one
can apply Theorem 3.22 to obtain exponentially fast approximations to pressures
of such functions fΦ by differences of pressures of induced functions on strips of
height n (Theorem 7.2); these pressures are computed as largest eigenvalues of
explicit matrices. A corollary of this result is Theorem 8.1 which expresses the
computability of PX(fΦ) in terms of computability of the values of Φ.

Finally, examples of Gibbs states and corresponding pressures are given in Sec-
tion 9. We consider two classical examples: the two-dimensional hard core model,
given by an interaction parameterized by activity level a, and the two-dimensional
Ising antiferromagnet model, parameterized by inverse temperature β and external
field h. Explicit ranges of values of these parameters are given for which Theo-
rem 7.2 applies.

When Φ = 0, then fΦ = 0 and PX(fΦ) reduces to h(X). It follows that the
approximation result for pressure (Theorem 7.2) can be used to obtain exponentially
fast approximations to h(X) for certain n.n. Z2-SFTs. In particular, this result
recovers the main result of [P] and extends that result to other n.n. Z2-SFTs,
examples of which are given in Section 9.

2. Definitions and preliminaries

An undirected graph G consists of a set of vertices (or sites) V (G) and a set
of edges (or nearest neighbors) E(G) of (unordered) pairs of distinct vertices. All
graphs we consider will be countable and locally finite. Two vertices v, w ∈ V (G)
are said to be adjacent if {v, w} ∈ E(G). For finite sets U1, U2 ⊂ V (G), let E(U1, U2)
denote the set of all edges in G with one vertex in U1 and the other in U2.

For any d > 0, we (in a slight abuse of notation) use Zd to denote the d-
dimensional cubic lattice, the graph defined by V (Zd) = Zd and E(Zd) = {{u, v} :∑d
i=1 |ui − vi| = 1}.
The boundary of a set S ⊂ V (G) within a graph G, which is denoted by ∂(S,G),

is the set of v ∈ V (G) \ S which are adjacent to some element of S. If we refer to
simply the boundary of a set S, or write ∂S, then the graph G is assumed to be Z2.
In the case where S is a singleton {v}, we call the boundary the set of neighbors
NG
v , which is just the set of w ∈ V (G) adjacent to v. Again, when no mention of

G is made, it is assumed to be Z2.
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For any integers a < b, we use [a, b] to denote {a, a+ 1, . . . , b}.

An alphabet A is a finite set with at least two elements.
A configuration u on the alphabet A in the graph G is any mapping from a

non-empty subset S of V (G) to A, where S is called the shape of u. For any
configuration u with shape S and any T ⊆ S, denote by u|T the restriction of u
to T , i.e. the subconfiguration of u occupying T . For S, T disjoint sets, x ∈ AS
and y ∈ AT , xy denotes the configuration on S ∪ T defined by (xy)|S = x and
(xy)|T = y, which we call the concatenation of x and y.

For any d, we use σ to denote the natural shift action on AZd defined by
(σv(x))(u) = x(u+ v).

For any alphabet A and graph G, AV (G) is a topological space when endowed
with the product topology (where A has the discrete topology), and any subsets
will inherit the induced topology. We will also frequently speak of measures on
AV (G), and all such measures in this paper will be Borel probability measures.
This means that any µ is determined by its values on the sets [w] := {x ∈ AV (G) :
x|S = w}, where w is a configuration with arbitrary finite shape S ⊆ V (G). Such
sets are called cylinder sets, and for notational convenience, rather than referrring
to a cylinder set [w] within a measure or conditional measure, we just use the
configuration w. For instance, µ(w ∩ v | u) represents the conditional measure
µ([w] ∩ [v] | [u]).

A measure µ on AZd is translation-invariant (or stationary) if µ(A) = µ(σvA)

for all measurable sets A and v ∈ Zd. A translation-invariant measure µ on AZd is

ergodic if whenever U ⊆ AZd is measurable and translation-invariant, then µ(U) =
0 or 1.

Let d be a positive integer. Let E1, . . . , Ed ⊆ A2. The nearest neighbor Zd shift

of finite type (n.n. Zd-SFT) X, defined by E1, . . . , Ed is the set X of all x ∈ AZd

such that whenever u ∈ Zd and 1 ≤ i ≤ d, we have x(u)x(u+ ei) ∈ Ei, where ei is
the ith standard basis vector. We say that X is a n.n. SFT if it is a n.n. Zd-SFT
for some d.

When d = 1, we write E = E1. Any n.n. Z-SFT X defined by E has an
associated square |A|× |A| matrix A, called the adjacency matrix, which is defined
by ai,j = χE(i, j). In other words, ai,j = 1 iff (i, j) ∈ E .

The language of X is:

L(X) = ∪{S⊂Zd, |S|<∞}LS(X)

where

LS(X) = {x|S : x ∈ X}.

For a subset S ⊆ Zd = V (Zd), finite or infinite, a configuration x ∈ AS is globally
admissible for X if x extends to a configuration on all of Zd. So, the language L(X)
is precisely the set of globally admissible configurations on finite sets.

A configuration x ∈ AS is locally admissible for X if for all edges e = {u, u+ ei}
contained in S, we have x|e ∈ Ei. We note that technically there is an ambiguity
here since several choices for Ei could induce the same n.n. SFT. For this reason,
we will always think of a n.n. SFT as being “equipped” with a specific choice of
the sets Ei.
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Example 2.1. The Z2 hard square shift H is the n.n. shift of finite type with
alphabet {0, 1} and E1 = E2 = {(0, 0), (0, 1), (1, 0)}.

Given any measure µ on AZd and any rectangular prism R =
∏

[1, ni], we can
associate a R-higher power code µ[R] of µ, defined as the image of µ under the

mapping φR : AZd → (AR)Z
d

defined by (φRx)(v1, . . . , vd) = x|∏[nivi,ni(vi+1)−1].

For any n.n. Zd-SFT X, φR(X) is also a n.n. Zd-SFT, which we call the R-higher
power code of X and denote by X [R].

We define a square nonnegative matrix A to be primitive if some power An has
all positive entries. This allows us to define the notion of mixing for two types
of one-dimensional dynamical systems. A n.n. Z-SFT X is called mixing iff its
adjacency matrix (after discarding any letters of A which do not actually appear
in X) is primitive, and a Markov chain is called mixing if its transition probability
matrix is primitive.

For any translation-invariant measure µ on AZd , we may define its entropy as
follows.

Definition 2.2. The measure-theoretic entropy of a translation-invariant measure

µ on AZd is defined by

h(µ) = lim
j1,j2,...,jd→∞

−1

j1j2 · · · jd

∑
w∈A

∏d
i=1

[1,ji]

µ(w) log(µ(w)),

where terms with µ(w) = 0 are omitted.

We will also deal with measure-theoretic conditional entropy in this paper. It can
be defined more generally, but for our purposes, we will define it only for a measure
onAZ and specific type of partition ofAZ. For any partition ξ of a set S, and for any
s ∈ S, we use ξ(s) to denote the element of ξ which s is in. If ξ is a partition of an
alphabet A, then φξ is the map on AZ defined by φξ(x) = . . . ξ(x−1)ξ(x0)ξ(x1) . . ..

We note that for any measure µ on AZ and any partition ξ of A, the push-forward
φξ(µ) of µ under the map φξ is a measure on ξZ.

Definition 2.3. For any translation-invariant measure µ on AZ and any partition
ξ of A, the conditional measure-theoretic entropy of µ with respect to ξ is

h(µ | ξ) = lim
k→∞

−1

2k + 1

∑
w∈A[−k,k]

µ(w) log

(
µ(w)

(φξ(µ))
(
ξ(w−k) . . . ξ(wk)

)),
where again terms with µ(w) = 0 are omitted.

Measure-theoretic conditional entropy is most useful because of the following
decomposition formula. For a proof, see [P].

Proposition 2.4. For any translation-invariant measure µ on AZ, and any parti-
tion ξ of A,

h(µ | ξ) = h(µ)− h(φξ(µ)).

The weak topology on the space of measures on AZ is the weakest topology un-
der which integrals of real-valued continuous functions converge. Measure-theoretic
(and conditional measure-theoretic) entropy are not continuous in the weak topol-
ogy (though they are upper semicontinuous); see [Wal]. For this reason, we need to
define the d̄ metric for measures, with respect to which the entropy map µ 7→ h(µ)
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is continuous and in fact Hölder. We first need the preliminary definition of a
coupling.

Definition 2.5. For any measures µ on X and ν on Y , a coupling of µ and ν is
a measure λ on X × Y for which λ(A × Y ) = µ(A) for any µ-measurable A ⊆ X
and λ(X ×B) = ν(B) for any ν-measurable B ⊆ Y . The set of couplings of µ and
ν is denoted by C(µ, ν).

Definition 2.6. For any measures µ and µ′ on AZ,

d̄ (µ, µ′) = lim sup
n→∞

min
λ∈C(µ|[−n,n],µ′|[−n,n])

∫
d2n+1(x, y) dλ,

where dk is the normalized k-letter Hamming distance between k-letter configura-
tions given by dk(u, v) = 1

k

∑
1≤i≤k(1− δu(i)v(i)).

We briefly summarize some important properties of the d̄ distance (for more
information, see [Rud] or [S]). We are interested only in the d̄ metric on the space
of translation-invariant measures on AZ for a fixed alphabet A. The d̄ metric is
complete and dominates distribution distance in the sense that for any configura-
tion w on a finite interval of length m, |µ(w) − µ′(w)| ≤ md̄ (µ, µ′). And Hölder
continuity of entropy follows from the estimate: letting ε = d̄ (µ, µ′),

|h(µ)− h(µ′)| ≤ ε log |A| − ε log ε− (1− ε) log(1− ε);

(see [[Rud], Theorem 7.9] for a proof in the ergodic case; the same estimate holds
in the general translation-invariant case).

Finally, we define the topological pressure of a continuous function on a n.n.
SFT, following [Rue].

Let X be a n.n. Zd-SFT, and let f : X → R be a continuous function. The
topological pressure of f on X can be defined in several ways; one is as the purely
topological notion of the asymptotic growth rate of the number of (locally or glob-
ally) admissible arrays in X, “weighted by f .” For our purposes though, the fol-
lowing definition, which is a consequence of the variational principle (see [Mi] for a
short proof), is more convenient.

Definition 2.7. Given a n.n. Zd-SFT X and f ∈ C(X), the (topological) pressure
of f on X is:

P (f) = PX(f) = sup
µ

(
h(µ) +

∫
fdµ

)
,

where the sup is taken over all translation-invariant measures µ supported on X.

The sup is always achieved and any measure which achieves the sup is called an
equilibrium state for X and f . ([Wal])

In the special case when f = 0, P (f) is called the topological entropy h(X) of
X, and any equilibrium state is called a measure of maximal entropy for X.

3. Exponential approximation of MRF entropies

The main measures we will study in this paper are Markov random fields (or
MRFs) on sets of configurations on a graph G.

Definition 3.1. For any graph G and finite alphabet A, a measure µ on AV (G)

is called a G-Markov random field (or G-MRF) if, for any finite S ⊂ V (G), any
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η ∈ AS, any finite T ⊂ V (G) s.t. ∂(S,G) ⊆ T ⊆ V (G) \ S, and any δ ∈ AT with
µ(δ) 6= 0,

µ(η | δ|∂(S,G)) = µ(η | δ).

Informally, µ is a G-MRF if, for any finite S ⊂ V (G), the sites in S and the sites
in V (G) \ (S ∪ ∂(S,G)) are µ-conditionally independent given the sites on ∂(S,G).

We will sometimes refer to a G-MRF simply as an MRF when G is clear from
context. We note that our definition of MRF differs slightly from the usual one,
where the right-hand side would involve conditioning on an entire configuration on
V (G) \ S a.e. rather than arbitrarily large finite subconfigurations of it. However,
the definitions are equivalent and the finite approach leads to simpler calculations
and proofs.

Definition 3.2. For any graph G and finite alphabet A, a G-specification Λ is
defined by a set of finitely supported probability measures

{Λδ(·) | S ⊂ V (G), |S| <∞, δ ∈ A∂(S,G)},
where, for each Λδ(·), · ranges over all configurations in AS.

Again we will sometimes refer to a G-specification simply as a specification. We
say that a Zd-specification is translation-invariant if Λσvδ = σvΛ

δ for all δ and
v ∈ Zd.

Definition 3.3. For any graph G, µ a measure on AV (G), any finite set S ⊂ V (G),
and any δ ∈ A∂(S,G) with µ(δ) > 0, denote by µδ the measure on AS defined by
µδ(u) = µ(u | δ).

Definition 3.4. For any graph G and finite alphabet A, and G-specification Λ, a
G-MRF µ is associated to Λ if µδ = Λδ for all finite S ⊆ V (G) and δ ∈ A∂(S,G)

with µ(δ) > 0.

Note that in checking whether an MRF µ is associated to a specification Λ, many
of the Λδ are totally irrelevant; namely those which correspond to δ which have zero
µ-measure.

We say that a G-specification Λ is valid if there is at least one G-MRF associated
to it. If there is exactly one such MRF, we denote it by µ(Λ).

Often a specification is required to satisfy a consistency condition; see [[Ge],
Definition 1.23]. This condition is important for results that assert the existence
of an MRF associated to a given specification: the existence of an MRF µ forces
certain consistencies of specifications on the support of µ. However, in our work,
we do not need to require consistency: whenever we need existence, we will either
assume it (i.e., that the specification is valid) or assume a condition that guarantees
it (for instance, in Proposition 3.13). And the consistency condition is not needed
in uniqueness results such as Theorem 3.9.

To obtain good approximations of MRF entropies, we will use a condition from
[vdBM] on G-specifications, which was used there to prove uniqueness of the asso-
ciated MRF. We first need some definitions.

Definition 3.5. For any finite set S and two measures µ and ν on S, the variational
distance between µ and ν is

d(µ, ν) =
1

2

∑
s∈S
|µ(s)− ν(s)|.
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We note that d(µ, ν) = 1 iff µ and ν have disjoint supports.

Definition 3.6. For any graph G, finite alphabet A, g ∈ V (G), and valid G-
specification Λ, define

qg(Λ) := max
δ,δ′∈AN

G
g

d(Λδ,Λδ
′
)

and q(Λ) := supg∈V (G) qg(Λ).

Definition 3.7. For any finite alphabet A, graph G, and probability distribution λ
on A, Pλ represents the Bernoulli (i.i.d.) measure on AV (G) whose distribution on
each site is λ.

Definition 3.8. For any graph G, the critical probability for site percolation on
G, denoted by pc(G), is defined as the supremum of q ∈ [0, 1] for which, given the
alphabet {0, 1} and the graph G, the P(1−q,q)-probability that there is an infinite
connected subgraph of G with 1s at every site is zero.

We point out that percolation theory is an extremely rich area of mathematics,
which we give short shrift to here. For more information, see [Gr].

When the graph G is omitted, we understand pc to denote pc(Z2). Simulations
suggest that pc ≈ 0.593, but the best known lower bound is pc > .556, proved by
van den Berg and Ermakov. ([vdBE])

Theorem 3.9. ([vdBM], Corollary 2) If Λ is a valid G-specification and q(Λ) <
pc(G), then there is a unique G-MRF associated to Λ.

Theorem 3.9 is, roughly speaking, proved by showing that for a G-specification
Λ with q(Λ) < pc(G), boundary conditions on large sets (such as rectangles in
Z2) exert very little influence on sites near the center. It will be necessary for us
to quantify exactly how this influence decays, and so we will use the methods of
[vdBM] to prove some finitistic results.

Theorem 3.10. For any valid Z2-specification Λ with q(Λ) < pc (with unique
associated MRF µ = µ(Λ)), there exist K,L > 0 such that for any nonempty finite
set S ⊂ Z2, for any rectangle R ⊃ S, and for any configurations δ and δ′ on ∂R with
positive µ(Λ)-probability, there exists λ ∈ C(µδ|S , µδ

′ |S) such that for any s ∈ S,
λ({(x, y) : x(s) 6= y(s)}) < Ke−Ld, where d is the distance between S and the set
of t ∈ ∂R for which δ(t) 6= δ′(t). (We take d =∞ if the latter set is empty.)

Proof. Given any such Λ, S, R, δ, and δ′, Theorem 1 from [vdBM] proves the

existence of λ′ ∈ C(µδ, µδ
′
) with the following two properties: (Following [vdBM],

we will sometimes think of λ′ as a measure on AR∪∂R ×AR∪∂R, where pairs (u, v)
in the support of λ′ are thought of as equivalent to (uδ, vδ′).)

(i) Define the map φ from (AR∪∂R)× (AR∪∂R) to {0, 1}R∪∂R by (φ(x, y))(v) = 1
if and only if x(v) 6= y(v). Then the measure φλ′ on {0, 1}R∪∂R is stochastically
dominated by P(1−q,q), where q = q(Λ). (We do not define stochastic dominance in
general, but can give a simple definition which suffices for our setup. Given a finite
set S and measures µ,ν on {0, 1}S , µ is stochastically dominated by ν if for any set
C of configurations which is closed under changing 0s to 1s, µ(C) ≤ ν(C).)

(ii) For a set of (x, y) ∈ (AR∪∂R) × (AR∪∂R) with λ′-probability 1, and for any
v ∈ R, x(v) 6= y(v) if and only if there is a path P of sites in Z2 from v to ∂R for
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which x(p) 6= y(p) for all p ∈ P .

Note that for any fixed v ∈ R, this means that

λ′({(x, y) : x(v) 6= y(v)})
= λ′({(x, y) : there is a path P from v to ∂R such that x(p) 6= y(p) ∀p ∈ P})

= (φλ′)(there is a path P of 1s from v to ∂R})
≤ P(1−q,q)(there is a path of 1s from v to ∂R).

A classical theorem proved by Menshikov ([Me]) and Aizenmann and Barsky
([AB]) shows that for any q < pc, there exist K = K(q) and L = L(q) so that for
any n, P(1−q,q)(there is a path of 1s from 0 to ∂[−n, n]2) < Ke−Ln. This clearly

implies that P(1−q,q)(there is a path of 1s from v to ∂R) < Ke−Ldv , where dv is
the distance from v to the set of sites in ∂R at which δ and δ′ disagree.

Therefore, if we define λ = λ′|(AS×AS), then for any s ∈ S, λ({(x, y) : x(s) 6=
y(s)}) = λ′({(x, y) : x(s) 6= y(s)}) ≤ Ke−Lds ≤ Ke−Ld, where d is just the
minimum value of ds for s ∈ S.

�

We will prove a slightly more general version of Theorem 3.10 for δ and δ′ on
the boundaries of possibly different rectangles.

Theorem 3.11. For any valid Z2-specification Λ with q(Λ) < pc (with unique
associated MRF µ = µ(Λ)), there exist K,L > 0 such that for any finite set S ⊂ Z2,
for any rectangles R′ ⊃ R ⊃ S, and for any configurations δ and δ′ on ∂R and ∂R′

respectively with positive µ(Λ)-probability, there exists λ ∈ C(µδ|S , µδ
′ |S) such that

for any s ∈ S, λ({(x, y) : x(s) 6= y(s)}) < Ke−Ld, where d is the distance between
S and the set of t ∈ ∂R for which either t /∈ ∂R′ or t ∈ ∂R′ and δ(t) 6= δ′(t).

Proof. We will be using Theorem 3.10. First, let’s note that µδ
′ |R can be written

as a weighted average of the measures µη, where η ranges over all configurations
on ∂R which agree with δ′ on ∂R ∩ ∂R′. This means that in particular, µδ

′ |S =∑
η αη(µη|S) for some nonnegative numbers αη summing to 1. By Theorem 3.10

there exist K,L > 0 so that for any η there exists λη ∈ C(µδ|S , µη|S) with the
property that for any s ∈ S, λη({(x, y) : x(s) 6= y(s)}) < Ke−Ldη , where dη is
the distance from any s ∈ S to the set of t ∈ ∂R for which δ(t) 6= η(t). Take

λ =
∑
η αηλη. It is clear that λ ∈ C(µδ|S , µδ

′ |S). Also, clearly

λ({(x, y) : x(s) 6= y(s)}) =
∑
η

αηλη({(x, y) : x(s) 6= y(s)}) ≤
∑
η

αηKe
−Ldη .

Note that for any η agreeing with δ′ on ∂R ∩ ∂R′, dη ≥ d as defined in the
theorem. Therefore, clearly λ({(x, y) : x(s) 6= y(s)}) < Ke−Ld, and we are done.

�

Given a valid Z2-specification Λ with q(Λ) < pc, we wish to define some spec-
ifications (and associated MRFs) on the maximal subgraphs Hm,n of Z2 defined
by V (Hm,n) = Z× [m,n], yielding measures on sets of configurations on biinfinite
horizontal strips.

Of course Λ itself does not contain enough information to define an
Hm,n-specification; there exist sets of the form ∂(S,Hm,n) for some finite set S ⊂
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Hm,n, but which are not expressible as ∂T for any finite set T ⊂ Z2. (For instance,
picture the ‘three-sided’ boundary of a rectangle which includes part of the top
row in Hm,n.) We therefore supplement Λ with boundary conditions as follows.
Suppose that t, b ∈ AZ, and we will define a Hm,n-specification Λm,n,t,b.

For any finite S ⊂ Z× [m,n], η ∈ AS , and δ ∈ A∂(S,Hm,n), define

(1) Λδm,n,t,b(η) = Λξ(η),

where ξ = (t|∂S∩(Z×{n+1}))(b|∂S∩(Z×{m−1}))δ, the concatenation of t|∂S∩(Z×{n+1}),
b|∂S∩(Z×{m−1}), and δ. In other words, a configuration on ∂(S,Hm,n) is supple-
mented by symbols from t and b above and below Hm,n, if necessary, to extend
it to ∂S. The following gives a sufficient condition on m,n, t, b for the validity of
Λm,n,t,b.

Definition 3.12. For a Z2-specification Λ with alphabet A, integers m < n and
t, b ∈ AZ, we say that m,n, t, b is compatible with Λ if there exists an MRF µ
associated to Λ such that for all sufficiently large k, there exists δk ∈ A∂([−k,k]×[m,n])

with positive µ-measure whose top row is t|[−k,k] and whose bottom row is b|[−k,k].

Proposition 3.13. For a valid Z2-specification Λ with alphabet A, integers m < n
and t, b ∈ AZ, if m,n, t, b is compatible with Λ, then Λm,n,t,b is a valid Hm,n-
specification.

Proof. Let µ be an associated MRF and for all sufficiently large k, δk as described
in Definition 3.12. Define the measures µδk . We wish to take a weak limit of
a subsequence of these measures, so they must be extended to measures on all
of AZ×[m,n]: choose any a ∈ A, and for each k extend each configuration in the
support of µδk to all of Z× [m,n] by filling all unoccupied sites with a’s.

By definition of Λm,n,t,b and the fact that µ is an MRF associated to Λ, any weak
limit of a subsequence of the measures µδk is an MRF associated to the specification
Λm,n,t,b, and so Λm,n,t,b is valid. �

While the compatibility condition may be difficult to check in general, it is
checkable for certain special kinds of MRFs introduced in later sections.

We can also give a sufficient condition for uniqueness of an Hm,n-MRF associated
to Λm,n,t,b. In fact, it requires a less restrictive bound on q(Λ), which will be useful
for some later discussions.

Proposition 3.14. For any integers m < n and any valid Hm,n-specification
Λm,n,t,b induced by a Z2-specification Λ with q(Λ) < 1 and boundary conditions
t and b, Λm,n,t,b has a unique associated MRF.

Proof. Consider any such Λ, m, n, t, and b for which Λm,n,t,b is a valid specification.
For any i ∈ V (Hm,n) = Z×[m,n], by the definition of Λm,n,t,b, qi(Λm,n,t,b) and qi(Λ)

are both maxima of d(Λδ,Λδ
′
) over sets of pairs δ, δ′ ∈ ANi . However, for qi(Λ), one

maximizes over all such pairs, and for qi(Λm,n,t,b), one may be maximizing over a
smaller set. (For instance, if i is part of the top row of Hm,n, then one only considers
configurations on the neighbors where the neighbor above i is equal to t(i+ (0, 1)))
Therefore, qi(Λm,n,t,b) ≤ qi(Λ). Since i was arbitrary, q(Λm,n,t,b) ≤ q(Λ).

It now suffices to show that pc(Hm,n) = 1; the proposition then follows from
Theorem 3.9. For any p < 1, if sites of Hm,n are independently taken to be open
with probability p and closed with probability 1− p, then the probability than an
entire column {i} × [m,n] is closed is (1 − p)n−m+1 > 0. This means that with
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P(1−p,p)-probability 1, there exist closed columns arbitrarily far to the left and right,
meaning that there are no infinite open connected clusters. Therefore, since p < 1
was arbitrary, pc(Hm,n) = 1 and we are done. �

Clearly, when the hypotheses of Proposition 3.14 are satisfied, µ(Λm,n,t,b) can

be thought of as a measure on the one-dimensional full shift (A[m,n])Z, and we
will interpret µ(Λm,n,t,b) in this way for further discussions about d̄ distance and
entropy. It should always be clear from context which viewpoint is being used.

Proposition 3.15. For any valid Z2-specification Λ with q(Λ) < pc (with unique
associated MRF µ = µ(Λ)) and any t, b ∈ AZ for which there exists N such that
µ(Λ−n,n,t,b) exists for all n > N , µ(Λ−n,n,t,b) approaches µ weakly as n→∞.

Proof. By definition of Λ−n,n,t,b, any weak limit of a subsequence of µ(Λ−n,n,t,b) is
clearly a Z2-MRF associated to Λ. (As before, we need to extend each µ(Λ−n,n,t,b)

to a measure on all of AZ2

; we do this by choosing any a ∈ A and extending each
configuration in the support of µ(Λ−n,n,t,b) to all of Z2 by filling the unoccupied
sites with a.) However, the only such MRF is µ. �

We will now use Theorem 3.11 to derive couplings of marginalizations of µ(Λ1,n,t,b)
and µ(Λ1,n+1,t,b) to substrips which imply their closeness in the d̄ metric.

Theorem 3.16. For any valid Z2-specification Λ with q(Λ) < pc (with unique
associated MRF µ = µ(Λ)), there exist K,L > 0 such that for any n and any
t, b ∈ AZ such that 1, n, t, b and 1, n + 1, t, b are compatible with Λ, and for any
1 ≤ i < i′ ≤ n,

d̄
(
µ(Λ1,n,t,b)|Z×[i,i′−1], µ(Λ1,n+1,t,b)|Z×[i,i′−1]

)
≤ (i′ − i)Ke−L(n−i′) and

d̄
(
µ(Λ1,n,t,b)|Z×[i,i′−1], µ(Λ1,n+1,t,b)|Z×[i+1,i′]

)
≤ (i′ − i)Ke−Li.

Proof. We begin with the first inequality. For Λ as in the theorem, take the K
and L guaranteed by Theorem 3.11. Fix t, b, n, and i < i′. For every sufficiently
large k, take δk and δ′k configurations on ∂([−k, k]× [1, n]) and ∂([−k, k]× [1, n+1])
respectively with positive µ-measure which are both equal to t|[−k,k] on the top and
b|[−k,k] on the bottom. Define Si,i′,k = [−k, k] × [i, i′ − 1]. By Theorem 3.11, for

any k > n − i′ and j < k − (n − i′), there exists λi,i′,j,k ∈ C(µδk |Si,i′,j , µ
δ′k |Si,i′,j )

for which the λi,i′,j,k-probability of disagreement at any site in Si,i′,j is less than

Ke−L(n−i′). (This is because δk and δ′k agree on their bottom row, and the distance
from any site in Si,i′,j to any other site in ∂([−k, k]× [1, n])∪ ∂([−k, k]× [1, n+ 1])
is at least n− i′.)

Now, for any fixed i < i′ and j, define λi,i′,j to be any weak limit of a subse-
quence of the couplings λi,i′,j,k as k →∞. Note that any weak subsequence of µδk

approaches an MRF on H1,n,t,b associated to the specification Λ1,n,t,b, and since
µ(Λ1,n,t,b) is the unique such MRF, the sequence µδk itself must weakly approach

µ(Λ1,n,t,b). Similarly, µδ
′
k weakly approaches µ(Λ1,n+1,t,b). Therefore, λi,i′,j ∈

C(µ(Λ1,n,t,b)|Si,i′,j , µ(Λ1,n+1,t,b)|Si,i′,j ). Also, it is clear that if we think of a config-

uration on Si,i′,j as a (2j + 1)-letter word on the alphabet of words on columns of

height i′−i, then Eλi,i′,j (d2j+1(x|[−j,j], y|[−j,j])) < (i′−i)Ke−L(n−i′). Recalling the

definition of d̄ , we see that then clearly d̄ (µ(Λ1,n,t,b)|Z×[i,i′−1], µ(Λ1,n+1,t,b)|Z×[i,i′−1]) ≤
(i′ − i)Ke−L(n−i′).
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To prove the second inequality, change the proof above by defining δk on
∂([−k, k]× [2, n+ 1]) instead. Then δk and δ′k will agree on their top rows, and the
rest of the proof goes through mostly unchanged. The distances from Z× [i, i′ − 1]
and Z× [i+ 1, i′] to the bottom rows of H1,n and H1,n+1 respectively are at least
i, which is why n− i′ is replaced by i. �

We will for now restrict our attention to translation-invariant Z2-specifications
Λ with q(Λ) < pc and constant boundary conditions t, b ∈ AZ, which means that
the measures µ(Λm,n,t,b) (when they exist) will be translation-invariant as one-
dimensional measures. (Otherwise, their horizontal shifts would also be MRFs
associated to Λm,n,t,b, contradicting uniqueness of µ(Λm,n,t,b).) We can then discuss
the measure-theoretic entropies h(µ(Λ1,n,t,b)) and h(µ(Λ1,n+1,t,b)).

We will decompose these into conditional measure-theoretic entropies, and then
use Theorem 3.16 and Hölder continuity of entropy (with respect to d̄ ) to show that
many of these entropies are exponentially close, finally showing that h(µ(Λ1,n+1,t,b))−
h(µ(Λ1,n,t,b)) is exponentially close to h(µ). We first need some notation for special
conditional measure-theoretic entropies.

For any a, define Ra = Z×{a}. For any m < n and any interval B ⊆ [m,n], we
partition A[m,n] by the letters appearing on B, and call this partition ξB . Then,
for any translation-invariant measure µ on (A[m,n])Z and disjoint adjacent intervals
B,C ⊆ [m,n], we make the notations

hµ

( ⋃
b∈B

Rb

)
:= h(φξB (µ)) and

hµ

( ⋃
c∈C

Rc |
⋃
b∈B

Rb

)
:= h(φξB∪C (µ) | ξB).

Also, for any translation-invariant measure µ on AZ2

, hµ

(⋃
b∈B Rb

)
will be

understood to mean hµ|(⋃d∈D Rd)

(⋃
b∈B Rb

)
for any D ⊇ B; in other words, this

expression is given meaning by marginalizing µ to any substrip containing the rows
whose entropy is to be computed. It does not matter which D is used, since clearly
this quantity depends only on the restriction of µ to

⋃
b∈B Rb. We will interpret

hµ

(⋃
c∈C Rc |

⋃
b∈B Rb

)
in an analogous fashion.

The following is just a consequence of Proposition 2.4 for this new notation.

Proposition 3.17. For any m < n, µ a translation-invariant measure on (A[m,n])Z

or AZ2

, and B,C adjacent subintervals of [m,n],

hµ

( ⋃
a∈B∪C

Ra

)
= hµ

( ⋃
b∈B

Rb

)
+ hµ

( ⋃
c∈C

Rc |
⋃
b∈B

Rb

)
.

The following theorem can both be thought of as an extension of the Markov
property in one dimension and a generalization of Theorem 13 from [P].

Theorem 3.18. Let Λ be a translation-invariant Z2-specification. Let n be a posi-
tive integer, t, b ∈ AZ be constant sequences and µ be an MRF associated to Λ1,n,t,b.
Then for any integers i and k with 1 ≤ k < i ≤ n,

hµ

Ri | i−1⋃
j=k

Rj

 = hµ(Ri | Ri−1).
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Proof. We will prove the theorem for k = 1, and this suffices to prove the theorem
for all k < i, since for any 1 ≤ k < i, conditioning on ξ[k,i−1] is an intermediate
partition between ξ[1,i−1] and ξ{i−1}. If the conditional entropies resulting from
these two partitions are equal, then clearly any intermediate partition gives the
same value. Fix any Λ, n, t, b, and i as in the statement of the theorem. For
simplicity, we write µ = µ(Λ1,n,t,b). We can write

hµ

(
Ri |

i−1⋃
j=1

Rj

)
= lim
k→∞

(1/k)Sk, where

Sk :=
∑

w∈A[−k,k]×[1,i−1],

v∈A[−k,k]×{i}

µ(w ∩ v) log
( µ(w)

µ(w ∩ v)

)

(2) =

( ∑
w∈A[−k,k]×[1,i−1]

µ(w) logµ(w)

)

(3) −
( ∑
w∈A[−k,k]×[1,i−1],

v∈A[−k,k]×{i}

µ(w ∩ v) logµ(w ∩ v)

)
.

(As in the definition of measure-theoretic entropy, in each sum we omit terms
coming from configurations of µ-measure zero.) We also define

S∗k :=
∑

w∈A[−k,k]×[1,i−1],

v∈A[−k,k]×{i},

L∈A{−k−1}×[1,i−1],

R∈A{k+1}×[1,i−1]

µ(w ∩ v ∩ L ∩R) log
( µ(w ∩ L ∩R)

µ(w ∩ v ∩ L ∩R)

)
=

(4)

( ∑
w∈A[−k,k]×[1,i−1],

L∈A{−k−1}×[1,i−1],

R∈A{k+1}×[1,i−1]

µ(w ∩ L ∩R) logµ(w ∩ L ∩R)

)
−

(5)

( ∑
w∈A[−k,k]×[1,i−1],

v∈A[−k,k]×{i},

L∈A{−k−1}×[1,i−1],

R∈A{k+1}×[1,i−1]

µ(w ∩ v ∩ L ∩R) logµ(w ∩ v ∩ L ∩R)

)
.

We claim that |Sk − S∗k | ≤ 4(i− 1) log |A|. To see this, we first compare (2) and
(4). For any fixed w, consider the term µ(w) logµ(w) from (2). Compare this to
the corresponding terms from (4), i.e.

∑
L,R µ(w∩L∩R) logµ(w∩L∩R). We make

the simple observation that for any set of k nonnegative reals {αi}ki=1 summing to

α, −
∑k
i=1 αi log(αi) is at least −α logα, and at most −α log(αk ) (achieved when

all αi are equal). Therefore,∣∣∣µ(w) logµ(w)−
∑
L,R

µ(w ∩ L ∩R) logµ(w ∩ L ∩R)
∣∣∣ ≤ µ(w) log(|A|2(i−1))
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since the number of different pairs L,R is at most |A|2(i−1). By summing this
over all choices of w in (2) and (4), we see that the difference between (2) and (4)
has absolute value at most

∑
w µ(w) log(|A|2(i−1)) = 2(i− 1) log |A|. An analogous

argument may be made for (3) and (5), and so |Sk −S∗k | ≤ 4(i− 1) log |A| for all k.
We can similarly write hµ(Ri | Ri−1) = limk→∞(1/k)Tk, where Tk is defined

exactly as Sk, but where w ∈ A[−k,k]×[1,i−1] is replaced in the summation by w′ ∈
A[−k,k]×{i−1}. If we define T ∗k exactly as S∗k , again using w′ instead of w, then
a trivially similar proof to the above shows that |Tk − T ∗k | ≤ 4(i − 1) log |A| for
all k. If we can now prove that S∗k = T ∗k for all k, then |Sk − Tk| ≤ |Sk − S∗k | +
|Tk − T ∗k | + |S∗k − T ∗k | ≤ 8(i − 1) log |A| for every k, which clearly shows that

hµ

(
Ri |

⋃i−1
j=1Rj

)
= limk→∞(1/k)Sk and hµ(Ri | Ri−1) = limk→∞(1/k)Tk are

equal.
We claim that for any L ∈ A{−k−1}×[1,i−1], R ∈ A{k+1}×[1,i−1], v ∈ A[−k,k]×{i},

and w ∈ A[−k,k]×[1,i−1], if we define w′ = w|[−k,k]×{i−1}, then

µ(w ∩ L ∩R)

µ(w ∩ v ∩ L ∩R)
=

µ(w′ ∩ L ∩R)

µ(w′ ∩ v ∩ L ∩R)
.

To see this, we define w′′ = w|[−k,k]×[1,i−2] and note that since µ is an Hm,n-
MRF,

µ(w′′ ∩ w′ ∩ L ∩R)

µ(w′ ∩ L ∩R)
=
µ(w′′ ∩ w′ ∩ v ∩ L ∩R)

µ(w′ ∩ v ∩ L ∩R)
.

From this, it is clear that

µ(w′ ∩ L ∩R)

µ(w′ ∩ v ∩ L ∩R)
=

µ(w′′ ∩ w′ ∩ L ∩R)

µ(w′′ ∩ w′ ∩ v ∩ L ∩R)
,

which is clearly equal to µ(w∩L∩R)
µ(w∩v∩L∩R) . But then for any fixed w′, all terms in S∗k

corresponding to w with the top row w′ can be collapsed, which quickly yields
S∗k = T ∗k , completing the proof.

�

Corollary 3.19. If Λ is a translation-invariant Z2-specification with q(Λ) < pc
(with unique associated MRF µ = µ(Λ)), and t and b are constant sequences such
that −n, n, t, b is compatible with Λ for sufficiently large n, and k is any positive
integer, then

hµ

R0 |
−1⋃
j=−k

Rj

 = hµ(R0 | R−1).

Proof. Fix any such µ, t, b, and N > 0 such that −n, n, t, b is compatible with Λ for
n > N . Let k be a positive integer. Then by Theorem 3.16, there exist K,L > 0
so that

d̄ (µ(Λ−n,n,t,b)|⋃0
j=−(k−1) Rj

, µ(Λ−(n+1),n+1,t,b)|⋃0
j=−(k−1) Rj

) < kKe−L(n−k)

for any n > N and k ≤ n, and so this sequence of marginalizations is d̄ Cauchy and
approaches a d̄ limit. Since the measures µ(Λ−n,n,t,b) approach µ weakly as n→∞
by Proposition 3.15, it must be the case that the d̄ limit of µ(Λ−n,n,t,b)|⋃0

j=−k Rj
is

µ|⋃0
j=−k Rj

. Thus, by Theorem 3.18, translation-invariance of µ, and continuity of

entropy with respect to the d̄ metric, we conclude that for any positive integer k,
hµ(R0 |

⋃−1
j=−k Rj) = hµ(R0 | R−1).
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�

Corollary 3.20. If Λ is a translation-invariant Z2-specification with q(Λ) < pc
(with unique associated MRF µ = µ(Λ)), and t and b are constant sequences
such that −n, n, t, b is compatible with Λ for sufficiently large n, then h(µ) =
hµ(R0 | R−1).

Proof. For any such µ and positive integer k, hµ(
⋃k
j=0Rj) = hµ(R0)+hµ(R1 | R0)+

. . .+ hµ(Rk |
⋃k−1
j=0 Rj) = hµ(R0) + (k − 1)hµ(R0 | R−1) by translation-invariance

of µ, Proposition 3.17, and Corollary 3.19. But then by dividing by k and letting
k →∞, we see that h(µ) = hµ(R0 | R−1).

�

Theorem 3.21. For any valid translation-invariant Z2-specification Λ with q(Λ) <
pc (with unique associated MRF µ = µ(Λ)) and any integer N and constant se-
quences t and b such that 1, n, t, b is compatible with Λ when n > N , there exist
Q,R > 0 such that |h(µ(Λ1,n+1,t,b))−h(µ(Λ1,n,t,b))−h(µ)| < Qe−Rn for any n > N .

Proof. Proposition 3.17 and Theorem 3.18 imply that for n > N ,

h(µ(Λ1,n+1,t,b)) = hµ(Λ1,n+1,t,b)(R1) +

n∑
j=1

hµ(Λ1,n+1,t,b)(Rj+1 | Rj) and

h(µ(Λ1,n,t,b)) = hµ(Λ1,n,t,b)(R1) +

n−1∑
j=1

hµ(Λ1,n,t,b)(Rj+1 | Rj).

We can then write h(µ(Λ1,n+1,t,b))− h(µ(Λ1,n,t,b)) as

hµ(Λ1,n+1,t,b)(R1)− hµ(Λ1,n,t,b)(R1)(6)

+

bn2 c−1∑
j=1

(
hµ(Λ1,n+1,t,b)(Rj+1 | Rj)− hµ(Λ1,n,t,b)(Rj+1 | Rj)

)
(7)

+ hµ(Λ1,n+1,t,b)(Rbn2 c+1 | Rbn2 c)(8)

+

n∑
j=bn2 c+1

(
hµ(Λ1,n+1,t,b)(Rj+1 | Rj)− hµ(Λ1,n,t,b)(Rj | Rj−1)

)
.(9)

By Theorem 3.16 and Hölder continuity of entropy with respect to d̄ , we see
that (6), (7), and (9) are exponentially small in n, i.e. there exist constants Q
and R independent of n such that each has absolute value smaller than Qe−Rn.
Theorem 3.16 also implies that the sequence µ(Λ1,n+1,t,b)|Rbn

2
c∪Rbn

2
c+1

approaches

a d̄ limit with exponential rate in n, as n → ∞. Since σ(0,−bn2 c−1)µ(Λ1,n+1,t,b)

approaches µ weakly by Proposition 3.15, this d̄ limit must be µ|R−1∪R0
. But then

again by Hölder continuity of entropy with respect to d̄ and translation-invariance
of µ, (8) approaches hµ(R0 | R−1) with exponential rate as n → ∞, which equals
h(µ) by Corollary 3.20. �

This result can be generalized to periodic boundary conditions as well. If Λ is
a translation-invariant Z2-specification with q(Λ) < pc and t and b are periodic
sequences such that 1, n, t, b is compatible with Λ, then µ(Λ1,n,t,b) exists by Propo-

sitions 3.13 and 3.14, and (µ(Λ1,n,t,b))
[p] (the p-higher power code of µ(Λ1,n,t,b)) is

translation-invariant.
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Theorem 3.22. For any valid translation-invariant Z2-specification Λ with q(Λ) <
pc (with unique associated MRF µ = µ(Λ)), and any integer N and sequences t and
b with period p such that 1, n, t, b is compatible with Λ when n > N , there exist
Q,R > 0 such that |(1/p)(h((µ(Λ1,n+1,t,b))

[p])−h((µ(Λ1,n,t,b))
[p])−h(µ)| < Qe−Rn

for all n > N .

Proof. The proof is nearly identical to that of Theorem 3.21, and so we only high-
light the slight differences. Theorem 3.16 implies the exponential d̄ closeness of
relevant marginalizations of µ(Λ1,n,t,b) to substrips just as before. Then, since

passing to (µ(Λ1,n,t,b))
[p] multiplies the relevant d̄ distances by at most p, we still

have the necessary exponential d̄ closeness of marginalizations for these recoded
strip measures. Since the (µ(Λ1,n,t,b))

[p] are translation-invariant, the same proof

as in Theorem 3.21 shows that h((µ(Λ1,n+1,t,b))
[p])− h((µ(Λ1,n,t,b))

[p]) approaches

h(µ[p]) = ph(µ) exponentially fast. �

4. Interactions and Gibbs states

In [P], similar techniques were used to show that the topological entropy of
the Z2 hard square shift H is exponentially well approximable by differences of
consecutive topological entropies of horizontal biinfinite strips. It turns out that
this is a corollary of Theorem 3.21; the unique measure of maximal entropy µ for
H is in fact the unique MRF associated to a translation-invariant Z2-specification
Λ satisfying q(Λ) < pc; in this case, for any finite set S and δ ∈ A∂S , Λδ will
be uniform on configurations which are locally admissible in S ∪ ∂S. If one takes
t = b = 0∞, then µ(Λ1,n,t,b) exists for all n, and is the unique measure of maximal
entropy for the n.n. Z-SFT composed of all locally admissible configurations on
H1,n in H.

We will use Theorem 3.22 to generalize the main result of [P] to some topological
pressures by using some classical results of Ruelle regarding the relationship between
equilibrium states and a class of Z2-MRFs called Gibbs states.

Let X be a nonempty n.n. Zd-SFT X with language L(X). We are mostly
interested in the cases d = 1, 2. An interaction on X is simply a real-valued
function Φ on L(X). For finite S and x ∈ LS(X), define

US(x) = UΦ
S (x) =

∑
S′⊆S

Φ(x|S′).

For finite T ⊆ Zd such that S ∩ T = ∅, y ∈ LT (X) and xy ∈ LS∪T (X), define:

WS(x, y) = WΦ
S (x, y) =

∑
T ′⊆S∪T : T ′∩S 6=∅, T ′∩T 6=∅

Φ((xy)|T ′).

A Gibbs state for an interaction Φ on X is a measure µ with support contained
in X such that for any x, y such that xy ∈ LS∪T (X) and µ(y) > 0,

(10) µ(x | y) =
e−US(x)−WS(x,y)∑

{x′∈LS(X): x′y∈LS∪T (X)} e
−US(x′)−WS(x′,y)

This agrees with the classical definition of Gibbs state (see Ruelle [Rue], Chapter
1, in particular equation (1.15)) in the case of a n.n. SFT. Ruelle [Rue] (Chapter
1) shows that if Φ is bounded, then given any such Φ and X, there is at least one
Gibbs state µ (Ruelle’s result is actually much more general).
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An interaction Φ is translation-invariant if it assigns the same values to all
translates of a given configuration on a finite set. An interaction is a nearest
neighbor (n.n.) interaction if it vanishes on all configurations other than those on
vertices and edges.

We now define a specification corresponding to (10) for translation-invariant,
n.n. interactions. For a finite set S ⊂ Zd and z ∈ LS(X), let

Φ(z, S) =
∑
u∈S

Φ(z(u)).

For a finite set E of edges in E(Zd) such that ∪e∈E e ⊂ S and z ∈ LS(X), let

Φ(z, E) =
∑
e∈E

Φ(z|e).

The Gibbs Zd-specification determined by Φ and X, denoted by ΛΦ,X , is defined
as follows. For any finite S ⊂ Zd, x ∈ AS , and δ ∈ L∂S(X),
(11)

ΛδΦ,X(x) =
exp(−Φ(x, S)− Φ(xδ,E(S, S) ∪ E(S, ∂S)))∑

{x′∈AS : x′δ∈LS∪∂S(X)} exp(−Φ(x′, S)− Φ(x′δ, E(S, S) ∪ E(S, ∂S)))

if xδ ∈ LS∪∂S(X), and ΛδΦ,X(x) = 0 otherwise. For δ ∈ A∂S \ L∂S(X), set ΛδΦ,X =

Λδ
′

Φ,X for some arbitrary δ′ ∈ L∂S(X) (note that L∂S(X) is nonempty since X is

nonempty). In this case q(ΛΦ,X) is determined only by {ΛδΦ,X}δ∈L(X).

If T is finite, ∂S ⊆ T ⊂ Zd \ S, xy ∈ LS∪T (X), and δ = y|∂S , then

US(x) = Φ(x, S) + Φ(x,E(S, S))

WS(x, y) = WS(x, δ) = Φ(xδ,E(S, ∂S)),

and so for any Gibbs state µ for Φ on X, the conditional probabilities (10) reduce
to µ(x | y) = ΛδΦ,X(x). Since µ is supported in X, all other conditional probabilities

µ(x | y) are spurious, and so µ is a Zd-MRF associated to ΛΦ,X . Since there always
exists a Gibbs state for Φ and X (by Ruelle’s result above), ΛΦ,X is valid. We
also note that since Φ was assumed to be translation-invariant, ΛΦ,X is translation-
invariant as well.

Given a translation-invariant n.n. interaction Φ on a n.n. Z2-SFT X, we will find
it useful to represent a corresponding Gibbs state as a Gibbs state for an interaction
which is non-zero on a single finite set, namely the set ∆ = {(0, 0), (0, 1), (1, 0)}.
Specifically, define

(12) Φ̂(x) = Φ(x|{(0,0)}) + Φ(x|{(0,0),(0,1)}) + Φ(x|{(0,0),(1,0)})

for x ∈ L∆(X).

Proposition 4.1. Any Gibbs state for Φ̂ on X is a Gibbs state for Φ on X.

Proof. For a horizontal edge e = {u, u + (1, 0)} let e⊥ = {u, u + (0, 1)}. For a
vertical edge e = {u, u + (0, 1)} let e⊥ = {u, u + (1, 0)}. For a finite set S, let
D(S) = {edges e : e ∩ S = ∅ and e⊥ ∈ E(S, ∂S)}.

For finite T such that ∂S ⊆ T ⊂ Z2 \ S, x ∈ AS , and y ∈ LT (X), if xy ∈
LS∪T (X), then letting δ = y|∂S , we have

U Φ̂
S (x) +W Φ̂

S (x, y) = Φ(x, S) + Φ(xδ,E(S, S) ∪ E(S, ∂S)) + Φ(xy,D(S))
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Note that the last term in this expression is the same if we replace x by any
x′ ∈ AS such that x′δ ∈ LS∪∂S(X). It follows that for a Gibbs state for Φ̂ on X,
the conditional probabilities (10) reduce to the specification determined by Φ and
X.

�

We conclude this section by presenting two interactions on n.n. Z2-SFTs which
define historically important Gibbs measures. We will return to these examples
later in the paper to demonstrate how later results apply to them.

1. The Z2 hard-core model with activity a is given by X equal to the Z2 hard
square shift H and translation-invariant n.n. interaction Φ defined by Φ(u) = au(v)
for u a configuration on a vertex v and Φ(u) = 0 for u a configuration on an edge.
In this model, a can be thought of as the “weight” given to the symbol 1.

2. The Z2 Ising antiferromagnet with external magnetic field h and temper-

ature T = 1
β is defined by X = {±1}Z2

and translation-invariant n.n. inter-

action Φ defined by Φ(u) = −βhu(v) for u a configuration on a vertex v and
Φ(u) = βu(v1)u(v2) for u a configuration on an edge {v1, v2}. In this model, h is
an external influence which gives individual sites a preference between 1 and −1,
and β can be thought of as the “penalty” imposed to aligned adjacent sites; when
β is very large, adjacent sites are more likely to differ.

5. Strongly Irreducible SFTs

We from now on restrict our attention to a specific class of n.n. Z2-SFTs with
very strong topological mixing properties.

Definition 5.1. A n.n. Z2-SFT X is strongly irreducible (with filling distance L)
if for any finite S, T ⊂ Z2 with d(S, T ) > L, and any x ∈ LS(X), y ∈ LT (X), it is
always the case that xy ∈ LS∪T (X).

Our first use of strong irreducibility is to present a sufficient condition for a
Z2-MRF to be fully supported within an SFT.

Proposition 5.2. If X is a strongly irreducible n.n. Z2-SFT and Λ is a valid
Z2-specification such that xδ ∈ L(X) =⇒ Λδ(x) > 0, then any Z2-MRF associated
to Λ whose support is contained in X is fully supported on X.

Proof. Denote by L the filling distance of X. Let µ be any Z2-MRF associated
to Λ whose support is contained in X. Fix any w ∈ L[−n,n]2(X) and any δ ∈
A∂([−n−L,n+L]2) such that δ has positive µ-measure. Since the support of µ is
contained in X, δ ∈ L(X). Therefore, by strong irreducibility of X, there exists
x ∈ L[−n−L,n+L]2(X) with x|[−n,n]2 = w and xδ ∈ L(X). By the assumption on

Λ, Λδ(x) > 0, and since µ is associated to Λ, this means that µδ(x) > 0. But then
since µ(δ) is positive, µ(x) is as well. Since w is a subconfiguration of x, µ(w) > 0.

�

From this, we can conclude a fact about certain valid Z2-specifications supported
on strongly irreducible n.n. Z2-SFTs that will be useful later.

Proposition 5.3. Let X be a strongly irreducible n.n. Z2-SFT and Λ be a valid
Z2-specification such that xδ ∈ L(X) =⇒ Λδ(x) > 0. Assume that there exists a Z2-
MRF associated to Λ whose support is contained in X and that q(Λ) < 1. Then for
any rectangle R and δ, δ′ ∈ L∂R(X), there exists u ∈ AR such that δu, δ′u ∈ L(X).
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Proof. Consider such X, Λ, R, δ, and δ′, and let µ be a Z2-MRF associated to Λ
with support contained in X. By Proposition 5.2, µ is fully supported on X.

Without loss of generality, we assume R = [0,m] × [0, n] for some nonnegative
m,n. We begin by proving the proposition for m = n = 0, i.e. R = {(0, 0)}.
Consider any ζ, ζ ′ ∈ LN(0,0)

(X). Then by full support of µ on X, µ(ζ), µ(ζ ′) > 0.

Since q(Λ) < 1, there exists a ∈ A{(0,0)} such that Λζ(a),Λζ
′
(a) > 0, and since µ

is associated to Λ, µζ(a), µζ
′
(a) > 0. Therefore, µ(ζa), µ(ζ ′a) > 0, and since the

support of µ is contained in X, ζa, ζ ′a ∈ L(X).
We will use this fact to deal with generalR. Define by r1, r2, . . . , rmn the elements

of R, listed in lexicographic order (i.e. the bottom row from left to right, then the
next row from left to right, etc.) For each k ∈ [0,mn], define Rk = {ri}ki=1. We
define u letter by letter, on the sites ri in order. Suppose that for some k ∈ [0,mn),
we have defined uk ∈ ARk such that δuk, δ

′uk ∈ L(X). We must define uk+1 ∈
ARk+1 such that uk+1|Rk = uk and δuk+1, δ

′uk+1 ∈ L(X).
Define C = Nrk+1

\ (Rk ∪ ∂R), the set of neighbors of rk+1 which do not have
letters assigned to them in δ, δ′, or uk. Clearly, since δuk and δ′uk are globally
admissible in X, there exist η, η′ ∈ LC(X) such that δηuk, δ

′η′uk ∈ L(X). Define
ζ = (δηuk)|Nrk+1

and ζ ′ = (δ′η′uk)|Nrk+1
; clearly ζ, ζ ′ ∈ L(X).

Then by the proof of the proposition for R consisting of a single site, there exists
a ∈ L{rk+1}(X) such that ζa, ζ ′a ∈ L(X). Then from the facts that X is a n.n.

SFT, that ζ, ζ ′ ∈ ANrk+1 , and that δηuk and δ′η′uk are globally admissible in X,
we can conclude that δηuka and δ′η′uka are globally admissible in X as well. But
then trivially δuka, δ

′uka ∈ L(X), and so we can take uk+1 = uka.
This inductive process eventually yields umn ∈ AR for which δumn, δ

′umn ∈
L(X), and so by taking u = umn we are done.

�

Our main application of strong irreducibility is, for any Gibbs specification ΛΦ,X ,
to guarantee the existence of periodic rows t, b such that (ΛΦ,X)m,n,t,b is valid for
n−m large.

We first recall the result of Ward [War] that any strongly irreducible n.n. Z2-SFT
X has a globally admissible periodic row (i.e., a periodic configuration on Z× {0}
which extends to an element of X); in fact, every such SFT has a doubly periodic
element, though we will not need this fact here.

For integers m < n and globally admissible periodic rows t, b, let Xm,n,t,b be the

set of all configurations x ∈ AZ×[m,n] such that txb is locally admissible. Note that
all elements of Xm,n,t,b are in fact globally admissible.

Proposition 5.4. Let X be a strongly irreducible n.n. Z2-SFT and Φ be a translation-
invariant n.n. interaction on X. Let t and b be periodic rows which are globally
admissible in X (which always exist by [War]). If n−m exceeds the filling distance
of X, then m,n, t, b is compatible with ΛΦ,X (and therefore by Proposition 3.13
(ΛΦ,X)m,n,t,b is valid).

Moreover, there is an MRF associated to (ΛΦ,X)m,n,t,b supported in Xm,n,t,b.

Proof. Let t and b be such rows. Since ΛΦ,X is Gibbs, it is valid, and so has an
associated MRF µ supported in X. Let m,n be chosen so that n − m exceeds
the filling distance of X. Then for all k, there exists wk ∈ L[−k,k]×[m−1,n+1](X)
whose top row is t|[−k,k] and bottom row is b|[−k,k]. Proposition 5.2 applies to
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µ, and so µ(wk) > 0. Thus, m,n, t, b is compatible with ΛΦ,X (by taking δk =
wk|∂([−k+1,k−1]×[m,n]) in the definition of compatibility).

The measure obtained as in Proposition 3.13 from the δk is clearly supported in
Xm,n,t,b.

�

For any translation-invariant n.n. interaction Φ, strongly irreducible n.n. Z2-
SFT X with filling distance L, globally admissible periodic t and b, and m,n with
n − m > L, for notational convenience we denote by ΛΦ,X,m,n,t,b the specifica-
tion (ΛΦ,X)m,n,t,b which by Proposition 5.4 is valid. If in addition q(Λ) < 1,
then by Proposition 3.14 there is a unique Hm,n-MRF µ(ΛΦ,X,m,n,t,b) associated
to ΛΦ,X,m,n,t,b, which we call the induced Gibbs state for Φ and X, and which,
again for convenience, we denote by µΦ,X,m,n,t,b. By Proposition 5.4 µΦ,X,m,n,t,b is
supported in Xm,n,t,b.

6. Induced Gibbs states as one-dimensional Markov Chains

Our eventual goal is to use the results of Sections 3, 4, and 5 to give an algorithm
for approximating certain topological pressures by means of induced Gibbs states
on strips. For this procedure to be useful though, it must be the case that these
induced Gibbs states are tractable measures to deal with. Under some elementary
assumptions, this does turn out to be the case; in fact the induced Gibbs states
turn out to be Markov chains.

Let X be a strongly irreducible n.n. Z2-SFT with filling distance L, Φ a
translation-invariant n.n. interaction on X such that q(ΛΦ,X) < 1, and let µ be
any Gibbs state for Φ on X. Let t and b be globally admissible periodic rows for
X, which for now we assume to be constant (though such rows may not exist in
general): t = t∞0 , b = b∞0 . Let m,n be integers such that n−m > L.

Let Cm,n,t,b denote the set of all “locally admissible columns compatible with t
and b” on Hm,n, i.e., all xm . . . xn such that xixi+1 ∈ E2 for i = m, . . . , n− 1, and
b0xm, xnt0 ∈ E2. Let Em,n,t,b denote the set of all locally admissible (n−m+ 1)× 2
rectangles, i.e., ordered pairs of columns (xm . . . xn, ym . . . yn) ∈ (Cm,n,t,b)2 such
that xiyi ∈ E1 for each i = m, . . . , n.

Observe that Xm,n,t,b (defined near the end of Section 5) is the n.n. Z-SFT on the
alphabet Cm,n,t,b defined by E = Em,n,t,b. Here, we are identifying a configuration on
a finite interval of Z over the alphabet Cm,n,t,b with the corresponding configuration
on a finite rectangle in Z × [m,n] over the alphabet A. Recall that since t and b
are globally admissible and X is a n.n. Z2-SFT, we have L(Xm,n,t,b) ⊂ L(X).

Denote by ΛΦ,X,m,n,t,b the restriction of the specification ΛΦ,X,m,n,t,b to configu-

rations δ of the form ∂(Hm,n, F × [m,n]) for finite sets F . We think of ΛΦ,X,m,n,t,b

as a Z-specification over the alphabet A[m,n].

Corollary 6.1. If X is a strongly irreducible n.n. Z2-SFT, Φ is a translation-
invariant n.n. interaction for which q(ΛΦ,X) < 1, t, b are globally admissible con-

stant sequences, and n−m exceeds the filling distance of X, then q(ΛΦ,X,m,n,t,b) < 1.

Proof. To show that q(ΛΦ,X,m,n,t,b) < 1, it suffices to show that for any c, c′ ∈
L{−1}(Xm,n,t,b) and d, d′ ∈ L{1}(Xm,n,t,b) such that cd, c′d′ ∈ L(Xm,n,t,b), there
exists e ∈ L{0}(Xm,n,t,b) such that ced, c′ed′ ∈ L(Xm,n,t,b). (This is sufficient since

ΛΦ,X , being a Gibbs specification, has the property that ΛδΦ,X(u) > 0 if uδ ∈ L(X).)
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However, note that this is equivalent to showing that for any δ, δ′ ∈ L∂({0}×[m,n])(X)

with t0 at the top and b0 at the bottom, there exists u ∈ A{0}×[m,n](X) such that
δu, δ′u ∈ L(X). This is a straightforward consequence of Proposition 5.3, which
can be applied since ΛΦ,X is the Gibbs specification determined by Φ and X and
q(ΛΦ,X) < 1.

�

Corollary 6.2. If X is a strongly irreducible n.n. Z2-SFT, Φ is a translation-
invariant n.n. interaction for which q(ΛΦ,X) < 1, t, b are globally admissible con-
stant sequences, and n − m exceeds the filling distance of X, then Xm,n,t,b is a
mixing Z-SFT.

Proof. By Corollary 6.1, q(ΛΦ,X,m,n,t,b) < 1. We prove that Xm,n,t,b is mixing by
using some well-known facts about the structure of n.n. Z-SFTs. In particular, we
show that Xm,n,t,b is irreducible and aperiodic; for more details on these properties
see [LM].

We first show that Xm,n,t,b is irreducible. Assume for a contradiction that it is
not. Then there exist at least two nontrivial irreducible components C,D ⊆ Cm,n,t,b.
But then clearly we have a contradiction to q(ΛΦ,X,m,n,t,b) < 1; a boundary con-
figuration consisting of two letters from C can only be filled in a globally ad-
missible way with a letter from C, and the same is true for D. Since C and D
were nontrivial components, there exist such boundary configurations δ, δ′ which
are globally admissible, and since C ∩ D = ∅ and ΛΦ,X is supported on X,

d(Λ
δ

Φ,X,m,n,t,b,Λ
δ′

Φ,X,m,n,t,b) = 1. Therefore, our original assumption was wrong
and Xm,n,t,b is irreducible.

It remains to show that Xm,n,t,b is aperiodic, which is done in the same way;
suppose for a contradiction that Xm,n,t,b can be partitioned into period classes
P1, . . . , Pk, k > 1. Then if we take δ to be a globally admissible boundary config-
uration in Xm,n,t,b consisting of a letter from Pk on the left and a letter from P2

on the right, and δ′ to be a globally admissible boundary configuration in Xm,n,t,b

consisting of a letter from P1 on the left and a letter from P3 (mod k) on the right,
then δ and δ′ can only be filled with letters from P1 and P2 respectively. Again,
since P1 ∩P2 = ∅, this contradicts q(ΛΦ,X,m,n,t,b) < 1, so Xm,n,t,b is aperiodic and
irreducible, therefore mixing.

�

The induced Gibbs state µΦ,X,m,n,t,b can be viewed as a measure on (Cm,n,t,b)Z
supported in Xm,n,t,b, and when viewed in this way, it is a Z-MRF associated to

ΛΦ,X,m,n,t,b. We will show that when viewed in this way µΦ,X,m,n,t,b is a translation-
invariant irreducible 1st-order Markov chain, with a transition probability matrix
defined explicitly in terms of Φ.

We first describe ΛΦ,X,m,n,t,b explicitly in terms of Φ. For a configuration z on
a finite set U ⊂ Z× {n} let

Φ+(z, U) =
∑
u∈U

Φ
(
t0
zu

)
For a configuration z on a finite set U ⊂ Z× {m} let

Φ−(z, U) =
∑
u∈U

Φ
(
zu

b0

)
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Let R = [−k, k]× [m,n], x ∈ AR, δ ∈ A∂(R,Hm,n) such that xδ ∈ L(Xm,n,t,b). From
(11) and (1), we have:

(13) Λ
δ

Φ,X,m,n,t,b(x) =
exp(−A(x, δ))∑

{w∈AR: wδ∈L(Xm,n,t,b)} exp(−A(w, δ))

where

(14) A(z, δ) = Φ(z,R) + Φ(zδ, E(R,R) ∪ E(R, ∂(R,Hm,n)))

+ Φ+(z,R ∩ (Z× {n})) + Φ−(z,R ∩ (Z× {m})).

We claim that ΛΦ,X,m,n,t,b can be expressed as a Z-specification determined by

a n.n. interaction Φm,n,t,b on Xm,n,t,b. We define Φm,n,t,b to vanish on all finite
configurations other than those on edges in Em,n,t,b, and on such edges, it is defined
by

(15) Φm,n,t,b(xm . . . xn, ym . . . yn) =((
n∑

i=m

Φ(xi)

)
+ Φ

(
xm

b0

)
+

(
n−1∑
i=m

Φ
(
xi+1

xi

))
+ Φ

(
t0
xn

)
+

(
n∑

i=m

Φ(xi, yi)

))
.

Let R = [−k, k] × [m,n], x ∈ AR, δ ∈ A∂(R,Hm,n) such that xδ ∈ L(Xm,n,t,b).
Observe that

(16) Λδ
Φm,n,t,b,Xm,n,t,b

(x) =
exp(−B(x, δ))∑

{w∈AR: wδ∈L(Xm,n,t,b)} exp(−B(w, δ))

where

(17) B(z, δ) =

k−1∑
j=−k

(
Φm,n,t,b(z|{j}×[m,n], z|{j+1}×[m,n]) + Φm,n,t,b(z|{k}×[m,n], δ|{k+1}×[m,n])

)
+ Φm,n,t,b(δ|{−k−1}×[m,n], z|{−k}×[m,n]) = A(z, δ) + C(δ),

where

C(δ) =

(
n∑

i=m

Φ(δ(−k − 1, i))

)
+ Φ

(
δ(−k−1,m)

b0

)
+

(
n−1∑
i=m

Φ
(
δ(−k−1,i+1)

δ(−k−1,i)

))
+ Φ

(
t0

δ(−k−1,n)

)
.

Comparing (13), (14), (16) and (17), we see that

Λδ
Φm,n,t,b,Xm,n,t,b

= Λ
δ

Φ,X,m,n,t,b

for all δ ∈ L∂(R,Hm,n)(Xm,n,t,b). Since µΦ,X,m,n,t,b is supported inXm,n,t,b, it follows
that µΦ,X,m,n,t,b, when viewed as a Z-MRF, is a Gibbs state for the interaction

Φm,n,t,b on Xm,n,t,b.
Let AΦ,X,m,n,t,b be the square matrix indexed by Cm,n,t,b and defined by

(18) (AΦ,X,m,n,t,b)c,d =

{
e−Φm,n,t,b(c,d) if (c, d) ∈ Em,n,t,b
0 otherwise.
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We will frequently suppress the dependence of A on Φ, X,m, n, t, b when it causes
no confusion.

By Corollary 6.2, we may assume (by deleting elements of Cm,n,t,b which do not
actually appear in Xm,n,t,b) that A is a primitive matrix. Let λ(A) represent the
Perron (i.e., largest) eigenvalue of A. By Perron-Frobenius Theory, there are unique
(up to scalar multiples) right and left (positive) eigenvectors u = uΦ,X,m,n,t,b and
v = vΦ,X,m,n,t,b corresponding to λ(A).

Let Π = ΠΦ,X,m,n,t,b (again, dependence will frequently be suppressed) be the
(primitive) probability transition matrix indexed by Cm,n,t,b defined by

(19) Πc,d =
Ac,dv(d)

λ(A)v(c)

Proposition 6.3. Let Φ be a translation-invariant n.n. interaction on a strongly
irreducible n.n. Z2-SFT X. Let t and b be globally admissible constant rows and
assume that n − m exceeds the filling distance of X. Assume that q(ΛΦ,X) <
1. Then the induced Gibbs state µΦ,X,m,n,t,b for Φ and X is a one-dimensional
translation-invariant mixing 1st-order Markov chain with probability transition ma-
trix ΠΦ,X,m,n,t,b.

Proof. This is a special case of a much more general result [Ge] (Theorem 10.25).
However, the proof in our case is much simpler, as follows.

Write µ = µΦ,X,m,n,t,b, u = uΦ,X,m,n,t,b, v = vΦ,X,m,n,t,b and λ = λ(AΦ,X,m,n,t,b).
We assume that u and v are normalized so that u · v = 1. Fix any k > 0.

Since µ is a Gibbs state for the interaction Φm,n,t,b on Xm,n,t,b, for any positive
integers k, ` and any x−k, . . . , x−1, x0 ∈ Cm,n,t,b,

µ(x0|x−1, . . . , x−k) =
∑
x`

µ(x`|x−1, . . . , x−k)µ(x0|x`, x−1, . . . , x−k)

=
∑
x`

µ(x`|x−1, . . . , x−k)
∑

x1,...,x`−1

µ(x0, x1, . . . , x`−1|x`, x−1, . . . , x−k)

=
∑
x`

µ(x`|x−1, . . . , x−k)
∑

x1,...,x`−1

µ(x0, x1, . . . , x`−1|x`, x−1)

=
∑
x`

µ(x`|x−1, . . . , x−k)
∑

x1,...,x`−1

Ax−1x0Ax0x1 · · ·Ax`−1x`∑
x′0,x

′
1,...,x

′
`−1

Ax−1x′0
Ax′0x′1 · · ·Ax′`−1x`

=
∑
x`

µ(x`|x−1, . . . , x−k)
Ax−1x0(A`)x0x`

(A`+1)x−1x`

Since A is primitive, by [LM] (Theorem 4.5.12) we have that lim`→∞
(A`)c,d
λ`

=
vcud. Thus, given ε > 0, for sufficiently large `, µ(x0|x−1, . . . , x−k) is within ε of∑

x`

µ(x`|x−1, . . . , x−k)
Ax−1x0vx0ux`
vx−1ux`λ

=
Ax−1x0vx0

vx−1λ

Thus, µ(x0|x−1, . . . , x−k) =
Ax−1x0

vx0
vx−1

λ = Πx−1,x0
. In particular, µ is a translation-

invariant mixing 1st-order Markov chain.
�
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7. Pressure and equilibrium states

We now turn to our main application of Theorem 3.22: the approximation of
certain topological pressures on strongly irreducible n.n. Z2-SFTs.

We recall that for any n.n. Zd-SFT X and f ∈ C(X), an equilibrium state is a
translation-invariant measure µ on X for which h(µ) +

∫
f dµ is maximized, and

that this maximum P (f) is called the topological pressure of f on X. Our main
tool is Theorem 4.2 from [Rue], which proves that any equilibrium state is a Gibbs
state.

Let X be a strongly irreducible n.n. Z2-SFT X and Φ be a translation-invariant
n.n. interaction such that q(ΛΦ,X) < pc. Define Φ̂ as in (12). Let fΦ : X → R

be defined by fΦ(x) = −Φ̂(x|∆). In this case, Theorem 4.2 from [Rue] shows that

any equilibrium state for fΦ is a Gibbs state for Φ̂. (In fact, this is the reason

for defining Φ̂: technically Theorem 4.2 from [Rue] applies only to interactions
supported on configurations on a single shape.) According to our Proposition 4.1,
any equilibrium state for fΦ is a Gibbs state for Φ as well.

Since X is strongly irreducible, there exist t, b globally admissible periodic rows
in X. We for now assume that t, b are constant, and deal with the general periodic
case later. For any n which exceeds the filling distance ofX, let λn = λ(AΦ,X,1,n,t,b).

Theorem 7.1. Let X be a strongly irreducible n.n. Z2-SFT and Φ be a translation-
invariant n.n. interaction on X such that q(ΛΦ,X) < pc. Let t and b be globally
admissible constant rows. Then there exist constants Q,R > 0 such that for suffi-
ciently large n,

| log λn+1 − log λn − P (fΦ)| < Qe−Rn.

Proof. Let µ be an equilibrium state for fΦ, i.e., P (fΦ) = h(µ) +
∫
fΦdµ. By the

discussion above, µ is a Gibbs state for Φ on X and, by Theorem 3.9, is the unique
Z2-MRF associated to the Z2-specification Λ = ΛΦ,X .

Combining Proposition 6.3 with the well-known characterization of unique equi-
librium states of locally constant functions as Markov chains (see [Kr, p. 99], [Bl]),
we see that for any n larger than the filling distance of X, µΦ,X,1,n,t,b is the unique

equilibrium state for Φ1,n,t,b on the Z-SFT X1,n,t,b, and log λn = P (Φ1,n,t,b) =

h(µΦ,X,1,n,t,b) +
∫

Φ1,n,t,bdµΦ,X,1,n,t,b.

By Theorem 3.21 and Proposition 5.4, there exist constants Q,R such that for
sufficiently large n,

|h(µΦ,X,1,n+1,t,b)− h(µΦ,X,1,n,t,b)− h(µ)| < Qe−Rn.

It remains to show that
∫

Φ1,n+1,t,b dµΦ,X,1,n+1,t,b−
∫

Φ1,n,t,b dµΦ,X,1,n,t,b converges

exponentially fast to
∫
fΦ dµ. Recalling the definition of Φ1,n,t,b ((15)), we see that∫

Φ1,n+1,t,bdµΦ,X,1,n+1,t,b −
∫

Φ1,n,t,bdµΦ,X,1,n,t,b can be decomposed into a sum of
the form

(20)
∑(∫

F (x)dµΦ,X,1,n+1,t,b −
∫
F (x)dµΦ,X,1,n,t,b

)
+
∑(∫

F (σ(0,1)x
′))dµΦ,X,1,n+1,t,b −

∫
F (x′)dµΦ,X,1,n,t,b

)
+

∫
(fΦ ◦ σ(0,−bn/2c))dµΦ,X,1,n+1,t,b,
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where each x in the first sum is a configuration with shape a vertex or edge contained
in {0, 1}×[1, bn/2c], each x′ in the second sum is a configuration with shape a vertex
or edge contained in {0, 1}× [bn/2c, n], and F (x) can represent any of the functions

Φ(x), Φ
(
x

b0

)
, or Φ

(
t0
x

)
. (Clearly, in the latter two cases, x must be a configuration

on a single site contained in the bottom or top row respectively.)
Since distribution distance is dominated by d̄ distance, by Theorem 3.16 there

exist K,L > 0 such that for any configuration x with shape a vertex or edge
contained in {0, 1} × [1, bn/2c],

(21) |µΦ,X,1,n+1,t,b(x)− µΦ,X,1,n,t,b(x)| ≤ Ke−Ln/2.

Similarly, for any configuration x with shape a vertex or edge contained in {0, 1}×
[bn/2c, n],

(22) |µΦ,X,1,n+1,t,b(σ(0,1)x)− µΦ,X,1,n,t,b(x)| ≤ Ke−Ln/2.

By (21) and (22), if we take Q′ = K maxx |Φ(x)|, then each of the first two sums
in (20) is less than 5nQ′e−Ln/2.

The third term of (20) converges to
∫
fΦdµ by Proposition 3.15, and is exponen-

tially Cauchy by (21) and (22). Therefore, there exists Q′′ such that for sufficiently
large n, ∣∣∣∣∫ (fΦ ◦ σ(0,−bn/2c))dµΦ,X,1,n+1,t,b −

∫
fΦdµ

∣∣∣∣ ≤ Q′′e−Ln/2.
Therefore, (20) is exponentially close to

∫
fΦdµ.

�

We now consider the general case where t and b are globally admissible periodic
(but not necessarily constant) rows with common period p and generalize Theo-
rem 7.1 to this case. Since such t and b always exist, this will yield a way to
efficiently approximate P (fΦ) for any translation-invariant n.n. interaction Φ on a
strongly irreducible n.n. Z2-SFT X for which q(ΛΦ,X) < pc.

Let X [p] denote X [[0,p−1]×{0}], the ([0, p − 1] × {0})-higher power code of X,
which is a n.n. Z2-SFT over the alphabet A[p] := L[0,p−1]×{0}(X). Define a new

translation-invariant n.n. interaction Φ[p] on X [p] as follows:

• On vertices: Φ[p]([x0 . . . , xp−1]) =
∑p−1
i=0 Φ(xi)

• On horizontal edges: Φ[p]([x0 . . . , xp−1][y0 . . . , yp−1]) = Φ(x0x1) + . . . +
Φ(xp−1y0)

• On vertical edges: Φ[p]
(

[x0...,xp−1]

[y0...,yp−1]

)
= Φ

(
x0

y0

)
+ . . .+ Φ

(
xp−1

yp−1

)
Let t[p], b[p] be the constant rows (t|[0,p−1])

Z, (b|[0,p−1])
Z ∈ (A[p])Z. Then t[p], b[p] are

globally admissible in X [p].
If q(ΛΦ[p],X[p]) < pc, we can simply apply Theorem 7.1 to achieve exponentially

converging approximations to P (fΦ[p]), and it is fairly easy to see that P (fΦ[p]) =
pP (fΦ), so we would be done. However, by examining the definitions, we see that
it could be the case that q(ΛΦ[p],X[p]) > q(ΛΦ,X), and so we must take a more
circuitous route.

As earlier, we can define Φ[p]
m,n,t[p],b[p] on (X [p])m,n,t[p],b[p] and the corresponding

matrix AΦ[p],X[p],m,n,t[p],b[p] . For fixed X,Φ, t, b, p and any n greater than the filling
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distance of X [p], we make the notation A
[p]
n := AΦ[p],X[p],1,n,t[p],b[p] and λ

[p]
n :=

λ(A
[p]
n ), the largest eigenvalue of A[p].

Theorem 7.2. Let X be a strongly irreducible n.n. Z2-SFT and Φ a translation-
invariant n.n. interaction on X. Let t and b be globally admissible periodic rows,
with common period p. Assume that q(ΛΦ,X) < pc. Then there exist constants
Q,R > 0 such that for sufficiently large n,

|(1/p)(log λ
[p]
n+1 − log λ[p]

n )− P (fΦ)| < Qe−Rn.

Proof. Define Λ[p] = ΛΦ[p],X[p] . We will now verify that q(Λ[p]) < 1. Any bound-

ary configurations δ[p], δ′[p] ∈ LN(0,0)
(X [p]) correspond to configurations δ, δ′ ∈

L∂([0,p−1]×{0})(X). By Proposition 5.3 (which we may use because q(ΛΦ,X) < pc <
1), any such δ, δ′ have a common globally admissible filling in X, which implies
that δ[p], δ′[p] have a common globally admissible filling in X [p], which has positive

(Λ[p])δ
[p]

, (Λ[p])δ
′[p]

-values since Λ[p] is a Gibbs specification.
Therefore, by Proposition 3.14, for large enough n, there is a unique induced

Gibbs state µΦ[p],X[p],1,n,t[p],b[p] for X [p] and Φ[p]. By again using Proposition 6.3
and ([Kr, p. 99], [Bl]), µΦ[p],X[p],1,n,t[p],b[p] is the unique equilibrium state for

Φ[p]
1,n,t[p],b[p] on (X [p])1,n,t[p],b[p] and

(23) log λ[p]
n = P (Φ[p]

1,n,t[p],b[p]) = h(µΦ[p],X[p],1,n,t[p],b[p])

+

∫
Φ[p]

1,n,t[p],b[p]dµΦ[p],X[p],1,n,t[p],b[p] .

We now must show that the differences of the right-hand sides of (23) for n and
n+1 in fact converge exponentially fast to pP (fΦ), which is done in much the same
way as in the proof of Theorem 7.1. We again take an equilibrium state µ for fΦ

and X, which is a Gibbs state for Φ on X and is the unique Z2-MRF associated
to the Z2-specification ΛΦ,X . Since q(ΛΦ,X) < 1, we may define the unique MRF
µΦ,X,1,n,t,b associated to ΛΦ,X,1,n,t,b.

We claim that µΦ[p],X[p],1,n,t[p],b[p] = (µΦ,X,1,n,t,b)
[p]. This follows from Propo-

sition 3.14 and the fact that q(Λ[p]) < 1 once one verifies that (µΦ,X,1,n,t,b)
[p] is

associated to (Λ[p])1,n,t[p],b[p] = ΛΦ[p],X[p],1,n,t[p],b[p] . This is straightforward (but a
bit tedious), and we leave the details to the reader. Thus, (23) becomes

log λ[p]
n = h((µΦ,X,1,n,t,b)

[p]) +

∫
Φ[p]

1,n,t[p],b[p]d((µΦ,X,1,n,t,b)
[p]).

By Theorem 3.22, h((µΦ,X,1,n+1,t,b)
[p])−h((µΦ,X,1,n,t,b)

[p]) converges exponentially
to ph(µ). Arguing the same way as in the proof of Theorem 7.1, we see that∫

Φ[p]
1,n+1,t[p],b[p]d((µΦ,X,1,n+1,t,b)

[p])−
∫

Φ[p]
1,n,t[p],b[p]d((µΦ,X,1,n,t,b)

[p])

converges exponentially to
∫
fΦ[p]dµ =

∫ ∑p−1
i=0 (fΦ◦σ(i,0))dµ = p

∫
fΦdµ, where the

latter equality comes from translation-invariance of µ.

Thus, (1/p)(log λ
[p]
n+1 − log λ

[p]
n ) converges exponentially to P (fΦ), as desired.

�

We will make a brief aside here to consider the utility of this theorem. For a
n.n. Z2-SFT X and translation-invariant n.n. interaction Φ with associated Gibbs
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specification ΛΦ,X , recall that ΛδΦ,X is defined by a formula involving X and Φ for

every δ ∈ LN(0,0)
(X), and then for any other δ′ ∈ AN(0,0) , Λδ

′

Φ,X is just defined to

match one of the existing ΛδΦ,X . This means that q(ΛΦ,X) is, in reality, a minimum

variational distance between ΛδΦ,X and Λδ
′

Φ,X for globally admissible δ, δ′ only.

It is well known ([Be]) that checking whether or not a given configuration is
globally admissible in a n.n. Z2-SFT can be undecidable, and so certainly algorith-
mically impossible. However, it is shown in Corollary 3.5 of [HM] that for a strongly
irreducible n.n. Z2-SFT, global admissibility of a configuration is algorithmically
checkable.

In practice however, this checking process can be very time-consuming, and so
it is often easier to consider a “simpler” version of q(ΛΦ,X). Assume that Φ is
defined on all of A∪ E1 ∪ E2. Say that a configuration δ ∈ AN(0,0) is fillable if there
exists x ∈ A{(0,0)} such that xδ is locally admissible. For fillable δ, the formula
(11) makes sense and we can define

q̂(ΛΦ,X) = max d(ΛδΦ,X ,Λ
δ′

Φ,X)

where the max is taken over only fillable configurations δ, δ′ ∈ AN(0,0) . Then
q(ΛΦ,X) ≤ q̂(ΛΦ,X), and so if q̂(ΛΦ,X) < pc, q(ΛΦ,X) < pc as well. Since com-
puting q̂(ΛΦ,X) only requires finding the set of locally admissible configurations in
X with shape {(0, 0)} ∪N(0,0), it is a far easier quantity to find.

8. Computability

We now address the issue of how efficiently our methods can be used to ap-
proximate P (fΦ) for a function fΦ induced by a n.n. interaction Φ on a strongly
irreducible n.n. SFT X.

We define α ∈ R to be a computable number if there exists a Turing machine T

which, on input n, outputs a number pn
qn
∈ Q such that

∣∣∣α − pn
qn

∣∣∣ < 2−n. For any

sequence of positive integers {rn}, we say that α is {rn}-computable if there exists
such a Turing machine T which computes pn

qn
in less than rn steps for all sufficiently

large n. (For more information on computability theory, see [Ko].)
We say that Φ is {rn}-computable if each value Φ(w) in the range of Φ is {rn}-

computable.

Theorem 8.1. For any {rn}-computable Φ and strongly irreducible n.n. Z2-SFT
X for which q(ΛΦ,X) < pc, there exist constants B, C, and J such that P (fΦ) is
{Jn +BrCn}-computable.

Proof. We will not include every detail of the argument, but just describe the algo-
rithm for approximating P (fΦ) and summarize the most computationally intensive
steps. For a similar argument with more details included, see [P].

Some preprocessing must be done before any approximations. Firstly, a globally
admissible periodic row t for X must be found; a careful reading of the proof in
[War] shows that this can be done algorithmically. Denote by p the period of t. Also,
we invest a finite number of steps to find explicit integers L and U which bound
all Φ(w) from below and above respectively. This finite amount of computation is
negligible compared to the computation times in the theorem, and so we may safely
ignore it.
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Then, by Theorem 7.2, there exists R > 0 such that for sufficiently large n,∣∣1/p (log λ(AΦ[p],X[p],1,n+1,t[p],t[p])− log λ(AΦ[p],X[p],1,n,t[p],t[p])
)
− P (fΦ)

∣∣ < 0.2e−Rn.

To approximate P (fΦ) to within 2−n, it then clearly suffices to approximate
λ(AΦ[p],X[p],1,k,t[p],t[p]) and λ(AΦ[p],X[p],1,k+1,t[p],t[p]) to within 0.4 · 2−n, where k =

nd log 2
R e. It obviously suffices to describe the procedure for λ(AΦ[p],X[p],1,k,t[p],t[p]).

We from now on refer to AΦ[p],X[p],1,k,t[p],t[p] simply as A for ease of reading.

The entries of A, indexed by legal columns c and d, are all of the form e−
∑

Φ(w),
where the sum is always over a set of at most 4kp configurations which are easily
computed in polynomial (negligible) time in k, given t, c, and d. Therefore, the
smallest nonzero entry of A is at least e−4kpU and the largest entry is at most
e−4kpL. We now wish to approximate each entry of A to within a tolerance of
0.2|A|−kpe−4kpUe8kpL2−n. We first approximate each individual Φ(w) to within

1
40kp |A|

−kpe−4kpUe8kpL2−n. Since k is linear in n, this expression is only exponen-

tially small in n. Since each Φ(w) is {rn}-computable, there exists C so that such
an approximation can be found for each Φ(w) in fewer than rCn steps for sufficiently
large n, and so a collection of such approximations for all Φ(w) can be found in fewer
than BrCn steps, where B is the constant number of configurations w for which
Φ(w) 6= 0. For each entry Ac,d = e−

∑
Φ(w) of A, we then have an approximation

to −
∑

Φ(w) within a tolerance of 0.1|A|−kpe−4kpUe8kpL2−n, which yields an ap-
proximation to Ac,d = e−

∑
Φ(w) to within a tolerance of 0.2|A|−kpe−4kpUe4kpL2−n

for large enough n since Ac,d < e−4kpL.

We then have a matrix Ã in which each entry is within 0.2|A|−kpe−4kpUe4kpL2−n

of the corresponding entry of A. Since this matrix has only exponentially many
entries (the size of A = AΦ[p],X[p],1,k,t[p],t[p] is at most the size of the alphabet of

X
[p]

1,k,t[p],t[p]
, which is at most |A|kp), and since each approximation only involves

summing previously recorded approximations to Φ(w) and exponentiating, there

exists F so that Ã can be computed in fewer than Fn +BrCn steps for sufficiently
large n.

Then (1 − 0.2|A|−kpe4kpL2−n)A < Ã < (1 + 0.2|A|−kpe4kpL2−n)A, and by

monotonicity of the Perron eigenvalue, (1 − 0.2|A|−kpe4kpL2−n)λ(A) < λ(Ã) <
(1 + 0.2|A|−kpe4kpL2−n)λ(A). Since clearly λ(A) is bounded from above by the
maximum row sum of A, which itself is less than |A|kpe−4kpL, this means that

|λ(Ã)− λ(A)| < 0.2 · 2−n.

All that remains is to approximate λ(Ã) to within a tolerance of 0.2 · 2−n. Since

Ã and A have the same nonzero entries, and since A is primitive, there exists

N = N(k) such that ÃN has all positive entries. We assume that N is the smallest
such integer, which is called the index of primitivity of A. It is well-known ([HorJ],
Corollary 8.5.9) that the index of primitivity is at most quadratic in the size of the
matrix, so there exists G independent of n so that N < Gk. Clearly the smallest

entry of ÃN , call it ε, is at least (e−5kpU )N . (We changed 4kpU to 5kpU to account

for the fact that the smallest entry of Ã could be slightly smaller than the smallest
entry of A.)

The reader can verify that for any M and k,(
ε
∑

(ÃM )c,d

)k
<
∑

(Ãk(M+N))c,d <
(∑

(ÃM+N )c,d

)k
.
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By taking logs, dividing by k(M +N), and letting k →∞, we see that

log ε

M +N
+

log
∑

(ÃM )c,d
M +N

< λ(Ã) <
log
∑

(ÃM+N )c,d
M +N

.

If we denote fM =
log
∑

(ÃM )c,d
M

, then for every M > N ,

λ(Ã) < fM < λ(Ã) +
Nλ(Ã)

M
− log ε

M
.

For fM to approximate Λ(Ã) to within 0.2 · 2−n, it is therefore sufficient to take

M > 5 · 2n(Nλ(Ã) − log ε), which is less than Hn for some constant H and large
enough n. The calculation of fHn entails taking an exponentially large power of an
exponentially large matrix, which can be done in exponentially many computations.

Therefore, there exists I so that λ(Ã) can be approximated to within 0.2 · 2−n in
fewer than In computations.

By collecting all of these facts and taking J = max(I, F ) + 1, we see that for
sufficiently large n, we may approximate P (fΦ) to within 2−n by performing fewer
than Jn +BrCn steps for some uniform constants B, C, and J .

�

9. Examples

We now give some applications of the results from Sections 7 and 8 to specific
Gibbs states and pressures, beginning with the hard-core and Ising antiferromag-
netic models presented earlier. We note that these models have strongly irreducible
underlying SFTs (the hard square shift and full shift on ±1 respectively), and so
checking whether our results apply to them boils down to checking which parameter
values give q(ΛΦ,X) < pc.

1. Hard-core model: we wish to know which activity levels a give q(ΛΦ,X) < pc.
By the definition of Φ, it is easy to check that for δ = 0N(0,0) ,

ΛδΦ,H(b) =

{
1

1+a if b = 0
a

1+a if b = 1,

which we abbreviate by ΛδΦ,H =
(

1
1+a ,

a
1+a

)
. For any other δ′ ∈ {0, 1}N(0,0) , Λδ

′

Φ,H =

(1, 0), i.e. it is concentrated entirely on the 0 symbol. (This is because if δ′ 6= 0N(0,0) ,
the only locally admissible way to fill δ in H is with a 0.) Therefore,

q(ΛΦ,H) = d

((
1

1 + a
,

a

1 + a

)
, (1, 0)

)
=

a

1 + a
,

which is less than pc iff a < pc
1−pc . We note that this computation was already done

in [vdBM].

2. Ising antiferromagnet: again, we wish to know which parameters h, β give
q(ΛΦ,X) < pc. Again, it is reasonably straightfoward to check that for any δ ∈
{±1}N(0,0) with

∑
v∈N(0,0)

δ(v) = n,

ΛδΦ,X(b) =

{
e−β(h−n)

eβ(h−n)+e−β(h−n) if b = −1
eβ(h−n)

eβ(h−n)+e−β(h−n) if b = 1.
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It is then fairly easy to see that

q(ΛΦ,X) = d((ΛΦ,X)(1
N(0,0) ), (ΛΦ,X)(−1

N(0,0) ))

=
eβ(h−4)

eβ(h−4) + e−β(h−4)
− eβ(h+4)

eβ(h+4) + e−β(h+4)
.

It was shown in [vdBM] that q(ΛΦ,X) < pc as long as 2β(4 − |h|) < log
(

pc
1−pc

)
,

though this condition is certainly not necessary.

In both models, the results of [vdBM] imply that there is a unique Gibbs measure
µ for the described parameters. Theorem 7.2 implies that in addition, the pressure
P (fΦ) is exponentially well approximable by

1/p
(
log λ(AΦ[p],X[p],1,n+1,t[p],b[p])− log λ(AΦ[p],X[p],1,n,t[p],b[p])

)
for any boundary conditions t, b periodic with period p. (Of course, for these two
models, there exist globally admissible constant rows, and so we could take p = 1.)
By Theorem 8.1, a bound on the computability of these pressures can also be given
in terms of the computability of the relevant parameter values.

We conclude by giving applications to topological entropy, in the same spirit as
[P]. We first note that since a measure of maximal entropy is clearly an equilibrium
state for the function f = f0 = 0, any measure of maximal entropy is a Z2-MRF
associated to the Gibbs specification Λ = Λ0,X defined by

Λδ(η) :=

{
0 if ηδ /∈ L(X)

1
N(δ) if ηδ ∈ L(X)

when δ ∈ L(X) (here N(δ) is just the normalization factor |{η ∈ AS : ηδ ∈
L(X)}|), and by Λδ

′
= Λδ0 when δ′ /∈ L(X), where δ0 is any fixed globally admis-

sible boundary with the same shape as δ′.
We now exhibit two classes of strongly irreducible n.n. Z2-SFTs for which q(Λ) <

pc for this specification, implying that the topological entropy (topological pressure
for f = f0 = 0) is exponentially well approximable via strips, and therefore {Jn}-
computable for some J . For the first, we need a definition.

Definition 9.1. In a n.n. Zd-SFT X with alphabet A, a ∈ A is a safe symbol if
for all b ∈ A, (a, b), (b, a) ∈ Ei for 1 ≤ i ≤ d. In other words, a is a safe symbol if
it may legally appear next to any letter of the alphabet in any direction.

Proposition 9.2. Any n.n. Z2-SFT with alphabet A containing a subset A′ of

safe symbols for which |A
′|
|A| > 1 − pc has a unique measure of maximal entropy µ

which is an MRF associated to a translation-invariant Z2-specification Λ satisfying
q(Λ) < pc. The topological entropy of any such SFT is {Jn}-computable for some
J .

Proof. Consider any such Z2-SFT X and any µ a measure of maximal entropy on
X with Z2-specification Λ. Clearly, since X contains a safe symbol, any δ ∈ AN(0,0)

is in L(X) and X is strongly irreducible. For any δ ∈ AN(0,0) , the probability
distribution Λδ is uniform over some subset of A, call it Sδ, which contains A′.
Clearly, |Sδ| = N(δ). Choose any δ, δ′ ∈ AN(0,0) , and assume w.l.o.g. that N(δ) ≥
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N(δ′). Then,

d
(
Λδ,Λδ

′)
=

1

2

∑
e∈A
|Λδ(e)− Λδ

′
(e)| ≤

|A′|
2

( 1

N(δ′)
− 1

N(δ)

)
+
N(δ)− |A′|

2N(δ)
+
N(δ′)− |A′|

2N(δ′)

= 1− |A
′|

N(δ)
≤ 1− |A

′|
|A|

< pc.

Therefore, q(Λ) < pc, implying by Theorem 3.9 that µ was unique. The fact that
h(X) = P (f0) implies that h(X) is {Jn} computable for some J by Theorem 8.1.

�

We note that since pc > .556 > .5 by [vdBE], clearly the Z2 hard square shift H
satisfies the conditions of Proposition 9.2.

We recall that the {Jn}-computability of the topological entropy of such SFTs
followed from the exponentially good approximations given by differences of topo-
logical entropies of constrained strips, i.e. strips with boundary conditions t, b. For
SFTs with at least one safe symbol a (such as those to which Proposition 9.2 ap-
plies), one can take t, b = aZ and then the topological entropies of the approximating
“constrained” strips are equal to those of unconstrained strips as were treated in
[P].

Proposition 9.3. Any n.n. Z2-SFT with alphabet A with the property that for all
a ∈ A, and for any direction, the set of legal neighbors of a in that direction has
cardinality greater than (1− pc

4(1+pc)
)|A|, has a unique measure of maximal entropy

µ which is an MRF associated to a Z2-specification Λ satisfying q(Λ) < pc. The
topological entropy of any such SFT is {Jn}-computable for some J .

Proof. Consider any such n.n. Z2-SFT X and any µ a measure of maximal entropy
on X with Z2-specification Λ. Since 1 − pc

4(1+pc)
> 3

4 , any δ ∈ AN(0,0) can be

extended to a locally admissible configuration with shape N(0,0) ∪ {0}. The reader

may check that this implies both that any δ ∈ AN(0,0) is in L(X) and that X is
strongly irreducible. Therefore, for any δ ∈ AN(0,0) , the probability distribution Λδ

is uniform over some nonempty subset of A, call it Sδ. Clearly |Sδ| = N(δ). Define
α := pc

(1+pc)
. Then it is clear that |Sδ| > (1 − α)|A| for any δ ∈ A. Choose any

δ, δ′ ∈ AN(0,0) , and assume w.l.o.g. that N(δ) ≥ N(δ′). Define m := |Sδ ∩ Sδ′ | and
note that m > N(δ)− α|A|. Then,

d
(
Λδ,Λδ

′)
=

1

2

∑
e∈A
|Λδ(e)− Λδ

′
(e)|

≤ m

2

( 1

N(δ′)
− 1

N(δ)

)
+
N(δ)−m

2N(δ)
+
N(δ′)−m

2N(δ′)
= 1− m

N(δ)

< 1− N(δ)− α|A|
N(δ)

=
α|A|
N(δ)

<
α

1− α
= pc.

Therefore, q(Λ) < pc, implying by Theorem 3.9 that µ was unique. The fact
that h(X) = P (f0) again implies that h(X) is {Jn}-computable for some J by
Theorem 8.1.

�
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We note that since by [vdBE], pc
4(1+pc)

> .556
4(1+.556) >

5
56 , the usual k-checkerboard

Z2-SFT, with alphabet {1, . . . , k} and forbidden list consisting of all pairs of adja-
cent identical letters, satisfies the conditions of Proposition 9.3 when k ≥ 12. (It
may also satisfy these conditions for smaller k depending on the exact value of pc.)
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