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Abstract. Motivated by Hochman’s notion of subdynamics of a Zd subshift
[8], we define and examine the projective subdynamics of Zd shifts of finite type
(SFTs) where we restrict not only the action but also the phase space. We
show that any Z sofic shift of positive entropy is the projective subdynamics
of a Z2 (Zd) SFT, and that there is a simple condition characterizing the class
of zero-entropy Z sofic shifts which are not the projective subdynamics of any
Z2 SFT. We define notions of stable and unstable subdynamics in analogy
with the notions of stable and unstable limit sets in cellular automata theory,
and discuss how our results fit into this framework. One-dimensional strictly
sofic shifts of positive entropy admit both a stable and an unstable realization,
whereas a particular class of zero-entropy Z sofics only allows for an unstable
realization. Finally, we prove that the union of Zk subshifts all of which are
realizable in Zd SFTs is again realizable when it contains at least two periodic
points, that the projective subdynamics of Z2 SFTs with the uniform filling
property (UFP) are always sofic and we exhibit a class of non-sofic Z subshifts
which are not the subdynamics of any Zd SFT.

1. Introduction

Let A be a finite alphabet and, for any d ∈ N, let AZd

be the collection of
all configurations on Zd of letters from A. Under the product topology, the set

AZd

, which we call the full shift on A, is a compact metric space homeomorphic to

the Cantor set. Note that Zd naturally acts on AZd

by the shift action {σ~ı }~ı∈Zd

given by
(
σ~ı(x)

)
~

= x~ı+~ for all x ∈ AZd

, ~ ∈ Zd. Any closed subset of the full

shift which is invariant under {σ~ı }~ı∈Zd can then be considered as a topological
dynamical system, and we call any such set a Zd subshift.

We define a pattern on A with finite shape F ( Zd to be any member of AF (in
contrast to this we reserve the word configuration for elements of AI where I ⊆ Zd

is an infinite set of coordinates). For any finite set F of patterns, we can define the
Zd shift of finite type (SFT) induced by F to be

X(F) :=
{
x ∈ AZd ∣∣ no element from F appears in x

}
.

We also define a Zd sofic shift to be the image of some Zd SFT under a continuous
shift-commuting map. It is fairly clear that all SFTs and sofic shifts are subshifts,
and so such objects can be thought of as dynamical systems.
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SFTs and sofic shifts are obviously very specific types of subshifts. Nevertheless,
it turns out that they exhibit a wide variety of dynamical behavior when restricted
to sublattices of Zd. In fact, in [8], Hochman has shown that with the right notion
of “subdynamics”, any Zd subshift which can be described by a Turing machine
(such spaces are called effective symbolic systems) occurs as the subdynamics of
some Zd+2 sofic shift. Following [8], a Zk subshift Y occurs as the subdynamics
of a Zd subshift X (d > k) if the topological dynamical systems (Y, {σ~ı}~ı∈Zk) and
(X, {σ~ı}~ı∈Zk) are isomorphic.

It is fairly straightforward to check that if the subdynamics of a Zd sofic are a
subshift, then they are an effective symbolic system; Hochman’s result then shows
that this natural necessary condition is also sufficient if one allows an increase in
dimension of at least 2. In fact, recent preprints of Durand, Romashenko, and Shen
([5]) and Aubrun and Sablik ([1]) seem to indicate that an increase in dimension of
1 is also sufficient; this is clearly the lowest possible value, since for every d ∈ N,
there exist many effective Zd subshifts which are not sofic.

In the present paper we study a different type of subdynamics than that in [8].
Specifically, for any Zd subshift X and any sublattice L � Zd, we define the L-
projective subdynamics of X to be the set of configurations with shape L which
appear in points of X . Projective subdynamics do not yield as much information
about the dynamics of the original system as the subdynamics studied by Hochman,
however possess the advantage of always being subshifts, which may not be the
case for Hochman’s definition; for instance, if a Zd subshift has positive topological
entropy, then none of its proper subdynamics in the sense of Hochman are subshifts.
For this reason, it seems profitable to study both of these notions.

The main question we investigate is that of realization of Z sofic shifts as Z-
projective subdynamics. If one considers a Z sofic shift S rather than a general
effective symbolic system, then for any d ≥ 2, it is trivial that S is realizable as
the Z-projective subdynamics of the Zd sofic shift whose rows in the ~e1 direction
are the points of S and whose points are all constant along each direction ~ek for
k 6= 1. Therefore, we study the more restrictive question of when a Z sofic shift S is
realizable as the Z-projective subdynamics of a Z2 (or, more generally, a Zd) SFT.
We are able to completely characterize this situation by giving explicit necessary
and sufficient conditions on S for this to be the case.

This classification is particularly remarkable, since answering the corresponding
question for Hochman’s notion of subdynamics seems to be a hard problem [8].
Subactions of Zd SFTs are again effective dynamical systems, but certain effective
subshifts may only be realized if one allows a small (in the sense of measures)
extension called an ATIE1. Unfortunately, it is not known when exactly such an
extension of the Zd SFT is needed and how small (in the sense of topology) it can
be made.

Our notion of projective subdynamics also has substantial connections with ex-
isting work on Zd cellular automata. A Zd cellular automaton (Zd CA) is a shift-

invariant locally constant function f from AZd

to itself. Any such f can be repre-
sented as a Zd+1 SFT Xf where x ∈ Xf ⇐⇒ ∀ i ∈ Z: x|Zd×{i+1} = f(x|Zd×{i}).

The limit set of f is Λ(f) :=
⋂∞

j=0 f j(AZd

), and is the largest set on which f acts

1A Zd dynamical system Y is an ATIE of a Zd dynamical system Z if there is an isometric
action W on a totally disconnected space such that Z → Y × W is an almost-1-to-1 extension
which projects back to Y .
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surjectively. It turns out that Λ(f) is just the Zd-projective subdynamics of Xf ,
and so the class of subshifts arising as projective subdynamics of Zd SFTs contains
the class of limit sets of CAs. (See [10] for a recent survey on CAs.)

Limit sets of CAs are further classified as stable or unstable depending on whether

or not the intersection
⋂∞

j=0 f j(AZd

) stabilizes, and there has been considerable

literature ([13], [14], [9], [7]) addressing the question of which Z subshifts can be
realized as stable/unstable limit sets of Z CAs. There is a natural way to extend
these definitions to projective subdynamics, and in addition to classifying the Z

sofic shifts which are realizable as Z-projective subdynamics of Z2 SFTs by giving
necessary and sufficient conditions; we also characterize when this can be done
stably resp. unstably. Somewhat surprisingly, all of these characterizations pertain
only to the structure of the periodic points within our Z sofic S.

We postpone investigations about non-sofic projective subdynamics to a later
paper which will show even more connections to the CA case.

We conclude this introduction by giving a brief overview of the content of this
paper. In Section 2, we give some necessary preliminaries and definitions from
symbolic dynamics and graph theory.

In Section 3, we rigorously define projective subdynamics and summarize our
main results.

In Section 4, we prove that a certain large class of Z sofic shifts can be realized
as stable Z-projective subdynamics of Z2 SFTs.

Section 5 contains two main results: We show that a certain class of Z sofic shifts
can be realized as unstable Z-projective subdynamics of Z2 SFTs and also prove
that any union of Zk subshifts separately realizable in Zd SFTs (d > k) again is
realizable if it contains at least two periodic points.

In Section 6, we complete our classification of Z sofic shifts by proving that the
Z sofic shifts addressed in Sections 4 and 5 are the only ones which are realizable
as stable resp. unstable Z-projective subdynamics of Z2 SFTs, and give a more
general condition on Zd subshifts which precludes their realization as Zd-projective
subdynamics of any Zd+1 SFT.

In Section 7, we prove that the Z-projective subdynamics of any Z2 SFT with a
mixing condition called the uniform filling property are stable, and therefore sofic.

Finally, in Section 8, we exhibit a class of effective non-sofic Z subshifts which
cannot be realized as Z-projective subdynamics of a Zd SFT for any d.

2. Preliminaries

We assume a basic familiarity with symbolic dynamics, nevertheless we recall
some notations in this section.

Every finite alphabet A gives rise to a d-dimensional full shift AZd

(d ∈ N).

Equipped with the product topology of the discrete topology on A the space AZd

is totally disconnected, compact metric and has no isolated points. It naturally

supports an expansive, continuous Zd (shift) action σ : Zd ×AZd

→ AZd

given by

translations (σ~ı(x))~ = (σ(~ı, x))~ := x~ı+~ for all ~ı,~ ∈ Zd, x ∈ AZd

.
Closed shift-invariant subsets of a d-dimensional full shift are called Zd subshifts

and a subsystem Y ⊆ X of some Zd subshift X is itself a closed shift-invariant
subset of X , together with the restriction σ|Zd×Y of the Zd shift action to this set.
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Let A∗,d :=
⋃

F(Zd finite A
F denote the countable set of all words/patterns built

from A on finite subsets of Zd. Every Zd subshift on A is given by specifying a set
of forbidden patterns F ⊆ A∗,d such that no point in X contains an element from

F as a subpattern and we use the operator X(F) :=
{
x ∈ AZd ∣∣ ∀F ( Zd finite :

x|F /∈ F
}

to denote the corresponding shift. If one can choose F to be a finite set,

then X(F) is called a (d-dimensional) shift of finite type (Zd SFT). In this case we
may assume that there exists a single non-empty shape F ( Zd such that F ⊆ AF .

The Zd SFT X(F) = {x ∈ AZd

| ∀~ı ∈ Zd : x|~ı+F /∈ F} is then said to be of type
‖F‖∞, the diameter of F with respect to the maximum-norm ‖.‖∞ on Zd.

Definition 2.1. Let X = X(F) ⊆ AZd

be a Zd subshift with F ⊆ A∗,d its set
of forbidden patterns. A (finite) pattern P ∈ A∗,d is called locally admissible
in X if it contains no element from F as a subpattern, and it is called globally
admissible in X if it actually shows up in a point of X , i.e. if P can be extended
to a configuration on all of Zd which does not contain an element from F . We will
use the same terminology for (infinite) configurations C ∈ AI where I ⊆ Zd is any
infinite subset.

Note that the set of locally admissible patterns depends on the chosen set F of
forbidden patterns (which is why we always think of X = X(F) as equipped with a
certain set F). In general also the set of locally admissible patterns strictly contains
the set of globally admissible ones (which does not depend on the choice of F) and
membership in the latter set is algorithmically undecidable even in the class of Zd

SFTs whenever d > 1 [3, 15].
The set of all globally admissible (finite) patterns is also known as the language

L(X) :=
{
x|F

∣∣ x ∈ X ∧ F ( Zd finite
}

of the Zd subshift X . Its subset of patterns

with a certain (finite) shape F ( Zd will be denoted by LF (X) := {x|F | x ∈ X} (

L(X).
One important invariant associated to a Zd subshift X is its topological entropy,

a non-negative real number measuring the exponential growth rate of the number
of globally admissible patterns defined as

htop(X) := lim
n→∞

log |LCn
(X)|

|Cn|

where Cn := {~ı ∈ Zd | ‖~ı ‖∞ ≤ n}. (As the inradii of the cuboid shapes Cn diverge
to infinity the above limit exists by generalized subadditivity [2].)

For any ~ı ∈ Zd and any pattern P ∈ AF for F ⊆ Zd (finite or infinite), we say
that P is periodic with respect to ~ı if P~ = P~+~ı for any ~ ∈ F ∩ (F −~ı).

For any point x ∈ X in a Zd subshift X , Orb(x) :=
{
σ(~ı, x)

∣∣ ~ı ∈ Zd
}

⊆ X

denotes its orbit under the Zd action σ. If the orbit is finite, then there exist
ni ∈ N, 1 ≤ i ≤ d, so that x is periodic with respect to each ni~ei. If we take all of
the ni to be minimal, then we say x is a periodic point of least periods ni~ei. (When
d = 1, we use just the integer n to denote the least period, rather than the vector
n~e1.)

The set of periodic points in X is denoted by Per(X) :=
{
x ∈ X

∣∣ |Orb(x)| finite
}
;

it can be obtained as the disjoint union of all sets

Per0~n(X) :=
{
x ∈ X

∣∣ ∀ 1 ≤ i ≤ d : σ(ni~ei, x) = x ∧ ni minimal
}

of periodic points of fixed least periods ni~ei, where ~n ranges over (n1, . . . , nd) ∈ Nd.
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A (topological) factor map between two Zd subshifts is a surjective continuous
map intertwining the shift actions and the image of a subshift X under such a map
is referred to as a factor of X . The class of Zd sofic shifts (Zd sofics) is the set of
factors of Zd SFTs. Obviously this set is closed under factor maps, i.e. factors of
sofic shifts are again sofic and strictly contains the class of Zd SFTs. In particular
we refer to a Zd sofic which is not a Zd SFT itself as a proper Zd sofic.

Recall that every one-dimensional sofic shift S ⊆ AZ can be represented by a
(finite, directed)2 labeled graph G = (VG, EG, λG), so that S = S(G) for

S(G) :=
{
(λG(ei))i∈Z ∈ AZ

∣∣ ∀ i ∈ Z : ei ∈ EG ∧ tG(ei) = iG(ei+1)
}

.

Here VG denotes the finite set of vertices, EG the finite set of directed edges and
λG : EG → A the label map. Moreover we have two functions iG, tG : EG → VG

which give the initial respectively terminal vertex of an edge.
Using terminology from the theory of digraphs we define the in-degree of any

vertex v ∈ VG as the cardinality of the set t
−1
G (v) = {e ∈ EG | tG(e) = v} of

preimages of v under tG; similarily the out-degree of v is
∣∣i−1

G (v)
∣∣. Note that we can

always remove stranded vertices – those with in- or out-degree zero – from a graph
presentation without changing the corresponding sofic shift. Hence in this paper
we assume all graphs to be essential, i.e. ∀ v ∈ VG :

∣∣i−1
G (v)

∣∣ ≥ 1 ∧
∣∣t−1

G (v)
∣∣ ≥ 1.

The graph presentation G is called right-resolving, if two distinct edges start-
ing at the same vertex always carry different labels, i.e. ∀ v ∈ VG ∀ e1 6= e2 ∈
i
−1
G (v) : λG(e1) 6= λG(e2). We remark that every Z sofic has a right-resolving
graph presentation.

A (finite) path in G is a tuple (e1, e2, . . . , en) ∈ En
G (n ∈ N) of edges such that

tG(ei) = iG(ei+1) for all 1 ≤ i < n. A path is called isolated if all intermediate
vertices vi := tG(ei) with 1 ≤ i < n are distinct and have in-degree as well as
out-degree 1. A cycle in G is a path (e1, e2, . . . , en) ∈ En

G (n ∈ N) such that
tG(en) = iG(e1) and an isolated cycle is one where every vertex vi := tG(ei) with
1 ≤ i ≤ n has in-degree as well as out-degree 1. Furthermore a right-infinite ray
in G is a one-sided sequence (e0, e1, e2, . . .) ∈ EN0

G such that tG(ei) = iG(ei+1) for

all i ∈ N0 and similarily (. . . , e−3, e−2, e−1) ∈ E−N
G with tG(ei−1) = iG(ei) for all

i ∈ −N is called a left-infinite ray in G. A biinfinite sequence of edges (en)n∈Z ∈ EZ
G

which corresponds to a valid walk in G, i.e. ∀ i ∈ Z : tG(ei) = iG(ei+1), will
be called a biinfinite path in G. In slight abuse of notation we will extend the
domain of the maps iG, tG and λG to (finite and biinfinite) paths, cycles and rays
in the natural way without introducing new notation. A subset of vertices U ⊆ VG

is strongly connected if for every pair of vertices u, v ∈ U there exists a finite
path (e1, e2, . . . , en(u,v)

) ∈ E
n(u,v)

G for some n(u,v) ∈ N such that iG(e1) = u and

tG(en(u,v)
) = v. Finally the strongly connected components of a directed (unlabeled)

graph (VG, EG) are its subgraphs which are induced by inclusion-maximal strongly
connected vertex sets.

Several times throughout later chapters of the paper we will make use of a
specific labeled graph presentation of a Z sofic shift which we recall here. Consider
any such sofic S, and for any word w ∈ L(S), define the follower-set of w to be
F (w) := {u ∈ L(S) | wu ∈ L(S)}. It is a standard result that for any sofic S, there
are only finitely many follower-sets ([12]). We now define a labeled graph G, called
the follower-set presentation of S. First, we define VG := {F (w) | w ∈ L(S)}. For

2If not explicitly specified otherwise, all our graphs will be understood to be finite and directed.
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every F (w) ∈ VG and a ∈ A such that wa ∈ L(S), there is an edge from F (w)
to F (wa), labeled by a. There seems to be a potential ambiguity here in that a
vertex in VG could be F (w) for many different w; however it turns out that the
edge is the same regardless of the representative w chosen. As the name suggests,
the follower-set presentation of S is always a presentation of S, and in fact it is
right-resolving. We will not verify these facts here; see [12] for proofs.

Returning to the multidimensional setup, for any ~r, ~s ∈ Zd, the finite set B :=
{~ı ∈ Zd | ∀ 1 ≤ k ≤ d : ~rk ≤ ~ık ≤ ~sk} is called a (rectangular/cuboid) block and

we will use the notation B = [~r, ~s ] to denote this set. Moreover we set ~1 ∈ Zd

to be the vector with all its components equal to 1, thus for n ∈ N0 we have
Cn := [−n~1, n~1] = {~ı ∈ Zd | ‖~ı ‖∞ ≤ n}.

We finish this section by recalling a uniform mixing property often used in the
study of Zd shifts: A Zd subshift X has the uniform filling property (UFP) [16] if
there exists a global filling length l ∈ N0 such that whenever we take a point y ∈ X
and a globally admissible pattern P ∈ LB(X) on some block B = [~r, ~s] ( Zd there
exists a point x ∈ X with x|B = P and x|Zd\[~r−l~1,~s+l~1] = y|Zd\[~r−l~1,~s+l~1].

3. Projective subdynamics and main results

Given a Zd subshift X , we define lower-dimensional subshifts by projecting points
in X onto sublattices of Zd. These subshifts still contain useful information about
the dynamics of X and we will study which subshifts actually appear under those
projections inside Zd SFTs.

For d ∈ N and 1 ≤ k < d let I = {~ı (1), . . . ,~ı (k)}, J = {~ (1), . . . , ~ (d−k)} ( Zd

be two disjoint sets of integer vectors such that I ∪̇J is a linearly independent
set which spans Zd. Then L := spanZ(I) =

〈
~ı (1), . . . ,~ı (k)

〉
Z

� Zd is called a k-

dimensional sublattice of Zd. (Using ~ı (1), . . . ,~ı (k) as generators, L is isomorphic to
Zk.) The set L′ := spanZ(J ) =

〈
~ (1), . . . , ~ (d−k)

〉
Z

constitutes a complementary
(d − k)-dimensional sublattice.

Definition 3.1. For any Zd subshift X ⊆ AZd

and any k-dimensional sublattice
L � Zd (1 ≤ k < d), the L-projective subdynamics of X , denoted by

PL(X) := {x|L | x ∈ X} ⊆ AL ,

is the set of points obtained by restricting elements in X to the lattice L. The pair
(PL(X), σ|L×PL(X)) then is a Zk subshift, i.e. PL(X) is a compact subset of AL

which admits an expansive Zk action by restricting the shift to the family {σ~ı}~ı∈L.

Note that an element in AL is extendable to a valid point in X if and only if it
is contained in PL(X), hence PL(X) coincides with the set of globally admissible
configurations of shape L in X .

Since L is isomorphic to Zk (and L′ to Zd−k), we will mostly consider the case
L = 〈~e1, . . . , ~ek〉Z (and L′ = 〈~ek+1, . . . , ~ed〉Z), for which we use the simple notation
PZk(.) := P〈~e1,...,~ek〉Z

(.). This can be justified as follows.

Observation 3.2. Let L � Zd be any k-dimensional sublattice (1 ≤ k < d) and
Y ⊆ AL any Zk subshift on A. (We think of Y as a Zk subshift via the obvious

correspondence between L and Zk.) There exists a Zd subshift X = X(F) ⊆ AZd

with PL(X) = Y if and only if there exists a Zd subshift X̃ = X(F̃) ⊆ AZd

with

PZk(X̃) = Y . Moreover if X is a Zd SFT (Zd sofic) then X̃ also has this property.
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The correspondence between X and X̃ in Observation 3.2 is highly construc-
tive; just use the coordinate transformation between L and Zk to adjust the set of

forbidden patterns F to produce F̃ .
As done in the theory of cellular automata for limit sets [13], we distinguish

between stable and unstable projective subdynamics in the following way:
Let X = X(F) be a Zd subshift over some alphabet A given by an (infinite) set of

forbidden patterns F ⊆ A∗,d and let L � Zd be a k-dimensional sublattice (k < d).
Then X comes with a decreasing sequence of Zk subshifts (XL,n ⊆ AL)n∈N defined
as:

XL,n :=
{
x|L

∣∣ x ∈ AL∂,n

∧ ∀F ( L∂,n finite : x|F /∈ F
}

where L∂,n := L + [−n~1, n~1] = {~ı ∈ Zd | min~∈L ‖~ı − ~ ‖∞ ≤ n} is the sublattice
L extended by n steps along all directions. Thus XL,n contains all configurations
on L that are locally valid in the sense that they can be extended to L∂,n without
producing a forbidden pattern. It is obvious from its definition that XL,n+1 ⊆ XL,n

and that PL(X) =
⋂∞

n=0 XL,n for any sublattice L.

Example 3.3. For L the lattice Zk = 〈~e1, . . . , ~ek〉Z � Zd (k < d) and n ∈ N, we

get the thickened lattice (Zk)∂,n = Zk × [−n, n]d−k ( Zd. In particular, for d = 2
and k = 1 this will be the horizontal strip of height 2n + 1 centered around the
(horizontal) ~e1-axis. In this case XZk,n ⊆ AZ is the set of biinfinite (horizontal)
rows that can be extended simultaneously upwards and downwards by n additional
rows in some way which does not produce any forbidden pattern of X .

Definition 3.4. Let X ⊆ AZd

be a Zd subshift and let L � Zd be a k-dimensional
sublattice (k < d). The L-projectional subdynamics PL(X) will be called stable if
the sequence (XL,n)n∈N stabilizes, i.e. if there exists N ∈ N such that XL,n = XL,N

for all n ≥ N . Then PL(X) =
⋂∞

n=0 XL,n = XL,N and a configuration on L is
already globally admissible if it can be extended to a locally admissible configuration
on L∂,N .

Conversely PL(X) is unstable if the sequence (XL,n)n∈N decreases infinitely, i.e.
∀n ∈ N ∃n′ > n : XL,n′ ( XL,n.

Observation 3.5. Whenever a Zk subshift can be realized as the stable resp.
unstable Zk-projective subdynamics of a Zd SFT (Zd sofic), then it can be realized

as the stable resp. unstable Zk-projective subdynamics of a Zd′

SFT (Zd′

sofic) for

any d′ > d as well. To see this, just consider the Zd′

subshift which is the full
Zd′−d-extension of the corresponding Zd subshift, i.e. put no additional rules along
the extra directions. In particular, this implies that any Zk SFT (Zk sofic) is the

stable Zk-projective subdynamics of some Zd′

SFT (Zd′

sofic) for all d′ > k.

The following result shows that the notions of stable resp. unstable projective
subdynamics are actually extensions of the respective notions for cellular automata.

Lemma 3.6. For any Zk cellular automaton f : AZk

→ AZk

on a finite alphabet A,

the limit set Λ(f) =
⋂∞

n=0 fn(AZk

) is the Zk-projective subdynamics of a Zk+1 SFT
Xf , and the limit set is stable/unstable if and only if the projective subdynamics
are.

Proof. Given any Zk CA f : AZk

→ AZk

, construct the corresponding Zk+1 SFT

Xf ⊆ AZk+1

defined by the rule that for all x ∈ Xf and all j ∈ Z, x|Zk×{j+1} =
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f(x|Zk×{j}). (Since f is a shift-invariant, locally constant function, Xf can be
defined using a finite set of forbidden patterns.)

Then for any n ∈ N, (Xf )Zk,n is the set of configurations on Zk which can be
extended “upwards” and “downwards” by n units in the ~ek+1 direction in a way
which does not contain any forbidden patterns for Xf . The extension upwards is

no problem; any configuration in AZk

has an image under f . However, having a

legal downward extension for n steps is equivalent to being in fn(AZk

). Therefore,

(Xf )Zk,n = fn(AZk

), and the result follows. �

Before summarizing our main results in Theorem 3.9, which is proved over the
remaining sections of this paper, we collect some basic facts about projective sub-
dynamics.

Observation 3.7. For any Zd SFT X = X(F) with F ( A∗,d finite and any k-
dimensional sublattice L � Zd (k < d), if the L-projective subdynamics PL(X)
is stable, then PL(X) is sofic; if PL(X) = XL,N , then the natural projection
πL,N : HL∂,N (F) → PL(X) defined by x 7→ x|L is a factor map from the Zk

SFT HL∂,N (F) :=
{
x ∈ AL∂,N ∣∣ ∀F ( L∂,N finite : x|F /∈ F

}
onto PL(X).

As a partial converse, if the L-projective subdynamics PL(X) is unstable, then
PL(X) is not of finite type. This is due to the following more general result:

Lemma 3.8. A Zk SFT (k ∈ N) cannot be the intersection of an infinite chain of
strictly decreasing Zk subshifts.

Proof. Let Y = X(F) be a Zk SFT given by a finite set of forbidden patterns F =
{P1, P2, . . . , Pm} ⊆ AF (m ∈ N) of finite shape F ( Zk and assume that (Yn)n∈N

with Yn+1 ( Yn for all n ∈ N is a strictly decreasing family of Zk subshifts such
that Y =

⋂∞
n=1 Yn. It suffices to show that for each integer 1 ≤ j ≤ m, there exists

nj ∈ N so that Pj /∈ L(Ynj
); then it must be the case that Ymax{nj |1≤j≤m} = Y ,

and we are done.
Suppose for a contradiction that for some j ∈ {1, 2, . . . , m}, Pj ∈ L(Yn) for all n.

Then for every n, there exists x(n) ∈ Yn with x(n)|F = Pj . Since AZk

is compact,

there exists a subsequence of x(n) approaching a limit x ∈ AZk

. But then since
each Yn contains the points x(n′) for all n′ ≥ n, each Yn contains x, meaning that
x ∈ Y ; a contradiction to our assumption about F . �

The following theorem is the main result of this paper, and summarizes all of
the facts about projective subdynamics of Zd SFTs that we prove in the remaining
sections.

Theorem 3.9. For any k < d ∈ N:

• Every Zk SFT is the stable Zk-projective subdynamics of some Zd SFT for
any d > k (Observation 3.5).

• The stable Zk-projective subdynamics of any Zd SFT is a Zk sofic shift
(Observation 3.7).

• Results on stable projective subdynamics:
– Any proper Z sofic with positive entropy can be realized as the stable

Z-projective subdynamics of some Z2 SFT (Theorem 4.2).
– A zero-entropy proper Z sofic is realizable as the stable Z-projective

subdynamics of some Z2 SFT if and only if it has a good set of periods
but no universal period (Theorems 4.10, 6.1 and 6.4).
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• Results on unstable projective subdynamics:
– No Zk SFT is realizable as the unstable Zk-projective subdynamics of

any Zd SFT (Lemma 3.8).
– Any proper Z sofic with positive entropy can be realized as the unstable

Z-projective subdynamics of some Z2 SFT (Theorem 5.1).
– A zero-entropy proper Z sofic is realizable as the unstable Z-projective

subdynamics of some Z2 SFT if and only if it does not have universal
period (Theorems 5.2 and 6.4).

• Any union of Zk subshifts which are realizable as the Zk-projective subdy-
namics of Zd SFTs and which contains at least two periodic points is itself
realizable as the Zk-projective subdynamics of a Zd SFT. In addition, if each
of the subshifts was stably realizable, then the union is also. (Proposition
5.3).

• The Z-projective subdynamics of any Z2 SFT with the universal filling prop-
erty are always stable, and so are always a Z sofic (Theorem 7.1).

• There exist classes of (effective) Z subshifts which are not realizable as the
Z-projective subdynamics of any Zd SFT (Theorem 8.3).

Since stable and unstable projective subdynamics are quite related to the corre-
sponding notions for limit sets of CAs, we list here a few fundamental results about
limit sets of CAs. The results contain some concepts that we do not define here
due to space constraints; see the individual references for definitions. This list is
by no means exhaustive: see [11] for a recent survey of this topic.

Theorem 3.10. Some results on CA limit sets:

• The unstable limit set of a Zk CA is never an SFT. ([9])
• Any mixing almost-finite-type Z sofic shift with a receptive fixed point is the

stable limit set of some Z CA. ([13])
• A near Markov Z sofic shift cannot be the unstable limit set of a Z CA.

([13])
• There are examples of limit sets of Z CAs whose languages are:

– regular
– non-regular context-free
– non-context-free context-sensitive
– not recursively enumerable (all from [9])

• There exists a Z CA whose unstable limit set is topologically mixing and
non-sofic. ([7])

Some of these results resemble the corresponding results for projective subdy-
namics: for instance, an SFT can neither be the unstable limit set of a CA nor the
unstable projective subdynamics of an SFT. On the other hand, due to the extra
flexibility allowed in considering all Z2 SFTs, rather than just the deterministic ones
corresponding to Z CAs, we are able to realize a much wider class of Z subshifts.
For instance, there exist many near Markov Z sofic shifts which can be realized
as unstable projective subdynamics of Z2 SFTs. We are also able to characterize
the exact classes of sofic Z-projective subdynamics both in the stable and unstable
cases, whereas the corresponding problem for CAs has been open for more than 20
years and seems extremely difficult.

In addition, it is possible to see some relations between known conditions which
guarantee stable realization of a Z sofic S in both setups, in the sense that Maass’s
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condition of containing a “receptive fixed point” and our condition of having a
“good set of periods” both pertain to the existence of periodic points and cycles
with certain lengths in a right-resolving presentation of S. The conditions however
are not precisely the same.

We also briefly mention that one long-standing open question regarding limit
sets of CAs is whether there exists any Z subshift which can be realized as both the
stable and unstable limit set of (different) Z CAs. The answer to the corresponding
question for Z-projective subdynamics is “yes”: in fact the set of such subshifts is
just the set of proper sofics which are realizable as the stable Z-projective subdy-
namics of Z2 SFTs.

4. Stable projective subdynamics

In this section we characterize the class of Z sofics that appear as stable Z-
projective subdynamics of Z2 (and hence by Observation 3.5 also of Zd) SFTs. We
start with positive entropy Z sofics and move on to zero-entropy Z sofics afterwards.

Lemma 4.1. For any Z sofic S with positive entropy htop(S) > 0, and for any
N ∈ N, there exists an M ∈ N and a set of words W = {w1, w2, . . . , wN} ⊆ LM (S)
so that if we denote by Y the subshift consisting of all biinfinite concatenations of
words from W , then Y ⊆ S, and for any word b ∈ L3M−1(Y ), there exists a unique
1 ≤ m ≤ M so that b|[m,m+M−1] and b|[m+M,m+2M−1] are in W . In particular, this
implies that Y is a Z SFT of type 3M − 1.

Proof. Since S is sofic, it has a right-resolving presentation on a (finite, directed)
labeled graph G = (VG, EG, λG). Specifically, S = S(G) is the collection of all
labels of biinfinite paths in G. As htop(S) > 0, there exists a vertex v ∈ VG for
which there are two words t1 6= t2 ∈ L(S) which differ in their first letter and are
labels of cycles beginning and ending at v, i.e. ti := λG(ci) with ci a path in G with
iG(ci) = tG(ci) = v for i := 1, 2. By taking concatenations, we may assume without
loss of generality that t1 and t2 have the same length l ∈ N. Take u1 := t1t2 and
u2 := t2t2. Then u1 is not a subword of u2u2, because (u2)

∞ is periodic with period
l and (u1)

∞ is not. Now define wn := u1(u2)
N+nu1(u2)

N−n for 1 ≤ n ≤ N , each of
length M := 2l(2N +2) ≥ 8l, and define the set W := {w1, w2, . . . , wN}. Since each
wn is the label of a cycle beginning and ending at v, it is clear that W ⊆ LM (S)
and that if we define Y to be the subshift of all biinfinite concatenations of words
from W , then Y ⊆ S.

For a contradiction, suppose there exists a word b ∈ L3M−1(Y ) and 1 ≤ m <
m′ ≤ M for which all four subwords b|[m,m+M−1], b|[m+M,m+2M−1], b|[m′,m′+M−1]

and b|[m′+M,m′+2M−1] are in W . By replacing the pair (m, m′) by (m′, m + M) if

necessary, we may assume that m′ − m ≤ M
2 at the expense of only knowing that

b|[m,m+M−1] and b|[m′,m′+M−1] are in W . Therefore, we have two words w, w̃ ∈ W
for which w|[m′−m+1,M ] = w̃|[1,M−m′+m]. There are two cases. If m′ − m ≥ 2l,
then w|[m′−m+1,m′−m+2l] = w̃|[1,2l] = u1. However, w|[m′−m+1,m′−m+2l] is com-

pletely contained in the subword w|[2l+1, M
2 +2l] = (u2)

N+1 of w, and we have a

contradiction. If m′ − m < 2l, then note since every word in W begins with
u1 uN+1

2 , w|[m′−m+1,M ] = w̃|[1,M−m′+m] implies that u1 uN+1
2 is periodic with pe-

riod m′ − m < 2l. Therefore, it is also periodic with period k(m′ − m) for every
k ∈ N. If we choose k so that 2l + 1 ≤ k(m′ − m) ≤ M

2 (which is possible since
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M ≥ 8l), then again we would have u1 as a subword of uN+1
2 , leading to a contra-

diction.
It remains to show that Y is a Z SFT of type 3M − 1. To see this, consider any

words r, s, t ∈ A∗ where rs, st ∈ L(Y ) and |s| = 3M − 1. Since rs ∈ L(Y ), it is of
the form qwn1wn2 . . . wni

p, where q is a (possibly empty) proper suffix of some word
in W and p is a (possibly empty) proper prefix of some word in W . Similarly, st is
of the form q′wn′

1
wn′

2
. . . wn′

j
p′. Since s is of length 3M −1, there is a unique way to

represent it as a subword of a concatenation of words from W , and so wni−1 = wn′
1

and wni
= wn′

2
. But this implies that rst = qwn1 . . . wni

wn′
3
wn′

4
. . . wn′

j
p′, and so

rst ∈ L(Y ). Since r, s, t were arbitrary, Y is a Z SFT of type 3M − 1. �

Theorem 4.2. For any Z sofic S with positive entropy htop(S) > 0, there exists a
Z2 SFT X that realizes S as its stable Z-projective subdynamics.

In fact X can be constructed such that any locally admissible configuration on
Z∂,1 already contains a point of S in its central row, i.e. S = PZ(X) = XZ,1.

Proof. Choose a graph presentation G = (VG, EG, λG) such that S = S(G). Define
N := |VG|, and assume the vertices are numbered VG = {0, 1, 2, . . . , N − 1}. Choose
a set of words W = {w0, . . . , w2N−1} ⊆ LM (S) satisfying Lemma 4.1 and denote
by Y ⊆ S the Z SFT of all biinfinite concatenations of words from W . We define
a Z2 SFT X on the same alphabet as S by specifying two local rules:

(R1) For any (3M − 1) × 1 word a which is not in L(Y ), above and below it
must appear the same (3M − 1) × 1 word b, and this word must be in
L(Y ). In addition, for the (unique) choice of 1 ≤ m ≤ M so that the two
subwords b|[m,m+M−1], b|[m+M,m+2M−1] ∈ W , b|[m,m+M−1] 6= a|[m,m+M−1]

and b|[m+M,m+2M−1] 6= a|[m+M,m+2M−1].

(R2) Whenever a 3M×3 pattern of the form
r t u
a b c
r t u

appears in X , where a, b, c, r, t, u

are of length M , t ∈ W , and b 6= t, the following conditions must be satis-
fied: Firstly, r, u ∈ W , a 6= r, and c 6= u. Since r, t, u ∈ W we have r = wi,
t = wj , and u = wk for some 0 ≤ i, j, k ≤ 2N −1. Secondly, for the pattern
to be valid we demand the existence of a path in G beginning at vertex i
(mod N), ending at vertex j (mod N), and labeled by a. Similarily there
must exist a path in G beginning at vertex j (mod N), ending at vertex k
(mod N), and labeled by b. (In particular, this forces a, b ∈ L(S).)

Now we prove that those rules already force PZ(X) = S:

Claim 4.2.1 (S ⊆ PZ(X)). Suppose that s ∈ S. We will construct a point x ∈ X
with x|Z×{0} = s. Since s ∈ S, there exists a biinfinite path (en)n∈Z ∈ EZ

G of edges
in G so that s = (λG(en))n∈Z is its label. For every i ∈ Z define vi := iG(ei) to
be the initial vertex of ei. Create a sequence y ∈ Y by choosing y[kM,(k+1)M−1] ∈
{wvkM

, wN+vkM
}, such that the chosen word is not equal to s[kM,(k+1)M−1] for any

k ∈ Z. Now, define a point x by x|Z×{0} := s and x|Z×{j} := y for every j ∈ Z\{0}.
We claim that x ∈ X .

Since all rows of x except possibly s are in Y , the only (3M − 1)× 1 subwords of
x which are not in L(Y ) are contained in the zeroth row. For any such word, the
words appearing above and below it are identical (3M − 1)× 1 subwords of y ∈ Y ,
so they are in L(Y ). Also, by construction, every wn which is a subword of y is not
equal to the respective subword of s, so x satisfies Rule (R1).
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w
v−M

N+v−M
w or wv0

wN+ v0
or N+ v

w
M

wvM
or

w
v−M

N+v−M
w or

w
v−M

N+v−M
w or

w
v−M

N+v−M
w or

wv0
wN+ v0

or

wv0
wN+ v0

or

wv0
wN+ v0

or

N+ v
w

M
wvM

or

N+ v
w

M
wvM

or

N+ v
w

M
wvM

or

s

Figure 1. Construction of x ∈ X containing a given s ∈ S

Any 3M ×3 subpattern
r t u
a b c
r t u

of x to which Rule (R2) applies must be contained

within x|Z×{−1,0,1}, and by Lemma 4.1, for any such configuration there exists k ∈ Z
such that

a = x|[(k−1)M,kM−1]×{0} = s|[(k−1)M,kM−1],

b = x|[kM,(k+1)M−1]×{0} = s|[kM,(k+1)M−1],

c = x|[(k+1)M,(k+2)M−1]×{0} = s|[(k+1)M,(k+2)M−1],

r = x|[(k−1)M,kM−1]×{±1} = y|[(k−1)M,kM−1] ∈
˘

wv(k−1)M
, wN+v(k−1)M

¯

,

t = x|[kM,(k+1)M−1]×{±1} = y|[kM,(k+1)M−1] ∈
˘

wvkM
, wN+vkM

¯

, and

u = x|[(k+1)M,(k+2)M−1]×{±1} = y|[(k+1)M,(k+2)M−1] ∈
˘

wv(k+1)M
, wN+v(k+1)M

¯

.

The subpath e(k−1)M . . . ekM−1 starts at v(k−1)M , ends at vkM and carries label a,
and the subpath ekM . . . e(k+1)M−1 starts at vkM , ends at v(k+1)M and carries label

b. Therefore,
r t u
a b c
r t u

satisfies the conditions of Rule (R2).

Claim 4.2.2 (PZ(X) ⊆ S). Suppose there exists x ∈ X with x|Z×{0} /∈ S. In par-
ticular x|Z×{0} /∈ Y and as Y is of type 3M−1 the row s := x|Z×{0} has to contain a
subword of length 3M−1 which is not in L(Y ). W.l.o.g. s|[1,3M−1] /∈ L(Y ). By Rule
(R1), this means that above and below x|[1,3M−1]×{0} = s|[1,3M−1] the same (3M −
1)×1 word from L(Y ) has to appear, i.e. x|[1,3M−1]×{−1} = x|[1,3M−1]×{1} ∈ L(Y ).
Let 1 ≤ m ≤ M be the (unique) index with x|[m,m+M−1]×{±1}, x|[m+M,m+2M−1]×{±1} ∈
W . Put b := x|[m,m+M−1]×{0} = s|[m,m+M−1] and t := x|[m,m+M−1]×{±1}, then
b 6= t = wn0 for some 0 ≤ n0 ≤ 2N − 1 and by Rule (R2), this forces M × 1
words r := wn−1 6= s|[m−M,m−1] and u := wn1 6= s|[m+M,m+2M−1] to appear im-
mediately to the left and right of t = x|[m,m+M−1]×{±1}. This behavior propagates
indefinitely, meaning that the row y := x|Z×{±1} appearing above and below s is a
biinfinite concatenation . . . wn−1wn0wn1 . . . of words from W , hence y ∈ Y . Define
a sequence of vertices (vi ∈ VG)i∈Z in G by vi := ni (mod N). Then by Rule (R2),
for any k ∈ Z, there exists a path in G which begins at vk, ends at vk+1, and is
labeled by s|[m+kM,m+(k+1)M−1]. Call this path (em+kM , . . . , em+(k+1)M−1) ∈ EM

G .

Concatenating those paths gives a valid biinfinite path (. . . , e−1, e0, e1, . . .) ∈ EZ
G

in G which is labeled by s, so s ∈ S, and we have a contradiction.

�
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Next we show how to realize a large class of zero-entropy Z sofic shifts as stable Z-
projective subdynamics of Z2 SFTs. Those sofics have to satisfy two mild conditions
which we call “no universal period” and “good set of periods”. In Section 6 we
will see that zero-entropy Z sofics from the complement of this class, i.e. those
without a good set of periods or with universal period, cannot be stable Z-projective
subdynamics of Z2 SFTs – finishing the stable classification.

We start by defining the two properties mentioned above:

Definition 4.3. A Zd subshift X has universal period(s) {ni~ei}
d
i=1 if there exists

a bound M ∈ N so that for every point x ∈ X there is a finite set Fx ( Zd of
coordinates with |Fx| < M and a point y ∈ Per(X) (depending on x) with periods
{ni~ei}

d
i=1 such that x|Zd\Fx

= y|Zd\Fx
. We say that X has universal period if it has

some universal period(s) {ni~ei}
d
i=1.

Observe that the property of having universal period is invariant under topolog-
ical conjugacy. The straightforward argument is left to the reader.

Example 4.4. The simplest infinite zero-entropy proper Z sofic with universal
period is the orbit-closure Ssunny := Orb{0∞.10∞} ⊆ {0, 1}Z which we call the
sunny side up system. In Ssunny every point looks like the fixed point of all zeros,
except possibly at one single coordinate; hence we may choose M = 2 and take
y = 0∞ independent of x ∈ Ssunny.

s s s s s s s s- -
o o

w w
o o

w w
0

1

0

1

0

1

1

0

2 2

Figure 2. Graph presentations for two zero-entropy Z sofics. The
left one has universal period, whereas the right one does not.

Remark 4.5. Note that slightly more complicated examples already demonstrate a
subtle point about universal period: Look at the two zero-entropy Z sofics presented
by the two labeled graphs in Figure 2. Although the underlying directed graph
is the same and the labeling only differs on two edges, the sofic system Sleft =
Orb{(10)∞.2(01)∞} given by the left graph has universal period 2 (apart from at
most one coordinate every point looks like a shift of (01)∞), but due to the twisted
labels along the right cycle there is an offset – the transition length between the
two labeled cycles is not a multiple of their period 2 – which destroys the universal
period in the right sofic Sright = Orb{(10)∞.2(10)∞}. Therefore the existence of a
universal period for a Z sofic presented by G = (VG, EG, λG) crucially depends on
the labeling λG and not just on the underlying directed graph (VG, EG).

Definition 4.6. A zero-entropy Z sofic shift S has a good set of periods, if it allows
a right-resolving graph presentation G such that S = S(G) and for every cycle
length3 l ∈ N present in G there exists a finite collection Q = Q(l) ⊆ Per(S) of

3Whenever we talk about (right-resolving) graph presentations of zero-entropy Z sofic shifts
the term cycle is understood to mean a first-return cycle, i.e. c = (e1, . . . , e|c|) with ei ∈ EG is
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periodic points in S such that the least-common-multiple lcm{|Orb(q)| | q ∈ Q} of
all their least periods is a multiple of l.

s s s

s

- -j ��

�

m m1 2

0 0 0 1

Figure 3. Right-resolving graph presentation of a zero-entropy Z

sofic Sbad without a good set of periods.

Example 4.7. The zero-entropy Z sofic Sbad ( {0, 1, 2}Z presented by the graph
in Figure 3 has no good set of periods. The only two periodic points {0∞, 1∞} in
Sbad are not enough to resolve the length of the middle cycle which has to have an
even length in any presentation.

Before we show how to use the presence of a good set of periods and the absence
of universal period to produce realizations of zero-entropy Z sofic shifts as stable
Z-projective subdynamics we have to prove a simple lemma about the structure of
those sofics.

Lemma 4.8 (Structure Lemma). If S is a zero-entropy Z sofic there exists a
labeled graph G = (VG, EG, λG) which presents S = S(G) such that each non-trivial
strongly connected component of G is an isolated cycle. Moreover G is a finite
disjoint union of linear chains K1, K2, . . . , Kk (k ∈ N) where every Ki (1 ≤ i ≤ k)
consists of a finite number of vertex-disjoint cycles ci,0, ci,1, . . . , ci,mi

(mi ∈ N0)
which are connected by (non-empty) isolated transition paths pi,1, pi,2, . . . , pi,mi

such

that
(
λG(ci,j)

)∞
∈ Per0|ci,j |(S) for j ∈ {0, mi}; iG(pi,j) = iG(ci,j−1) and tG(pi,j) =

iG(ci,j) for all 1 ≤ j ≤ mi and the labeling on each Ki is right-resolving.

Proof. We start with a right-resolving graph presentation G′ = (VG′ , EG′ , λG′) of S
(note that we allow G′ to be a finite union of vertex-disjoint components). Suppose
G′ contains two cycles c1 6= c2 which are not vertex-disjoint. W.l.o.g. we may
assume that c1 = (e1, e2, . . . , e|c1|) and c2 = (f1, f2, . . . , f|c2|) (ei, fj ∈ EG′) such
that iG′(e1) = iG′(f1) but e1 6= f1 (if necessary cyclically permute c1, c2 to change
their starting vertices). Since G′ is right-resolving the labels of e1 and f1 would
be distinct (λG′(e1) 6= λG′(f1)) forcing w1 := λG′(c1) and w2 := λG′(c2) to be two
distinct legal words in S which by construction can be freely concatenated without
violating any rules in S. Thus all biinfinite concatenations of w1 and w2 would
occur as points in S, contradicting the fact that htop(S) = 0. Hence all cycles in
G′ are pairwise vertex-disjoint and the only strongly connected components of G′

are single vertices and isolated cycles.
Let C+ be the set of non-trivial strongly connected components in G′ which do

not contain any vertex with in-degree (with respect to G′) bigger than 1; those

a cycle in G = (VG, EG, λG) if and only if iG(e1) = tG(e|c|) but tG(ei) = iG(ei+1) 6= iG(e1) for

all 1 ≤ i < |c|. In fact zero-entropy together with right-resolvingness implies that all cycles are
vertex-disjoint, hence a first-return cycle is already primitive (i.e. has no proper subcycle).
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Figure 4. (Intermediate step) Splitting a right-resolving graph
presentation G′ into a finite number of linear chains (labeling su-
pressed). After this step we still have to unroll parts of some cycles
as indicated by the dashed lines on the right (see Figure 5) and
possibly shorten the first or last cycles in some of the linear chains
to finally get G.

can be thought of as the highest level obtained from a topological ordering on
G′. Similarily let C− denote the set of non-trivial strongly connected components
which do not contain any vertex with out-degree bigger than 1, i.e. the lowest level
of components.

Now the graph G is constructed as follows: First, for any pair (c+, c−) ∈ C+×C−
and any minimal path p connecting a vertex from c+ with a vertex from c− add a
linear chain K(c+,c−,p) consisting of a copy of p together with copies of all strongly
connected components that share a vertex with p (see Figure 4 for an example
in which C+ consists of two strongly connected components and C− of only one).
By construction all K(c+,c−,p) are vertex-disjoint, their number is bounded, so we
number them arbitrarily from 1 to k ∈ N and they already have a linear structure,
i.e. the path p is broken up into subpaths connecting the adjacent strongly connected
components in a unique linear order starting with c+ and ending with c−. Now
define the cycles ci,j (0 ≤ j ≤ mi) as the sequence of edges in the (j + 1)-th non-
trivial strongly connected component in the i-th linear chain arranged in a cyclic
order starting at the vertex at which the path p leaves the component (as p does
not leave the last cycle, define ci,mi

to start at the terminal vertex of p). The paths
pi,j (1 ≤ j ≤ mi) then are just subpaths of p connecting vertex iG(ci,j−1) to vertex
iG(ci,j). In case path pi,j shares more than one vertex with cycle ci,j – it can enter
and follow some edges of ci,j before reaching its end – we just unroll part of the
cycle doing some in-splittings to get pi,j isolated (see Figure 5 for an example).

Since so far every edge in G was generated as a copy of a particular edge in G′

we can use the labeling on G′ to induce a corresponding labeling on G which is still
right-resolving. This nearly gives the structure described in the statement of the
Lemma. The final step consists in shortening cycles ci,0 and ci,mi

(1 ≤ i ≤ k) if
necessary. Let ci,0 = gi,1, gi,2, . . . , gi,|ci,0| and suppose that the least period li,0 ∈ N



16 RONNIE PAVLOV AND MICHAEL SCHRAUDNER

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r r

r

r

r

r

?

?

?

?

?

?

?

?

?

?

?� � �

�
��

�
��

�
��

�

�
��

A
AU
�

���

^ ^ ^
] ] ]

� �

K

k

k

k

=⇒

K
(c+1 ,c−,p′)

K
(c+2 ,c−,p′′)

K
(c+2 ,c−,p′′′)

c2,0

c2,1

c2,2

c3,0

c3,1

c3,2

c3,3

c4,0

c4,1

c4,2

p2,1

p2,2

p3,1

p3,2

p3,3

p4,1

p4,2

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r
r

r

r r

r

r

r

r

r

?

?

?

?

?

?

?

?

?

?

?�

�
��

�

�
��

A
AU
�

���

-
6�

�	

�
��

�
A
AU

HHj
6���

^ ^ ^
] ] ]

� �

K

k

k

kc2,0

c2,1

c2,2

c3,0

c3,1

c3,2

c3,3

c4,0

c4,1

c4,2

p2,1

p2,2

p3,1

p3,2

p3,3

p4,1

p4,2

K2 K3 K4

Figure 5. (Unrolling cycles) In-splittings at the vertices of the
cycles ci,1 (i := 2, 3, 4) covered by the dashed lines to get isolated
transition paths pi,1 which terminate in the respective starting ver-
tex of those cycles. After this step we still have to possibly shorten
the first or last cycles in some of the linear chains to finally get G.

of the point
(
λG(ci,0)

)∞
∈ S is a proper divisor of the cycle’s length |ci,0|. Then

identify all pairs of vertices iG(gi,r), iG(gi,r′) with r ≡ r′ (mod li,0) as well as the
respective edges gi,r, gi,r′ . Note that λG(gi,r) = λG(gi,r′), so the labeling is still
well-defined, and as λG(gi,1) differs from the label of the first edge in pi,1, right-
resolvingness is again unaffected. Using the same procedure to shorten ci,mi

we
get G with all properties claimed in the Lemma. It is easy to see that G and G′

actually define the same sofic shift S. �

Remark 4.9. Note that though the property of having a good set of periods is
invariant under topological conjugacy by definition, the condition on the least-
common-multiple of cycle length is not independent of the chosen graph presenta-
tion. However suppose S is a zero-entropy Z sofic having a good set of periods; if
we start with any right-resolving graph presentation G′ as claimed in Definition 4.6,
the procedure described in the proof of the Structure Lemma 4.8 produces another
graph presentation G which again satisfies all conditions of Definition 4.6. The only
new cycle lengths introduced in G during its construction (shortening a first/last
cycle in a linear chain) are divisors of lengths present in G′. Thus modifying a
right-resolving presentation which exhibits a good set of periods for S as in Lemma
4.8 to get the disjoint linear chains yields a right-resolving presentation which again
exhibits a good set of periods for S.

Theorem 4.10. Let S be a zero-entropy Z sofic which does not have universal
period and assume furthermore that S has a good set of periods. Then there exists
a Z2 SFT X which contains S as its stable Z-projective subdynamics.

Proof. Let S ⊆ AZ be defined over an alphabet A. Starting with the full shift

AZ2

, we proceed in various conceptual steps which will be put together in the

end to construct a Z2 SFT X ( AZ2

which realizes S as its stable Z-projective
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subdynamics. In each step we introduce an additional family of local rules excluding

more and more points from AZ2

.
As the construction is a bit complicated, we will first give an informal description

of how points of X are structured (this structure is forced by the SFT-rules of X),
which should aid in the subsequent reading of the rigorous construction of X .

Firstly, any point of X contains mostly rows which are one of two prechosen
periodic points in S. We call this collection the sea of periodic rows. The exceptions,
if there are any, consist of (perhaps infinitely many) bands of fixed height N ∈ N,
which we call exceptional strips. Any two exceptional strips are separated by at
least a distance 4N .

There is a fixed k ∈ N (the number of components in a particular graph presen-
tation of S) so that inside any exceptional strip, the k-th row, which we for now call
the tester row, can a priori be filled with any sequence of letters from A. (Here and
throughout, the k-th row of a strip Z× [1, n] is Z×{k}, i.e. we count rows starting
from the bottom.) The remaining rows of the exceptional strip, which we call helper
rows, will always be taken from a designated subset of S, and their purpose, along
with the SFT-rules of X , is to check whether the sequence in the tester row, call it
s ∈ AZ, is a point of S or not. There are three types of helper rows:

The first type of helper rows (placed in rows 1 up to k − 1 of an exceptional
strip) is used to mark a natural number 1 ≤ i ≤ k signifying the linear chain Ki in
the decomposition of S guaranteed by Lemma 4.8. The remaining helper rows will
then check if s is in the sofic presented by Ki.

Helper rows of the second type constitute a counter monitoring the progression
of s along the chain Ki. Their purpose is to keep track of the cycle of Ki that
s is supposed to be in at any given coordinate; for this, those rows need to be
able to represent many different types of behavior which are recognizable by only
local observation. This is where the assumption of no universal period for S is
used heavily. If S is supposed to have universal period, any finite strip consisting
of points of S would exhibit only one type of periodic behavior, with only finitely
many exceptions possible. At any location far from one of these exceptions, it would
thus be impossible through local observation to distinguish between more than one
type of behavior.

The purpose of the third and final type of helper rows is, at any coordinate at
which s stays within one of the cycles in Ki for a long time, to keep track of its
exact location within the cycle. This is important because, to know if s is really
in the sofic presented by Ki, it is necessary to know that the coordinate difference
between entering and exiting one cycle has to be a multiple of the cycle length
and not just of the period of its labeling. This information might not be checkable
locally from s alone as the labeling of a cycle might be lossy in the sense that its
period is less than the length of the cycle itself (e.g. recall the Z sofic Sbad from
Example 4.7). For instance, if all edges in a cycle in Ki are labeled by the same
symbol, then it is impossible from just looking at those labels locally to know where
one is at within the cycle. This is where the good set of periods assumption on S
is used: due to this property, there is a finite set of periodic points from S which,
when placed in a strip, together have a period which is a multiple of the length of
any cycle of any Ki, and therefore contain enough information to check periods.
Corresponding rows in the exceptional strip will constitute the third type of helper
rows.
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Such X has the desired Z-projective subdynamics: any row of a point of X is
either one of the prechosen sequences sitting between exceptional strips or filling
non-tester rows, in which case it is known to be in S, or it appears in an exceptional
strip within a tester row and passes all the checks performed by the counter and
the period monitoring rows for the selected chain Ki, in which case it still has to
be in S. Conversely, as any point of S is in the sofic shift presented by Ki for some
1 ≤ i ≤ k, it consequently may legally fill the tester row within an exceptional strip
satisfying all local rules, meaning that it is a row of some point of X . (For instance
it is realized in the point of X containing only one exceptional strip, filled as was
just described.)

Next we give the formal description of our construction:

Step 4.10.1 (Existence of marker-bands). The first step of our construction can
be done for any Z subshift containing at least two periodic points. Note that non-
emptiness for Z sofics implies the existence of periodic points and that zero-entropy
Z sofics which contain only one periodic point always have universal period. To see
this, use a graph presentation G = (VG, EG, λG) as given by the Structure Lemma
4.8; all edges contained in any cycle have to carry the same label, the one that gives
the unique fixed point and as every point can only spend a finite number of steps
along transition paths, it has to look like the fixed point except possibly at a finite
set of coordinates whose size is bounded by |EG|. Hence the assumption of Theorem
4.10 about universal period already guarantees the presence of two periodic points
and in fact we may choose q1 6= q2 ∈ Per0n(S) of the same least period n ∈ N. Here
we explicitly allow q1, q2 to be contained in the same orbit.

In order to select particular rows in points of our Z2 SFT X ( AZ2

we introduce
marker configurations that are formed by stacking copies of the two periodic points
q1, q2 on top of each other. Given a (large) gap size N ∈ N which will be specified
later we define a family

H0 :=
{
x ∈ AZ2

∣∣∣ x|Z×{0} = x|Z×{N+1} = q1 ∧

∀m > N + 1, m′ < 0 : x|Z×{m} = x|Z×{m′} = q2

}

of points which are forced to look like a “sea of periodic points” above and below
a horizontal strip of height N . A first set of local rules restricting the full shift

AZ2

is given by fixing a rectangular window B := [~1, (2n, 4N − 1)] ( Z2 of size
2n × (4N − 1) and forbidding all patterns of this shape that do not appear in any
point of H0, thus we put F0 := AB \

{
x|~ı+B

∣∣ ~ı ∈ Z2 ∧ x ∈ H0

}
and define

X0 := X(F0) ( AZ2

as the Z2 SFT given by F0.
The chosen window-size then forces that associated to every point x ∈ X0 there is

a unique sparse set of integers Jx ( Z which satisfies j′− j ≥ 5N for all j < j′ ∈ Jx

and a fixed global offset 0 ≤ nx < n, such that most of the rows in x contain copies
of q2 shifted by the same amount nx. In particular we have x|Z×{j} = σnx(q2) for

all j ∈ Z\
(
Jx +{0, 1, . . . , N +1}

)
and x|Z×{j} = σnx(q1) for all j ∈ Jx +{0, N +1}

(every block of size 2n × (4N − 1) in a point in X0 has a clear majority of rows
containing the same word; thus the global offset persists and exceptional strips can
be detected locally). The only possible horizontal rows that are not of this form
then appear in the strips of height N indexed by Jx+{1, 2, . . . , N} which are always
flanked (above and below) by the shifted copies of q1. Hence we may think of the
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points of X0 as marked by thick bands of periodic rows with interspersed exceptional
strips of height N . These strips will be used to stably recognize arbitrary points
from S.

Step 4.10.2 (Selecting a linear chain). Assume that S is given by a right-resolving
graph presentation G as in Lemma 4.8 that consists of k ∈ N linear chains and
exhibits a good set of periods for S. We will use the bottom k − 1 rows of every
exceptional strip to encode a natural number between 1 and k specifying one of
the linear chains. To do so, we define an additional local rule on patterns of size
2n× 5N :

(R1) Let w1 6= w2 ∈ A2n be two distinct words of size 2n × 1. For any pattern
P ∈ L(X0) of size 2n × 5N appearing in X0 such that

P |[1,2n]×{m} = w2 ∀m ∈ {3N + 2, 3N + 3, . . . , 5N}

P |[1,2n]×{m} = w1 ∀m ∈ {2N, 3N + 1}

P |[1,2n]×{m} = w2 ∀m ∈ {1, 2, . . . , 2N − 1}

there has to exist an integer 1 ≤ i ≤ k such that

P |[1,2n]×{m} = w2 ∀m ∈ {2N + i, 2N + i + 1, . . . , 2N + k − 1}

P |[1,2n]×{m} = w1 ∀m ∈ {2N + 1, 2N + 2, . . . , 2N + i − 1}

Inside X0 we define a new subSFT X1 ⊆ X0 given by the extra condition that no
point in X1 violates Rule (R1).

Note that every time Rule (R1) applies to a point x ∈ X0, w1 has to be a subword
of q1 and w2 a corresponding subword of q2. Moreover Rule (R1) exactly applies
to the exceptional strips, i.e. to patterns P = x|~+[~1,(2n,5N)] (~ = (j1, j2) ∈ Z2)

such that j2 + 2N ∈ Jx, and forces rows 2N up to 2N + k − 1 within P to contain
one of k subpatterns (i rows seeing the subword w1 of q1 followed by k − i rows
seeing the corresponding subword w2 of q2). Again the window-size 2n×5N is large
enough to forbid transitions from subwords of q1 to corresponding subwords of q2 or
vice versa; thus forces the integer i to be the same along the complete exceptional
strip, which implies that the bottom i rows of the exceptional strip contain σnx(q1),
whereas the next k − i rows contain σnx(q2) (the global offset nx persists). Hence
we may think of each exceptional strip in a point x ∈ X1 as being marked by a
number ij ∈ {1, 2, . . . , k} for j ∈ Jx and we may use the top part of such strip to
stably recognize a point from the linear chain Kij

.

Before we proceed, we fix the meaning of “P selects a linear chain Ki.” Let
P ∈ L(X1) be a pattern of size n′ × 5N with n′ ≥ 2n that appears in X1. We will
say that P selects the linear chain Ki (1 ≤ i ≤ k), if there are two distinct words

w′
1 6= w′

2 ∈ An′

of size n′ × 1 such that

P |[1,n′]×{m} = w
′
1 ∀m ∈ {2N, 2N + 1, 2N + 2, . . . , 2N + i − 1} ∪ {3N + 1}

P |[1,n′]×{m} = w
′
2 ∀m ∈ {1, 2, . . . , 2N − 1} ∪ {3N + 2, 3N + 3, . . . , 5N} ∪

∪ {2N + i, 2N + i + 1, . . . , 2N + k − 1} .

Step 4.10.3 (Counting transitions along a linear chain). After establishing the
marker structure of points in X1 in the previous steps we can now concentrate on
checking whether the sequence in a tester row comes from a particular linear chain
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Ki. To do this, we first ensure that it is locally correct in S up to words of a certain
length – which can easily be done by (one-dimensional) SFT-rules – but then we
also have to control the transitions from one strongly connected component in Ki

to another. The main problem here is that some of those components may carry
labels that give rise to the same periodic point in S. Arbitrarily long runs of those
periodic words then have to be distinguished which can not be done using local
rules in only one row. Instead we overlay the tester row with a finite number of
other rows (from S) implementing something similar to a counter to keep track of
the strongly connected components the row visits.

Depending on the properties of the graph G presenting our Z sofic S = S(G) we
distinguish two complementary cases, the first of which is rather straightforward.
We use the notation introduced in Lemma 4.8, i.e. the linear chain Ki has mi + 1
non-trivial strongly connected components ci,j (0 ≤ j ≤ mi) connected by isolated
transition paths pi,j (1 ≤ j ≤ mi) and the labeling in Ki is right-resolving.

Define M := max1≤i≤k{mi + 1} ∈ N to be the maximal number of non-trivial
strongly connected components in any linear chain.

Case 4.10.1. Suppose there exists a chain Ki∗ (1 ≤ i∗ ≤ k) and 1 ≤ j∗ ≤ mi∗ such

that the two periodic points
(
λG(ci∗,j∗−1)

)∞
,
(
λG(ci∗,j∗)

)∞
∈ Per(S) are contained

in distinct orbits.
Define the point t1 :=

(
λG(ci∗,j∗−1)

)∞
. λG(pi∗,j∗)

(
λG(ci∗,j∗)

)∞
∈ S. For every

linear chain Ki we generate a family

H1(Ki) :=








σlmi (t1)
...

σl2(t1)
σl1(t1)




∣∣∣∣∣ l1 > l2 > . . . > lmi
∈ Z





⊆ Smi

of mi-tuples of points from S. Let n′ := 2 · max
{
n, |ci∗,j∗−1 pi∗,j∗ ci∗,j∗ |

}
+ 1 ∈ N.

For any point in H1(Ki) specified by the mi-tuple (l1, l2, . . . , lmi
) ∈ Zmi of offsets

we call the pattern of size n′ × mi centered at coordinate −lj (1 ≤ j ≤ mi) an
exact j-block and we refer to patterns of size n′×mi that have their central column
placed at a coordinate strictly between −lj and −lj+1 with 1 ≤ j ≤ mi − 1 a
j-block. Patterns with their central column to the left of −l1 will be called 0-blocks
and those to the right of −lmi

similarily are mi-blocks. It should be clear that
because of the horizontal extension n′ we can locally decide which rows already
passed the transition from ci∗,j∗−1 to ci∗,j∗ and which still await this transition and
we also have enough information to spot the exact starting position of a transition.
Therefore every pattern of size n′ × mi which appears in H1(Ki) has precisely one
type, that is, each such pattern is either a j-block or an exact j-block (but not
both!) for exactly one j.

Next we introduce a new rule:

(R2.1i) Let P ∈ L(X1) be a pattern of size n′×5N that selects Ki, then the subpat-
tern P |[1,n′]×[2N+k+1,2N+k+mi] has to be a block of size n′×mi that appears
in some point of H1(Ki) and the subpattern P |[1,n′]×[2N+k+mi+1,2N+k+2M ]

has to equal P |[1,n′]×[4N+k+mi+1,4N+k+2M ] (we just fill in the remaining,
unused rows with copies of the periodic point σnx(q2) conserving the global
offset nx).
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Obviously Rule (R2.1i) puts an additional condition precisely on exceptional strips

marked by i. As
(
λG(ci∗,j∗−1)

)∞
and

(
λG(ci∗,j∗)

)∞
are periodic points from dif-

ferent orbits, we can easily distinguish between subwords of size n′ × 1 from the
left and the right half of t1. Rule (R2.1i) thus guarantees that rows k + 1 to

k + mi of those strips contain a shifted copy of
(
λG(ci∗,j∗−1)

)∞
,

(
λG(ci∗,j∗)

)∞
or t1. Due to right-resolvingness of the labeling on G, the transition pattern
w := λG(ci∗,j∗−1)λG(pi∗,j∗)λG(ci∗,j∗) ∈ L(S) appears at most once in every
such row. Hence, for every exceptional strip marked by i, we may denote by
aj ∈ Z ∪ {±∞} the starting coordinate of (the subword) λG(pi∗,j∗) of w in row

k+ j (1 ≤ j ≤ mi), where aj := +∞ if row k+ j contains a shift of
(
λG(ci∗,j∗−1)

)∞

and aj := −∞ if row k + j contains a shift of
(
λG(ci∗,j∗)

)∞
. Then, because of the

window-size n′ × 5N , Rule (R2.1i) forces (aj)
mi

j=1 to be a non-decreasing sequence
which strictly increases on all indices j with aj ∈ Z. Moreover the pattern of size
n′ × mi that appears in rows k + 1 up to k + mi of the exceptional strip with its
central column placed at aj ∈ Z is an exact j-block and for 0 ≤ j ≤ mi patterns
centered at a coordinate between aj and aj+1 are j-blocks (here a0 := −∞ and
ami+1 := +∞).

Case 4.10.2. Suppose that for every linear chain Ki (1 ≤ i ≤ k) the set of

periodic points
{(

λG(ci,j)
)∞ ∣∣ 0 ≤ j ≤ mi

}
⊆ Per(S) is a subset of a single orbit.

Nevertheless, as S does not have universal period, there is 1 ≤ i∗ ≤ k and 1 ≤ j∗ ≤
mi∗ such that the point t2 :=

(
λG(ci∗,j∗−1)

)∞
. λG(pi∗,j∗)

(
λG(ci∗,j∗)

)∞
∈ S is out

of phase, i.e. σ|pi∗,j∗ |
((

λG(ci∗,j∗−1)
)∞)

6=
(
λG(ci∗,j∗)

)∞
.

In this case the structure of the counter is necessarily a bit more complicated,
since we can not just locally distinguish between periodic words before and after a
transition from ci∗,j∗−1 to ci∗,j∗ . Instead we will use two special periodic rows plus
a pair of rows for every 1 ≤ j ≤ mi to determine where a transition between two
strongly connected components in Ki occurs. Nevertheless the idea is an elaboration
of the construction in Case 4.10.1 above. Denote by o := |Orb(qi∗,j∗−1)| ∈ N the

number of elements in the orbit of qi∗,j∗−1 :=
(
λG(ci∗,j∗−1)

)∞
∈ Per(S) which by

assumption equals the orbit of qi∗,j∗ :=
(
λG(ci∗,j∗)

)∞
∈ Per(S). For every linear

chain Ki we define a family

H2(Ki) :=








σ
−|pi∗,j∗ |(qi∗,j∗ )

σ
l′mi (t2)

σlmi (t2)

...
σl′2 (t2)

σl2 (t2)

σl′1 (t2)

σl1 (t2)
qi∗,j∗−1




∣∣∣∣∣

l1 ≥ l2 ≥ . . . ≥ lmi
∈ oZ ∧

l′1 > l′2 > . . . > l′mi
∈ Z ∧

∀ 1 ≤ j ≤ mi : lj − o < l′j ≤ lj





⊆ S2mi+2

of (2mi+2)-tuples of points from S. Let n′ := 2 ·max{n, |ci∗,j∗−1 pi∗,j∗ ci∗,j∗ |}+1 ∈
N. As before, we define (exact) j-blocks which are now patterns of size n′×(2mi+2),
this time using the offsets l′j (1 ≤ j ≤ mi) and we introduce a new rule:

(R2.2i) Let P ∈ L(X1) be a pattern of size n′×5N that selects Ki, then the subpat-
tern P |[1,n′]×[2N+k+1,2N+k+2mi+2] has to be a block of size n′ × (2mi + 2)
which appears in an element of H2(Ki) and furthermore the subpattern
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P |[1,n′]×[2N+k+2mi+3,2N+k+2M ] has to equal P |[1,n′]×[4N+k+2mi+3,4N+k+2M ]

(again we fill possibly remaining rows with copies of σnx(q2)).

We claim that, as in the previous case, Rule (R2.2i) applies to all exceptional strips
marked by i and forces rows k + 1 up to k + 2mi + 2 to contain shifted copies of
the special points qi∗,j∗−1, qi∗,j∗ or t2. To prove this, let us look at rows k +m with
m ∈ {1, 2, 4, 6, . . . , 2mi, 2mi + 2} first. Note that Rule (R2.2i) guarantees that the

bottom row is σl(qi∗,j∗−1) and the top row is σl−|pi∗,j∗ |(qi∗,j∗) for some common
offset l ∈ Z. Thus those rows are not equal, but always exhibit the same phase
difference which also occurs between the left and right half of t2. By definition
the even rows (rows 2, 4, 6, . . . , 2mi) in an element of H2(Ki) are aligned: their left
half up to the transition pattern w := λG(ci∗,j∗−1)λG(pi∗,j∗)λG(ci∗,j∗) coincides
exactly with the bottom row whereas their right halves (after the transition pattern
w) are “in phase” with the top row. Hence Rule (R2.2i) implies that, even if we see
long periodic behaviour in the exceptional strip, we can decide locally whether we
already passed a transition in a particular row. To do this we just have to compare a
pattern of size n′ × 1 from an even row to the patterns appearing above and below
it in rows 1 resp. 2mi + 2. In particular after reaching alignment with the top
row, Rule (R2.2i) does not allow any way to switch back to the phase shift of the
bottom row, so the alignment has to continue forever to the right. Symmetrically,
the situation of local coincidence with the periodic point in the bottom row persists
infinitely far to the left. This shows that all rows k + m with m ∈ {2, 4, . . . , 2mi}
can contain at most one transition pattern w and have to be periodic like row k +1
resp. row k + 2mi + 2 to the left resp. to the right of this unique occurrence of w.
Therefore the claimed form follows for those rows. Again the coordinates at which
the transition pattern w shows up define a non-decreasing sequence, this time –
because of the alignment – in (l + oZ) ∪ {±∞}.

Now let us look at the remaining rows. Those will be used to narrow down the
exact position of a transition. The definition of H2(Ki) implies that every odd row
(rows {3, 5, . . . , 2mi + 1}) is just a slight shift to the right of the row immediately
beneath it. The size of this shift is bounded from above by the orbit-length o. By
Rule (R2.2i) and the already established structure on the even rows, the same is
true for the odd rows. In particular, if row k + 2j (1 ≤ j ≤ mi) contains a shifted
version of t2 in which the transition pattern w shows up at coordinate a ∈ Z, row
k + 2j + 1 has to contain a shift of t2 as well and moreover the transition pattern
is placed somewhere within the range from a to a + |w|+ o− 1 with the additional
condition that its starting coordinate be strictly larger than the possibly existing
starting coordinate of w in row k + 2j − 1. If row k + 2j holds a shift of qi∗,j∗−1

(resp. qi∗,j∗) then row k + 2j + 1 can not contain the transition pattern w either,
so it is a shifted version of qi∗,j∗−1 (resp. qi∗,j∗) as well.

Using the coordinates of the unique transition patterns w in rows k + 2j + 1
(1 ≤ j ≤ mi) or in their absence the (global) alignment of rows k + 2j – put
aj := +∞ if row k + 2j is in phase with row k + 1 and assign aj := −∞ if it
coincides with row k + 2mi + 2 – we again obtain a non-decreasing sequence of
transition coordinates

(
aj ∈ Z ∪ {±∞}

)mi

j=1
which is strictly increasing on indices j

where aj ∈ Z and the statements about the structure of (exact) j-blocks from the
previous case follow. (Again we define a0 = −∞ and ami+1 = +∞.)
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In either of the two cases define X2 ⊆ X1 as the Z2 subSFT given by additionally
imposing Rules (R2.1i) resp. (R2.2i).

Step 4.10.4 (Checking the length of (long) periodic words). Another thing to pay
attention to is the possibility to have a cycle ci,j with 1 ≤ j ≤ mi−1 in a linear chain
Ki (1 ≤ i ≤ k) that, because of repetitions of the labeling along its edges, gives rise
to a periodic point in S which has a least period strictly smaller than the length
of the whole cycle ci,j . Whenever a point in S enters such a cycle, stays in it for
a long time and leaves again, the number of steps spent in this strongly connected
component has to be compatible with the cycle length, which because of the shorter
period of the label λG(ci,j) can not be assured using only local (one-dimensional)
observations. However, the assumption that S has a good set of periods allows
us to use a finite number of periodic points to set markers which are spaced at a
distance equal to the cycle length.

In the attempt to make the construction more transparent, our coding will not
be optimal in this step: On one hand the phenomenon described above affects
only (some) cycles that are not sitting at the ends of the linear chain Ki; on the
other hand each problematic cycle length may have a particular (minimal) set Q of
periodic points as stated in the definition of a good set of periods. Despite these two
issues we just apply a generic (slightly inefficient) method to take care of all cycles
with the same technique. For every cycle ci,j (0 ≤ j ≤ mi) we simply use a strip of

fixed height M ′ :=
∑k

i=1(mi + 1) ∈ N that contains one periodic point from each
of the non-trivial strongly connected components of G. Let R be the configuration
on Z × [1, M ′] made up of the periodic points

(
λG(ci,j)

)∞
, 1 ≤ i ≤ k, 0 ≤ j ≤ mi,

arranged in a vertical stack. Its smallest period r := |Orb(R)| ∈ N under the one-
dimensional shift action is the least-common-multiple of all least periods of periodic
points in S and by the assumption of the theorem this has to be a multiple of the
length of any cycle ci,j in G. Thus for every 1 ≤ i ≤ k, 0 ≤ j ≤ mi we define

the finite set Ci,j(R) := {R|[a−r,a+r] | a ∈ |ci,j |Z} ⊆ A(2r+1)×M ′

consisting of all
distinct patterns of size (2r + 1) × M ′ that appear in R centered at coordinates
being a multiple of |ci,j |. Let n′′ := max{n′, 2r + 1} ∈ N and define another rule:

(R3i) Let P ∈ L(X2) be a pattern of size n′′×5N that selects Ki, then for any 1 ≤
m ≤ M every subpattern P |[1,n′′]×[2N+k+2M+(m−1)M ′+1,2N+k+2M+mM ′]

has to be a block of size n′′ × M ′ which shows up in R.

Rule (R3i) forces rows k + 2M + 1 up to k + 2M + MM ′ of an exceptional strip
to contain periodic points in S such that for every 1 ≤ m ≤ M the stack of rows
k + 2M + (m− 1)M ′ + 1 up to k + 2M + mM ′ contains a shifted version of R, say

σl′′m(R) for some offset l′′m ∈ Z.
Define X3 ⊆ X2 as the Z2 subSFT whose points satisfy Rules (R3i).

Now we have all the ingredients and we may specify the height of exceptional
strips as N := k + 2M + MM ′ ∈ N. We point out that the rules defined so far
already imply that – with the exception of rows indexed by elements in k + Jx –
all rows in a point x ∈ X3 are valid points in S. What remains is to use all the
parts in order to specify the rules guaranteeing that the tester rows in k + Jx can
be filled with precisely the points in S.
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Step 4.10.5 (Checking validity). Let n∗ := 2 ·
(
n′′ + 2 · (M + 1) |EG|

)
+ 1 ∈ N and

define

Ln∗(Ki) :=
{
λG(p)

∣∣ p := (em ∈ EKi
)n∗

m=1 ∧

∀ 1 ≤ m ≤ n∗ − 1 : tG(em) = iG(em+1)
}
⊆ Ln∗(S)

to be the set of labelings of valid paths of length n∗ along the edges of the linear
chain Ki. The next rule checks local validity of row k in an exceptional strip marked
by i:

(R4i) Let P ∈ L(X3) be a pattern of size n∗ × 5N that selects Ki, then the
subpattern P |[1,n∗]×{2N+k} of size n∗ × 1 has to be contained in Ln∗(Ki).

By the structure of the graph G presenting S, we know that long (possibly infinite)
periodic behaviour has to appear in any point in S and can only come from visits
to non-trivial strongly connected components. In particular whenever a point in S
sees a word of length 2 |EG| which is periodic, the point has to spend at least two
full turns in one cycle of some linear chain Ki. Right-resolvingness of the labeling
then allows us to detect if and when exactly the point leaves from this particular
cycle (the first symbol that does not fit into the repeating pattern). Following
the edges of the labeled graph from there, we also recognize the precise entry into
the non-trivial strongly connected component that produces the next long periodic
behaviour; this entry has to happen within less than (2M−3) |EG| steps. The choice
of n∗ assures that every element in Ln∗(Ki) has to see long periodic behaviour at
least once in its right as well as in its left half. This allows us to define the last two
sets of rules (here we have to distinguish between Cases 4.10.1 and 4.10.2 of Step
4.10.3):

(R5i) Let P ∈ L(X3) be a pattern of size n∗× 5N that selects Ki. Whenever the
subpattern P |[(n∗+1)/2−|EG|,(n∗+1)/2+|EG|]×{2N+k} can be seen as a subword
of some periodic point in S, all subpatterns

P |[l+(n∗−n′)/2,l+(n∗+n′)/2−1]×[2N+k+1,2N+k+mi] (Case 4.10.1) resp.

P |[l+(n∗−n′)/2,l+(n∗+n′)/2−1]×[2N+k+1,2N+k+2mi+2] (Case 4.10.2)

of size n′ ×mi (resp. n′ × (2mi + 2)) with 1 ≤ l ≤ |EG| have to be j-blocks
for some fixed 0 ≤ j ≤ mi such that P |[(n∗+1)/2−|EG|,(n∗+1)/2+|EG|]×{2N+k}

is a subword of
(
λG(ci,j)

)∞
∈ Per(S).

Rule (R5i) ensures that for every exceptional strip marked by i, whenever row k sees
long periodic behaviour which extends for |EG| steps on both sides of a coordinate
a ∈ Z, the “counter” contained in rows k+1 up to k +mi (resp. k+2mi +2) above
all coordinates in the interval [a, a + |EG| − 1] can only be in a state 0 ≤ j ≤ mi

which is compatible with the periodic behaviour coming from cycle ci,j . As every
point in S has to be eventually periodic on both ends, the counter has at least a
well-defined collection of starting states given by the periodic structure far to the
left of the zero coordinate as well as a well-defined family of terminal states given
by the structure on the right. Transitions between the states of the counter are
then governed by the following set of rules which also checks the length of long
periodic words:

(R6i) Let P ∈ L(X3) be a pattern of size n∗×5N that selects Ki. If the subpattern
P |[(n∗+1)/2−2|EG|,(n∗+1)/2−1]×{2N+k} of size 2 |EG| × 1 is a periodic word in
L(S) which does not extend further to the right (the periodic structure ends
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at coordinate n∗+1
2 ), the pattern P |[(n∗−n′)/2,(n∗+n′)/2−1]×[2N+k+1,2N+k+mi]

(resp. P |[(n∗−n′)/2,(n∗+n′)/2−1]×[2N+k+1,2N+k+2mi+2]) of size n′ × mi (resp.
n′ × (2mi + 2)) has to be a j-block for some 0 ≤ j ≤ mi − 1 (which has
been specified by Rule (R5i)).

Now the subpattern

P |[(n∗−n′)/2+1,(n∗+n′)/2]×[2N+k+1,2N+k+mi] (Case 4.10.1) resp.

P |[(n∗−n′)/2+1,(n∗+n′)/2]×[2N+k+1,2N+k+2mi+2] (Case 4.10.2)

of size n′×mi (resp. n′×(2mi+2)) has to be an exact (j+1)-block and the
subpattern P |[(n∗−1)/2−r,(n∗−1)/2+r]×[2N+k+2M+jM ′+1,2N+k+2M+(j+1)M ′ ] of
size (2r + 1) × M ′ has to be an element of Ci,j(R).

Furthermore the subpattern P |[(n∗+1)/2,n∗]×{2N+k} has to coincide with
the labeling of a valid path p of size (n∗ +1)/2 in Ki which starts at vertex
tG(ci,j) leaving the cycle ci,j . By right-resolvingness of the labeling such
p is unique (given j) and forces the states of the “counter” in an obvious
way until the next long periodic pattern is reached (starting with (j + 1)-
blocks the counter’s value is increased by one every time the path p uses
the transition edge which leaves a non-trivial strongly connected component
placing an exact j′-block centered at the respective coordinate).

Let a ∈ [(n∗ + 1)/2, n∗ − 2 |EG|] be the coordinate at which p enters the
next non-trivial strongly connected component, say ci,j′′ in Ki in which
it stays for at least 2 |EG| steps – by choice of n∗ such a has to exist –
then the subpattern P |[a−r,a+r]×[2N+k+2M+j′′M ′+1,2N+k+2M+(j′′+1)M ′] of
size (2r + 1) × M ′ has to be an element of Ci,j′′ (R).

Finally we define X ⊆ X3 as the subSFT that respects additional Rules (R4i),
(R5i) and (R6i). There are no other rules, i.e. the family of forbidden patterns
FX ( A∗,2 is exactly the finite set that contains all the exclusions specified above.

To finish the proof we show S = PZ(X).

Claim 4.10.1 (S ⊆ PZ(X)). Let s ∈ S be a valid point. There exists 1 ≤ i ≤ k
and a biinfinite path (el)l∈Z ∈ EZ

G along the edges of the linear chain Ki such that
s =

(
λG(el)

)
l∈Z

. For 1 ≤ j ≤ mi denote by l∗j ∈ Z the coordinate (if any) such that

(el∗
j
, . . . , el∗j +|pi,j |−1) = pi,j and extend this sequence with ±∞ if there is no such

coordinate in order to get a non-decreasing sequence (l∗j ∈ Z∪ {±∞})j=1,...,mi
. To

realize s as row k inside a point of X just define x ∈ AZ2

as in Figure 6 – the
only exceptional strip appears on rows 1 to N , thus Jx = {0} – and note that
the constructed Z2 configuration x actually satisfies all rules, i.e. x ∈ X and thus
S ⊆ PZ(X).

Claim 4.10.2 (PZ(X) ⊆ S). For any x ∈ X all rows except the tester rows (k-th
row of an exceptional strip) are by definition forced to contain (special) points of
S. Moreover the rules specified in Step 4.10.5 of our construction are able to detect
whether the content of those tester rows – if they exist – coincide with the labeling
of a valid path in one of the linear chains Ki. Hence tester rows passing all checks
are also in S.

We note that in fact, a point s ∈ AZ is extendable by 5N rows above and below
without violating any rules in X if and only if s is a valid point in S. Hence
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Figure 6. Realization of a point s ∈ S along row k in some valid
point of X .

S = XZ,5N and our Z sofic S is the stable Z-projective subdynamics of X as
claimed. �

Remark 4.11. Note that the only place where we use the fact that S has a good
set of periods is Step 4.10.4. The absence of universal period, on the other hand,
is used at various stages of the construction.

5. Unstable projective subdynamics

In this section, we show how to produce Z2 SFTs that realize most proper Z

sofic shifts as their unstable Z-projective subdynamics (applying Observation 3.5
this immediately generalizes to constructing Zd realizations). Again we distinguish
between systems of positive resp. zero-entropy and show that the only obstruction
for an unstable realization is the presence of a universal period.

Theorem 5.1. For any proper Z sofic S with positive entropy htop(S) > 0 there
exists a Z2 SFT X which realizes S as its unstable Z-projective subdynamics.

Proof. Let S ⊆ AZ be defined over an alphabet A. To construct X ⊆ AZ2

we reuse
large parts of the proof of Theorem 4.2 together with the technique of marker-bands
introduced in Step 4.10.1. The overall idea for our construction is to use an upper
halfplane in points x ∈ X to unstably recognize a single point from S with an
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inefficient version of the local structure checking procedure performed in Theorem
4.2, whereas the respective lower halfplane of x will be completely filled with copies
of a periodic point from S.

Take a right-resolving graph presentation G = (VG, EG, λG) with S = S(G) and
choose a set of words W := {w−, w+, w∗, w0, . . . , w2|VG|−1} ⊆ LM (S) as given by
Lemma 4.1. We form two periodic points q1 := w∞

+ , q2 := w∞
− ∈ S which are used

to set up the infrastructure of points in X . Fixing a gap size N := 4 we define a

Z2 SFT X0 ⊆ AZ2

whose points see exceptional strips interspersed between thick
marker-bands as in Step 4.10.1. In addition we force another local rule on X0 to
generate equally spaced exceptional strips on a whole upper halfplane:

(R7) Suppose P ∈ L(X0) is a valid pattern of size 3M × 10N such that

P |[1,3M]×{m} = w− w− w− ∀m ∈ {3N + 2, 3N + 3, . . . , 5N}

P |[1,3M]×{m} = w+ w+ w+ ∀m ∈ {2N, 3N + 1}

P |[1,3M]×{m} = w− w− w− ∀m ∈ {1, 2, . . . , 2N − 1}

then as well

P |[1,3M]×{m} = w− w− w− ∀m ∈ {8N + 2, 8N + 3, . . . , 10N}

P |[1,3M]×{m} = w+ w+ w+ ∀m ∈ {7N, 8N + 1}

P |[1,3M]×{m} = w− w− w− ∀m ∈ {5N + 1, 5N + 2, . . . , 7N − 1}

This condition ensures that anywhere an exceptional strip of height N = 4 appears
in a point x ∈ X0, we have to see another exceptional strip every 5N rows above,
i.e. if Jx ⊆ Z again denotes the set of coordinates of rows appearing immediately
below exceptional strips, then Jx 6= ∅ =⇒ Jx = j0

x + 5N · Z or Jx = j0
x + 5N · N0

for some j0
x ∈ Z.

Now we fill in the exceptional strips – if any – as follows: The first (bottom)
row as well as the third row of every exceptional strip has to contain a biinfinite
concatenation of words from {wi}0≤i≤2|VG|−1, while the fourth (top) row of every

exceptional strip has to contain a point of the subshift
⋃

l∈N Orb{w∞
− . wl

∗ w∞
+ };

conditions which can easily be forced by local rules (note that Lemma 4.1 guarantees
that the subshift of all biinfinite concatenations of words from W is a Z SFT of
type 3M − 1). Moreover we impose a condition on the evolution of those fourth
(top) rows which allows the block of w∗’s (if there is one) to grow by one on either
side as one moves to the next exceptional strip upwards. Technically this means
that if we see one of the following blocks of size 3M ×1 somewhere in the top row of
an exceptional strip, the word of size 3M ×1 in the top row of the next exceptional
strip 5N rows directly above is forced as shown below (j ∈ Jx + 4, i ∈ {+,−, ∗}).

j + 5N : wi wi wi w− w∗ w∗ w∗ w∗ w∗ w∗ w∗ w∗ w∗ w∗ w∗ w∗ w∗ w+

↑ ↑ ↑ ↑ ↑ ↑

j : wi wi wi w− w− w∗ w− w∗ w∗ w− w∗ w+ w∗ w∗ w+ w∗ w+ w+

This already implies that in points x ∈ X with Jx a coset of 5N ·Z the top rows of
exceptional strips are either all equal and then contain the same shift of a periodic
point w∞

i for some fixed i ∈ {+,−, ∗} or they all contain shifts of w∞
∗ . w∞

+ resp.
w∞

− . w∞
∗ where the appearance of the transition word w∗ w+ resp. w− w∗ moves

to the right resp. left by M coordinates going from one strip to the next. (This
is because if a top row of an exceptional strip contained a finite block of w∗’s,
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the number of w∗’s would need to decrease by 2 every time one moved a strip
downwards, eventually leading to a contradiction.)

In addition note that the lowest exceptional strip of a point x ∈ X (when there
is one) can be locally recognized by looking 5N − 1 rows below where there should
occur a shifted copy of q2 = w∞

− instead of a concatenation of wi’s with 0 ≤ i ≤
2 |VG| − 1. We may then impose a local rule forcing the top row of this lowest strip

to be in Orb{w∞
− . w∗ w∞

+ } by allowing at most one block w∗ (i.e. forbidding the
word w∗w∗) in the top row of this first exceptional strip.

Another local rule establishes that the second row of an exceptional strip – being
reserved to contain the point from S that we want to realize in x – be always copied
to the second row of the next exceptional strip upwards without any changes. Hence
all tester rows contain exactly the same biinfinite sequence.

To finish the definition of X ⊆ X0 we impose Rules (R1) and a slight variant of
(R2) from the construction in the proof of Theorem 4.2 acting just on the bottom
part of exceptional strips. The one modification on (R2) which we need is that it
only applies to patterns of size 3M × 3 which sit in the three bottom rows of an
exceptional strip and which are also centered below a word of size 5M × 1 – in the
top row of the strip – that is a subword of the periodic points q1 = w∞

+ , q2 = w∞
−

or q3 := w∞
∗ . Hence the top row of a strip tells us where to check local validity of

the second row in terms of the underlying path structure which is governed by the
sequence in the first (and third) row. In particular consistency of the path structure
is not checked near transitions . . . w− w− w∗ . . . nor near . . . w∗ w+ w+ . . ..

We prove that actually S = PZ(X) is the unstable Z-projective subdynamics of
X :

Claim 5.1.1 (S ⊆ PZ(X)). For s ∈ S define a point x ∈ AZ2

with Jx = 5N · Z

where every row in Jx + 4 (top row of exceptional strip) is q3 = w∞
∗ . Notice that

the construction from Theorem 4.2 gives a valid way to surround s with a biinfinite
concatenation of blocks wi with 0 ≤ i ≤ 2 |VG| − 1 above and below. This produces
a locally admissible configuration of size Z × 3 which does not violate any of the
Rules (R1) nor (R2) and which thus can be put into the bottom three rows of every
exceptional strip in x generating a valid point of X which realizes s = x|Z×{j} for
j ∈ Jx + 2.

Claim 5.1.2 (PZ(X) ⊆ S). Recall that due to the choice of the set W any biinfinite
concatenation of elements wi (with i ∈ {+,−, ∗, 0, 1, . . . , 2 |VG| − 1}) gives rise to
a valid point in S. Hence we are left to check for each x ∈ X with Jx 6= ∅ that
the (unique) biinfinite sequence x|Z×{j} ∈ AZ (j ∈ Jx + 2) appearing in the second
row of every exceptional strip actually is an element of S. Suppose the contrary,
i.e. s := x|Z×{j} /∈ S. In particular this implies that for every biinfinite sequence

of edges (en)n∈Z ∈ EZ
G with

(
λG(en)

)
n∈Z

= s there exists a coordinate n∗ ∈ Z

such that tG(en∗) 6= iG(en∗+1). A simple compactness argument shows that there
is a uniform upper bound L ∈ N on the distance between the origin and the (first)
obstruction at coordinate n∗ in such a sequence. Hence any biinfinite concatenation
of wi’s (0 ≤ i ≤ 2 |VG|−1) used to fill the first and third row of an exceptional strip
containing s in its tester row forces an inconsistency with respect to one of the Rules
(R1) and (R2) somewhere in the interval [−L − 3M, L + 3M ] ( Z. Eventually, for
the top row of some exceptional strip far above, a long periodic subword of q1, q2

or q3 covers the entire interval [−L− 3M, L + 3M ], so any biinfinite concatenation
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of wi’s (0 ≤ i ≤ 2 |VG| − 1) that could be used to fill the first and third row of this
exceptional strip would provoke a local inconsistency which is detected by those
rules. Therefore such sequences s can not appear as second rows of exceptional
strips and thus are not elements of PZ(X).

Claim 5.1.3 (The construction is unstable). Since S is a proper Z sofic there ex-
ist arbitrarily long non-synchronizing words. Hence the graph G has to contain
at least two distinct – though possibly not disjoint nor primitive – cycles c1 =
(g1, g2, . . . , g|c1|), c2 = (h1, h2, . . . , h|c2|) (gi, hj ∈ EG) with iG(g1) = tG(g|c1|) 6=

iG(h1) = tG(h|c2|) which give rise to the same periodic point
(
λG(c1)

)∞
=

(
λG(c2)

)∞
∈

Per(S) but nevertheless none of the words
(
λG(c1)

)l|c2|
=

(
λG(c2)

)l|c1|
∈ Ll|c1||c2|(S)

with l ∈ N is synchronizing.
Now fix an arbitrary l ∈ N. Without loss of generality (interchange c1 and c2

if necessary) we may choose a right-infinite ray r+ ∈ EN0

G starting from iG(g1) and

a left-infinite ray r− ∈ E−N
G ending in iG(h1) such that s+ :=

(
λG(c1)

)∞
. λG(r+)

and s− := λG(r−) .
(
λG(c1)

)∞
are valid points in S, but putting the two halves

together, s(l) := λG(r−) .
(
λG(c1)

)l|c2|·M
λG(r+) /∈ S is not and so does not appear

in PZ(X). However, s(l) ∈ XZ,5N ·l|c1||c2|, i.e. in our Z2 SFT X it may take (at least)

5N · l |c1| |c2| rows to recognize that s(l) is not globally admissible; hence the nested

sequence (XZ,n)n∈N0 does not stabilize. To see this, construct a point x ∈ AZ2

with exceptional rows at Jx := 5N · N0, put s(l) in every tester row j ∈ Jx + 2 and
for i ∈ N0 fill row 5N · i + 4 (the top row of the (i + 1)-th exceptional strip) with
w∞

− wi
∗ . w∗ wi

∗ w∞
+ ∈ S. As s− ∈ S there exists w− := . . . w−

−2 w−
−1 . w−

0 w−
1 . . . ∈ S

some biinfinite concatenation of blocks
(
w−

k ∈ W \ {w+, w−, w∗}
)
k∈Z

which codes

the local structure of s− in the sense of Theorem 4.2. Analogously let w+ :=
. . . w+

−2 w+
−1 . w+

0 w+
1 . . . ∈ S denote a biinfinite concatenation that codes s+ ∈ S.

To satisfy Rules (R1) and (R2) on the first l |c1| |c2| + 1 exceptional strips in x
we just fill the pairs of rows 5N · i + 1 and 5N · i + 3 (0 ≤ i ≤ l |c1| |c2|) with
w(i) := w−

(−∞,−1] . w
−
[0,i·M−1] w

+
[(i−l|c1||c2|)M,∞) ∈ S. The projection of such a point

x ∈ AZ2

onto Z × [−5N · l |c1| |c2| , 5N · l |c1| |c2| + 4] then is a locally admissible
configuration in X and thus s(l) appearing in row 2 of its first exceptional strip
belongs to XZ,5N ·l|c1||c2|.

�

Next we deal with the zero-entropy case:

Theorem 5.2. For any zero-entropy, proper Z sofic S without universal period
there exists a Z2 SFT X which realizes S as its unstable Z-projective subdynamics.

Proof. Let S ⊆ AZ be defined over an alphabet A. As we will see, a large part

of the definition of X ⊆ AZ2

is based on steps already used in the proof of The-
orem 4.10 and we will just give a brief description of those, commenting on the
modifications that are necessary. In particular we will use the same notation, e.g.
q1 6= q2 ∈ Per0n(S) are again two periodic points of least period n ∈ N; N ∈ N

will denote a large gap size and we will assume a right-resolving graph presentation
G = (VG, EG, λG) for S = S(G) as in Lemma 4.8 having k ∈ N linear chains. The
overall idea is again to use an upper halfplane in points x ∈ X to unstably recognize
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a single point of S, whereas the complementary lower halfplane will be completely
filled with copies of the periodic point q2.

We have to distinguish two cases which need different constructions. The first of
those covers all (but is not limited to) zero-entropy proper Z sofics without a good
set of periods, whereas the second construction takes care of the complementary
class of zero-entropy proper Z sofics, including those which can be seen as finite
unions of non-disjoint Z SFTs.

Case 5.2.1 (Non-synchronizing words from cycle lengths). Suppose the graph
presentation G of S has at least one linear chain Ki∗ (1 ≤ i∗ ≤ k) contain-
ing the following: a cycle ci∗,j∗ (0 ≤ j∗ ≤ mi∗) giving rise to a periodic point

q :=
(
λG(ci∗,j∗)

)∞
∈ Per0l (S) of least period l ∈ N, a right-infinite ray r+ ∈ EN0

Ki∗

starting at iG(ci∗,j∗), and a left-infinite ray r− ∈ E−N
Ki∗

ending at iG(ci∗,j∗), such

that Ti∗,j∗ := {t ∈ N | λG(r−) . q[0,t·l−1] λG(r+) /∈ S} is an infinite set. Think of the
cycle ci∗,j∗ as a source of arbitrarily long non-synchronizing behaviour in S which
is caused from within the chain Ki∗ . (This occurs in particular if 1 ≤ j∗ ≤ mi∗ − 1
and the length of the cycle ci∗,j∗ is larger than the period l.)

To start our construction of X we impose all local rules specified in the first two

steps of the proof of Theorem 4.10 on the full shift AZ2

(thus creating marker-bands
that select linear chains) and as before we denote the resulting Z2 SFT by X1. In
addition we force another condition – similar to the one used in Theorem 5.1 –
on X1 to generate equally spaced exceptional strips being marked consistently on
the whole upper halfplane. For this, suppose P ∈ L(X1) is a valid pattern of size
3n× 10N such that the subpattern P |[1,3n]×[1,5N ] of size 3n× 5N selects the linear
chain Ki with 1 ≤ i ≤ k, then the subpattern P |[1,3n]×[5N+1,10N ] has to select the
same linear chain. This rule ensures that once we see an exceptional strip (possibly
above a sea of copies of σnx(q2)) in some point x ∈ X1, we have to see another
exceptional strip every 5N rows above – so again Jx 6= ∅ forces Jx = j0

x +5N ·Z or
Jx = j0

x +5N ·N0 for some j0
x ∈ Z – and moreover all exceptional strips are marked

with the same number ix ∈ {1, 2, . . . , k}.
Next we impose the rules from Step 4.10.3 (we distinguish the two cases exactly

as in the proof of Theorem 4.10) obtaining a Z2 SFT X2 ⊆ X1, but instead of Step
4.10.4 we implement a weaker checking procedure to get an unstable realization.

Recall that M := max1≤i≤k{mi +1} and that the yet unused space in the upper
part of an exceptional strip indexed by j ∈ Jx directly above the rows reserved for
the transition counter starts in row j+k+2M+1. By adding another local rule – let
P ∈ L(X2) be a pattern of size 3n×5N that selects Ki, then for all 2N+k+2M+1 ≤
m ≤ 2N + k + 3M − 1 demand P |[1,3n]×{m} ∈ {P |[1,3n]×{2N−1}, P |[1,3n]×{2N}} –
we force rows j + k + 2M + 1 up to j + k + 3M − 1 to contain either a copy of
σnx(q1) or σnx(q2). The usage of these M − 1 rows will be explained below. For
now just let N := k + 3M − 1 be the height of our exceptional strips and denote
by X3 ⊆ X2 the corresponding Z2 SFT.

Put n∗ := 2 · L · (n′′ + 2 · (M + 1) |EG|) + 1 where n′′ ∈ N is as in the proof of
Theorem 4.10 and L := lcm{|ci,j | | 1 ≤ i ≤ k ∧ 0 ≤ j ≤ mi}. We then apply all the
validity check rules from Step 4.10.5 except the portion that inspects the length
of long periodic words (last part of Rule (R6i)). Since S may not have a good
set of periods, we might not have enough periodic points to define Ci,j(R) nor to
control those lengths in a finite number of rows. Instead we use another set of local
rules to force propagation of rows from one exceptional strip to the next one. The
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purpose of those rules is to consistently shorten long periodic behavior until it can
be checked via local rules. Suppose the exceptional strips in x ∈ X are all marked
by i ∈ {1, 2, . . . , k}. In row k of the first exceptional strip (if there is a first one) we
a priori allow any locally valid – with respect to Rule (R4i) – biinfinite sequence
s ∈ AZ from the linear chain Ki. Above this tester row, we place a corresponding
transition counter which yields an increasing sequence of transition coordinates
(aj ∈ Z ∪ {±∞})0≤j≤mi+1 (with a0 = −∞ and ami+1 = ∞) marking the entry
into transition path pi,j . Recall that we can determine the counter’s state from a
finite block exactly as in Step 4.10.3; hence for each 1 ≤ j ≤ mi – supposing the
counter sees a j-block at some coordinate – looking at a larger finite block we can
also determine whether or not the difference aj+1−aj ≥ 0 is smaller than L+ |EG|.
If so, we force row k +2M + j of the exceptional strip to contain σnx(q2) by locally
copying the content of the second to last row below the exceptional strip whereas
if aj+1 − aj ≥ L + |EG| we know that the sequence s spends at least L steps in the
cycle ci,j and we require row k + 2M + j to hold σnx(q1) by locally copying the
content of the row immediately beneath the exceptional strip. If some states do not
occur in the counter, i.e. some aj = ±∞, respective rows are not forced and thus
are free to contain either σnx(q1) or σnx(q2). Similarly, we do not impose further
restrictions on possibly existing rows k + 2M + j with mi < j ≤ M − 1.

Using the information in rows k + 2M + 1 up to k + 3M − 1 we enforce a
fixed evolution of the k-th row from one exceptional strip to the next moving the
coordinates aj (1 ≤ j ≤ mi) of entry into the transition path pi,j to the right by
an amount of L · |Qj | with

Qj := {j′ | j ≤ j′ ≤ mi ∧ row k + 2M + j′ contains σnx(q1)} ,

hence shortening every long periodic pattern coming from a cycle ci,j by exactly L
steps. Since L · |Qj | < L ·M < ∞ this can be done with local rules. To be rigorous,
we force each symbol sitting in row k of an exceptional strip at coordinate a ∈ Z

with a0 < a < a1 to be simply copied into the k-th row of the next exceptional
strip at coordinate a+L |Q1| and similarily we require symbols sitting at coordinate
a ∈ Z such that aj ≤ a < aj+1 − L for some 1 ≤ j ≤ mi to be copied into the k-th
row of the next exceptional strip at coordinate a + L |Qj|; if aj+1 − aj < L + |EG|,
symbols at a coordinate a ∈ Z in the range aj+1 − L ≤ a < aj+1 appear again
at coordinate a + L |Qj| in the tester row of the next exceptional strip; otherwise
those symbols are part of the length L suffix of a long periodic pattern coming
from cycling through ci,j and are just discarded (they do not reappear in the next
tester row above). To get a valid configuration for the transition counter of the
next exceptional strip the same shifts of length L |Qj | are forced on each of the
previous counter’s rows corresponding to j. Finally the top M − 1 rows of the next
exceptional strip are given by the same rule as applied to the first exceptional strip,
i.e. if the modified (shifted) transition counter and hence the biinfinite sequence in
row k of the new exceptional strip still stays in a state j for more than L + |EG|
steps the corresponding row has to contain σnx(q1); if it stays in state j but for
less time, the corresponding row has to contain σnx(q2). Once all finite differences
aj+1 − aj are less than L + |EG| the evolution between consecutive exceptional
strips simplifies in the sense that it just shifts the tester row and the transition
counter of the strip to the right by a multiple of L. The overall net effect of
such evolution is that after a finite – though possibly arbitrarily large – number of
steps, all finite runs of periodic behavior present in the sequence contained in the
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tester row of the first (some) exceptional strip are shortened to a length less than
L+ |EG|, while any infinite (or biinfinite) run of periodic behavior remains infinite.
Hence the (analogue of) Rule (R4i) checking validity of the local structure of such
rows eventually detects any violation (in an exceptional strip much higher up) and
therefore only points from S can sit in tester rows of a valid point in X . As all
other rows used in the construction are obviously in S, we get PZ(X) ⊆ S.

Conversely, at this point it should be obvious how to realize any point s ∈ S as a
row of some x ∈ X , namely by putting it into the k-th row of a lowest exceptional
strip (above a sea of shifted q2’s) and extending it to all higher strips according to
the rules specified above. Note that both S and its complement AZ\S are invariant
under the evolution of the tester row from one exceptional strip to the next one,
i.e. starting with a k-th row s ∈ S, all k-th rows contain valid points of S whereas
starting with s /∈ S no k-th row will be in S which eventually is detected by the
local rules. This proves S ⊆ PZ(X).

Finally the construction is not stable which follows from the defining condition on
S in the description of Case 5.2.1. Choose i∗ ∈ {1, 2, . . . , k} and j∗ ∈ {0, 1, . . . , mi∗}

such that Ti∗,j∗ has infinite cardinality and set up a point x ∈ AZ2

with exceptional
strips at Jx := 5N · N0 marked by i∗. For any t ∈ Ti∗,j∗ large enough, the only

obstruction to s(t) := λG(r−) . q[0,t·l−1] λG(r+) ∈ AZ being a valid point in S comes
from the length of q[0,t·l−1]; a length which is not compatible with the length of the

cycle ci∗,j∗ . Now for t ∈ N large, putting such s(t) in the k-th row of x we can fill
the remainder of the first exceptional strip (transition counter and rows controling
the evolution/shortening) with a configuration obeying all the rules. Moreover
the evolution rules allow us to fill a number of consecutive strips shortening long
periodic behaviour – in particular the one containing the pattern q[0,t·l−1] – by L.
As Ti∗,j∗ is infinite, there is no bound on the length t · l, hence no bound on the
number of exceptional strips it takes to shorten the periodic pattern coming from
cycling through ci∗,j∗ to a length less than n∗, where the rule checking local validity

finally detects the obstruction. Therefore elements of the sequence
(
s(t) /∈ S

)
t∈Ti∗,j∗

are locally admissible for wider and wider strips without being globally admissible,
preventing the sequence (XZ,n)n∈N from stabilizing.

Case 5.2.2 (Non-synchronizing words by jumping from one cycle to another).
We now assume that the right-resolving graph G presenting S has no cycle giv-
ing rise to arbitrarily long non-synchronizing behaviour by itself. By compactness,
this implies that for every cycle ci,j (1 ≤ i ≤ k, 0 ≤ j ≤ mi) producing a pe-

riodic point qi,j :=
(
λG(ci,j)

)∞
∈ Per0ni,j

(S) of least period ni,j ∈ N there is

a maximal length li,j ∈ N such that for any right-infinite ray r+ ∈ EN0

Ki
start-

ing from iG(ci,j) and any left-infinite ray r− ∈ E−N
Ki

ending in iG(ci,j) all points

λG(r−) . (qi,j)[0,l·ni,j−1] λG(r+) ∈ AZ with l ≥ li,j are in S. In particular, this im-
plies that S has a good set of periods. Nevertheless, since S is proper sofic, it has
to contain arbitrarily long non-synchronizing words, which thus must arise from
the existence of at least two distinct cycles ci1,j1 , ci2,j2 (i1 6= i2 or j1 6= j2) such

that the periodic points
(
λG(ci1,j1)

)∞
,
(
λG(ci2,j2)

)∞
∈ Per(S) produced by them

are contained in the same orbit.
Following the by now standard procedure, we impose local rules forcing equis-

paced exceptional strips so that for some fixed N ∈ N, in every point x ∈ X with
Jx 6= ∅, we have Jx = j0

x + 5N · Z or Jx = j0
x + 5N · N0 (j0

x ∈ Z). This time we fill
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in exceptional strips with three components: The first and second of which – one
placed vertically above the other – are just slight modifications of a full exceptional
strip as we had used them in the stable construction performed in Theorem 4.10.
Hence an exceptional strip of our unstable construction will contain two tester rows
(the k-th row in each of the two substrips), which we force to be equal – identical
copies of a sequence in AZ – through a local rule. Directly above this double layer
of modified stable exceptional strips we place the third component, which consists
of 4 additional rows, which will work as a pair of range markers. Before describing
further the construction of X and the modification with respect to the rules defined
in the stable construction, we introduce the mechanism used in those 4 top rows of
an exceptional strip.

Step 5.2.1 (Defining range markers). Using the absence of universal period, as
was done in Step 4.10.3, by choosing appropriate 1 ≤ i∗ ≤ k and 1 ≤ j∗ ≤ mi∗ we
may obtain a point t :=

(
λG(ci∗,j∗−1)

)∞
. λG(pi∗,j∗)

(
λG(ci∗,j∗)

)∞
∈ S which does

not exhibit universal period, i.e. σ|pi∗,j∗ |
((

λG(ci∗,j∗−1)
)∞)

6=
(
λG(ci∗,j∗)

)∞
. (Here

we do not care whether or not both periodic points are contained in the same orbit;
however things simplify a little if they are not.)

Define a family

H3 :=








σ−|pi∗,j∗ |
((

λG(ci∗,j∗)
)∞)

σl(t)
σ−l(t)(

λG(ci∗,j∗−1)
)∞




∣∣∣∣∣ l ∈ |ci∗,j∗−1| · |pi∗,j∗ | · |ci∗,j∗ | · N0





of special 4-tuples of points from S and note that those tuples essentially show
three types of periodic behaviour: The first type appears very far to the left, and
is given by repetition of a pattern of size |ci∗,j∗−1| · |ci∗,j∗ | × 4 in which the bottom
three rows are identical and equal to a subword of (λG(ci∗,j∗−1))

∞, the top row

is equal to a corresponding subword of σ−|pi∗,j∗ |
((

λG(ci∗,j∗)
)∞)

, and the word
in each of the bottom three rows is not equal to the word in the top row. The
second type of periodic behaviour occurs on an arbitrarily long but finite central
pattern (between the two transitions in rows 2 and 3), and is given by repetition
of a pattern in which the bottom two rows are identical and equal to a subword
of (λG(ci∗,j∗−1))

∞, the top two rows are identical and equal to a corresponding

subword of σ−|pi∗,j∗ |
((

λG(ci∗,j∗)
)∞)

, and the word in each of the bottom two rows
is not equal to the word in each of the top two rows. Finally, the third type of
periodic behaviour occurs far to the right, and is given by repetition of a pattern
again of size |ci∗,j∗−1|·|ci∗,j∗ |×4 in which the bottom row is equal to some subword of
(λG(ci∗,j∗−1))

∞, the top three rows are identical and each equal to a corresponding

subword of σ−|pi∗,j∗ |
((

λG(ci∗,j∗)
)∞)

, and the word in each of the top three rows is
not equal to the word in the bottom row.

Now, to define X impose a local rule which guarantees that in the top 4 rows of
each exceptional strip we only see patterns of size 2 · (|ci∗,j∗−1| · |pi∗,j∗ | · |ci∗,j∗ | +
|ci∗,j∗−1 pi∗,j∗ ci∗,j∗ |) × 4 from H3. As before (see Step 4.10.3) this implies that
neither of the two middle rows inside the 4 topmost rows of any exceptional strip
may contain more than one transition pattern, and in the case of presence of such
a transition pattern in each of the middle rows, the one in the third (second from
the top) row may never occur to the right of the one in the second row. We will
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say that the two bottom resp. top rows cover a range (−∞, b] resp. [a,∞) ⊆ Z

(a, b ∈ Z ∪ {±∞}) if they coincide on all coordinates in that respective interval.
Recall that we can detect the lowest exceptional strip (if it exists) by using just a

local rule as was done in the proof of Theorem 5.1. Now for the 4 top rows of such a
lowest exceptional strip, we only allow patterns from the special 4-tuple with l = 0
in H3, i.e. we require the two transition patterns λG(ci∗,j∗−1)λG(pi∗,j∗)λG(ci∗,j∗)
in the two central rows to appear at the same coordinate or not at all. Think of
this as setting the initial state of the range markers to a “common” coordinate.

Using further local rules, we force a deterministic propagation of the range mark-
ers from one exceptional strip to the next one by exactly copying the content of
the first and fourth row (without any change) and by shifting the content of the
second row by |ci∗,j∗−1| · |pi∗,j∗ | · |ci∗,j∗ | coordinates to the right and of the third row
by |ci∗,j∗−1| · |pi∗,j∗ | · |ci∗,j∗ | to the left. Hence the evolution of the range markers
(as one moves upwards among the strips) is given by the two transition patterns
traveling with constant speed in opposite directions. It can easily be seen from the
definition of H3 that such evolution respects the previously posed rules on allowed
patterns in these 4 rows. Moreover note that in the case that Jx is a coset of 5N ·Z,
i.e. there is no lowest exceptional strip, this propagation excludes – within any ex-
ceptional strip – the presence of transition patterns in both of the two central rows
(going back far enough in the evolution those patterns would eventually cross each
other). If there is a transition in the second row, the two upper rows completely
coincide; if there is a transition in the third row, the two lower rows completely
coincide; if there is no transition pattern at all one of the three aforementioned
periodic behaviours of elements from H3 extends to all of Z. Hence for each pos-
sible configuration, at least one of the two range markers covers all of Z. If there
is a lowest exceptional strip (Jx = j0

x + 5N · N0), either there are no transitions at
all, in which case again at least one of the two range markers covers all of Z, or
we have two transitions starting from the same coordinate, which implies that the
bottom range marker covers (−∞, b] while the top one covers [a,∞) (a, b ∈ Z) and
the overlap b−a grows by 2 · |ci∗,j∗−1| · |pi∗,j∗ | · |ci∗,j∗ | each time one moves upwards
one strip.

The definitions of the remaining local rules for X follow closely those of the
stable construction we saw in Theorem 4.10. As already mentioned above, the
lower part of an exceptional strip consists of two substrips each of which contains
all components of an exceptional strip as defined and used in the stable construction
(i.e. a tester row surrounded by the three types of helper rows selecting a linear
chain, counting transitions and checking long periodic behaviour – note that here
S does have a good set of periods). The only difference from the stable setting
is that in each exceptional strip the validity checking rules from Step 4.10.5 only
apply on the lower resp. upper substrip in the interval covered by the lower resp.
upper range marker of that strip.

To assure consistency, we forbid any evolution of the lower part of exceptional
strips: A simple local rule forces the content of all but the 4 top rows of one
exceptional strip to be copied to the corresponding rows of the next exceptional
strip without any change.

This finishes the definition of X and immediately shows that S ⊆ PZ(X); we
may realize any element s ∈ S as a row of x ∈ X by taking Jx = 5N · Z and
filling each (unstable) exceptional strip with two copies of the content of a stable
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exceptional strip obtained from a realization of s as in the proof of Theorem 4.10,
filling the two lower rows of each range marker with two copies of

(
λG(ci∗,j∗−1)

)∞
,

and filling the two upper rows with σ−|pi∗,j∗ |
(
λG(ci∗,j∗)

)∞
.

The converse inclusion PZ(X) ⊆ S also holds. This follows from the fact that all
rows of a point of X except the tester rows have to contain (special) valid points
in S by construction and – since the content s ∈ AZ of all tester rows is exactly
the same – the evolution of the range markers covering larger and larger intervals
(or all) of Z forces validity checks (eventually) performed on each coordinate of s
which (eventually) rules out any s /∈ S.

To confirm the construction is in fact unstable, choose a non-synchronizing word
w ∈ L2m+1(S) of arbitrary length 2m+1 (m ∈ N) and take two points s(1), s(2) ∈ S
such that s(1)|[−m,m] = s(2)|[−m,m] = w but s(1)|(−∞,−1] . s

(2)|[0,∞) /∈ S. This then

allows us to fill in a stable exceptional strip containing s(1) resp. s(2) in its tester
row with a configuration that is globally admissible with respect to the stable

construction of Theorem 4.10. Construct a point x(m) ∈ AZ2

with exceptional strips
at Jx(m) = 5N ·N0 placing those configurations in the lower part of each (unstable)
exceptional strip. However instead of s(1) and s(2) use s(1)|(−∞,−1] . s

(2)|[0,∞) to fill

all tester rows in x(m). If we start with the special 4-tuple with l = 0 from H3 in
the 4 top rows of the first exceptional strip we may apply the proper evolution of
range markers to fill in the top rows of all following exceptional strips, thus finishing
the definition of x(m). Obviously x(m) – as it contains s(1)|(−∞,−1] . s

(2)|[0,∞) /∈ S –
is not a valid point in X , but nevertheless if m is chosen large enough it takes an
arbitrarily large number n ∈ N (growing linearly with m) of steps until the range
markers cover intervals large enough to detect the non-synchronizing character of w
in s(1)|(−∞,−1] . s

(2)|[0,∞). Therefore the configuration x(m)|Z×[−n,n] does not violate
any of the local rules used in the definition of X and thus is locally admissible, which
prevents the sequence (XZ,n)n∈N from stabilizing.

�

The technique of equispaced uniformly marked exceptional strips developed
above is usable more generally to construct Zd SFTs whose (stable) projective
subdynamics are a union of (stably) realizable Zk subshifts (k < d).

Proposition 5.3. Let Z1, Z2, . . . , ZM (M ∈ N) be a finite family of Zk subshifts
which can be realized as the Zk-projective subdynamics of Zd SFTs Y1, Y2, . . . , YM

respectively (d > k), and suppose that their union Z =
⋃M

m=1 Zm contains at least

two periodic points. Then Z is realizable as the Zk-projective subdynamics of some
Zd SFT X. Moreover, if all realizations of the Z1, Z2, . . . , ZM are stable, the real-
ization in X can be made stable.

Proof. Suppose that Zm, Ym (1 ≤ m ≤ M), and Z are given as in the proposition,

and denote by q1 6= q2 ∈ Per(Z) two periodic points in Z ⊆ AZk

with common (not
necessarily least) periods ni~ei for each 1 ≤ i ≤ k. We choose N ∈ N larger than
M +2 ·max{ni | 1 ≤ i ≤ k} and large enough that each Ym can be defined by a list

of forbidden patterns with shape [~1, (N − M + 1)~1] ( Zd. We will first generalize

Step 4.10.1 to create a Zd SFT X0 ⊆ AZd

in which every point contains a biinfinite
family of equally spaced (d − 1)-dimensional exceptional slabs separated by thick
(d − 1)-dimensional slabs consisting only of copies of q1 and q2. More rigorously,
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we define a family

H4 :=
{
x ∈ AZd ∣∣ ∀~ı ∈ Zd−k−1, l ∈ 4N · Z, n ∈ [N + 2, 4N − 1] ( Z :

x|Zk×{~ı}×{l} = x|Zk×{~ı}×{l+N+1} = q1 ∧ x|Zk×{~ı}×{l+n} = q2

}

of points showing an alternating structure of periodic (d−1)-dimensional “slabs” of
~ed-width 3N made up of copies of q1 and q2 and other (d− 1)-dimensional “slabs”
of ~ed-width N . We now define a Zd SFT X0 by the local rule that any pattern
with shape [~1, 4N~1] ( Zd appearing in a point of X0 must appear as a subpattern
of some point in H4. By a similar argument to that used in Step 4.10.1, this
actually forces any point x ∈ X0 to be a shift σ~(h) of some h ∈ H4 by some vector
~ = (j1, . . . , jd) ∈ Zd (thus X0 is the shift-invariant closure of H4). Hence for any
x ∈ X0, the family of configurations x|Zd−1×Jx+[1,N ] indexed by the well-defined set
Jx := jd + 4N · Z ( Z between these forced (periodic) portions x|Zd−1×Jx+[N+1,4N ]

will be called the exceptional slabs of x.
Then, as in Step 4.10.2, we define a Zd SFT X1 ⊆ X0 in which each exceptional

slab is marked with an integer m ∈ {1, 2, . . . , M} such that these labels are the same
for all of the exceptional slabs in any fixed x ∈ X1. As before, the label mx of a point
x ∈ X1 is determined by the configuration x|Zd−1×[jx+1,jx+M−1] within an excep-

tional slab x|Zd−1×[jx+1,jx+N ] (jx ∈ Jx) using the convention that for all~ı ∈ Zd−k−1

and all 1 ≤ l ≤ M − 1 we have x|Zk×{~ı}×{jx+l} =

{
q1 if 1 ≤ l < mx

q2 if mx ≤ l ≤ M − 1
. In fact

mx is already uniquely determined by any subpattern x|[~ı,~ı+(N−M)~1]×[jx,jx+M−1]

with ~ı ∈ Zd−1, since each layer of such a pattern is large enough to recognize
whether the subword it contains comes from copies of q1 or q2 (the bottom layer
always contains subwords of q1 and can be used as a reference) and using a local
rule forcing those patterns to be identical in each pair of consecutive exceptional
slabs we get consistency of the label mx along all of x.

The final SFT-rule defining X ⊆ X1 is that for any x ∈ X , if the exceptional
slabs in x are all labeled by mx, then the non-marking portion of each excep-
tional slab (top N − M layers) must contain a locally admissible configuration
in Ym, and the concatenation (in direction ~ed) of any two such configurations –
sitting in a pair of consecutive exceptional slabs – must also form a locally ad-
missible configuration in Ym. This can be done through local rules since Ym

is an SFT. To be rigorous, our rule is that if all exceptional slabs of x are la-
beled by mx (this can be checked through local observation as remarked in the

previous paragraph), then any pattern P with shape [~1, (N − M + 1)~1] ( Zd

which is defined by P |[~1,(N−M+1)~1]×[1,s] := x|[~ı,~ı+(N−M)~1]×[jx+N−s+1,jx+N ] and

P |[~1,(N−M+1)~1]×[s+1,N−M+1] := x|[~ı,~ı+(N−M)~1]×[jx+4N+M,jx+5N−s] with jx ∈ Jx,

s ∈ N0 with 0 ≤ s ≤ N − M + 1 and ~ı ∈ Zd−1 is a locally admissible pattern
for Ym. We claim that PZk(X) = Z, and that these subdynamics are stable if all
Zm = PZk(Ym) were stable.

Firstly, it is not hard to show that Z ⊆ PZk(X). For any z(m) ∈ Zm for
some 1 ≤ m ≤ M , there exists y(m) ∈ Ym with y(m)|Zk×{~0} = z(m). One can

then create an x ∈ X by labeling all exceptional slabs with m and filling the yet
undefined (non-marking) portions of the exceptional slabs with subconfigurations
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y(m)|Zd−1×(N−M+1)Z+[1,N−M+1] of y(m), and then clearly some shift σj~ed (x) of x

will have σj~ed (x)|Zk×{~0} = z(m).

Next, we must show that PZk(X) ⊆ Z. By the SFT-rules defining X , a locally
admissible configuration C with shape (Zk)∂,n contains k-dimensional “slices” of
as many (say 2l + 1) exceptional slabs as desired, provided that n ∈ N is taken
to be large enough. There are then two cases. If C|Zk×{~0} is not part of the

non-marking portion of any of those exceptional slabs, then it is either q1 or q2

and thus is in Z. If C|Zk×{~0} is part of the non-marking portion of an excep-

tional slab (labeled with m), then the corresponding pieces of its l flanking ex-
ceptional slabs on either side are as well contained in C and are also labeled with
m, meaning that C|Zk×{~0} is a subconfiguration of a locally admissible configu-

ration C̃ in Ym with shape Zk × [−l(N − M + 1)~1, l(N − M + 1)~1] ( Zd and

C|Zk×{~0} is lying somewhere within the central piece C̃|Zk×[−(N−M+1)~1,(N−M+1)~1].

This implies that C|Zk×{~0} ∈ (Ym)Zk,(l−1)(N−M+1), and since C was arbitrary, that

XZk,n ⊆
⋃M

m=1(Ym)Zk,(l−1)(N−M+1). Clearly, since PZk(Ym) = Zm for all m, this
implies that PZk(X) ⊆ Z, and by combining with the previous paragraph, that
PZk(X) = Z.

In addition, if all PZk(Ym) = Zm are stable, then clearly n can be taken large
enough so that XZk,n ⊆ Z, and so in this case, Z is the stable Zk-projective
subdynamics of X . �

6. Non-realizable Z sofic shifts

To finish our classification, we show that all Z sofics which are not covered by
Theorems 4.2, 4.10 resp. 5.1 and 5.2 in fact can not be realized as stable resp.
unstable Z-projective subdynamics.

Theorem 6.1. If S is a zero-entropy proper Z sofic which has no good set of
periods, then S is not the stable Z-projective subdynamics of any Z2 SFT.

Proof. We prove the contrapositive. Consider a Z2 SFT X = X(F) ⊆ AZ2

with

forbidden set F ⊆ A[~1,n~1] (n ∈ N) and stable Z-projective subdynamics S = PZ(X).
Then there exists N ∈ N, which without loss of generality we can assume to be
greater than n, so that S = XZ,N , i.e. a row is in S if and only if it is the central
row of a locally admissible configuration on Z∂,N .

Since the Z-projective subdynamics PZ(X) is stable, it is sofic, and so we can
define the follower-set presentation G = (VG, EG, λG) of S, which we briefly defined
in Section 2. (For a thorough treatment of this subject, see [12].) Consider any cycle

c in G with label u := λG(c) ∈ L(S) and length |c| =
∏J

j=1 p
ij

j (pj prime, ij ∈ N),

and let v0 := iG(c) ∈ VG be the initial vertex of c. Choose any j ∈ {1, 2, . . . , J}

and define lj := |c|
pj

∈ N, vj ∈ VG the vertex a distance of lj from v0 along c, and

u(j) := u|[1,lj ] ∈ L(S). Since G is the follower-set presentation of S, v0 = F (w) for
some word w ∈ L(S), and so vj = F (w u(j)). In addition, since v0 is part of the

cycle c, for any positive integer k ∈ N, v0 = F (w uk) and vj = F (w uk u(j)). Since

v0 6= vj (c is a first-return cycle), there exists t ∈ L(S) so that either t ∈ F (w uk) but
t /∈ F (w uk u(j)) for all positive integers k ∈ N, or t /∈ F (w uk) but t ∈ F (w uk u(j))
for all positive integers k ∈ N. For now, we assume that we are in the first case.
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Fix any k > n |A|n(4N+1) + n, and consider a locally admissible configuration C
on Z∂,2N with C|[−|w|,k|c|+|t|−1]×{0} = w uk t a subword of its central row, where uk

occupies coordinates 0 through k |c| − 1. Since k |c| > n |c|
(
|A|

n(4N+1)
+ 1

)
, there

exist two coordinates a1, a2 ∈ n |c|N0 with 0 ≤ a1 < a2 ≤ n |c| |A|
n(4N+1)

such
that we have two equal subpatterns C|[a1,a1+n−1]×[−2N,2N ] = C|[a2,a2+n−1]×[−2N,2N ]

of size n × (4N + 1) which do not overlap. Note that their central subword is
C|[ai,ai+n−1]×{0} = u∞|[0,n−1] (for i := 1, 2). Denote by P := C|[a1,a2−1]×[−2N,2N ]

the portion of C between those subpatterns including all of the left but none of
the right one. Then if we write C = C− P C+ for left-infinite resp. right-infinite
configurations C− := C|(−∞,a1−1]×[−2N,2N ] resp. C+ := C|[a2,∞)×[−2N,2N ], the

configuration C− Pm C+ is locally admissible on Z∂,2N for all m ∈ N. In fact,
P∞ is a locally admissible configuration on Z∂,2N . (Here and in the remainder of
this section, for any pattern Q, Qm resp. Q∞ represents a finite resp. biinfinite
concatenation of Q’s along direction ~e1.) If we define C′ = C|Z∂,N , then C′ =
C′− P ′ C′+, where C′−, P ′, and C′+ are the obvious restrictions of C−, P , and C+.
Again it is clear that C′− P ′m C′+ is locally admissible for all m ∈ N, thus P ′∞ is
locally admissible on Z∂,N , and each row of P ′∞ is in XZ,N = S, since it can be
extended upwards and downwards by at least N rows in a locally admissible way
(i.e. P∞).

Denote by R a pattern of minimum width r ∈ N (and height 2N + 1) such that

P ′∞ = R∞. Then clearly C′− Rk′

C′+ is locally admissible for any k′ ∈ N such

that k′r is greater than n. Moreover, if r is not a multiple of p
ij

j , then there exist

arbitrarily large k′ so that k′r (mod |c|) ≡ lj = |c|
pj

. This means that u = u
pj

(j), and

that for k′ large enough, C′− Rk′

C′+ is a locally admissible configuration on Z∂,N

whose central row has w uk′′

u(j) t as a subword for some k′′ ∈ N. Since S = XZ,N ,

this implies that w uk′′

u(j) t ∈ L(S), a contradiction. Therefore, r is a multiple of

p
ij

j .

If we had been in the second case above instead, i.e. t /∈ F (w uk) and t ∈
F (w uk u(j)) for all positive integers k ∈ N, then we would have defined C with

w uk u(j) t as a subword of its central row for some k > n |A|n(4N+1) + n, and

arrived at a contradiction if r ∈ N were not a multiple of p
ij

j by demonstrating a

locally admissible configuration on Z∂,N with w uk′′

t as a subword of its central
row for some k′′ ∈ N.

In either case, we have found a set of 2N + 1 periodic points in S (the rows
of P ′∞) such that the least-common-multiple of their least periods (which is the

same as the least horizontal period of P ′∞) is a multiple of p
ij

j . By repeating this

procedure for each j, we will have found a (finite) set of periodic points in S for
which the least-common-multiple of their least periods is a multiple of the length
|c|. Since the cycle c was arbitrary, we have shown that S has a good set of periods
(exhibited by the right-resolving presentation G), completing the proof. �

In fact, though our main focus is on sofic subdynamics of Z2 SFTs, this proof

can easily be extended to d > 2 by simply taking k > n |A|
n(4N+1)d−1

+ n; then
a locally admissible configuration C on Z∂,2N ( Zd with w uk t a subword of its
central row contains two equal subpatterns with shape [1, n]× [~1, (4N + 1)~1] ( Zd,
and the remainder of the proof is identical. We then have the following corollary.
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Corollary 6.2. If S is a zero-entropy proper Z sofic which has no good set of
periods, then for any d > 1, S is not the stable Z-projective subdynamics of any Zd

SFT.

Remark 6.3. The proof of Theorem 6.1 shows that to decide whether a Z sofic shift
has a good set of periods – instead of checking all graph presentations – it suffices
to look at (the cycle lengths of) its follower-set presentation.

The following theorem shows that it is not the case that every Z sofic can be the
(unstable) Z-projective subdynamics of a Z2 SFT, and completes the classification
of Z sofic shifts which can be realized as Z-projective subdynamics of Z2 SFTs.

Theorem 6.4. If a Z subshift Y has universal period and is not a finite union of
periodic points, then it is not the Z-projective subdynamics of any Z2 SFT X, i.e.
Y 6= PZ(X).

Proof. Take any such subshift Y ⊆ AZ with universal period p ∈ N. Suppose for

a contradiction that there exists a Z2 SFT X ⊆ AZ2

such that PZ(X) = Y . Then

take X̃ to be a higher-block recoding of X such that X̃ is a nearest neighbor Z2

SFT, and note that PZ(X̃) still has universal period p and is still not a finite union

of periodic points. Define M̃ ∈ N so that all points of PZ(X̃) are periodic with

period p except for at most M̃ coordinates. Take X ′ to be a higher-block recoding

of X̃ with window-size 2M̃p × 1, and define Y ′ := PZ(X ′). Clearly X ′ is a nearest
neighbor Z2 SFT as well. Denote by A′ the alphabet of X ′, by A′

P ( A′ the non-

empty set of letters (i.e. 2M̃p-letter words in X̃) which are periodic with period p,
and by A′

O := A′ \ A′
P the non-empty set of remaining letters in A′. We note that

Y ′ still has universal period p, and in addition, in any point y ∈ Y ′, the letters
which “break” the universal period, i.e. letters yn = a ∈ A′ for which yn+ip 6= a for
infinitely many i ∈ Z, are precisely the letters of A′

O. Finally, we note that for any
letter o ∈ A′

O, there is at most one word in (A′
P )p, call it w, such that ow ∈ L(Y ′).

We leave the verification of these facts to the reader.
Therefore, to prove Theorem 6.4, it suffices to assume for a contradiction that

X ⊆ AZ2

is a nearest neighbor Z2 SFT and that there exists M ∈ N and a partition
of the alphabet A of X into non-empty AP 6= ∅ and AO 6= ∅ with the following
properties: every point of Y := PZ(X) is periodic with period p except for its letters
from AO, of which there are at most M , and for any letter in AO, there is at most
one word from (AP )p which can legally appear to its right. We call any letter from
AO an O-letter, and any letter from AP a P -letter.

Definition 6.5. For any positive integer n ∈ N, an n-clump in a point y ∈ Y is a
finite subpattern y|F of y (F ( Z finite) consisting entirely of O-letters, and with
the property that if we write the elements of F as a1 < a2 < . . . < a|F |, then
aj+1 − aj < n for all 1 ≤ j < |F |. An n-clump is (inclusion) maximal if there is no
larger n-clump containing it.

For each n ∈ N define by k(n) ∈ N0 the maximum number of disjoint maximal
n-clumps appearing in any point of Y . Since the number of O-letters in any point
of Y is at most M and as Y is not just a union of periodic points, 0 < k(n) ≤ M .
Also, if a point contains k ∈ N0 maximal n-clumps, then clearly it contains at most
k maximal (n + 1)-clumps; this is because any n-clump is also an (n + 1)-clump.
Therefore, k(n) is a non-increasing sequence of positive integers, and so there exists
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N ∈ N so that k(n) = k(N) =: k∗ > 0 for any n ≥ N . This means that for any
n ≥ N , there exists a point of Y with k∗ disjoint maximal n-clumps. However,
since the maximum number of disjoint maximal N -clumps is also k∗, each of the
maximal n-clumps is actually an N -clump. In other words, there exist points of Y
with k∗ disjoint maximal N -clumps separated from each other by arbitrarily large
distances.

Definition 6.6. Given any pattern Q ∈ A∗,2, we say that two O-letters in Q are
(∗, Q)-connected if there exists a path of O-letters in Q connecting them, where
two consecutive letters in the path are either horizontally or vertically adjacent. A
subpattern of Q consisting entirely of O-letters is (∗, Q)-connected if its letters are
pairwise (∗, Q)-connected. (We use the same terminology for configurations.)

We begin by showing that points of X cannot contain finite non-empty aperiodic
“islands” of O-letters.

Lemma 6.7. For any x ∈ X, every non-empty maximal (∗, x)-connected subpattern
of x consisting entirely of O-letters is infinite.

Proof. Suppose for a contradiction that there exists x ∈ X and a finite non-empty
subset ∅ 6= F ( Z2 such that the subpattern Q := x|F of x consists entirely of
O-letters, is (∗, x)-connected and maximal, i.e. there is no O-letter in x|Z2\F which
is adjacent to an element of Q.

We first define x′ ∈ X which agrees with x on F , but contains only P -letters
outside F . We do this by changing every O-letter in x outside F by the P -letter in
proper “phase” with its row; more rigorously, for any~ı ∈ Z2 \F for which x|~ı ∈ AO,
replace x|~ı by the unique P -letter equal to x|~ı+np~e1

for large integers n ∈ Z.
We claim that x′ ∈ X . To see this, note that for any adjacent pair of letters

x′|~ı, x′|~ı+~ei
(i = 1, 2) in x′, either the pair is unchanged from x, in which case it is

obviously legal in X , or the pair is a newly created pair of P -letters in x′, in which
case it is equal to a pair x|~ı+np~e1

, x|~ı+~ei+np~e1
(i = 1, 2) for large enough n ∈ Z,

which is again legal in X since it appears in x.
Now, we use x′ to make a horizontally periodic point x′′ ∈ X . Define h ∈ pN to

be a multiple of p greater than the diameter of F and define x′′ ∈ AZ2

as follows:

∀~ı ∈ Z2 : x′′|~ı :=

{
x′|~ı ∈ AP if (~ı + hZ~e1) ∩ F = ∅

x′|~ı+nh~e1
∈ AO if ∃n ∈ Z : ~ı + nh~e1 ∈ F .

In other words, x′′ agrees with x′ except for infinitely many disjoint congruent
(horizontally shifted) copies of Q, placed with period h~e1.

Again we can show that x′′ ∈ X . Consider any horizontally or vertically adjacent
pair of letters in x′′: If for ~ı ∈ Z2 and ~ := ~ı + ~ei (i = 1, 2) both x′′|~ı and x′′|~ are
P -letters, then the pair existed already in x′ and is legal in X . If at least one of
x′′|~ı and x′′|~ is an O-letter (w.l.o.g. say x′′|~ı ∈ AO), then we know that there exists
n ∈ N so that ~ı − nh~e1 ∈ F . Since x′′ is periodic with respect to h~e1 and agrees
with x′ on F and all locations of P -letters in x′′, x′′|~ı = x′′|~ı−nh~e1

= x′|~ı−nh~e1
and

x′′|~ = x′′|~−nh~e1
= x′|~−nh~e1

. Therefore, again this pair is a shifted copy of a pair
from x′ and is legal in X . Therefore, x′′ ∈ X .

However, since F is non-empty, x′′|F consists of O-letters, and x′′ is periodic with
respect to h~e1, some row of x′′ has infinitely many O-letters, which contradicts Y =
PZ(X). Therefore, our original assumption was wrong, and the proof is complete.

�
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Take y ∈ Y with k∗ disjoint maximal N -clumps C1, C2, . . . Ck∗ , separated from

each other by horizontal distances of more than 2M(8k∗ |A|
5MN

+ 1) + N . Since
Y = PZ(X), there exists x ∈ X with x|Z×{0} = y. We restrict our attention to
the configuration C := x|Z∂,4k∗|A|5MN , the portion of x consisting of y and the

4k∗ |A|
5MN

rows above and below it. For any Ci (1 ≤ i ≤ k∗), define Di to be
the maximal (∗, C)-connected subpattern of C which contains Ci, i.e. the pattern
consisting of all O-letters which are (∗, C)-connected to some letter in Ci. Then
since each row in C is in PZ(X) = Y and therefore the number of O-letters in each
such row is bounded by M , every O-letter in Di is at a horizontal distance of at

most M(8k∗ |A|
5MN

+ 1) from some letter in Ci. Since distinct Ci were separated

by horizontal distances of more than 2M(8k∗ |A|
5MN

+1)+N , distinct pairs of Di

are separated by horizontal distances of more than N , i.e. for 1 ≤ i 6= i′ ≤ k∗, any
letters in Di and Di′ have horizontal distance larger than N .

C

D D

C C

D

1 2 3

1 2

3

Figure 7. Ci and Di for i = 1, 2, 3

Define U to be the set of Di which have non-empty intersection with the top
row of C, and L to be the set of Di which have non-empty intersection with the
bottom row of C. (In Figure 7, D1, D2 ∈ U and D1, D3 ∈ L.) Clearly U ∪ L =
{D1, . . . , Dk∗}; if any Di (1 ≤ i ≤ k∗) had empty intersection with the top and
bottom rows of C, it would have been a non-empty finite maximal (∗, x)-connected
subpattern of x, which is impossible by Lemma 6.7. Therefore either U or L, say

U without loss of generality, contains at least
⌈

k∗

2

⌉
of the Di. Note that for any

Di ∈ U , Di has non-empty intersection with the top row of C, and that any letter
in Di is (∗, C)-connected to some letter in Ci, which lies in the central row of C.
This implies that each Di ∈ U has non-empty intersection with each row in the
top half of C. We now further restrict our attention to C′ = C|Z×[0,4k∗|A|5MN ], and

denote by D′
1, D

′
2, . . . , D

′
l (k∗

2 ≤ l ≤ k∗) the restrictions to C′ of the elements of U .
Note that each D′

i (1 ≤ i ≤ l) has non-empty intersection with each row in C′. We
now need the following lemma.

Lemma 6.8. For any configuration C ∈ AZ×[a,b] on a biinfinite horizontal strip
Z× [a, b] ( Z2 (a < b ∈ Z) which is locally admissible in X and any subpattern Q of
C consisting entirely of O-letters with the property that no O-letter of C outside Q
is adjacent to an O-letter in Q (i.e. Q is a finite union of maximal (∗, C)-connected
components), the intersections of Q with the top and bottom rows of C cannot be
both non-empty and congruent, i.e. equal up to horizontal translation.
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Proof. Consider C and Q = C|F (F ⊆ Z2 finite) as in the statement of Lemma
6.8, and assume for a contradiction that the intersections of Q with the top and
bottom rows of C are non-empty and congruent. Then there exists t ∈ Z so that
(n, a) ∈ F ⇐⇒ (n+ t, b) ∈ F for all n ∈ Z, and Q|(n,a) = Q|(n+t,b) for any such pair
(n, a) ∈ F . Just as in the proof of Lemma 6.7, we will arrive at a contradiction by
creating a point of X which would have a row with infinitely many O-letters.

We begin by defining a locally admissible configuration C′ ∈ AZ×[a,b] on the
horizontal strip Z× [a, b] with C′|F := Q, but which contains only P -letters outside
F . Since the argument is unchanged, we omit the details.

Note that the intersection of Q with the bottom row of C′ is a horizontal shift
by t of the intersection of Q with the top row of C′, and that the rightmost O-letter
in these non-empty congruent patterns forces the p P -letters immediately to the
right. (Recall that by the higher-block recoding done in the beginning, we assumed
w.l.o.g. that any O-letter can be followed by at most one length p word of P -letters.)
Since the P -letters in C′ are periodic with respect to p~e1, this means that the entire
bottom row of C′ is a horizontal shift by t of the top row.

Now use C′ to create an entire point x′ ∈ X : Define x′ ∈ AZ2

by x′|~ı+n·(t,b−a) :=
C′|~ı for any ~ı ∈ Z× [a, b] and n ∈ Z. In other words, x′ agrees with C′ on Z× [a, b]
and is periodic with respect to (t, b − a) ∈ Z2. Since every adjacent pair of letters
in x′ was already present in C′, it should be clear that x′ ∈ X .

Finally we alter x′ to create a periodic point x ∈ X as follows: Define F ′ :=⋃
n∈Z

(
n(t, b−a)+F

)
to be the set of coordinates where O-letters are located in x′,

and let h ∈ pN be a multiple of p greater than the maximum horizontal distance
between coordinates in any pair of adjacent rows of F ′. Such h can be chosen since
F ′ is periodic with respect to (t, b − a) and F ′ intersects each row in only finitely

many coordinates. Define x ∈ AZ2

as follows:

∀~ı ∈ Z2 : x|~ı :=

{
x′|~ı ∈ AP if (~ı + hZ~e1) ∩ F ′ = ∅

x′|~ı+nh~e1
∈ AO if ∃n ∈ Z : ~ı + nh~e1 ∈ F ′ .

In other words, x is periodic with respect to h~e1, agrees with x′ on F ′, and also
agrees with x′ at all coordinates in Z2 \ (hZ~e1 + F ′) where it still sees the same
P -letters as x′. We claim that x ∈ X .

Consider any horizontally or vertically adjacent pair of letters in x at coordinates
~ı,~ ∈ Z2 with ~ = ~ı + ~ei (i = 1, 2). If both x|~ı and x|~ are P -letters, then the pair
existed already in x′ and thus is legal in X . If both x|~ı and x|~ are O-letters, then
the pair is a (horizontally) shifted copy of a pair from x′|F ′ and is legal in X . If
one is a P -letter and the other is an O-letter (w.l.o.g. say x|~ı ∈ AO), then we know
that there exists n ∈ Z so that ~ı − nh~e1 ∈ F ′. Since x is periodic with respect to
h~e1 and agrees with x′ both on F ′ and at all locations of P -letters in x, we have
x|~ı = x|~ı−nh~e1

= x′|~ı−nh~e1
and x|~ = x|~−nh~e1

= x′|~−nh~e1
. Therefore, again this

pair is a shifted copy of a pair from x′ and is legal in X .
We have then shown that x ∈ X . However, just as before, x contains rows with

infinitely many O-letters, and so we have a contradiction. Therefore, our original
assumption was incorrect and the intersections of Q with the top and bottom rows
of C are not non-empty and congruent at the same time. �

Since the property of being a finite union of maximal (∗, C)-connected compo-
nents is preserved if C and Q are restricted to a substrip, a corollary is that no
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intersections of such Q with any two rows of C are non-empty and also congruent.

Now let us go back to our configuration C′ on the strip Z × [0, 4k∗ |A|
5MN

] and
apply Lemma 6.8 to it and its subconfigurations.

Each D′
i (1 ≤ i ≤ l) is a disjoint union of maximal (∗, C′)-connected components,

and so by Lemma 6.8, no D′
i contains a pair of congruent rows. Every N -clump in a

row of C′ has length less than MN since there are at most M O-letters in any point

of Y . Therefore, there are fewer than |A|MN different N -clumps up to horizontal
translation, and so since no D′

i (1 ≤ i ≤ l) contains a pair of congruent rows, each D′
i

has fewer than |A|MN rows which consist of a single N -clump. However, there are

at least k∗

2 of the D′
i, and each row of C′ may contain at most k∗ disjoint maximal

N -clumps. Since letters of distinct Di were separated by (horizontal) distances of
more than N , the same is true of the D′

i. Therefore, the number of disjoint maximal
N -clumps in any row of C′ is at least the sum of the numbers of disjoint maximal
N -clumps in the corresponding rows over all D′

i (1 ≤ i ≤ l). This means that if
any row of some D′

i consists of more than two disjoint maximal N -clumps, then the
corresponding row of some other D′

i′ (1 ≤ i 6= i′ ≤ l) consists of a single N -clump.

Therefore, each D′
i contains at most (l− 1) |A|

MN
rows which consist of more than

two disjoint maximal N -clumps. For ease of notation, we can simply say that there

is a constant K := k∗ |A|
MN

∈ N so that fewer than K rows of every D′
i are not

unions of exactly two disjoint maximal N -clumps. From now on, we fix any D′
i to

deal with, and call it D′. Since C′ has more than 4K |A|
4MN

rows, D′ contains

more than 4 |A|
4MN

consecutive rows which are all unions of two disjoint maximal
N -clumps. In any row of D′, if these two disjoint maximal N -clumps are separated
by a horizontal distance of less than MN , then that row of D′ has length less than

3MN . If there were more than |A|
3MN

rows of D′ for which this were the case,
then two rows of D′ would be congruent, which is again impossible by Lemma 6.8.

Therefore, there are at most |A|3MN rows of D′ which are unions of two disjoint
maximal N -clumps separated by a distance of less than MN . This implies that

D′ contains 2 |A|
MN

consecutive rows which are all unions of two disjoint maximal
N -clumps which are separated by a distance of at least MN . Denote by C′′ the
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restriction of C′ to the 2 |A|
MN

-high biinfinite strip containing these rows, and by

D′′ the restriction of D′ to C′′. Let Ij and Jj (1 ≤ j ≤ 2 |A|
MN

) be the maximal
N -clumps whose union is the j-th row of D′′ from the bottom. Denote by E any
maximal (∗, C′′)-connected subpattern of D′′.

Suppose for a contradiction that there exists j ∈
{
1, 2, . . . , 2 |A|MN}

so that
E has non-empty intersection with both Ij and Jj . Then there exists a path γ
from E|~ı in Ij to E|~ in Jj consisting of adjacent O-letters in D′′ (~ı,~ ∈ Z2 in
the intersection of E with Ij resp. Jj). γ generates a word w on the alphabet
{I1, J1, . . . , I2|A|MN , J2|A|MN} in the following way; w begins with Ij since γ begins

at E|~ı in Ij . Follow γ, and each time you leave the maximal N -clump you are in,
append the name of the maximal N -clump you enter to the end of w. Continue
in this way, until you reach the end of the path at E|~ in Jj , causing Jj to be the
last letter of w. Take a minimal subword u of w whose first and last letters are
Im and Jm for some m ∈

{
1, 2, . . . , 2 |A|MN}

, in either order. The length of u
is at least 3, since Im and Jm do not contain adjacent O-letters. Im and Jm do
not appear in u outside the first and last letters, since this would contradict the
minimality of u. Therefore, the second and second-to-last letters of u are either
both in {Im+1, Jm+1} or in {Im−1, Jm−1}. (Otherwise the subpath of γ which
induced u would have to visit row m somewhere in the middle.) This implies that
the second and second-to-last letters of u are equal, otherwise the minimality of u
would again be contradicted. But then Im and Jm each contain O-letters which are
adjacent to the same N -clump, which is not possible since Im and Jm are separated
by a horizontal distance greater than MN , the maximum length of an N -clump.

We have then shown that every non-empty row of E is contained entirely within

an Im or Jm, and so has length less than MN . However, E has more than |A|MN

rows. Therefore, two of the rows of E are congruent, which is impossible by Lemma
6.8. We have arrived at a contradiction, and so our original assumption was wrong,
and there exists no Z2 SFT X with Y = PZ(X). �

There is also a multidimensional generalization of Theorem 6.4:

Theorem 6.9. If a Zd subshift Y has universal period and is not a finite set of
periodic points, then for any Zd+1 SFT X, Y 6= PZd(X).

Proof. The proof is mostly just a generalization of the proof of Theorem 6.4, and
so we will just summarize the main places at which slight changes occur. Assume
that Y has universal periods {pi~ei}

d
i=1. We can again assume w.l.o.g. that there

exists M ∈ N and a partition of the alphabet A of Y into non-empty AP 6= ∅ and
AO 6= ∅, where for any y ∈ Y , the letters of AP within y are periodic with periods
pi~ei and the letters of AO in y, of which there are at most M , are exactly the ones
which break this periodic structure. We can similarly assume that for any o ∈ AO,

there exists at most one pattern in (AP )
Qd

i=1[1,pi], call it W , such that the pattern

containing o at ~0 and W on
∏d

i=1[1, pi] ( Zd is in L(Y ).
From here, the proof is mostly identical; n-clumps are defined as before, where

now the distance used is Euclidean distance on Zd. The role of rows in the proof
of Theorem 6.4 is now played by d-dimensional hyperplanes. Lemmas 6.7 and 6.8
are still true, and the proofs are almost identical.

There are no real changes to the rest of the proof, except that some of the

numbers need to be changed; for instance, there are obviously more than |A|
MN
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N -clumps up to congruence when d > 1. However, all necessary bounds of this sort
still depend only on M , N , and d, which is all that is necessary for the proof. �

7. Z2 SFTs with UFP have stable Z-projective subdynamics

Of course, it could seem a bit arbitrary to focus on sofic Z-projective subdynamics
of Zd SFTs, since there are many different types of effective symbolic systems which
can be Z-projective subdynamics of multidimensional SFTs. However, at least in
the two-dimensional setting there is a large class of Z2 SFTs which only allow sofic
Z-projective subdynamics.

Theorem 7.1. If X is a Z2 SFT with the uniform filling property, then its Z-
projective subdynamics PZ(X) has to be stable, hence is a Z sofic.

Proof. Suppose that X ⊆ AZ2

has the UFP with filling length l ∈ N0 and that

X = X(F) can be described by a set F ⊆ A[~1,l~1] of l× l forbidden patterns (choose
l to be the maximum of a filling length and the type of X). It is well known that
X has dense periodic points [17], so consider any pattern Q ∈ L[~1,m~1](X) (with

l ≤ m ∈ N) which is a fundamental domain of some periodic point q ∈ Per(X).

Then define the pattern Q̃ ∈ A[~1,(m,mM)] to be made up of M := |A|
4l2

+ 1 ∈ N

copies of Q, concatenated in form of a vertical stack. Clearly Q̃ is a subpattern of

q, and so Q̃ ∈ L(X).

Next, consider any pattern P ∈ A[~1,4l~1+(m,mM)]\L(X) of size (4l+m)×(4l+mM)
which is not globally admissible in X . By compactness, there exists NP ∈ N so
that P is not the central subpattern of any (4l + m + 2NP ) × (4l + mM + 2NP )
sized locally admissible pattern in X . By taking N ∈ N to be the maximum of

all NP (or N := 0 if A[~1,4l~1+(m,mM)] \ L(X) = ∅), we see that a pattern of size
(4l+m)×(4l+mM) is globally admissible if and only if it is the central subpattern
of a (4l + m + 2N) × (4l + mM + 2N) locally admissible pattern in X .

We claim that PZ(X) = XZ,4l+mM+N . To prove this, for any configuration C

defined on the biinfinite horizontal strip Z∂,(4l+mM+N) = Z×[−(4l+mM+N), (4l+
mM + N)] which is locally admissible in X , we will construct a point x ∈ X with
x|Z×{0} = C|Z×{0}. Firstly, notice that any (4l + m) × (4l + mM) subpattern of C

which is a distance of at least N from the boundary of Z∂,(4l+mM+N) is globally
admissible by the definition of N . For any k ∈ Z, consider the subpatterns

W+
k := C|[k(4l+m),(k+1)(4l+m)−1]×[1,4l+mM ] and

W−
k := C|[k(4l+m),(k+1)(4l+m)−1]×[−(4l+mM),−1]

of C. By the previous comment, all W+
k , W−

k ∈ A[~1,4l~1+(m,mM)] are globally ad-
missible in X . Therefore, by the UFP, there exist (4l + m) × (4l + mM) globally
admissible patterns V +

k , V −
k ∈ L(X) (k ∈ Z) which agree with W+

k and W−
k re-

spectively on their boundaries of thickness l, and which contain Q̃ as the central
pattern of size m×mM . This means that we can construct a new locally admissible
configuration C′ on Z∂,(4l+mM+N) by replacing each W+

k and W−
k by V +

k and V −
k

respectively, and that such C′ will contain an infinite number of equispaced copies

of Q̃ above and below the central row s := C′|Z×{0} = C|Z×{0} ∈ AZ where the

horizontal separation between adjacent pairs of these copies of Q̃ is 4l. Note that
C′|Z∂,l = C|Z∂,l .



46 RONNIE PAVLOV AND MICHAEL SCHRAUDNER

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

N

N

l

l

l
l

Figure 9. The configuration C′ on the biinfinite horizontal strip Z∂,(4l+mM+N)

Consider any pair V +
k , V +

k+1 in C′ occurring above s and the copies of Q̃ which

are central subpatterns of them. Since Q̃ consists of |A|4l2 + 1 copies of Q, the

pigeonhole principle guarantees the existence of a pattern U+
k ∈ A[~1,(4l,l)] of size

4l × l which appears twice between the two copies of Q̃, and such that the vertical
separation between the two copies of U+

k is a multiple of m. In other words, U+
k

appears twice, and its position relative to the neighboring copies of Q is the same.

This means that it is possible to extend the two copies of Q̃ within V +
k and V +

k+1

upwards to infinite (vertical) concatenations of Q, fill the gap between these infinite
stacks in a locally admissible way by repeating the portion between the two copies
of U+

k periodically, and not change anything below the lower occurrence of U+
k .

But since it is possible to do this for every pair V +
k , V +

k+1 in C′, one can in fact

use this technique to create a locally admissible configuration x+ on Z × N0 with
x+|Z×[0,l] = C′|Z×[0,l] = C|Z×[0,l]. One can perform an analogous procedure on

C′ using the V −
k to create a locally admissible configuration x− on Z × −N0 with

x−|Z×[−l,0] = C′|Z×[−l,0] = C|Z×[−l,0].

But then “gluing” x+ and x− together yields a point x ∈ X with x|Z×{0} =
C|Z×{0}, as shown in Figure 10. Since C was arbitrary, PZ(X) = XZ,4l+mM+N , and
the Z-projective subdynamics of X are stable, thus sofic by Observation 3.7. �

Since our proof makes heavy use of the presence of periodic points in Z2 SFTs
having the UFP, and it is an open problem whether or not this mixing property
implies existence of periodic points in higher dimensions, we do not know if Theorem
7.1 extends to the case d > 2.
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Figure 10. Construction of x ∈ X (shaded portion is unchanged
from C′ and contains C′|Z×{0} = C|Z×{0})

8. Aperiodic Z subshifts not realizable as Z-projective subdynamics

of Zd SFTs

In this final section we describe general classes of (effective) non-sofic Z subshifts
which, for given d ∈ N, are never the Z-projective subdynamics of any Zd SFT.
The intersection of these classes is non-empty, and so we can also exhibit (effective)
non-sofic Z subshifts that do not appear as Z-projective subdynamics inside Zd

SFTs of any dimension.

Theorem 8.1. Let Z be a Z subshift without periodic points such that there exist
arbitrarily long words wk ∈ L(Z) and positive integers nk ∈ N (k ∈ N) with the
property that for every k, every z ∈ Z consists of runs of at least nk consecutive wk

separated by words of length less than |wk|. If the sequence
(

log log nk

log|wk|

)
k∈N

diverges

to +∞, then Z 6= PZ(X) for any Z2 SFT X.

Proof. Suppose that Z has the claimed properties, and for a contradiction assume
that Z is the Z-projective subdynamics of a Z2 SFT X of type m ∈ N. Pick any
k ∈ N so that |wk| and log log nk

log|wk|
are both greater than m + 1. Now, choose any

point x ∈ X , and examine its restriction x|Z×[1,|wk|
m+m] to a horizontal strip of

height |wk|
m

+ m. Enumerate the rows ri := x|Z×{i} (1 ≤ i ≤ |wk|
m

+ m) of this
configuration. As PZ(X) = Z, r1 – as well as each ri – is a point of Z, and so
there exists an interval I1 ( Z of length nk |wk| so that r1|I1 is a subword of (wk)∞.

Note that since log log nk

log|wk|
> m + 1, we have nk > 2|wk|

m+1

> 2|wk|
m+m+1 − 1. Now,

examine the word r2|I1 . This is a word of length nk |wk| in the language of Z, and
so it consists of either a single run of consecutive wk or two runs, separated by a
word of length less than wk. Either way, there is a subinterval I2 ⊆ I1 of length
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at least |wk|(2
|wk|

m+m+1−1)−|wk|
2 = |wk| (2

|wk|
m+m − 1) such that r1|I2 and r2|I2 are

both subwords of (wk)∞. Continuing in this way, we eventually arrive at an interval
I := I|wk|

m+m of length at least |wk| (2
2 − 1) = 3 |wk| such that ri|I is a subword

of (wk)∞ for all 1 ≤ i ≤ |wk|
m

+ m. By passing to a subinterval, assume that
the length of I is |wk| + m. However in (wk)∞ there are at most |wk| subwords
of length |wk| + m thus at most |wk|

m
distinct patterns of size (|wk| + m) × m

inside x|I×[1,|wk|
m+m], and so by the pigeonhole principle, there exist a, b ∈ N with

1 ≤ a < b ≤ |wk|
m

+ 1 such that x|I×[a,a+m−1] = x|I×[b,b+m−1].
Then the rectangular subpattern x|I×[a,b+m−1] is a locally admissible pattern in

X whose top m rows equal the bottom m rows, and whose leftmost m columns
equal the rightmost m columns (recall each row contains a subword of (wk)∞).
Therefore, this pattern can tile the plane to yield a point q ∈ X with finite orbit,
i.e. q ∈ Per(X). However, this implies that the Z-projective subdynamics of X
contains a periodic point, namely q|Z×{0} ∈ Per(PZ(X)). Since Per(Z) = ∅, we
have a contradiction to the assumption Z = PZ(X). �

Example 8.2. Note that the class of Z subshifts Z found in Theorem 8.1 con-
tains all Sturmian subshifts induced by irrational α ∈ [0, 1] \ Q whose continued

fraction expansion [a1, a2, . . .] satisfies lim supn→∞
log log an+1

log
Q

n
i=1(ai+1) = ∞. Since there

exist computable sequences which grow arbitrarily quickly, and since the Sturmian
subshift induced by any number with computable continued fraction expansion is
clearly effective, there are natural examples of effective non-sofic Z subshifts that
can not be realized as Z-projective subdynamics in Z2 SFTs. (The Sturmian sub-
shifts are a well-studied class of Z subshifts which come from codings of irrational
circle rotations, and contain arbitrarily long subwords which show periodic behav-
ior (of larger and larger periods) determined by the continued fraction expansion
of the angle of rotation. For more information, see [6, Ch. 6].)

The above proof can be adapted slightly to give examples of (effective) non-sofic
Z subshifts which are not Z-projective subdynamics of higher-dimensional Zd SFTs.

Theorem 8.3. There exist positive integers (Na,b ∈ N)1<a∈N,b∈N so that for any
d > 2, if Z is a Z subshift without periodic points such that there exist arbitrarily
long words wk ∈ L(Z) (k ∈ N) with the property that every z ∈ Z consists of runs

of at least 2(Nd,|wk|)
d−1+1 consecutive wk separated by words of length less than |wk|,

then Z 6= PZ(X) for any Zd SFT X.

Proof. For fixed 1 < a ∈ N, b ∈ N the numbers Na,b are defined as follows: Consider
the set Sa,b of all Za−1 SFTs with alphabet size b that can be defined by a family

of forbidden patterns of shape [~1, b~1] ( Za−1. Up to a change of alphabet – i.e.
renaming symbols keeping their number constant – this set is clearly finite. Also,
for any particular choice Y ∈ Sa,b of such a shift of finite type, either Y is non-
empty or there exists a largest NY ∈ N so that Y contains a locally admissible
pattern with shape [~1, (NY − 1)~1] ( Za−1. By taking Na,b to be the maximum of
all such NY , we see that a shift of finite type in Sa,b is non-empty if and only if it

contains a locally admissible pattern of shape [~1, Na,b
~1] ( Za−1.

Now for 1 < d ∈ N, assume that Z ⊆ AZ is a Z subshift over an alphabet A
with the properties described in the theorem. Also suppose for a contradiction that

there exists a Zd SFT X = X(F) ⊆ AZd

defined by a set of forbidden patterns

F ⊆ A[~1,m~1] of diameter m ∈ N so that Z = PZ(X). Choose k ∈ N so that
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|wk| is greater than both m and d. Then, as in the proof of Theorem 8.1, one
can find a point x ∈ X and an interval I ( Z of length |wk| + m so that for any

~ı ∈ [~1, Nd,|wk|
~1] ( Zd−1, x|I×{~ı} ∈ AI is a subword of (wk)∞.

However, since there are at most |wk| words of length |wk|+m which are subwords
of (wk)∞, we may enumerate them as u1, . . . , uj ∈ AI (j ≤ |wk|) and define a Zd−1

SFT X ′ ⊆ A′ Zd−1

of type m, where the alphabet is A′ := {ui | 1 ≤ i ≤ j}, and a

pattern P ′ ∈ A′ [~1,m~1] with shape [~1, m~1] ( Zd−1 is locally admissible in X ′ if and

only if the pattern P ∈ AF with shape F := [1, |wk| + m] × [~1, m~1] ( Zd defined
by P |[1,|wk|+m]×{~ı} := P ′|{~ı} ∈ AI is locally admissible in X .

The fact that the above defined pattern x|I×[~1,Nd,|wk|
~1] is locally admissible in X

means that there exists a locally admissible pattern of shape [~1, Nd,|wk|
~1] ( Zd−1

in X ′. Since X ′ is a Zd−1 SFT with alphabet size at most |wk| and type m, where
m < |wk|, we know by definition of Nd,|wk| that X ′ ∈ Sd,|wk| is in fact non-empty.
Therefore, we have a point x′ ∈ X ′ and using the above correspondence between A′

and a subset of AI , x′ immediately gives rise to a locally admissible configuration

C := x′ ∈ AI×Zd−1

in X with shape I × Zd−1 a hyperplane of thickness |wk| + m
perpendicular to ~e1. By shifting horizontally if necessary, we now assume that
I = [1, |wk| + m] for convenience. Since C|[1,m]×Zd−1 = C|[|wk|+1,|wk|+m]×Zd−1

(for ~ı ∈ Zd−1 every interval [1, |wk| + m] × {~ı} contains a subword of (wk)∞),
C|[1,|wk|]×Zd−1 can be used to tile Zd avoiding any forbidden pattern of X , thus
yielding a point q ∈ X which is periodic with respect to |wk|~e1. This means
that PZ(X) contains a periodic point, namely q|Z×{~0} ∈ Per(PZ(X)). Again, since

Per(Z) = ∅, we have a contradiction to the assumption that Z = PZ(X). �

Though the numbers Na,b themselves may not be algorithmically computable,
the earlier observation about arbitrarily quickly growing computable sequences im-
plies that the class of subshifts described in Theorem 8.3 includes some effective
Sturmian systems. A simple diagonal argument yields the following corollary.

Corollary 8.4. There exist effective Sturmian subshifts which are not the Z-
projective subdynamics of a Zd SFT for any d ∈ N.
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[7] E. Formenti and P. Kůrka, Subshift attractors of cellular automata, Nonlinearity 20 (2007),

no. 1, 105–117.

[8] M. Hochman, On the dynamics and recursive properties of multidimensional symbolic sys-

tems, Inv. Math. 176 (2009), no. 1, 131–167.
[9] L. Hurd, The application of formal language theory to the dynamical behavior of cellular

automata, Ph.D. Thesis, Princeton University (1988).



50 RONNIE PAVLOV AND MICHAEL SCHRAUDNER

[10] J. Kari, Theory of cellular automata: a survey, Theoret. Comput. Sci. 127 (1994), no. 2,
229–254.

[11] P. Kurka, Topological dynamics of one-dimensional cellular automata, Encyclopedia of Com-
plexity and System Sciences Part 20, Springer-Verlag (2009), 9246–9268.

[12] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge
University Press (1995).

[13] A. Maass, On the sofic limit sets of cellular automata, Ergodic Theory Dynam. Systems 15
(1995), no. 4, 663–684

[14] A. Maass, Some coded systems that are not unstable limit sets of cellular automata, Cellular
automata and cooperative systems (Les Houches, 1992), Kluwer Acad. Publ., Dordrecht
(1993), 433–449.

[15] R. Robinson, Undecidability and nonperiodicity for tilings of the plane, Inv. Math. 11 (1971),
177–190.

[16] E.A. Robinson and A. Sahin, Mixing properties of nearly maximal entropy measures for Zd

shifts of finite type, Colloq. Math. 84/85 (2000), part 1, 43–50.
[17] T. Ward, Automorphisms of Zd-subshifts of finite type, Indag. Math. New Ser. 5 (1994), no.

4, 495-504.

Ronnie Pavlov, Department of Mathematics, University of British Columbia, 1984

Mathematics Road, Vancouver, BC V6T 1Z2

E-mail address: rpavlov@math.ubc.ca

URL: www.math.ubc.ca/~rpavlov/

Michael Schraudner, Centro de Modelamiento Matemático, Universidad de Chile,
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