EXTENDER SETS AND MEASURES OF MAXIMAL ENTROPY
FOR SUBSHIFTS

FELIPE GARCIA-RAMOS AND RONNIE PAVLOV

ABSTRACT. For countable amenable G, we prove inequalities relating pu(v) and
u(w) for any measure of maximal entropy p on a G-subshift and any pair of
words v, w where the extender set of v is contained in the extender set of
w. These results generalize the main result of [16]. When G = Z, we prove a
stronger result, and present several applications to the classes of synchronizing
and hereditary subshifts.

1. INTRODUCTION

In this work, we study what the relationship between the so-called extender
sets ([7], [18]) of two words on a subshift can tell us about the relationship of the
measures of maximal entropy of the words.

Subshifts are symbolically defined dynamical systems in which points are given
by elements of A® for some finite alphabet A and a countable amenable group G,
and the dynamics are given by the G-action of translation/shift maps {o4}4ecc.

Though we postpone a formal definition of extender sets to Section 2, extender
sets are defined for words (which are just finite configurations of letters from .A),
and the extender set Ex(v) of a word with shape F' v € AF in a subshift X is
just the set of configurations in AF° which can be combined with v to create a
legal point of X. Our results treat pairs of words v, w where Ex(v) C Ex(w).
Informally, this means that in any point of X, if one replaces an occurrence of v
by w, then the resulting point is still in X. The starting point of our work is the
following result of Meyerovitch.

Theorem 1.1 (Theorem 3.1, [16]). If X is a Z%-subshift and v,w € A satisfy
Ex(v) = Ex(w), then for every measure of mazximal entropy p on X, p(v) = p(w).

Remark 1.2. In fact the theorem from [16] is more general; it treats equilibrium
states for a class of potentials ¢ with a property called d-summable variation, and
the statement here for measures of maximal entropy corresponds to the ¢ = 0 case
only. Also, in [16], this result is presented as a result about conditional measures;
however, it is not hard to show that result is equivalent to the version presented
here.

One of our two main results strengthens Theorem 1.1 by requiring the weaker
hypothesis of Ex(v) C Ex(w). In the class of so-called hereditary subshifts, this
property holds for many pairs of words even though Fx(v) = Ex(w) may rarely
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or never hold; see Section 3.1.2 for details. We have the following result for finitely
generated G.

Theorem 4.4. Let X be a G—subshift, p a measure of maximal entropy of X,
FeG, and w,v € A, If E(v) C E(w) then

p(v) < p(w).

In general, it is impossible to compare extender sets for words v, w in the language
L(X) with different shapes F' # F’, since Ex(v) consists of configurations on F*¢
and Ex(w) consists of configurations on F’¢. However, in the specific case where
G =Z and F and F’ are contiguous intervals of integers, there is a natural bijection
between F© and F' (see Section 2), which allows one to treat containments. Our
second main result treats this more general setting (here, |u| represents the length
of a word u.)

Theorem 3.8. Let X be a Z-subshift, i a measure of maximal entropy of X, and
w,v € L(X). If Ex(v) C Ex(w), then

(v) < pw)elorX)wl=lv),

This result is less intuitive than the previous ones, but in some sense can be
thought of as saying that the amount of information required to “make up” for the
difference in |v] and |w] is e*o»(X) per letter. The following corollary, which can be
thought of as a different generalization of Theorem 1.1, is immediate.

Corollary 3.9. Let X be a Z-subshift, u a measure of mazimal entropy of X, and
w,v € L(X). If Ex(v) = Ex(w), then for every measure of mazimal entropy of X,
p(v) = u(w)ehtup(X)(\wlflvD.

In the class of synchronized subshifts (see Section 3.1 for the definition), Ex (v) =
Ex (w) holds for many pairs of words of different lengths, in which case Corollary 3.9
gives significant restrictions on p, including a new proof of uniqueness under the hy-
pothesis of entropy minimality (see Theorem 3.13). We give several applications of
Corollary 3.9 to such subshifts in Section 3.1.1. For the subclass of S-gap subshifts,
our results yield quite a lot of information; for instance we prove the following,
which verifies a conjecture of Climenhaga ([2]).

Corollary 3.17. Let Xg be an S—gap subshift with ged(S + 1) = 1. Then for pu,
the unique MMFE on Xg,

LX)l _ ()50
nl—>Holo enhiop(Xs) B (ehtop(xs) _ 1)2'

In fact we show that the existence of the limit holds for a much more general
class of subshifts (synchronized subshifts where the unique measure of maximal
entropy is mixing).

Section 2 contains definitions and results needed throughout our proofs, Section 3
contains our results for Z-subshifts (including various applications in Section 3.1),
and Section 4 contains our results for G-subshifts.
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2. (GENERAL DEFINITIONS AND PRELIMINARIES

We will use G to refer to a countable discrete group. We write F' € G to mean
that F is a finite subset of G, and unless otherwise stated, F' always refers to such
an object.

A sequence {F,},en with F,, € G is said to be Fglner if for every K € G,
we have that |(K - F,)AF,|/|Fn] — 0. We say that G is amenable if it admits
a Fglner sequence. In particular, Z is an amenable group, since any sequence
{F.} = an, by] N Z with b, — a,, = oo is Fglner.

Let A be any finite set (usually known as the alphabet). We call A® the full A-
shift on G, and endow it with the product topology (using the discrete topology
on A). For z € A%, we use x; to represent the ith coordinate of x, and zp to
represent the restriction of x to any F' € G.

For any g € G, we use o4 to denote the left translation by g on AE, also called
the shift by g; note that each o, is an automorphism. We say X C A® is a
G-subshift if it is closed and ¢4(X) = X for all g € G; when G = Z we simply call
it a subshift.

For F' € G, we call an element of A a word with shape F. For w a word
with shape F and z either a point of A® or a word with shape F’' O F, we say that
w is a subword of z if x4, = w for some g € G.

For any F, the F-language of X is the set Lp(X) C AY = {zr : 2 € X} of
words with shape F' that appear as subwords of points of X. When G = Z, we use
L, (X) to refer to Ly, .. ,—13(X) for n € N. We define

L(X):= | Lr(X)if G # Z and
FeG
U L.(X)if G =Z.
neN
For any G-subshift X and w € Lr(X), we define the cylinder set of w as

=
>
i

[w]:={x € X :zp =w}.

Whenever we refer to an interval in Z, it means the intersection of that interval
with Z. So, for instance, if z € A% and i < j, x[; 5 represents the subword of x that
starts in position ¢ and ends in position j. Unless otherwise stated, a word w € A™
is taken to have shape [0,n). Every word w € L(A?) is in some A" by definition;
we refer to this n as the length of w and denote it by |w|.

For any amenable G with Fglner sequence {F, }, .y and any G-subshift X, we
define the topological entropy of X as

htop(X) = lim i

n—00 |Fn|

log |Lr, (X)]
(this definition is in fact independent of the Fglner sequence used.)
For any w € L(X), we define the extender set of w as
Ex(w) :={z|pc : x € |w]}.

Example 2.1. For any G # Z, if X is the full shift on two symbols, {0, 1}G, then
for any F, all words in {0,1}¥ have the same extender set, namely {0, 1}

Example 2.2. Take G = Z? and X the hard-square shift on {0,1} in which
adjacent 1s are forbidden horizontally and vertically. Then if we take F' = {(0,0)},
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we see that E(0) is the set of all configurations on Z2? \ F which are legal, i.e.
which contain no adjacent 1s. Similarly, F(1) is the set of all legal configurations
on Z*\ F which also contain 0s at (0,%+1) and (+1,0). In particular, we note that
here E(1) C E(0).

In the specific case G = Z and w € L,(X), we may identify Ex(w) with the
set of sequences which are concatenations of the left side and the right side, i.e.
{(#(—,00%[n,00)) : * € [w]}, and in this way can relate extender sets even for v, w
with different lengths. All extender sets in Z will be interpreted in this way.

Example 2.3. If X is the full shift on two symbols, {0, I}Z, then all words in L(X)
have the same extender set, since they are all identified with {0, 1}%.

Example 2.4. If X is the golden mean Z—subshift on {0, 1} where adjacent 1s are
prohibited, then E(000) is the set of all legal configurations on Z \ {0, 1,2}, which
is identified with the set of all {0,1} sequences x which have no adjacent 1s, with
the exception that g = 21 = 1 is allowed. This is because 000 may be preceded by
a one-sided sequence ending with 1 and followed by a one-sided sequence beginning
with 1, and after the identification with {0,1}%, those 1s could become adjacent.

Similarly, F(01) is identified with the set of all  on Z which have no adjacent
1s and satisfy z¢o = 0, and E(1) is identified with the set of all z on Z which have
no adjacent 1s and satisfy xg = 1 = 0.

Therefore, even though they have different lengths, we can say here that F(1) C
E(01) € E(000) = E(0).

The next few definitions concern measures. Every measure in this work is as-
sumed to be a Borel probability measure 4 on a G—subshift X which is invariant
under all shifts o,. By a generalization of the Bogolyubov-Krylov theorem, every
G—subshift X has at least one such measure. For any such p and any w € L(X),
we will use p(w) to denote u([w]).

For any Fglner sequence {F,}, we define the entropy of any such u as

. 1
hp(X) = lim Tl ZwEAFn —p(w) log p(w).

n—oo

Again, this limit does not depend on the choice of Fglner sequence (see [9] for
proofs of this property and of other basic properties of entropy of amenable group
actions).

It is always the case that b, (X) < h(X), and so a measure p is called a measure
of maximal entropy (or MME) if h,(X) = hip(X). For amenable G, every
G—subshift has at least one measure of maximal entropy [17].

We briefly summarize some classical results from ergodic theory. A measure
i is ergodic if every set which is invariant under all o, has measure 0 or 1. In
fact, every measure p can be written as a generalized convex combination (really
an integral) of ergodic measures; this is known as the ergodic decomposition
(e.g. see Section 8.7 of [6]). The entropy map p +— h,, is linear and so the ergodic
decomposition extends to measures of maximal entropy as well; every MME can be
written as a generalized convex combination of ergodic MMEs.
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Theorem 2.5 (Pointwise ergodic theorem [12]). For any ergodic measure p on a
G—subshift X, there exists a Folner sequence {F,} such that for every f € L'(u),

] xnlin;oﬁ Z f(crga:):/f du =1.

geF,

Theorem 2.6 (Shannon-Macmillan-Breiman theorem for amenable groups [23]).
For any ergodic measure 1 on a G—subshift X, there exists a Folner sequence {F,}
such that

I <{x : nlgngofﬁu(wF7L) = h/L(X)}) =1

The classical pointwise ergodic and Shannon-Macmillan-Breiman theorems were
originally stated for G = Z and the Fglner sequence [0,n]. We only need Theo-
rem 2.6 for the following corollary.

Corollary 2.7. Let o be an ergodic measure of mazimal entropy on a G-subshift
X. There exists a Folner sequence {F,} such that for every S, C Lp (X) such

that p(Sy) — 1, then
. 1
nh~>n;o W log ‘Sn| = htop(X)~

Proof. Take X, p as in the theorem, {F,} a Fglner sequence that satisfies the
Shannon-Macmillan-Breiman theorem, and S,, as in the theorem. Fix any € > 0.
By the definition of topological entropy,

1 1
limsup ——log |9, < lim ——log|Lp, (X)| = htop(X).
msup 2 log |9, < lim 1 log L, (X)] = ey (X)

For every n, define
Tn —_ {w c AFn . M(w) < e—‘FnKhtan(X)_e)_

By the Shannon-Macmillan-Breiman theorem, p(UyNo—yTn) = 1, and so
w(Ty) — 1. Therefore, u(S, NT;,) — 1, and by definition of T,

1S, N Tp| > p(Sp N T )el Frl(heon(X)=0),

Therefore, for sufficiently large n, |S,| > |S, NTy,| > 0.5/ Fnl(hiop(X)=€) " Gince e > 0
was arbitrary, the proof is complete. O

Finally, several of our main arguments rely on the following elementary combi-
natorial lemma, whose proof we leave to the reader.

Lemma 2.8. If S is a finite set, {As} is a collection of finite sets, m = min{|As|},
and M = max,cja, {5 | a € As}|, then

U4

seS

m
> || 7
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3. RESULTS ON Z—SUBSHIFTS

In this section we present the results for G = Z, and must begin with some
standard definitions about Z—subshifts.

For words v € A™ and w € A™ with m < n, we say that v is a prefix of w if
Wio,m) = v, and v is a suffix of w if Wy, ) = v.

We now need some technical definitions about replacing one or more occurrences
of a word v by a word w inside a larger word u, which are key to most of our
arguments in this section. First, for any v € L(A%), we define the function O, :
L(A%) — P(N) which sends any word u to the set of locations where v occurs as a
subword in w, i.e.

Oy(u) :={i e N:o;(u) € [v]}.
For any w € L(AZ%), we may then define the function RS>% : O,(u) — L(A%)

which replaces the occurrence of v within u at some position in O, (u) by the word
w. Formally, Ry™"(i) is the word v of length |u|—|v]+|w]| defined by u{, ; = o s,

I _ i _ )
Uit fwl) = Wy AR Uiy ) 1) ol ul) = Ylitlolul)-

Our arguments in fact require replacing many occurrences of v by w within a
word u, at which point some technical obstructions appear. For instance, if several
occurrences of v overlap in u, then replacing one by w may destroy the other. The
following defines conditions on v and w which obviate these and other problems
which would otherwise appear in our counting arguments.

Definition 3.1. For v,w € L(A?%), we say that v respects the transition to w
if, for any u € L(A%) and any i € O, (u),

(1) 7+ |w| — |v] € Ox(RE7™(4)) for any j € O,(u) with 7 < 7,
(i) j € O, (R (4)) for any j € Oy (u) with 7 > 7,
(iii) j € Ow(RE7™(7)) for any j € Oy (u) with i > 7,
(iv) j + |w| — |v| > i for any j € O,(u) with 7 < j.

Informally, v respects the transition to w if, whenever a single occurrence of
v is replaced by w in a word wu, all other occurrences of v in u are unchanged,
all occurrences of w in u to the left of the replacement are unchanged, and all
occurrences of v in u which were to the right of the replaced occurrence remain on
that side of the replaced occurrence.

When v respects the transition to w, we are able to meaningfully define replace-
ment of a set of occurrences of v by w, even when those occurrences of v overlap,
as long as we move from left to right. For any u,v,w € L(X), we define a function
Ri7 : P(Oy(u)) — L(X) as follows. For any S := {s1, ..., 8n.} C Oy(u) (where we
always assume s1 < s < ... < S, ), we define sequential replacements {um}:;;ll b

1) u=ul.

2) W = RY2 (s + (m — 1) (Juo] — [o])).

Finally, we define R7%(S) to be u"*1.

We first need some simple facts about R! " which are consequences of Defini-
tion 3.1.
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Lemma 3.2. For any u,v,w € L(X) where v respects the transition to w and
any S = {s1,...,8n} C O,(u), all replacements of v by w persist throughout, i.e.
{s1,82 4 (Jw] = [v]), 83+ 2(Jw| = [v]), ..., sn + (0 = 1)(Jw] = [v])} € Ouw(RLT(S5)).

Proof. Choose any v, w,u, S as in the lemma, and any s; € S. Using the termi-
nology above, clearly s; + (i — 1)(Jw| — |v]) € Oy (u*tY). By property (iv) of a
respected transition, s1 < s2 + |w| — |v] < ... < $p + (n — 1)(Jw| — |v]). Then,
since s; + (1 — 1)(Jw| — |v|) < s; + (4 — 1)(Jw| — |v]) for j > 4, by property (iii)
of respected transition, s; + (i — 1)(Jw| — |[v]) € O, (uU*V) for all j > 4, and so
si+ (i —D(Jw|] — |v]) € Oyx(RE7™(S)). Since i was arbitrary, this completes the
proof. ([

Lemma 3.3. For any u,v,w € L(X) where v respects the transition to w and
any S = {s1,...,8n} C Oy(u), any occurrence of v not explicitly replaced in the
construction of RL 7™ also persists, i.e. if m € Oy(u)\ S and s; < m < s;11, then
m +i(jw| = [v]) € Ou(RET(S5)).

Proof. Choose any v, w,u,S as in the lemma, and any m € O, (u) N (s;, $;41) for
some i. Using property (i) of a respected transition, a simple induction implies that
m+j(Jw|—|v]) € O, (u*+D) for all j < i. By property (iv) of a respected transition,
m+i(Jw| —|v]) < siz1+i(Jw] —|v|) < ... < sp+ (n—1)(Jw| —|v]). Therefore, using
property (ii) of a respected transition allows a simple induction which implies that
m+i(jw|—[v]) € Oy (u+D) for all j > i, and so m+i(jw|—|v]) € O,(RE~(S)). O

We may now prove injectivity of Ry, " under some additional hypotheses, which
is key for our main proofs.

Lemma 3.4. Let v,w € L(X) such that v respects the transition to w, v is not a
suffiz of w, and w is not a prefix of v. For anyu € L(X) and m, RV is injective
on the set of m-element subsets of O, (u).

Proof. Assume that v, w, u are as in the lemma, and choose S = {s1,...,s,} # S’ =
{81,y 85} C Oy(u) with |S| = |S'| = m.

We first treat the case where |v| > |w|, and recall that w is not a prefix of v. Since
S # 5, we can choose i maximal so that s; = s; for j <i. Then s; # s}; we assume
without loss of generality that s; < s;. Since s; € S, we know that s; € O,(u).
Since si_; = s;—1 < 8; < 8}, by Lemma 3.3 s; + (¢ — 1) (Jw| — [v]) € O,(RL7*(5")).
Also, by Lemma 3.2, s; + (i — 1)(Jw| — |v]) € O (RE7™(S)). Since w is not a prefix
of v, this means that R 7% (S) # R.7*(S"), completing the proof of injectivity in
this case.

We now treat the case where |[v| < |w]|, and recall that v is not a suffix of w.
Since S # S, we can choose i maximal so that s,,—; = s;,_; for j < i. Then
Sm—i # Sh,_;; we assume without loss of generality that s,,_; < s],_;. Since
Sp,_i € 5', we know that s, _; € Oy(u). Since sy, < ), ; < Sy ip1 = Sm—it1,
by Lemma 3.3 s,,_;, + (m — i)(Jw| — |v]) € O,(R,7™(S)). Also, by Lemma 3.2,
s+ (m—1i—1)(Jw| —|v]) € Ou(RE7¥(S")). Since v is not a suffix of w, this
means that R} 7% (S) # Ry 7™(S7), completing the proof of injectivity in this case
and in general. O
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Lemma 3.5. Let v,w € L(X) such that v respects the transition to w, v is not a
suffix of w, and w is not a prefix of v. Then for any u' and any m < |Oy ()],

m

(wS) « 1s1=m.5 < o, = rees) < (1),

Proof. Assume that v, w,u’ are as in the lemma, and denote the set above by f(u').
For any (u, S) € f(v') we define g(S) = {s1, so+|w|—|v|,..., sm+(m—1)(Jw|—|v]))};
note that by Lemma 3.2, g(S) C O, (u').

We claim that for any S, there is at most one u for which (u,S) € f(u'). One
can find this u by simply reversing each of the replacements in the definition of
Ry~ (S). Informally, the only such u is u = RS (g(S)), where RYf™ is defined
analogously to R., 7" with replacements of w by v made from right to left instead
of v by w made from left to right.

Finally, since g(S) C O, (u'), and since g is clearly injective, there are less than
or equal to (‘Own(l"/)l) choices for S with (u,S) € f(u’) for some wu, completing the
proof. O

We may now prove the desired relation for v, w with E(v) C E(w) under addi-
tional assumptions on v and w.

Proposition 3.6. Let X be a subshift, i a measure of maximal entropy of X, and
v,w € L(X). If v respects the transition to w, v is not a suffiz of w, w is not a
prefix of v, and Ex(v) C Ex(w), then

1) < pu(w)ehorCOUwl=loD),

Proof. Let §,e € Q. We may assume without loss of generality that p is an
ergodic MME, since proving the desired inequality for ergodic MMEs implies it for
all MMEs by ergodic decomposition.

For every n € Z, we define

Sn = {u € Ln(X) : |0y(u)] = n(p(v) = 6) and |Ow ()] < n(u(w) +0)} -

By the pointwise ergodic theorem (applied to x[, and X[.), #(Sn) — 1. Then,
by Corollary 2.7, there exists IV so that for n > IV,

(1) |S,,| > enheor(X0=0),
For each u € S,,, we define
Ay ={Ry7"(S): S C Oy(u) and |S| =en}

(without loss of generality we may assume en is an integer by taking a sufficiently
large n.)
Since Ex(v) C Ex(w) we have that A, C L(X). Also, by Lemma 3.4,

Ay = (n(u(v) - 5))

En

for every u.
On the other hand, for every u' € |J,cg Au We have that

|Ow ()] < n(p(w) + ) + ne(2|w| + 1)
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(here, we use the fact that any replacement of v by w can create no more than 2|w|
new occurrences of w.) Therefore, by Lemma 3.5,

n(p(w)+ 9+ 2lw| + 1)€)>.

|{u€Sn:u’6Au}|§(

Then, by Lemma 2.8, we see that for n > N,

(2) |Lm(X)] 2 Q Au| = 1S, (”(”(g;— 5>) <n<mu<w> - 5; (2w + 1)@)1
> heop(X)=0) (n(#(’l}) - 5)) (n(mu(w) 40+ (2)w| + 1)€)> 71'

For readability, we define x = pu(v)—6 and y = p(w)+3d. Now, we take logarithms
of both sides, divide by n, and let n approach infinity. Stirling’s approximation and
the definition of entropy yield

hiop(X)(1 + e(|w| — |v]) > hiop(X) — 6 + zlogz — (z — ¢) log(z — €)

— (y+ (2lw|] + D)e) log(y + (2lw| + 1)) + (y + 2|wle) log(y + 2|w]e).
We subtract Ay, (X) from both sides, let § — 0, and simplify to obtain
eon(X)(fu] — [o]) > log (o) + () — ) (1og 2
v - u(v) —e
p(w) + (2lw| + 1)6)

—elog(pu(w) + (2Jw| 4+ 1)) — (u(w) + 2|wle) log ( fu(w) + 2wl

We have that

lim v)—¢ log pv
=0 € u(v) —e
i ) log (v
e—=0 € (v) —¢
=1,
and
lim _ pw(w) +2wle o p(w) + 2lw| + 1)e
e—0 € p(w) + 2|wle
B0 () + 2] + De
e>0 € p(w) + 2|wle
_ lim 1 log 1+ 2lw|+ 1)t
t—0 1+ 2wt
=—-1.

This implies (by dividing by ¢ and taking limit on the previous estimate) that

hiop(X)(Jw] — |v]) = log p(v) — log p(w).
Exponentiating both sides and solving for p(v) completes the proof. 0

Our strategy is now to show that any pair v,w, the cylinder sets [v] and [w]
may each be partitioned into cylinder sets of the form [avf] and [awf] where
the additional hypotheses of Theorem 3.6 hold on corresponding pairs. For this,
we make the additional assumption that X has positive entropy to avoid some
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pathological examples (for instance, note that if X = {0°°}, then it’s not even
possible to satisfy the hypotheses of Theorem 3.6!)

Proposition 3.7. Consider any subshift X with positive entropy, p an ergodic
measure of mazimal entropy of X, and v,w € L(X). For almost every x € [v] there
erists N, M € Z such that avB = x|_y pp) respects the transition to awf3, avf3 is
not a suffix of awp, and awp is not a prefix of avp.

Proof. Define
Q:={y € L(X): p(y) >0}
and, for all n € N, define Q,, := Q N A".
Recall that

hu(X) = lim 1 >

— 1 .
Jim =) . (W) log u(w)
The only positive terms of this sum are those corresponding to w € @,,, and it’s a
simple exercise to show that when Zle a; =1, 25:1 —q; log a; has a maximum

value of logt. Therefore,
1
< liminf — :
hy(X) < liminf —log |Qn|

Since hy,(X) > 0, |@Qn| grows exponentially. Therefore, there exists ny € Z, such
that for every n > no we have that |Q,| > 2n.
Let

N := max {ns, [v|} + 1,

P:={z € X : ®(_op) periodic with period less than |w|},
S = {CL‘ € X : Vy€Q,is asubword of x[o,oo)} , and

R := [v] NS\ P.

Assume that v # w otherwise the result is trivial. Since p has positive entropy,
it is not supported on points with period less than |w|, and so for each i < |w],
there exists a word w; € L;y1(X) with different first and last letters. Then the
pointwise ergodic theorem (applied to x(y,7, - - s X[up_,) With F, = [—n,0)) implies
that u(P) = 0. The pointwise ergodic theorem (applied to x(, for v € Q with
F,, = [0,n]) shows that u(S) = 1, and so u(R) = u(v). Choose arbitrary = € R.
If 2(_oo,0)v is a suffix of z(_ gyw, then clearly |w| > |v], and for any i > 0, the
(i + |w])th letters from the end of x(_q 0)v and x(_ gyw must be the same, i.e.
x(—1i) = z(—i — |w| + |v|). This would imply = € P, which is not the case, and so
T(—o00,0)¥ 18 N0t a suffix of z(_ gyw.

We can therefore define N > N to be minimal so that for a = z[_y/ o), av is
not a suffix of aw. (Obviously if |v| > |w|, then N = N.)

Since x € S, we can define the minimal M so that all N’-letter words of positive
p-measure are subwords of x_ v pp); for brevity we write this as Qn' C x(— N7 ar)-

Since N’ > N > ng, |Qn/| > 2N’, and so M > 2N’. Also, since M is the first
natural with Qn' C z[_n ), then

Om[M—N’,M) (m[—N'»M)) =1,

i.e. the N'-letter suffix of 2(_n 57y = avf appears only at the end of awf.
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First, it is clear that avf is not a suffix of awf, since av was not a suffix of aw
by definition of a.. Since the N’-letter suffix of awf appears only once within awvg,
we see that awf cannot be a prefix of av either.

It remains to show that av = x(_n- ar) respects the transition to cwf. Suppose
that a word w € L(X) contains overlapping copies of avf3, i.e. we have i,j €

Oqvp(u) with j > 4. Since Om[M—N’ ) (x[_N/,M))‘ = 1 we have that j > i+ |v|+M;
otherwise the N'-letter suffix of awf = 2|; i1 N/4|vj+a) Would be a non-terminal
subword of avB = x[; j4 N'4|v|+a)- Then j+ |w| — [v| > i+ |w| + M > i, and so
property (iv) is verified. Since j > i+[v|+ M, the central v within 2[; ;1 N7y [v|+ar) 18
disjoint from [ j 4 N/ |v|+ar), and so j+|w|—|v] € O, (R 7 (4)), verifying property

(1).

For property (ii), the same argument as above shows that when 4,5 € Ogyp(u)
with i > j, i > j+|v|+M. Again this means that the central v within z(; ;4 N+ 4 v+ 1)
is disjoint from @[ ;1 Ny jvj4+ar), and so j € O,(R; 7" (4)), verifying property (ii)
and completing the proof.

For property (iii), we simply note that the proof of (ii) is completely unchanged
if we instead assumed j € Ogyp(u), since the N'-letter suffixes of awp and avp

are the same.
O

Finally, we can use Proposition 3.7 to prove the main result of this section.

Theorem 3.8. Consider any X a subshift with positive entropy, p a measure of
mazimal entropy of X, and v,w € L(X). If Ex(v) C Ex(w) then

,u(v) < u(w)ehwp(x)(‘w|—|”\)_

Proof. Consider X, i, v, w as in the theorem. We may prove the result for only
ergodic p, since it then follows for all x4 by ergodic decomposition.

By Proposition 3.7, there exists R C [v] with u(R) = p(v) so that for every
x € R, we can define g(z) := avf and ¢'(z) := awp satisfying the conclusion of
Proposition 3.7. Since Ex(v) C Ex(w), ¢'(z) € L(X) and Ex(g(z)) C Ex(¢'(x))
for every = € R.

Now, using Proposition 3.6 and Proposition 3.7 we have that

(3) w(g(z)) < M(g/(x))ehtop(X)(lg'(w)\*lg(ﬂv)l) - Iu(g/(m))ehtup(X)(\WIflv\) )

We claim that for g(z) # g(z') € g(R), [9(z)] and [g(2’)] are disjoint. To see this,
assume for a contradiction that g(z) = avf, g(z’) = o’vf’, and [awf]N[a'vE] # @.
Then either o # o/ or 8 # ', we assume the former for now. Either « is a suffix of
o' or vice versa, again we assume the former without loss of generality. But then
awv satisfies the definition of a in Proposition 3.7, and so we have a contradiction;
o’ was not the shortest possible choice in the definition of o and f’ for g(a’). The
argument when 3 # 3’ is similar; again the contradiction comes because one of (3
or B’ was not in fact the minimal possible choice when it was defined.
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Therefore, {[g(x)]} forms a partition of R. Since all [g(x)] are disjoint, all
{[¢’(z)]} are also disjoint, and so

S o)) = p(R) = p(v) and
> g (@) < p(w).

g'(z)€g’(R)
(In fact the final inequality is an equality since the collection {[¢'(x)]} actually
partitions [w] N S\ P, using the language of Proposition 3.7; we will not need this
fact though.) We may then sum (3) over x € R yielding

p)="> ulg(x))

g(x)€g(R)

< e XIRl=h N (g (2))
g9'(z)eg’(R)

< p(w)eltror O Iwl=lvD,

as desired.

The following corollary is immediate.
Corollary 3.9. Let X be a Z-subshift, i a measure of mazximal entropy of X, and
w,v € L(X). If Ex(v) = Ex(w), then for every measure of maximal entropy of X,

() = p(aw)ehtorCOul=lol)

3.1. Applications. We will now present some corollaries and applications of The-
orem 3.8 and Corollary 3.9 to various classes of subshifts.

3.1.1. Synchronized subshifts.

Definition 3.10. For a subshift X, we say that v € L(X) is synchronizing if for
every uv,vw € L(X), it is true that wow € L(X). A subshift X is synchronized
if L(X) contains a synchronizing word.

The following fact is immediate from the definition of synchronizing word.

Lemma 3.11. Ifw is a synchronizing word for a subshift X, then for any v € L(X)
which contains w as both a prefiz and suffiz, Ex(v) = Ex(w).

Definition 3.12. A subshift X is entropy minimal if every subshift strictly
contained in X has lower topological entropy. Equivalently, X is entropy minimal
if every MME on X is fully supported.

The following result was first proved in [21], but we may also derive it as a
consequence of Corollary 3.9 with a completely different proof.

Theorem 3.13. Let X be a synchronized subshift. If X is entropy minimal then
X has a unique measure of mazximal entropy.

Proof. Let p be an ergodic measure of maximal entropy of such an X. Let w be a
synchronizing word, u € L(X) and

R, = {:v € [u] : |Ow(x(_m,o})‘ > 1 and |Ow(x[(‘u|7oo}))| > 1}.
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Since X is entropy minimal, u(w) > 0, and so by the pointwise ergodic theorem
(applied to X[w] with F, = [-n, 0] or ([ul,n]), p(Ry) = p(u).

For every x € R, we define minimal n > |w| and m > |w| + |u| so that g, (z) :=
T[_p,m] contains w as both a prefix and a suffix. Then {[g, ()]} forms a partition
of R,,.

By Lemma 3.11, E(w) = E(wovw) for all v s.t. wvw € L(X). Then by Corollary
3.9 we have that

1(gu(x)) = M(w)ehzop(X)(lw\—\gu(w)l).
Since g, (R,) is countable we can write

pw(u) = p(Ry) = p(w) Z ePtop (X)) (Jw|=|gu(@)])
gu () Egu(Ru)
This implies that
1= w@) =pw) Y. Y e O0ul-laa@h
acA a€A go(x)€ga(Ra)
We combine the two equations to yield
ehtop (X)(lw|—|gu(2)])
ehtop(X)(lw|—=|ga(z)])
htop(X)|gu ()]

htop(X)|ga(2)| "

Zgu (.’L‘)Egu(Ru)

p(u) = 5

acA Zga(r)Ega(Ra)

Zgu (z)€gu(Ru) e

ZaEA Zga(r)EQQ(Ra) e

Since the right-hand side is independent of the choice of the measure we conclude
there can only be one ergodic measure of maximal entropy, which implies by ergodic
decomposition that there is only one measure of maximal entropy. O

In [4], one of the main tools used in proving uniqueness of the measure of max-
imal entropy for various subshifts was boundedness of the quantity % One
application of our results is to show that this quantity in fact converges to a limit
for a large class of synchronized shifts.

Definition 3.14. A measure p on a subshift X is mixing if, for all measurable
A’ B’
lim p(ANo_,B) = p(A)u(B).

n— 00

Theorem 3.15. Let X be a synchronized entropy minimal subshift such that the
measure of mazimal entropy is mizing. We have that

exists.
n—o0 eMhiop(X)

Proof. We denote A := e/*or(X) and define i to be the unique measure of maximal
entropy for X. Let w € L(X) be a synchronizing word and

R, :={u € L,(X) : wis a prefix and a suffix of u}.
Lemma 3.11 and Corollary 3.9 imply that for every u € R,,,
p(u) = p(w)AI=n,
This implies that

> wu) = [Ra plw)A =

uER,
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On the other hand
Z u(u) = :u([w} N O|w|—n [w])
uER,

Since the measure is mixing we obtain that

tim ju([w0] 1011 [0]) = pa([w])>

n—oo

Combining the three equalities above yields

Rl _ ()
n—oo A" Mwl
For all n € N, we define
P, :={u € Ly;y((2) : wis a prefix of u, |Oy|(u) =1} and
Sy = {u € Ly yu|(z) : w is a suffix of u, |0y |(u —1}

to be the sets of (n + |w]|)-letter words in L(X) containing w exactly once as a
prefix/suffix respectively. We also define

K, :={u € L,(x) : |Oy(u)| = 0}

to be the set of n-letter words in L(X) not containing w. Then partitioning words in
L, (X)\ K, by the first and last appearance of w, recalling that w is synchronized,
gives the formula

La(Ol = 1Kal + > 1SillBy—il Py,

0<i<j<n
thus
[Ln(X)] _ K| |Si| | Rj—il [Pyl
4 —_— = e =
() >\n )\n + Z /\'L >\]72 )\’I‘ij
0<i<j<n

We now wish to take the limit as n — oo of both sides of (4). First, we note
that since X is entropy minimal, hiop(Xw) < htop(X), where X, is the subshift of
points of X not containing w. Therefore,

lim sup — 10g|K | < htop(X).

n— o0

Since all words in P, and S,, are the concatenation of w with a word in K,,
| P, |Sn| < |Ky|, and so

lim sup — log|P| hmsup log|S | < hiop(X),
n—oo

implying that the infinite series

— | Py 1S
§ —— and § —_— .
Z /\n an P /\n converge

We now take the limit of the right-hand side of (4).

n—k
|1Sil [Rj—il | Pnjl | R | |5l [Pn—k—l
n—)oo )\n + Z At \I—t \n—d nlﬁoo z 2k Z A\t \n—k—i '

0<i<j<n 0<k<n 1=0
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3 ‘Rk‘ imi /J'(w) 3 o m Iszl |Pm,7i|
Since ‘5z converges to the limit 535+ and the series D om0 Die N YRy

converges, the above can be rewritten as

n—k co m
. | Ri| |1Sil [Prk—il \ | _ p(w) . |8l |Prn—il
nlgg@ Z ()\k Z A \n—k—i T\l ,,}gnoozz N \n—k—i

0<k<n i=0 m=0 i=0
_ plw) i | P i S|
Al An An
n=0 n=0
Recalling (4), we see that lim, w converges to this limit as well, com-

pleting the proof. O

We will be able to say even more about a class of synchronized subshifts called
the S-gap subshifts.

Definition 3.16. Let S C NU {0}. We define the S—gap subshift Xg by the set
of forbidden words {10"1 : n ¢ S}. Alternately, Xg is the set of bi-infinite {0,1}
sequences where the gap between any two nearest 1s has length in S.

It is immediate from the definition that 1 is a synchronizing word for every S—gap
subshift. Also, all S-gap subshifts are entropy minimal (see Theorem C, Remark
2.4 of [5]), and as long as ged(S + 1) = 1, their unique measure of maximal entropy
is mixing (in fact Bernoulli) by Theorem 1.6 of [3]. (This theorem guarantees that
the unique MME is Bernoulli up to period d given by the ged of periodic orbit

lengths, and it’s clear that S 4 1 is contained in the set of periodic orbit lengths.)
|Ln(Xs)

m eXlSted;

In this case Climenhaga [2] conjectured that the limit lim,,
we prove this and we give an explicit formula for the limit.

Corollary 3.17. Let Xg be an S—gap subshift with gcd(S + 1) = 1. Then for p
the unique MMFE on Xg,

i 1 Ln(Xs)| _ p(1)elteer(Xs)
noo ehion(Xs)  (ehton(Xs) — 1)2°

Proof. Using the notation of Theorem 3.15, we define w = 1 and write A =
ehtor(Xs) Tt is easy to see that |P;| = |S;] = 1 for all i. As noted above, Xg
is entropy minimal and its unique measure of maximal entropy is mixing, and so
the proof of Theorem 3.15 implies that

2
LX) s (=1 p@) 1 N p()A
nll)n/olo enhtO;D(XS) - )\ ; A’L a A 1-— A_l o ()\ — 1)27

completing the proof.

O

As noted in [2], a motivation for proving the existence of this limit is to fill a
gap from [19] for a folklore formula for the topological entropy of Xg. Two proofs
of this formula are presented in [2], and Corollary 3.9 yields yet another proof.
Corollary 3.18. Let Xg be an S-gap subshift. Then hiop(Xg) = log A, where A is
the unique solution of

1= Al

nes
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Proof. For any S-gap shift Xg, we can write

1] = <|j [10”1]) U{zx e Xg : 2o =1and Vn > 0,2, = 0}.

n=0
By shift-invariance, p(10°°) = 0, and so by Lemma 3.11 and Corollary 3.9,
,U/(l) — Z 10n Z /’6 htop (Xs)(— n—l).
nes nes

Dividing both sides by u(1) completes the proof.
O

We also prove that for every S—gap subshift, the unique measure of maximal
entropy has highly constrained values, which are very similar to those of the Parry
measure for shifts of finite type.

Theorem 3.19. Let Xg be an S gap subshift and p the measure of mazimal en-
tropy. Then (1) = and for every w € L(Xg), there exists

Znes(n+1)€"‘f°1’(x5><"+1) ’
a polynomial f,, with integer coefficients so that p(w) = ky + (1) f (e er(Xs))
for some integer k.

Proof. As noted above, S-gap shifts are synchronized and entropy minimal, and so
have unique measures of maximal entropy.

Denote by p the unique measure of maximal entropy for some S—gap subshift
Xg, and for readability we define

t = e~ htor(X),
Since Xg is entropy minimal, u(1) > 0, and so by the pointwise ergodic theorem
(applied to xp17), p-a.e. point of Xg contains infinitely many 1s. Therefore, we can
partition points of X g according to the closest 1 symbols to the left and right of the

origin, and represent Xg (up to anull set) as the disjoint union J,,. g Ui~ o5 [10™1].
Then by Lemma 3.11 and Corollary 3.9,

1= "(n+1)u(10")
= (n+Du()r,

yielding the claimed formula for p(1).
Now we prove the general formula for p(w), and will proceed by induction on
the length n of w. For the base case n =1, u(0) = 1 — u(1), verifying the theorem.
Now, assume that the theorem holds for every n < N for some N > 1. Let
w € Ly_1(Xg), and we will verify the theorem for lwl, 1w0, Owl, and O0w0. If
1wl ¢ L(Xg), then
u(lwl) =0,
p(lw0) = p(lw) — p(lwl) = p(lw),
w(0wl) = p(wl) — p(lwl) = p(wl), and
#(0w0) =1 — p(lwl) — p(1w0) — p(0wl) = 1 — p(lw) — p(wl).

The theorem now holds by the inductive hypothesis.
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If 1wl € L(Xg), then as before Ex,(lwl) = Ex,(1), implying

p(lwl) = p(1)e e,

p(lw0) = p(lw) — p(lwl) = p(lw) — (1),

p(0wl) = p(wl) = p(lwl) = pwl) — (1)1 and

p(0w0) = 1 = p(lwl) = p(lw) — p(0wl) = 1 = u(lw) — p(wl) + p(E*e]

again implying the theorem by the inductive hypothesis and completing the proof.
O

3.1.2. Hereditary subshifts. One particular class of subshifts with many pairs of
words such that Fx(v) € Ex(w) are the hereditary subshifts (definition introduced
in [8]). Some examples are S—shifts [11], Z—free shifts ([10]), spacing shifts ([14]),
multi-choice shifts ([13]) and bounded density shifts ([20]). Many of these examples
have a unique measure of maximal entropy, but not every hereditary subshift has
this property (see [10]) .

A partial order < on a finite set .4 induces a partial order on A" and A% (coor-
dinatewise) which will also be denoted by <. When A ={0,1...,m} we will always
use the linear order 0 <1 < ... < m.

Definition 3.20. Let X C A% be a subshift and < a partial order on A. We say
X is < —hereditary (or simply hereditary) if for every 2 € A% such that there
exists y € X such that z < y then x € X.

This definition immediately implies that whenever z < y for z,y € L(X),
Ex(y) C Ex(z), yielding the following corollary of Theorem 3.8.

Corollary 3.21. Let X be a < —hereditary subshift, p a measure of mazimal
entropy, and v,w € L,(X) for some n € N. If u <wv then u(v) < p(u).

Having v < v is sufficient but not necessary for E(v) C E(w). In particular,
for S—shifts and bounded density shifts, there are many other pairs (with different
lengths) where this happens. This is due to an additional property satisfied by
these hereditary shifts.

Definition 3.22. Let X C {O,l,...,m}Z be a hereditary subshift. We say X is
i-hereditary if for every u € L,(X) and u' obtained by inserting a 0 somewhere
in u, it is the case that v’ € L, 11(X).

In particular, §—shifts and bounded density shifts are i-hereditary, but not every
spacing shift is i-hereditary. It’s immediate that any ¢-hereditary shift satisfies
Ex(07) C Ex(0%) whenever j > k. We can get equality if we assume the additional
property of specification.

Definition 3.23. A subshift X has the specification property (at distance
N) if for every u, w € L(X) there exists v € Ly (X) such that wow € L(X).

Clearly, if X is hereditary and has specification property at distance N, then
u0Nw and uONHtlw € L(X) for all u,w € L(X), and so in this case Ex(0V) =
Ex(0N*1). We then have the following corollary of Theorem 3.8.

Corollary 3.24. Let X C {0,1, ...,m}Z be a i-hereditary subshift. Then for every
n e Z+
1(0")

hiop(X) > log (o)
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Furthermore, if X has the specification property at distance N, then
p(0Y)
pu(ONFL)°
We note that if X has the specification property at distance IV, then it also has
it at any larger distance. Therefore, the final formula can be rewritten as

hiop(X) = log

. (0N .
bron(X) = Jim_log FLL = im_ —log(a(0) =0 | - = 0%)

= _IOgM(‘T(O) =0 ‘ T(—c0,—1] = OOO)?
recovering a formula (in fact a more general one for topological pressure of Z¢ SFTs)
proved under different hypotheses in [15].

4. G—SUBSHIFTS

Throughout this section, G will denote a countable amenable group generated
by a finite set G = {g1, ..., g4} which is torsion-free, i.e. g" = e if and only if n = 0.
For any N = (Ni,...,Ng) € Z%, we define Gy to be the subgroup generated by

{g{vl,...,gévd}, and use G/GN to represent the collection {g -Gy : g € G} of left
G/(GN’ = NNy --- Ny.

We again must begin with some relevant facts and definitions. The following
structural lemma is elementary, and we leave the proof to the reader.

cosets of Gy. Clearly,

Lemma 4.1. For any amenable G and F € G, there exists N = (Ny, ..., Ng) € Z‘j_
such that for every nonidentity g € Gy, g- FNF = @.

As in the Z case, if v,w € Lp(A®) for some F € G, we define the function
O, : L(A®) — P(N) which sends a word to the set of locations where v appears as
a subword, i.e.

Oy(u) :={g9€G:0o4(u) € [v]}.
We also define the function R2~>* : O,(u) — L(A®), where R2?%(g) is the word
you obtain by replacing the occurrence of v at g - F' within u by w.

We now again must define a way to replace many occurrences of v by w within a
word wu, but will do this via restricting the sets of locations where the replacements
occur rather than the pairs (v, w). Wesay S C G is F—sparse if g- FNg'-F =&
for every unequal pair ¢g,¢' € S. When v,w € Lp(X) and S is F—sparse, we may
simultaneously replace occurrences of v by w at locations g- F', g € S by w without
any of the complications dealt with in the one-dimensional case, and we denote the
resulting word by Ry 7% (S). Formally, RY7"(S) is just the image of w under the
composition of RY 7" (s) over all s € S.

The following lemmas are much simpler versions of Lemmas 3.4 and 3.5 for
F-sparse sets.

Lemma 4.2. For any F, v,w € Lp(X), and F-sparse set T C O,(u), RL™" is
injective on subsets of T.

Proof. Fix F,u,v,w,T as in the lemma. If S # S’ C T, then either S\ S" or
S’\ S is nonempty; assume without loss of generality that it is the former. Then,
if s € S\ 9, by definition (RL7%(S))s+r = w and (RL7*(S"))s+r = v, and so
Ry7(8) # Ry (). O
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Lemma 4.3. For any F and v,w € Lrp(X), any F-sparse set T C O,(u), any u’,
and any m < |T N Oy (W')|,

T /
u,8) : S is F-sparse,|S| =m,S CT,uv' = RE7%(9)}| < 70 Ow(w)] )
“ m

Proof. Fix any such F,u',v,w,T,m as in the lemma. Clearly, for any S, S C
Ow(Ry7™(S)), and so if RY7™(S) = o/, then S C Oy(w'). There are only
(lTﬂO;;(ul)‘) choices for S C T N Oy (vw') with |S| = m, and an identical argu-
ment to that of Lemma 3.5 shows that for each such S, there is only one u for

which RY7%(S) = /. O

Whenever v,w € Lp(X) and Ex(v) C Ex(w), clearly RY7*(S) € L(X) for any
F-sparse set S C O,(u); this, along with the use of Lemma 4.1, will be the keys to
the counting arguments used to prove our main result for G-subshifts.

Theorem 4.4. Let X be a G—subshift, p a measure of maximal entropy of X,
F eG, andv,w € Lp(X). If E(v) C E(w) then

n(v) < p(w).
Proof. Take G, X, u, F', v, and w as in the theorem, and suppose for a contradiction

that p(v) > p(w). Choose any § € Q4 with § < M Let F,, be a Fglner
sequence satisfying Theorem 2.6. For every n € Z,, we define

S i= {1 € L, (X) :10u(w)] 2 |Ful (1(0) — 8) and [0y (w)] < | Fal (1) + 8)}
By the pointwise ergodic theorem (applied to X[, and X[u]), #(Sn) — 1, and
then by Corollary 2.7,
1 n
(5) lim 10819n] _ hiop(X).

n—00 n

Let N € Zi be a number obtained by Lemma 4.1 that is minimal in the sense
that if any of the coordinates is decreased then it will not satisfy the property of
the lemma.

We note that for every u € Sy, |O,(u)| — |Ow(u)| > 36|F,|. Therefore, for every

u € S, there exists h(u) € G/(GN such that

30

(6) |00 (w) N (u)] = |Ow(u) N A(w)| > | Fnl,

where M = ‘G/GN

For every u € Sy, define k,,(u) € N satisfying |O, (u) N h(u)| € [k (u)|Fy| 5y,
(kn(u) + 1) Fn | 37).
Using M = ‘G/GN‘ and the fact that 3 < k,(u) < %, we may choose S/, C S,

with S]] > ]|VIS;'/‘5, hy, € G/(GN and k, € N such that for every u € S/, we have

h(u) = h,, and ky,(u) = k,. This implies that for every u € SJ,
|0y (w) N Ay (w)] > (kn + 1)|Fn|%, and hence

0ul0) N ()] < (o — 2)| ol 3 (using (6)).
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By the pigeonhole principle, we may pass to a sequence on which h,, = h and
k, = k are constant, and for the rest of the proof consider only n in this sequence.
Let € € Qywith € < ﬁ. For each u € S, we define

Ay = {R.7Y(S) : S COyp(u)Nh and |S| =¢|F,|/M}

(without loss of generality we may assume e|F,| /M is an integer by taking a
sufficiently large n) .
Since Ex(v) C Ex(w), we have that A, C L(X). By Lemma 4.2,

g (1900HY 5 (B0
e|F,| /M e|F,| /M
On the other hand, for every v’ € | Ay, we have that

| Fl _ 8|F,|
0w () VB < 58 (ke = 2)8 +e|F - F7Y) < =0

u€eSy
(o — 1).

(here, we use Oy (w) N ()| < (kn — 2)|F| 2 plus |S| = ¢ |F,| /M and the simple
fact that a replacement of v by w in u can create at most |F- F'~!| new occurrences
of w.) Therefore, by Lemma 4.3,

Hue S :u e A} < (5(’97;'—1?711)||/F]&|/M>.

By combining the two inequalities, we see that

Skl Ful /MY (8(kn — 1)|Fal/MY "
(7) |Ln(X)|>ug%Au>|Sn|<€|Fn|/M>( e|F,| /M ) '

Now, we take logarithms of both sides, divide by |F},|, and let n approach infinity
(along the earlier defined sequence). Then we use the definition of entropy, the

inequality |57, > ]‘V[S;/l(sa (5), and Stirling’s approximation to yield
e [(ok. ok [ok Sk
hap () 2 by () + | (FrowF = (% 1) 1o (% 1))

- ((s(kE D 1o 5(1@; ) (5(1<;8 ) 1) og (5(111) - 1))}

Since the function zlogz — (x — 1)log(x — 1) is strictly increasing for z > 1,
the right-hand side of the above is strictly greater than h..,(X), a contradiction.
Therefore, our original assumption does not hold and hence p(v) < p(w). O
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