ON SUBSHIFTS WITH SLOW FORBIDDEN WORD GROWTH

RONNIE PAVLOV

ABSTRACT. In this work, we treat subshifts, defined in terms of an alphabet A
and (usually infinite) forbidden list 7, where the number of n-letter words in F
has “slow growth rate” in n. We show that such subshifts are well-behaved in
several ways; for instance, they are boundedly supermultiplicative in the sense
of [1] and they have unique measures of maximal entropy with the K-property
and which satisfy Gibbs bounds on large (measure-theoretically) sets.

The main tool in our proofs is a more general result which states that
bounded supermultiplicativity and a sort of measure-theoretic specification
property together imply uniqueness of MME and our Gibbs bounds.

We also show that some well-known classes of subshifts can be treated by
our results, including the symbolic codings of x — a + Bz (the so-called -
shifts from [13]) and the bounded density subshifts of [25].

1. INTRODUCTION

In this work, we study (one-dimensional) subshifts, which are symbolically de-
fined topological dynamical systems. A subshift can be defined in terms of a finite
set A (called the alphabet) and a set F of (finite) forbidden words on the alphabet;
the induced subshift is the set of all biinfinite sequences on A which do not contain
any word from F. An extremely well-studied case occurs when F is finite. The
induced subshift is then called a shift of finite type (or SFT), and the behavior of
SE'Ts is in many senses very well understood.

There are clearly only countably many SFTs, and so it is important to try to
understand the general case where F is infinite as well. A plausible heuristic is
that the longer a word w is, the less of an effect forbidding w has on the subshift.
Therefore, it seems reasonable to expect that if F is ‘small’ in the sense of having
numbers of n-letter words which grow slowly in terms of n, then X should be ‘close
to’ the class of SFTs and have correspondingly good behavior. However, there are
very few results in the literature of this sort. Some notable related works include [3]
(which used a hypothesis of slow growth of so-called one-sided constraint words to
prove various properties, including finitely many ergodic MMEs), [11] (which used
a hypothesis in terms of rapid convergence of entropies of SFT approximations of
X to prove uniqueness of MME), and [21] (which used a quantitative condition on
the sets F,, of n-letter words in F to prove nonemptiness). In this work, we show
that if | F,,| has slow enough growth compared to the alphabet A, then X has many
properties similar to those of irreducible SFTs.

The main such property that we derive is uniqueness of the measure of maximal
entropy (or MME), which we prove via a more general result which may be of
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independent interest. This result extends recent work (see, among other work, [5],
[6], [23]) using weakened specification properties as hypotheses. Much like the work
of Climenhaga and Thompson in [5] and [6], we require the ability to combine only a
restricted set of words, but rather than the prefix-center-suffix decomposition used
in their work, we instead require that this restricted set be measure-theoretically
large for MMEs.

Theorem 3.2. If X is a subshift, there exists C so that |L,(X)| < Ce™™X) for all
n, there erist G C L(X) and R € N where for all v,w € G, there exists y € AT so
that vyw € L(X), and for every ergodic MME u, there exist € > 0 and a syndetic
S so that u(G,) > € for every n € S, then X has a unique measure of maximal
entropy.

We then prove that ‘small’ F implies the three hypotheses of Theorem 3.2 (in
fact for R = 0, meaning that words in G are actually concatenable). We begin
with the upper bound of the form Ce™(X) on |£,(X)|, which is called bounded
supermultiplicativity in [1].

Theorem 4.3. If there exists 3 < 2h(X)—log |A| for which > 07, n|F,le ™ < %,
then |L,(X)| < 4e™™X) for all sufficiently large n.

The other two hypotheses of Theorem 3.2 require a set G; we define it to be the
set of ‘good’ words which neither begin nor end with more than one-third of a word
in F. (See Section 5 for details.)

Theorem 5.5. If there exists ¢ > |A|™' so that Y oo |Fnlc™ < WTC_l and
S0 n|Fule™? < 1/4, then for any v,w € G, vw € L(X).

Theorem 6.5. If there evists a < h(X) so that o0 n?|F,le” (/3 < 1 — e,
then for every ergodic MME u on X, there exist € > 0 and a syndetic set S so that
w(Gp) >¢€ foralln e S.

We can then use Theorems 3.2, 4.3, 5.5, and 6.5 to prove uniqueness of MME,
and even the Kolmogorov or K-property for that measure, via a simple quantitative
condition on F.

Theorem 7.2. If 500 n?|F,|(3/|A)™/? < &

a6, then X has a unique MME, which
has the K-property.

We can also prove a restricted Gibbs property for p under slightly stronger
hypotheses. Again, we first prove a more general result, requiring a slightly stronger
weakened specification property than Theorem 3.2.

Theorem 3.4. If X is a subshift with unique MME u, there exists C' so that
1L, (X)| < Ce™™X) for all n, there exist G' C L(X) and R € N so that for all
u,v,w € G', there ewist y,z € AT for which uyvzw € L(X), and there also exist
e > 0 and a syndetic S so that u(G.) > € for everyn € S, then G’ has the following
Gibbs property: there exists D so that for all w € G',

pl[w]) = De I,

Since this requires a stronger specification property than that of Theorem 3.2,
verifying this for general subshifts with ‘small’ F requires a slightly different defini-
tion; we define G’ to be the set of words which neither begin nor end with more than
one-fourth of a word in F. (See Section 5 for details.) Via simple modifications to
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the proofs of Theorems 5.5 and 6.5 adapted to G’ (and again using R = 0), we can
prove the following.

Theorem 7.3. If 307 n?|F,|(3/|A)™/* < & and p is the unique MME on the
induced subshift X (quaranteed by Theorem 7.2), then there exist ¢ > 0 and a
syndetic set S so that u(Gl,) > € for all n € S, and there exist constants D, D’ so
that for all w € G,

De~IwIMX) < w(w]) < D' e lwlh(X)

Remark 1.1. We would like to briefly compare and contrast Theorems 7.2 and
7.3 with the main results from [3], which are some of the most similar that we are
aware of. In [3], the author considers so-called minimal left (or right) constraints,
which are words w with the property that there is a word v which cannot legally
follow (or precede) w, but which can when the first (last) letter of w is removed.
Under the hypothesis that the exponential growth rate

1
lim sup — log |C,, (X)]
n

(here C,(X) could represent the n-letter minimal left or right constraints) is less
than h(X), many useful properties of X are derived, including finitely many ergodic
MMEsS, each of which is Bernoulli up to some periodicity.

To summarize: our conclusions are similar to those of [3], but some are weaker
(e.g. Kolmogorov vs. Bernoulli) and some are stronger (e.g. uniqueness of MME vs.
finitely many ergodic MME and our Gibbs bounds). Our hypotheses are similar in
that they involve bounding the size of certain sets from above, but our assumptions
are ‘finer’ in the sense that they require explicit upper bounds on infinite series.
We also require different bounds, in that our sets must grow with rate less than
|A|"/3 rather than rate less than ¢”X). Finally, there is always a forbidden list
F (the so-called first offenders/minimal forbidden words) where |F, 41| < n|C,(X)]
for every n (see Lemma 15 from [3]), and so the sets we consider essentially grow at
most at fast as those considered in [3]. They may in fact be much smaller, since a
subshift X may have other forbidden lists with much slower growth (see examples
on p. 389 of [3].)

Finally, we apply our techniques to some well-known classes of subshifts. The
first is the a-3 shifts of [13] (denoted by X, g). These shifts have corresponding
sets o g of forbidden words and G, 5 of words which do not begin or end with
more than one-fourth of a forbidden word (see Section 8 for details).

Theorem 8.5. For every £, there exists € > 0 so that if « <€, § > ¢ —¢€, and
a+ B < L, then X, p satisfies the conclusions of Theorems 7.2 and 7.8 (with
G =G ;)

a,B

Our other application is to the bounded density shifts (denoted by Xy, ) from
[25], as well as a natural generalization which we call signed bounded density shifts
(denoted by X ;th) These shifts have corresponding sets Fy , (and fih) of forbid-
den words and sets Gy, 5, (and Gih) of words which do not begin or end with more
than one-third of a forbidden word (see Section 8 for details).

Theorem 8.10. If k > 9¢, h(n) = nk for n <11 and h(n) > nk(1 — 5-) for all n,
then Xy p satisfies the conclusions of Theorems 7.2 and 7.3 (with G' = Gy ).
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Theorem 8.11. If k > 9¢, h(n) = nk for n <11 and h(n) > nk(1 — g-) for all n,
then X,ih satisfies the conclusions of Theorems 7.2 and 7.3 (with G' = Gih).

Section 2 contains definitions and preliminary results which we will need. Sec-
tion 3 contains the proofs of Theorems 3.2 and 3.4, Section 4 contains the proofs of
Theorem 4.3 and related results, Section 5 contains the proofs of Theorem 5.5 and
related results, Section 6 contains the proof of Theorem 6.5 and related results, and
Section 7 contains the proofs of Theorem 7.2 and 7.3. Finally, Section 8 contains
proofs of Theorems 8.5, 8.10, and 8.11.

2. DEFINITIONS AND PRELIMINARIES

We begin with some basic definitions from symbolic dynamics; for a more in-
depth introduction, see [20].

Definition 2.1. For any finite alphabet A, the full shift over A is the set A% =
{...x_1x021... : m; € A}, which is viewed as a compact topological space with
the (discrete) product topology.

Definition 2.2. A word over A is any member w = w; ...w, of A" for some
n € N; n is called the length of w and denoted by |w|. The set of all words over A
is denoted by A*.

For any set of words S C A*, we make the notation S,, := .S N .A™.

Definition 2.3. A word w is a subword of a longer word or biinfinite sequence
x if there exists n so that x, ... 2, jwj—1 = w1 ... w},. We say that w is a pre-
fix of a longer word v if v1... v}y = w1...w)y|, and that w is a suffix of v if
Uy|—|w]+1 -+ - Vo] = W1 .- - Wey|-

We will colloquially refer to words as being the same if they are shifts of each
other, i.e. in the above definition, we would usually say =, ... T, |y-1 = w, even
though these words technically have different domains when viewed as functions.

Definition 2.4. The shift action o is the automorphism of a full shift defined by
(02)p = xpy for n € Z.

Definition 2.5. A subshift is a closed subset of a full shift A% which is invariant
under o.

Any subshift X is a compact space with the induced topology from A%, and so
(X, 0) is a topological dynamical system. Subshifts can be equivalently defined in
terms of a set of ‘forbidden’ words.

Definition 2.6. For any alphabet A and F C A*, define the subshift induced
by A and F as

X = X(A,F):={x € A® : z contains no subword in F}.

It is well known that any X (A, F) is a subshift, and that all subshifts are repre-
sentable in this way.

Definition 2.7. The language of a subshift X, denoted by £(X), is the set of all
words which appear in points of X. For any n € Z, £,(X) := L(X) N A", the set
of words in the language of X with length n.



ON SUBSHIFTS WITH SLOW FORBIDDEN WORD GROWTH 5

Definition 2.8. For any subshift and word w € £,(X), the cylinder set [w] is
the set of all x € X with z125...2, = w.

Definition 2.9. The topological entropy of a subshift X is

. 1
hX) = nl;rrgo - In|L,(X)].
The existence of this limit follows from a standard subadditivity argument, which
also implies that the limit can be replaced by an infimum, i.e. for any n, h(X) <
L1In|L,(X)], or equivalently

(1) |La(X)] 2 "

Definition 2.10. For any subshift X C A% and any k € N, the kth higher power
shift associated to X, denoted X¥, is a subshift with alphabet L;(X) defined by
the following rule: y € (£(X))% is an element of X* if and only if the sequence
x € A? defined by concatenating the ‘letters’ of y is in X. (Formally, Vn € Z, the
nth letter of x is defined to be the (n (mod k))th letter of y|, k)

It is well-known that the dynamical systems (X*, o) and (X, o*) are topologically
conjugate, and that h(X*) = kh(X).

We also need some definitions from measure-theoretic dynamics; all measures
considered in this paper will be Borel probability measures on a full shift A%.

Definition 2.11. A measure p on A”? is ergodic if any measurable set C' which is
shift-invariant, meaning u(CAoC) = 0, has measure 0 or 1.

Not all g-invariant measures are ergodic, but a well-known result called the
ergodic decomposition shows that any non-ergodic measure can be written as a
“weighted average” (formally, an integral) of ergodic measures; see Chapter 6 of
[26] for more information.

One of the main strengths of ergodic measures is Birkhoff’s pointwise ergodic
theorem.

Theorem 2.12. (Birkhoff’s pointwise ergodic theorem) For any ergodic measure
w on a subshift X and any f € L'(A%, ),

n—1
. ;
Jm g 2 St 2 [ S e

There is also a measure-theoretic version of entropy.

Definition 2.13. For any o-invariant measure y on a full shift A%, the measure-
theoretic entropy of u is

) o= T 2 S (] (),
weA™

where terms with p([w]) = 0 are omitted from the sum.

Ergodicity and measure-theoretic entropy are connected by the classical Shannon-
McMillan-Brieman theorem.
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Theorem 2.14. (Shannon-McMillan-Brieman theorem) For an ergodic measure
on a full shift AZ,

lim = log p([z1 ... 25])

n—00 n

both p-a.e. and in L' ().

— h(p)

Measure-theoretic and topological entropies are connected by the famous Varia-
tional Principle.

Theorem 2.15. (Variational Principle) For a subshift X, h(X) = sup,, h(u), where
the supremum is taken over all o-invariant measures p with p(X) = 1.

Definition 2.16. For any subshift X, a measure of maximal entropy on X is
a measure p with support contained in X for which h(u) = h(X).

It is well-known that every subshift has at least one measure of maximal entropy,
and the ergodic decomposition and affineness of the entropy map (see Theorem
8.7(i1) in [26]) imply that if X has multiple measures of maximal entropy, then it
has multiple ergodic measures of maximal entropy.

Definition 2.17. A measure p on a subshift X is said to be Kolmogorov or have
the K-property if there exists a o-algebra K contained in B(X), the o-algebra
generated by all shifts of cylinder sets of words in £(X), with the following prop-
erties:

e K Cok
o \/>° ,0"K =B up to equivalence of sets with p-null symmetric difference
e (N2 ,0"K ={@, X} up to equivalence of sets with p-null symmetric difference

Among other properties, Kolmogorov p have very strong mixing properties, and
every non-trivial measure-theoretic factor has positive entropy. (See [26] for more
information.)

Finally, we need some basic definitions about sets of natural numbers.

Definition 2.18. A set S C N is syndetic if there exists N so that {k,...,k +
N —1} NS # @ for every k; we then say that N is an upper bound on the gaps of
S.

Definition 2.19. The lower density of a set S C N is

1,...
1iminfM.

n— 00 n

We note the easy fact that if S has lower density greater than %, then S+ S =
{s1+s2 : s1,82 € S} is cofinite. Indeed, for large n, |SN{1,...,n}| > n/2, which
implies that S contains either n/2 or some pair k,n — k and so that n € S+ S.

Finally, we need two preliminary results for our proofs. The first is an argument
of Miller from [21], where he showed that under certain quantitative assumptions
on A and F, the induced subshift X (A, F) is nonempty. His results applied to
one-sided subshifts (i.e. indexed by N rather than Z). We will eventually need two
different adaptations of his original argument, which we present here for context.



ON SUBSHIFTS WITH SLOW FORBIDDEN WORD GROWTH 7

Theorem 2.20. ([21]) If F C A* and there exists ¢ > |A|~! so that
Z vl < Ale -1,
vEF

then the one-sided shift X (A, F) C AY is nonempty.

Proof. Define, for every w € A*, the weight function

felw) := Z Z el

veF reA*:|r|<v|,
wr ends with v

It is clear that f.(&) = 0, where & is the empty word. Now, we note that for
any w,

Z fe(wa) = Z Z crl = Z claT\—1+Z Z clar|—1

acA vEF,a€A reA*:|r|<|v|, areF vEF arcA*:|ar|<|v|,
war ends with v w(ar) ends with v
1
= E E Clvl + fc(w) .
veF

If fo(w) < 1,then 3", 4 fe(wa) = L (3, cr e+ fo(w)) < 2(|Ale—1+1) = |A].
This implies that there exists at least one a € A so that f.(wa) < 1. However, now
by induction we can begin with &, which has weight 0 < 1, and inductively add
letters, creating a sequence ajas ... containing no words from F. This sequence is
in X (A, F) by definition.

O

We will also need a combinatorial tool known as the Pliss Lemma (see [24]).

Lemma 2.21. If (a,) is a sequence satisfying 0 < a, < A for all n, a =
liminf(a; +... 4+ an)/n, and B < «, then the set

{n : YO<k<n,(ar1+...+an)/(n—k) > B}

a—

has lower density at least T—g'

3. GENERAL ARGUMENTS FOR UNIQUENESS OF MME AND (GIBBS BOUNDS

In this section, we describe a general theorem which implies uniqueness of MME,
which is an extension of the main result of [23] using a new measure-theoretic
specification property. We first need the following elementary lemma from [23]
(presented without proof). The result there was for general expansive systems and
equilibrium states for nonzero potentials, but here we state a much simpler version
for subshifts and measures of maximal entropy (corresponding to zero potential).

Theorem 3.1. If X is a subshift, u is an ergodic MMFE on X, and S C A", then

1
u(S) —
1] 2 () |2, (X)) 25,
We can now state our main uniqueness criterion.

Theorem 3.2. If X is a subshift, there exists C so that |L,(X)| < Ce™X) for all
n, there exist G C L(X) and R € N where for all v,w € G, there exists y € AT so
that vyw € L(X), and for every ergodic MME i, there exist ¢ > 0 and a syndetic
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S so that u(G,) > € for every n € S, then X has a unique measure of maximal
entropy.

Proof. Our technique is extremely similar to that from [23]; that proof applied
to arbitrary expansive systems and equilibrium states for nonzero potentials, and
so here we reframe the argument for our simpler setting of a subshift and zero
potential/ MMEs.

Assume that X has the properties from the theorem, and assume for a contra-
diction that X has unequal ergodic MMEs p and v. By assumption, there exist
0 > 0 and syndetic sets A, B so that u(G,) > ¢ for all n € A and v(G,,) > ¢ for
all n € B. Unequal ergodic measures are mutually singular, and so there exists a
clopen set T so that p(T'),v(T°) < §/5. Choose N large enough that it is greater
than R, is an upper bound on the gaps in A and B, and so that T' can be written
as a union of cylinder sets of length N.

Then, as was done in [23], we can use the maximal ergodic theorem (specifically,
Corollary 2.12 from [23] for f = xr and A = 2/5), to define, for every n, W,, C
L, (X) with pu(W,) > 1 —§/2 so that every prefix of every w € W,, has number of
subwords in T less than 2/5 its length. Similarly (by using f = xre, A = 2/5, and
o~ ! rather than o), for every n, we define V,, C £,(X) with v(V},) > 1—§/2 where
every suffix of every v € V,, has number of subwords in T¢ less than 2/5 its length.

For every n, define V,, = V,, N G,, and W) = W,, N G,; then pu(W)) > §/2
for n € A and v(V,)) > §/2 for n € B. By Theorem 3.1 and the assumed upper
bound on £, (X), there is a constant E so that |W/| > Ee™™X) for n € A and
V| > Ee™X) for n € B. Now, for large enough n, we will create too many words
in L,4;(X) for some 0 < ¢ < 3N (achieving a contradiction) by using the assumed
property of G to combine words in V; and Wy, for various lengths j, k.

Specifically, for every 0 < i < n/6N, by definition of N, there exist s,t € [0, N)
so that 66N +s € A and n — 6iN +t € B. This implies that there is a set
C C [0,n/6N) of i-values with |C| > &3z so that all i € C share the same s,;
we will from now on only refer to ¢ € C and treat s,t as independent of 7. Now,
for every i € C and every v € Vi o, w € W] _gn;yy, v and w are in G, and so
there exists y € A so that vyw € L4511+ r(X) by assumption. Clearly, for fixed
i, all pairs (v, w) yield different words vyw. We claim that distinct values of ¢ will
also always yield different words. To wit, choose any i1 < iy and any vy € V{ Niytso
V2 € Viniyas W1 € W) _gniive, and wo € W)y, define y1,2 € A® so that
V11w, vayawe € L(X), and suppose for a contradiction that v1y;wr = vayswa.

Then the word occupying locations 6Ni; + s + R + 1 through 6/Nig + s, call it
u, is both a prefix of w; and a suffix of v5. Then u has number of subwords in
T less than 2/5 its length and number of subwords in T¢ less than 2/5 its length.
However, u contains more than |u| — N N-letter subwords, which is greater than
(4/5)|u| since |u] = 6N (ia —i1) — R > 5N, and so we have a contradiction.

We now know that all i € C' and pairs v, w yield distinet words in £,4 5114 r(X),
and so

Lntan (X)] = [Lopsrerr(X)] 2D Ve Wh_gin| = e V) (n/6N?) B2l MR,
ieC
This clearly contradicts the assumed upper bound on |£,,(X)| for large enough n,

and so our original assumption was wrong, and X has a unique MME.
O
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Remark 3.3. This proof would go through with few changes even if words from
G were combinable with a gap which is not constant, but grows sublogarithmically
as a function of the lengths of the combined words (this was the type of hypothesis
originally used in [23]). However, we are aware of no simple examples which require
this more complicated hypothesis along with reduction to the subset G.

With a slightly stronger weakened specification hypothesis, we can also prove a
Gibbs lower bound on G for the unique MME.

Theorem 3.4. If X is a subshift with unique MME u, there exists C' so that
1L, (X)] < Ce™™X) for all n, there exist G' C L(X) and R € N so that for all
u,v,w € G', there exist y,z € AT for which uyvzw € L(X), and there also exist
€ > 0 and a syndetic S so that u(Gl) > € for everyn € S, then G' has the following
Gibbs property: there exists D so that for all w € G,

u([w]) = De~ 1),

Proof. By an argument of Walters [26], we may explicitly construct an MME on X
as follows. For every n and every w € £,,(X), choose any z(w) € [w]. For each n,
define

1 i
Vp = m Z 4 o Oéaz(u))-
weLy(X),0<i<n
Then, any limit point of the measures v, (in the usual weak-* topology) is an MME
on X (see Theorem 8.6 from [26]). Since we already know p is the only MME on
X, vy, — p weak-*. By Theorem 3.1, the assumed upper bound on |£,(X)|, and
the assumed fact that u(G.,) is bounded away from 0 along a syndetic set S, we
know that there exists E > 0 so that |G’,| > Ee~""MX) for all n € S. Choose any
N which is both greater than R and an upper bound on gaps of S.

Now, suppose v € G’, and fix any n > |v| + 3N. Choose any N + R < i <
n— N — R — |v|; we wish to give a lower bound on the number of w € £,,(X) which
contain v starting at distance ¢ from the beginning of w. By definition of N, there
exist j€ (i—R—N,i—RnSandke€(n—|v|]-R—i—N,n—|v] - R—1i]NS.
We know that for every u € G; and w € G, there exist y, z € A so that uyvzw €
Ly jvl+2r+k(X). This yields at least |G||G}| > E2eU+RMX) > F2e(n—|v|=4N)h(X)
words in L4 |y|+2r+%(X), and by extending each arbitrarily to the left by i —j — R
letters and to the right by n—|v| — R—i—k letters, we get at least E2e("~[vI=4N)A(X)
words in £,,(X) containing v starting at distance ¢ from the beginning. This implies
that

1 )
Vn([UD = TL|,C (X)| Z 0'7'O(Sa:(w)
n weLy(X),0<i<n
n—N—|v|-R—1 —|v|—
> 1 Z E2e(n=Ivl—4N)h(X) _ "~ [v] — 2N — QR.EZQ(" el —4N)R(X)
~ n|Ln (X)) n [£n (X))

i=N+R

. . 2 —|v
By the assumed upper bound on |£,,(X)|, liminf v, ([v]) > %e [v[A(X) |
2
and so u([v]) > W(g*\ﬂh@(), completing the proof.

O
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We recall that with even weaker hypotheses, one can prove a similar upper Gibbs
bound for every word in £(X); this essentially appears in [5] as Lemma 5.12, but
we restate here to make clear the hypotheses that are required.

Theorem 3.5. If X is a subshift with a unique MME u and there exists C' so
that |L£,(X)| < Ce™X) for all n, then there exists a constant D' so that for all
w e L(X),

() < D),

Proof. Just as in the proof of Theorem 3.4, we know that the unique MME p is the
weak-* limit of the measures

1 .
Vp = m Z 4 olo 5x(u,).
weLy(X),0<i<n
Choose any v € L(X), and any n > |v|. Then, for every 0 < i < n — |v|, we
can easily give an upper bound on the number of w € £,,(X) which contain v
starting at distance ¢ from the beginning of w; it is obviously less than or equal
to [L£;(X)||Ln—i—jv)(X)], which is in turn less than or equal to CZe("~IPDA(X) by
assumption. For other values of 7, we make the trivial observation that this number
is not more than |£,(X)|. Therefore,

1 .
vn([v]) = ———— 0" 0 0y(w
D= 2,
n—|v| n—1 _
1 er—loDR(X) |y
< — C2e(n—IvDh(X) 4 1L, (X)| | < C*P—u— .
WL | 2 L e .00 T

By (1), |£,(X)| > e™X) for all n, and so limsup v, ([v]) < C2e~VI"X) This
implies that u([v]) < C?e~1"I"(X) and completes the proof.
(]

The remainder of this paper will be devoted to showing that if our forbidden
list F is ‘small’ (in the sense of slow growth rate of |F,|), then X satisfies the
hypotheses of Theorems 3.2, 3.4, and 3.5. We in fact will always be able to verify
these hypotheses for R = 0, meaning that the sets G/G’ are actually concatenable
rather than just being combinable with constant gap.

4. UPPER BOUNDS ON |L,(X)|

From now on, we consider subshifts of the form X (A, F), and will assume that
X refers to this subshift unless explicitly stated otherwise.

In this section, we will show that ‘small’” F implies an upper bound of the form
|£,(X)| < Ce™X) . We first adapt Miller’s proof of Theorem 2.20 to yield a simple
lower bound on entropy.

Theorem 4.1. If there exists ¢ > |A|™! and k < |A| so that 3,z 'l < c(|A] —
kE+1)—1, then h(X) > logk.

Proof. The proof is extremely similar to that of Theorem 2.20. We simply recall
that for every w € A*, Y, o4 fo(wa) = ¢! (3, c 7 ¢/l + fo(w)), and so under the
hypotheses of the theorem, f.(w) < 1= . 4 fe(wa) < |A|—k+1, implying that
there are at least k letters a so that f.(wa) < 1. If we define X’ to be the one-sided
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subshift induced by A and F, then since f.(&) = 0 < 1, we can prove by induction
that |£,(X")| > k™ for all n, and so that h(X') > logk. We need to consider the
two-sided subshift X induced by A and F instead, but this is well-known to have
the same entropy (it is the so-called natural extension of X’), which completes the
proof.

O
We will also need a simple corollary from the Pliss lemma to derive a technical
result about the behavior of ratios %

Theorem 4.2. For any subshift X and 8 < 2h(X) — log|A|, the set

Ln(X] o & }
S::{n D VE <n, 2 > ek
L (X))

has lower density greater than %

Proof. This is an immediate corollary of the Pliss lemma with a,, = log|£,,(X)| —
log|L£n—1(X)|, @« = h(X), A = log | A|; note that ay,—g41+. . .+a, = log (M),

[Ln—r(X)]
and that i;_’g > 1 since B < 20 — A.

O

We are now prepared to prove the main result of this section.

Theorem 4.3. If there exists B < 2h(X)—log |A| for which Y o> n|Fule "’ < &,
then |L,(X)| < 4e™™X) for all sufficiently large n.

Proof. Fix any X and f as in the statement. We first use Theorem 4.2 to define
the set S = {n : Vk < n, % > €kP} of lower density greater than 1. Fix
any n € S.

We will view letters of £, (X) as an alphabet (for this proof, reference to a
‘letter’ always means an element of £,(X)), and define a new set of forbidden
words F" C (L£,(X))*. We say that v € F™ if the concatenation of the ‘letters’
V1yene U € Ln(X), viewed as a word over A, contains some w € F, and if neither
the concatenation of vy, ..., v, _1 nor the concatenation of v, ..., v, contains w.
It should be clear from this definition that the alphabet £, (X) and forbidden list
F) induce the nth higher power subshift X™.

We first wish to bound from above the number of words in (F() j for each j. It
is obvious that (F(™); is empty for all n since our ‘letters’ £,,(X) do not themselves
contain words in F. So, if v € F™ then j > 2 and v (viewed as a concatenation)
contains some w € F. By the fact that v has no proper subword containing w, we
know that w has length between (j — 2)n + 2 and jn, and we can parametrize by
the length of w, which we call 4, and the distance from the beginning of v to the
first letter of w, which we call k. Then for any i, the value of k£ can be anywhere
from (j —1)n —i —1 to n — 1. Also, for each k, v is determined by w, k, and the
portions of the first and last ‘letters’ of v not contained in w; these have lengths k
and jn — ¢ — k, which are both less than or equal to n. This implies that

Jjn n—1

(2) (Fl< >0 > FEILONL ik (X))

i=(j—2)n+2 k=(j—1)n—i—1
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We now note that by definition of .S, for each k,

. _ 2 |k (X |£jn—i—k(X))|
3) LX) Ljn—i—k(X)| = L0 (X)] Zn ] 1La (Y]

< |/;n(X)2|e(fn+kfn+(jnfifk))ﬁ < |£n(X)2|e(fi+(jf2)n)B'

Combining (2) and (3) yields
jn
(4) (FO) < ILaOP Y0 ifFifelmHUm2me,
i=(j—2)n+2

We now use Theorem 4.1 and (4) to bound the entropy h(X"™) = nh(X) of
X" from below. In particular, we claim that if n is sufficiently large (and in
S), the hypotheses of Theorem 4.1 are satisfied for ¢ = m, alphabet £, (X),

k= W, and forbidden list (™). The relevant inequality we must verify is then

J (n) C|£ ( )| 1= l
(5) Z JI|(F 5 5"
We now just bound from above the left-hand side of (5) using (4):
(6) ZC]K]'—(H))J'\ < Z <|L‘(X)> L (X)[2el =28 Z i|File~i#
j=2 j=2 " i=(j-2)n+2

We recall by (1) that |£,(X)| > e™™X) for all n. Therefore, for every j,
(7)

j o . -
2V g, ppetizme - T ST g (ntshon)
|£n(X)| |£ ( )|J‘—2 e(i—2)nh(X) .

Since # < 2h(X) — log|A| < h(X), for large enough n, e"#~"MX)) < 1/3 meaning
that the expression in (7) is less than 9 for all k. Combining with (6) yields, for
sufficiently large n € .S,

oo fe’e) Jjn %)
S AFM; <Y Y iFEle <18 ilFle
j=2

J=2i=(j—2)n+2 i=2

which is less than 1/2 by assumption. We have then demonstrated (5), and so
R(X™) = nh(X) > log(|£,(X)|/2), implying |L,(X)| < 2¢™X) for sufficiently
large n € S. Denote by S’ the cofinite subset of S for which this inequality holds.
Since the lower density of S is greater than , the same is true of S’, meaning that
S’ +.5" is cofinite. Therefore, for all suﬂimently large n, we can write n = s; + sy for
s1,82 € S, and then |£n(X)| < |Lsy (X)) L5, (X)) < 2eslh(X)2652h(X) = 4enh(X),
O

5. DEFINING G AND G’ WITH CONCATENABILITY PROPERTIES

Our G and G’ will be defined as words which do not begin or end with subwords
of words in F which are too long.

Definition 5.1. A heavy subword is a subword of some w € F whose length is
at least |w|/3. Denote by H the set of heavy subwords.
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Definition 5.2. For any subshift X with forbidden list F, define P to be the set
of all words in £(X) which do not have any heavy subword as a prefix, define S to
be the set of all words in £(X) which do not have any heavy subword as a suffix,
and define G=PNS.

It is immediate that the concatenation of two words in G cannot contain a
forbidden word (such a forbidden word would contain a heavy subword in one of
the concatenated words!). To prove that such a concatenation is actually in £(X),
we will need a version of Miller’s proof of Theorem 2.20 adapted to two-sided
subshifts. We first define a two-sided analogue of his weight function.

Definition 5.3. If 7 C A* and ¢ > 0, for any w € A* we define

ge(w) := Sy Y e ST e

VEF | LEA”:EI<]v], rEA”r|<|v], £,reA™:|E],|r[>0,
fw begins with v wr begins with v lwr=v
We make the trivial observation that if w begins with, ends with, or is equal to
some v € F, then g.(w) > 1.

Theorem 5.4. If there exists ¢ > |A|™! so that

- n |'A|Ci]'
> | Falen < >

n=1

then any w containing no word from F and satisfying g.(w) < 1 is in L(X).

Proof. Our proof is essentially just a more complicated version of the proof of
Theorem 2.20 adapted to the two-sided setting. The fundamental claim we wish to
verify is that for every w,

(8) Z ge(awb) < 2|Alc™? Z | Fnlc™ + | Al ge(w).

a,be A n=1
Once this is verified, we would know that whenever g.(w) < 1,
Ale -1
S gelawb) < 2041 AL 4 g = ap,
a,be A

implying that there exist a,b € A for which g.(awb) < 1. Continuing in this way
yields sequences (a,,) and (b,,) so that g.(ay, ...ajwb; ...b,) < 1 for all n, implying
that a,, ...ajwb; ... b, does not begin with, end with, or equal any v € F for every
n. Then, the biinfinite sequence ... asaiwb1bs ... contains no word in F, and so is
in X, implying that w € £(X). It remains to verify (8).

Fix any w, a, and b. Then by Definition 5.3,

© > gelawd) =

a,be A
E E P + E ol +92 E clel+Ir]
vEF,a,beA LeA*:|e|<v], reA":|r|<|v|, Lre A*:|e],|r|>0,

lawb begins with v awbr begins with v Lawbr=v
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We will rewrite each of the three terms on the right-hand side of (9).

24) Y oo A= Y >

veF,a,be A LeA*:|l|<]|v], vEF,acALeA*:
Lawb begins with v la=v

VD SR SRR U FU SR ST

vEF,a€A Le A*:|L|< |v]|,Lav, veEF,a,beEA L A*:
faw begins with v Lawb=v

— Al S el At Y T a2y Y el

La€F vEF,a€A flacA*:|la|<|v|, vEF Lac A*,bEA:
(fa)w begins with v (La)wb=v
)

(In (I11)

@B) > d>oooodh=g Y >

veEF,a,be A reA*:|r|<|v|, veF,beArc A*:
awbr ends with v br=v

+1A > 3 A S

vEF,bEALeA*:|r|<|v],brAv,awbrAv, veEF,a,be A re A*:
awbr end with v awbr=v

= IA\c* Z clorl +|A|c’1 Z Z bl 4 =2 Z Z Aal+lor]

breF vEF,bEB rbe A":|rb|<|v], vEF ac Abre A”:
w(br) ends with v aw(br)=v
(1v)

V) (V1)

(20) 2 > 3 I = 92 37 3 cleal+ibr]

veF,a,be Al re A :|£|,|r|>0, vEF La,breA*:|lal,|br|>1,
Lawbr=v (La)w(br)=v

(VII)

(In (T), (I1), (IV), and (V), the factor of |.A| comes from removing the summation
over either a or b in a constant quantity.) We now bound the right-hand side of (8)
from below.

2|A\c-1§j|fn|c”+|A|c-1gc<w>—2|A|c12|f IV DR DL

n=1 VEF  LEA™:||<]v],
fw begins with v

|Alc! Z Z drl 2 Al Z Z I >

veF reA*:r|<|v|, veF Lire A*:|¢|,|r|>0,
wr begins with v Lwr=v

2| Ale ’IZIf At S ey

vEF LeA:|I<]v],
fw begins with v

(a)
(b)
|Ale™? E E Il 4 2¢72 g g il
veEF reA*:r|<|v|, veF L,re A*:|¢|,|r|>0,
wr begins with v lwr=v

(e (d)
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(The final inequality uses the fact that ¢ > |.4|71.) We now claim that the portions
(I) - (VII) of (2A), (2B), and (2C) are all present in (a) - (d).

Specifically, (I) + (IV) = (a), (II) < (b) and (V) < (¢), and (I1I) + (VI) +
(VII) < (d) ((VII) corresponds to the case |¢|,|r| > 1in (d), (IIT) to |[¢| > 1 and
|r| =1, and (VI) to |¢(| =1 and |r| > 1; |¢| = |r| = 1 is counted in both (III)
and (V1), but this is taken care of by the factor of 2 in (d)). This verifies (8) and
completes the proof.

(]

We are now prepared to prove that for ‘small’ F, v,w € G = vw € L(X).

Theorem 5.5. If there exists ¢ > |A|™' so that Y .o |Fnlc™ < IA\%*I and
S n|Fale™? < 1/4, then for any v,w € G, vw € L(X).

Proof. This is essentially just an application of Theorem 5.4. Assume that v,w € G.
Since v and w do not begin or end with a heavy subword, any subword of a word
u € F contained in vw has length at most 2|u|/3. Therefore, for any c,

(10)
ge(ow) = 3 S g S ez Y e
teF LeA™:|e|<]t], reA*:|r|<|t], Lre A*:|¢],|r|>0,
fvw begins with ¢ vwr begins with ¢ Lvwr=t
S
< Z 4tct’3 =4 Z n|Fnlc/3.
teF n=1

Therefore, g.(vw) < 1 = (|A|e — 1)/2 by assumption, and by Theorem 5.4, vw €
L(X).
O

We can now similarly define G'.

Definition 5.6. A heavy’ subword is a subword of some w € F whose length is
at least |w|/4. Denote by H' the set of heavy subwords.

Definition 5.7. For any subshift X with forbidden list F, define P’ to be the set
of all words in £(X') which do not have any heavy’ subword as a prefix, define S’ to
be the set of all words in £(X) which do not have any heavy’ subword as a suffix,
and define G' = P'NS".

We omit the proof of the following, since it is analogous to the proof of Theo-
rem 5.5.

Theorem 5.8. If there exists ¢ > |A|™' so that Y oo |Fnlc™ < WTC_l and
S n|Fulevt < 1/4, then for any u,v,w € G, wvw € L(X).

6. BOUNDING u(G),) AND/OR pu(G)) AWAY FROM 0

The final hypothesis we must prove is that the sets G,, and/or G}, have measures
bounded away from 0 along a syndetic set for any ergodic MME; we begin by
working with G,, via P, and S,,. Our proof will use some results from [22] about a
class of subshifts called coded subshifts, which we now define.
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Definition 6.1. Given a set C C A* of code words, the coded subshift induced
by C'is the closure of the set of shifts of biinfinite concatenations of words from C.

Recall that ‘H denotes the set of heavy subwords.

Theorem 6.2. If there exists a < h(X) so that > - | [Hyle ™ < 1—e"®, then
for every ergodic MME p on X, u(P,) and u(Sy) are bounded away from 0.

Proof. Formally, define P,, = {x : x([0,n)) € P,}; then u(P,) = u(P,), and
P; D Py D .... Therefore, we need only prove that u(P,) - 0. For a contradiction,
assume that p(P,) — 0. Choose any € > 0, and take N s.t. u(Py) < e. For every
n, define

Wp={weL,(X):{0<i<n—N : w(i,i+ N)) € Py} < 2ne}.

By Birkhoft’s ergodic theorem (applied to f = x5, ), #(Wn) — 1, and so by the
Shannon-McMillan-Brieman theorem,

(11) lim inf % s h(y) = h(X).

We will now give a procedure to bound |W,,| from above. Choose any w € W,
begin at ¢ = 0, and iterate the following procedure: if w([i,i + N)) ¢ Py, then
there exists k < N so that w([i,? + k)) is a heavy subword; increment 4 to ¢ + k. If
w([i,i+ N)) € Py, then change w(7) to a * symbol and increment ¢ to i+ 1. When
i first becomes at least n — N, replace w(i), ..., w(n — 1) with % symbols, and end.
Denote the resulting word by c(w).

We note that ¢(w) is a concatenation of heavy subwords of lengths less than N
and xs, and so c¢(w) is contained in the language of the coded subshift with code
word set Cy = {*} LJU?/:1 H;; denote this coded subshift by X . We also note that
there are fewer than 2ne + N x symbols in ¢(w) by definition of W,,. Finally, we
note that every w is determined entirely by c(w) and the letters of w at locations
of % symbols in ¢(w), and so

|Wn| < |~A‘2n€+N|£n(XN)|‘
Taking logarithms, dividing by n, letting n — oo, and applying (11) yields
(12) h(X) < 2elog|A| + h(Xn).

We will now use a result from [22], which bounds the entropy of a coded subshift
defined by code word set C' in terms of a generating function

fola) = Z e~lvle
wel
and the so-called limit subshift of biinfinite sequences obtained as limits of in-
dividual code words of increasing lengths. Since C) is finite, the corresponding
limit subshift Ly is empty. Theorem 1.7 of [22] states that for any o > h(Ly), if
foy (@) < 1, then A(Cx) < a. By definition, for the « from the theorem,

N 00

fox(@)=e" >+ Z [Hyle ™ <e ™+ Z [Hnle ™,
n=1 n=1

which is less than 1 by assumption. Therefore, h(Xy) < «, and so by (12), h(X) <

2elog | A| + a. Since € was arbitrary, h(X) < a. This is a contradiction, implying

that our original assumption was wrong and p(P,) is bounded away from 0.
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_ The proof that u(S,) is bounded away from 0 is nearly identical, using sets
Sn={x : z((—n,0]) € S, } and representing words in an analogous version of W,

as concatenations by starting from the right side and moving to the left.
O

Theorem 6.3. If there exists o« < h(X) so that > .o | [Hple ™™ < 1—e"2, then
for every ergodic MME p on X, there exist € > 0 and a syndetic set S so that
w(Gr) > € forneS.

Proof. Choose any ergodic MME p on X, and as earlier, define P, = {2z :
z([0,n)) € P,}, P =\~ Py, and similarly define S, = {z : z([-n,0)) € S,}
and S = (>, Sn. By Theorem 6.2, there exists € > 0 so that p(P),u(S) > e
By ergodicity, p (U;2 o 0'P) , 1t (Use_o 0°S) = 1, and so there exists N so that

w(UNS o' P), w(US, " 07S) > 3/4 (recall that p is o-invariant).
Now, fix any n. Clearly

N-1 N-1

1] U o 'PN U oIS | >1/2,
i=0 j=0

and so there exist 0 < i,j < N so that u(c "P N o ""S) > 4. Finally,

we note that every x in this intersection has z([i,n — j)) € Gn—;j—_;. Therefore,

1(Gp—j—i) > 5x=. Since n was arbitrary and i+ j < 2N, we are finished by taking

€= oNZ -

O
The proof of the following result about G’ is extremely similar and so omitted.

Theorem 6.4. If there exists o < h(X) so that > oo | [Hle"* < 1—e"?, then
for every ergodic MME 1 on X, there exist € > 0 and a syndetic set S so that
w(Gl) >¢€ forneS.

Finally, we will want versions using |F,,| in the hypothesis (rather than |H,| or
y g yp
|H.,|) for consistency with our other results. We again begin with G.

Theorem 6.5. If there evists a < h(X) so that 300 n?|F,le” (/3 < 1 — e,
then for every ergodic MME p on X, there exist € > 0 and a syndetic set S so that
w(Gr) > € foralln € S.

Proof. For each w € F of length n, and each [n/3] < i < n, there are less than or
equal to n—i+1 heavy subwords of w of length i. Therefore, |H;| < fo:z(nfz) | Fnl
and so

3i

[ee] (oo} oo
(13) Y [Hile™™ <> e (n—i+ 1)|Fo| <> 0P| Fule” I <1 e
=1 =1

n=t n=1

The proof is now completed by using Theorem 6.3.

The following is proved analogously.

Theorem 6.6. If there exists a < h(X) so that Y oo | n?|F,le” (/Do < 1 — e,
then for every ergodic MME p on X, there exist € > 0 and a syndetic set S so that
w(GlL) > € foralln € S.
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7. PROVING UNIQUE MME /K-PROPERTY/GIBBS BOUNDS FOR ‘SMALL’ F

We may now give a simple quantitative condition on F so that X has a unique
MME with the K-property.

We begin with a simple lemma yielding an explicit lower bound on h(X).
Theorem 7.1. If > | |F,|(3/]A)™ < £, then h(X) > log(3|.A|/5).
Proof. This follows immediately from Theorem 4.1 with k¥ = 3|A|/5+ 1 and ¢ =
3/|Al. O
Theorem 7.2. If Y07 n?|F,|(3/|A|)"/3 < &, then X has a unique MME, which
has the K-property.
Proof. Suppose that F and A satisfy the stated hypothesis, i.e. that
B
36
This clearly implies the hypothesis of Theorem 7.1, and so h(X) > log(3|.4]/5).

Therefore, 2h(X) — log|A| > log(9].4]/25) > log(].4]/3), and so we can take 3 =
log(]A|/3) in Theorem 4.3. The required inequality is

(14) Y ATl B/ AN <

n=1

oo . 1
Sl BAN" < o
n=1
which follows from (14). Therefore, the conclusion of Theorem 4.3 holds.
Now, define G as was done in Section 5. We now wish to apply Theorem 5.5
with ¢ = 3/|.A|. The required inequalities are then

o0

S 1A/ < AL — 1
n=1

- n/3 1

> nlFal (/1A < 4,

n=1

both of which clearly follow from (14). Therefore, we know that G has the concate-
natability property from Theorem 5.5.

Finally, we recall that h(X) > log(3|.A|/5), and so we can take o = log(3|.A|/5)
in Theorem 6.5. The required inequality is

SRR IF(5/3IAN <1 —

n=1 3‘A|
This follows from (14), if we note that 5/3 < 3 and that |A| > 1, and so the right-
hand side above is at least %. So, the conclusion of Theorem 6.5 also holds, and
now uniqueness of the MME p on X is an immediate consequence of Theorems 3.2,
4.3, 5.5, and 6.5.

We will now use a result of Ledrappier (Proposition 1.4 from [18]) which states
that if X is a subshift and X x X has a unique MME (which must be p X 1), then
w1 has the K-property. We wish to use Theorem 3.2 on X x X, and first note that if
we define G%Q) = G, X Gy, then all properties from the hypotheses of Theorem 3.2
automatically carry over from X except for the last one, that Z/(G,(f)) is bounded
away from 0 along a syndetic set for every ergodic MME v on X x X. We will
verify this by using Theorem 6.3.
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It is clear that X x X can be viewed as a subshift on alphabet .42 with forbidden
list F@ = {(v,w) : v € F,jw| = ||} U{(v,w) : w € F,|jv| = |w|}. By
Theorem 7.1, h(X x X) = 2h(X) > log(9|.A|?/25). Every heavy subword of a word
in 7@ has either first or second coordinate given by a heavy subword of F, and so
if we define H,, to be the set of heavy subwords of words in F and 7—[%2) to be the
set of heavy subwords of words in () then |H£L2)\ < 2|H,||A|", and as argued in
the proof of Theorem 6.3, |H;| < Zf;:z(n — i+ 1)|F,| for all i. Then,

o0

> 1H1B/1A4P) <22|H|3/|A| 23 B/ Y- DI

n=t

< 22n2|Fn|(3/\A|)"/3.
n=1
We now apply Theorem 6.3 with a = log(].4]?/3); note that a < h(X x X),
e = ﬁ < 2 and that by (14), the final term above is less than 1z < 1 —e™®.

Therefore, u(Gﬁf)) is bounded away from 0 along a syndetic set for every ergodic
MME v on X x X. Now all hypotheses of Theorem 3.2 are satisfied, so X x X has
a unique MME p x p, implying that g has the K-property.

O

Under slightly stronger hypotheses, we can use Theorems 3.4 and 3.5 to prove
Gibbs bounds for the unique MME p guaranteed by Theorem 7.2 for many words
in £(X), in the spirit of similar results proved in [5]. Recall the definition of G’
from Section 5.

Theorem 7.3. If > .00 n?|F,|(3/]A)™/* < 35 and p is the unique MME on the
induced subshift X (quaranteed by Theorem 7.2), then there exist € > 0 and a
syndetic set S so that u(Gl) > € for alln € S, and there exist constants D, D’ so
that for all w € G,

De~IwIMX) < w(w]) < D' e lwlh(X)

Proof. Assume that F and A satisfy the hypotheses, i.e. that

= 1
(15) S nIFal (31 <
n=1
This is stronger than the hypothesis of Theorem 7.2, and so we know that h(X) >
log(3|.A]/5), that X has a unique MME g, and that the conclusion of Theorem 4.3
holds for X. Theorem 3.5 then implies the desired upper bound for p (in fact, this
upper bound holds for all words in £(X).) It remains only to verify the hypotheses
of Theorem 3.4 to get the lower bound.
We now wish to apply Theorem 5.8 with ¢ = 3/|.A|. The required inequalities
are then
[ee]
Al -1
S 170314 < HA — 1 ana
n=1
— n/4 1
> nlFal (/1A < 4,

n=1
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both of which clearly follow from (15). Therefore, we know that G’ has the threefold
concatenatability property from Theorem 5.8.

Finally, we recall that h(X) > log(3|.A|/5), and so we can take o = log(3|.A|/5)
in Theorem 6.6. The required inequality is

> n?|Fal(5/3| A <1 -
n=1
This follows from (14), if we note that 5/3 < 3 and that |A| > 1, and so the right-
hand side above is at least . The conclusion of Theorem 6.6 then holds, and our

6
proof is now complete by using Theorem 3.4.

5
3lA

]

Remark 7.4. We have made no effort to optimize constants throughout, instead
just aiming to give a proof of concept for the heuristic “infinite forbidden lists which
are small in some way can imply good properties,” and so some constants might be
improvable. However, we would like to note that with our current proof, the n/3
in the exponent of Theorem 7.2 and n/4 in the exponent of Theorem 7.3 cannot be
improved. In other words, at the moment, to prove uniqueness of MME purely from
the size of the forbidden list F, we need exponential growth rate at most O(|.A|'/3),
and to prove the restricted lower Gibbs bound we need exponential growth rate at
most O(]A|'/4). Tt is an interesting question whether these asymptotics are optimal
(we strongly suspect not).

Remark 7.5. It is natural to wonder whether these Gibbs bounds could have
been used to give an alternate proof of uniqueness of MME in the same style as
proofs of Climenhaga and Thompson in [5], [6], and [7]. Without giving full details,
the technique there is to begin with the definition of a known MME g from the
construction in the proof of Theorem 7.3, to prove p is ergodic, and then to use the
Gibbs property for p to contradict mutual singularity of 1 and another conjectured
ergodic MME v. Interestingly, most of this proof could be adapted to our setting,
except for the proof of ergodicity of u! The proof used in the aforementioned papers
uses some technical properties of the set on which the Gibbs bound holds (for us,
G’) that do not necessarily hold in our setting, and we do not know of an altern