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Abstract. Using the follower/predecessor/extender set sequences defined in

[3], we define quantities which we call the follower/predecessor/extender en-
tropies, which can be associated to any shift space. We analyze the behavior

of these quantities under conjugacies and factor maps, most notably showing

that extender entropy is a conjugacy invariant and that having follower entropy
zero is a conjugacy invariant. We give some applications, including examples

of shift spaces with equal entropy which can be distinguished by extender en-

tropy, and examples of shift spaces which can be shown to not be isomorphic
to their inverse by using follower/predecessor entropy.

1. Introduction

Topological entropy is one of the most well-studied and useful invariants of topo-
logical dynamical systems. In the specific case of (one-dimensional) shift spaces,
topological entropy is precisely the exponential growth of the number of words in
the language of the shift space, as the length n grows.

In [3], the first author used the classical follower/predecessor sets and the exten-
der sets introduced in [5] to create analogues of the word complexity function, called
the follower set sequence, predecessor set sequence, and extender set sequence. In
this work, we use these sequences to create analogues of entropy, which we call
follower/predecessor/extender entropy.

These turn out to have some interesting properties in terms of behavior un-
der conjugacy/factor maps. In particular, extender entropy is a conjugacy invari-
ant (Theorem 3.3), but it need not decrease under factors (Theorem 3.7). Fol-
lower/predecessor entropy is not a conjugacy invariant (Theorem 3.6), but having
zero follower/predecessor entropy is a conjugacy invariant (Corollary 3.5).

The properties we prove for extender entropy are reminiscent of the (left/right)
constraint entropy defined in [1], which is also a conjugacy invariant which may
increase under factor maps. We define constraint entropy in Section 2, and there
compare and contrast it with extender entropy.

Finally, we give two applications of our results. The first is a way to show that
a shift space is not conjugate to its inverse. Specifically, our results show that any
shift space with zero follower entropy and positive predecessor entropy cannot be
conjugate to its inverse. We then use results from [4] and [8] to show that for all β
outside a meager set of Lebesgue measure zero, the β-shift Xβ is not conjugate to
its inverse (Theorem 4.1).

Our second application is that extender entropy can theoretically help to dis-
tinguish between shift spaces with the same topological entropy; in particular, we
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prove that the only restrictions on extender and topological entropy is that the first
must be less than or equal to the second (Theorem 4.3).

2. Definitions and preliminaries

Definition 2.1. A topological dynamical system is a pair (X,T ) where X is a
compact metric space and T : X → X is continuous. If T is also a homeomorphism,
then (X,T ) is invertible.

In this paper, the topological dynamical systems considered will be symbolically
defined. Let A denote a finite set, which we will refer to as our alphabet.

Definition 2.2. A word over A is a member of An for some n ∈ N. We denote
the length of a word w by |w| and the set of all words on A by A∗.

Definition 2.3. For any words v ∈ An and w ∈ Am, we define the concatenation
vw to be the pattern in An+m whose first n letters are the letters forming v and
whose next m letters are the letters forming w.

Definition 2.4. A word w is a prefix of a right-infinite sequence z if the first
|w|-many letters of z are the letters forming w. We denote the n-letter prefix of a
sequence z by (z)n.

Definition 2.5. A shift space is a set X ⊂ AG (G = Z or N) which is closed and
invariant under the left shift map σ defined by (σx)(n) = x(n + 1) for n ∈ G. A
shift space is called two-sided if G = Z and one-sided if G = N. All shift spaces
we consider are two-sided unless explicitly specified otherwise.

For any shift space X, (X,σ) is a topological dynamical system, and it is in-
vertible if X is a two-sided shift space. In that case, (X,σ−1) is also a topological
dynamical system.

Definition 2.6. The language of a shift space X, denoted by L(X), is the set of
all words which appear in points of X. For any finite n ∈ N, Ln(X) := L(X)∩An,
the set of words in the language of X with length n. The complexity sequence of
a shift space X is {|Ln(X)|}n∈N. That is, the complexity sequence is the sequence
which records the number of words of length n appearing in some point of X for
every length n.

Definition 2.7. For any shift space X over the alphabet A, and any word w in
the language of X, we define the follower set of w in X, FX(w), to be the set of
all finite words u ∈ L(X) such that the word wu occurs in some point of X. The
predecessor set of w in X, PX(w), is defined to be the set of all finite words
s ∈ L(X) such that the word sw occurs in some point of X. In some works, the
follower and predecessor sets have been defined to be the set of all one-sided infinite
sequences (in AN or A−N for followers and predecessors, respectively) which may
follow/precede w. This definition is equivalent for followers, and in the case of a
two-sided shift, for predecessors as well. For a one-sided shift, of course, no infinite
sequence may precede a word w. The results of this paper will apply for either
definition in any case where that definition makes sense.

Definition 2.8. For any shift space X over the alphabet A, and any word w in
the language of X, we define the extender set of w in X, EX(w), to be the set
of all pairs (s, u) where s, u ∈ L(X) and the word swu occurs in some point of X.
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Again, a definition replacing finite words with infinite sequences is equivalent in the
two-sided case.

Remark 2.9. For any word w ∈ L(X), define the surjective projection function
fw : EX(w)→ FX(w) by f(s, u) = u. Any two words w, v with the same extender
set would have the property then that fw(EX(w)) = fv(EX(v)), that is, that w
and v have the same follower set. Similarly, words which have the same extender
set also have the same predecessor set.

Definition 2.10. For any positive integer n, define the sets FX(n) = {FX(w) | w ∈
Ln(X)}, PX(n) = {PX(w) | w ∈ Ln(X)}, and EX(n) = {EX(w) | w ∈ Ln(X)}.

Definition 2.11. Given a shift space X, the follower set sequence of X is
the sequence {|FX(n)|}n∈N, the predecessor set sequence of X is the sequence
{|PX(n)|}n∈N, and the extender set sequence of X is the sequence {|EX(n)|}n∈N.
These sequences measure the number of distinct follower/predecessor/extender sets
of words of length n in X.

By Remark 2.9, for any X and n,

(2.1) |EX(n)| ≥ |PX(n)| and |EX(n)| ≥ |FX(n)|.

Example 2.12. The full shift on the alphabet A is just the shift space X = AZ.
Then any word w ∈ L(X) may be followed legally by any word v ∈ L(X), and thus
the follower sets of all words are the same. Hence there is only one follower set in
a full shift. Similarly, there is only one predecessor and one extender set in a full
shift. Then {|FX(n)|}n∈N = {|PX(n)|}n∈N = {|EX(n)|}n∈N = {1, 1, 1, ...}.

Example 2.13. The even shift is the sofic shift space X with alphabet {0, 1}
defined by forbidding runs of 0 symbols of odd length between two nearest 1 sym-
bols. It is a simple exercise to show that the even shift has exactly three follower
sets: FX(0), FX(1), and FX(10). It also has six extender sets: EX(0), EX(1),
EX(00), EX(01), EX(10), and EX(010). The follower set sequence of the even
shift is {|FX(n)|}n∈N = {2, 3, 3, 3, ...} (the predecessor set sequence is the same by
symmetry of X) and the extender set sequence is {|EX(n)|}n∈N = {2, 5, 6, 6, ...}.

Example 2.14. The context-free shift C is the shift space with alphabet {a, b, c}
consisting of all x where any two nearest c symbols must have a word of the form
anbn between them. The follower set of a word in the context-free shift depends
only on its final letter, the location of the final c appearing in the word (if any), and
the location after that c where the first b appears (if any). Thus we have the upper
bound |FC(n)| < 3n2. Similarly, the extender set of a word in the context-free shift
depends only on its first and last letters, the locations of the first and last c in the
word (if any), as well of the locations of the last a before the first c, and the first b
after the final c (if any), yielding the upper bound |EC(n)| < 9n4.

Definition 2.15. A factor map from a topological dynamical system (X,T ) to a
topological dynamical system (Y, S) is a surjective map ϕ : X → Y where for any
x ∈ X, Sϕ(x) = ϕ(Tx). If ϕ is a bijection, then it is called a conjugacy and we
say that (X,T ) and (Y, S) are conjugate.

The well-known Curtis-Lyndon-Hedlund theorem states that a factor map φ
from a two-sided shift space (X,σ) to another two-sided shift space (Y, σ) must be
a so-called sliding block code, i.e. there exists r (called the radius of φ) so that
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(φ(x))(i) depends only on x(i − r) . . . x(i + r) for all x ∈ X and i ∈ Z. A factor
map with radius 0 is called 1-block, because it is induced by a map between the
alphabets of the shifts.

Definition 2.16. Given a shift space X, the topological entropy of X is given
by

h(X) = lim
n→∞

1

n
log |Ln(X)|.

It is well-known that topological entropy is a conjugacy invariant.

Definition 2.17. Given a shift space X, the extender entropy of X is given by

hE(X) = lim
n→∞

1

n
log |EX(n)|.

The existence of this limit is given by Theorem 3.1.

Definition 2.18. Given a shift space X, the follower entropy of X is given by

hF (X) = lim sup
n→∞

1

n
log |FX(n)|.

The predecessor entropy hP (X) is defined in an analogous fashion using prede-
cessor sets.

By (2.9), for any X, hE(X) ≥ hP (X) and hE(X) ≥ hF (X).

Remark 2.19. It is clear from the upper bounds observed in Example 2.14 that
for the context-free shift C, we have hF (C) = hP (C) = hE(C) = 0.

Definition 2.20. For any two-sided shift space X, define X̂ to be its reversed

shift, i.e. . . . x(−1)x(0)x(1) . . . ∈ X̂ iff . . . x(1)x(0)x(−1) . . . ∈ X.

The following lemmas are immediate from definitions and are presented without
proof.

Lemma 2.21. For any two-sided shift space X, (X,σ−1) and (X̂, σ) are conjugate.

Lemma 2.22. For any two-sided shift space X, hF (X) = hP (X̂) and hP (X) =

hF (X̂).

Example 2.23. Given β > 1, let dβ : [0, 1)→ {0, . . . , dβe− 1}N be the map which

sends each point x ∈ [0, 1) to its expansion in base β. That is, if x =

∞∑
n=1

xn
βn

, then

dβ(x) = .x1x2x3.... (In the case where x has more than one β-expansion, we take

the lexicographically largest expansion.) The closure of the image, dβ([0, 1)), is a
one-sided shift space called the β-shift, denoted Xβ and originally defined in [7].
An equivalent characterization of the β-shift is given by the right-infinite sequence
d∗β(1) := lim

x↗1
dβ(x). For any sequence x on the alphabet {0, ..., bβc}, x ∈ Xβ if and

only if every σnx is lexicographically less than or equal to d∗β(1) (see [6]).
Though β-shifts are one-sided shift spaces as defined, each Xβ has a two-sided

version defined as the set of all sequences on the same alphabet where every subword
is a subword of some point in the one-sided version. (This is just the so-called
natural extension.) Unless otherwise stated, β-shifts in this paper refer to those
two-sided versions.
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Remark 2.24. There is yet another equivalent definition of β-shifts. If Tβ : [0, 1)→
[0, 1) is given by Tβ(x) = βx (mod 1), then the one-sided β-shift Xβ is a symbolic

coding of Tβ : for any i ∈ N, x ∈ [0, 1), σi(dβ(x)) = k if and only if T iβ(x) ∈ [ kβ ,
k+1
β ).

So, Xβ is the smallest shift space containing such codings of all x ∈ [0, 1). Though
this definition has great historical importance in the study of β-shifts, we will not
use it further in this work.

The following results about follower/predecessor set sequences for β-shifts were
proved in [4].

Theorem 2.25. For any β-shift Xβ and any n, |FXβ (n)| ≤ n+ 1.

Theorem 2.26. For any β-shift Xβ and any n, |PXβ (n)| is equal to the number
of n-letter subwords of d∗β(1).

The latter is particularly useful when combined with the following result of
Schmeling.

Theorem 2.27 ([8], Theorems B and E). For all β outside a meager set of Lebesgue
measure 0, all words in L(Xβ) appear as subwords of d∗β(1).

Since h(Xβ) = log β for all β, the following corollary is immediate and will be
useful in several later arguments.

Corollary 2.28. For all β, hF (Xβ) = 0. For all β outside a meager set of Lebesgue
measure 0, hE(Xβ) = hP (Xβ) = h(Xβ) = log β.

Finally, we briefly recall some definitions from [1] which are somewhat similar to
ours.

Definition 2.29. Given a shift space X, a word w ∈ L(X) is a left constraint if
we can write w = av for a ∈ A and FX(av) 6= FX(v).

Definition 2.30. Given a shift space X, the left constraint entropy is

hC(X) = lim sup
n→∞

log |{w ∈ Ln(X) : w is a left constraint}|
n

.

Buzzi also defined right constraints and right constraint entropy, and proved
many useful structural properties on X under the hypothesis that either constraint
entropy is strictly smaller than the topological entropy; such shift spaces were called
subshifts of quasi-finite type in [1]. Any β-shift, for instance, is a subshift of
quasi-finite type.

More directly relevant to our definitions is the fact that left constraint entropy
is a conjugacy invariant which may increase under factor maps, just like extender
entropy. One interesting observation is that the definition of left constraint entropy
involves only follower sets, and our follower entropy is not a conjugacy invariant.
This can be explained by another difference; in the definition of left constraint
entropy, a single follower set corresponding to multiple words is counted multiple
times, whereas in our definitions it would be counted only once.

3. The behavior of extender and follower entropy under products,
conjugacies, and factors

Theorem 3.1. The limit in the definition of extender entropy exists for every shift
space X.
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Proof. We claim that for every m,n ∈ N, |EX(n+m)| ≤ |EX(n)| · |EX(m)|. Once
this is verified, the existence of the limit follows from usual submultiplicativity
arguments (i.e. the application of Fekete’s Lemma.)

To this end, we will define an injection g : EX(n+m)→ EX(n)×EX(m). The
definition of g is as follows: for each extender set E in EX(n+m), arbitrarily choose
a word w ∈ Ln+m(X) for which E = EX(w), then write w = uv for u ∈ Ln(X)
and v ∈ Lm(X), and define g(E) = (EX(u), EX(v)).

It’s clear that g has the claimed domain and co-domain. We must only check
that it is injective. To see this, we assume that g(E) = g(E′) = (F1, F2) for
E,E′ ∈ EX(n + m). Then E = EX(u1u2) and E′ = EX(u′1u

′
2) where EX(u1) =

EX(u′1) = F1 and EX(u2) = EX(u′2) = F2. Then, for any (`, r) ∈ E, `u1u2r ∈ X.
Since EX(u1) = EX(u′1), `u′1u2r ∈ X. Since EX(u2) = EX(u′2), `u′1u

′
2r ∈ X, and

so (`, r) ∈ EX(u′1u
′
2). Since (`, r) was arbitrary, E = EX(u1u2) ⊂ EX(u′1u

′
2) = E′.

A trivially similar proof shows that E′ ⊂ E, so E = E′, and we’ve verified injectivity
of g. This implies the claimed inequality |EX(n+m)| ≤ |EX(n)| · |EX(m)|, and so
the existence of extender entropy as outlined above.

�

Theorem 3.2. Extender entropy is additive under products, i.e. if X1, X2 are shift
spaces, then hE(X1 ×X2) = hE(X1) + hE(X2).

Proof. Any word in Ln(X1 × X2) can be written as a pair (w1, w2), where wi is
given by the ith coordinate of letters in w. It is immediate from the definition
of Cartesian product and extender set that EX1×X2

(w1, w2) = {((s, s′), (u, u′)) :
(s, u) ∈ EX1

(w1), (s′, u′) ∈ EX2
(w2)}. Then, (w1, w2) and (w′1, w

′
2) have the same

extender set in X1 × X2 iff w1 and w′1 have the same extender set in X1 and w2

and w′2 have the same extender set in X2. Therefore

|EX1×X2
(n)| = |EX1

(n)||EX2
(n)|,

and taking logarithms, dividing by n, and letting n → ∞ yields hE(X1 × X2) =
hE(X1) + hE(X2).

�

Theorem 3.3. Extender entropy is a conjugacy invariant, i.e. if X and Y are
conjugate shift spaces, then hE(X) = hE(Y ).

Proof. Suppose that X and Y are conjugate shift spaces, via a conjugacy φ : X →
Y . Since φ is a sliding block code, it has a radius r, meaning that x(−r) . . . x(r)
uniquely determines (φ(x))(0). We can then decompose φ = ψ ◦ f [−r,r], where
f [−r,r] : X → X [−r,r] is the canonical conjugacy fromX to its higher-block presenta-
tion X [−r,r] and ψ : X [−r,r] → Y is a 1-block conjugacy. We will prove Theorem 3.3
by showing first that hE(X) = hE(X [−r,r]) and then that hE(X [−r,r]) ≥ hE(Y ),
implying that hE(X) ≥ hE(Y ); reversing the roles of X and Y then shows that
hE(X) = hE(Y ). For notational convenience, we from now on use Z to denote
X [−r,r] and f to denote f [−r,r]. We need the following auxiliary fact:

Fact 1: For n ≥ 2r and w,w′ ∈ Ln(X), EZ(f(w)) = EZ(f(w′)) if and only if
EX(w) = EX(w′) and w(i) = w′(i) for all 1 ≤ i ≤ 2r and n− 2r < i ≤ n.

=⇒: Assume that EZ(f(w)) = EZ(f(w′)). Note that by the rules defining
Z = X [−r,r], any letter a ∈ A[−r,r] (the alphabet of Z) for which f(w)a ∈ L(Z)
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must have first 2r letters (in A) equal to the final 2r letters (in A) of w. Therefore,
it must be the case that w and w′ agree on their final 2r letters, and a trivially
similar argument shows the same about the first 2r letters.

Now, choose any (u, v) ∈ EX(w). Then uwv ∈ X, and so clearly f(uwv) ∈ Z.
We can then write f(uwv) = f(u)sf(w)tf(v), where s is determined by the final
2r letters of u and initial 2r letters of w, and t is determined by the final 2r letters
of w and initial 2r letters of v. Since w,w′ agree on their first and last 2r letters,
f(uw′v) = f(u)sf(w′)tf(v). But then since EZ(f(w)) = EZ(f(w′)), and f(uwv) =
f(u)sf(w)tf(v) ∈ Z, it must be the case that f(uw′v) = f(u)sf(w′)tf(v) ∈ Z. But
then since f is invertible, uw′v ∈ X and so (u, v) ∈ EX(w′). Since (u, v) was an
arbitrary element of EX(w), we’ve shown that EX(w) ⊆ EX(w′), and a trivially
similar argument shows the reverse, so EX(w) = EX(w′).

⇐=: Assume that EX(w) = EX(w′) and that w(i) = w′(i) for all 1 ≤ i ≤ 2r
and n − 2r < i ≤ n. Choose any (u, v) ∈ EZ(f(w)), meaning that uf(w)v ∈ Z.
Then clearly f−1(uf(w)v) ∈ X, and can be written as uwv. Similar arguments to
those used in the reverse direction show that since w,w′ share the same first and
last 2r letters, f−1(uf(w′)v) = uw′v. Since EX(w) = EX(w′) and f−1(uf(w)v) =
uwv ∈ X, it must be the case that f−1(uf(w′)v) = uw′v ∈ X as well. But then
uf(w′)v ∈ Z. Since u, v were arbitrary, we’ve shown that EZ(f(w)) ⊆ EZ(f(w′)),
and a trivially similar argument shows the reverse, so EZ(f(w)) = EZ(f(w′)), com-
pleting the proof of Fact 1.

Fact 1 implies that for every n > 4r, |EX(n)| ≤ |EZ(n)| ≤ |EX(n)| · |A|4r. Upon
taking logarithms, dividing by n, and letting n→∞, we see that hE(X) = hE(Z).
It remains to prove that hE(Z) ≥ hE(Y ), for which we will use only the fact that
ψ : Z → Y is a 1-block conjugacy. Since ψ−1 is a sliding block code, it has a radius
s, meaning that (ψ(x))(−s) . . . (ψ(x))(s) uniquely determines x(0). The final step
in our proof is the following auxiliary fact:

Fact 2: If EZ(w) = EZ(w′) and u, v ∈ As are such that uwv ∈ L(Z) (meaning
that uw′v ∈ L(Z) also), then EY (ψ(w)) = EY (ψ(w′)).

To see this, suppose that EZ(w) = EZ(w′) and u, v ∈ As are such that uwv, uw′v ∈
L(Z), and recall that ψ is a 1-block map. Our key observation is that

(3.1)

EY (ψ(uwv)) =
⋃

x∈ψ−1(ψ(uwv))

ψ(EZ(x)) =
⋃

y∈ψ−1(u),z∈ψ−1(v) s.t. ywz∈L(Z)

ψ(EZ(ywz)).

Here, the second equality uses the fact that any x ∈ ψ−1(uwv) must have a w at
its center since s is the radius of ψ−1.

We now note that since EZ(w) = EZ(w′), the sets {y ∈ ψ−1(u), z ∈ ψ−1(v) s.t.
ywz ∈ L(Z)} and {y ∈ ψ−1(u), z ∈ ψ−1(v) s.t. yw′z ∈ L(Z)} are the same. For
the same reason, given any pair y, z in this set, EZ(ywz) = EZ(yw′z). Combining
with (3.1), we see that indeed EY (ψ(uwv)) = EY (ψ(uw′v)), completing the proof.

By Fact 2, for every n > 2s, |EY (n)| ≤ |EZ(n − 2s)| · |A|2s. Upon taking loga-
rithms, dividing by n, and letting n→∞, we see that hE(Z) ≥ hE(Y ). Combining
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with the fact that hE(X) = hE(Z), we see that hE(X) ≥ hE(Y ), and since we
could repeat this proof with the roles of X and Y reversed, we see that indeed
hE(X) = hE(Y ), completing the proof of Theorem 3.3.

�

Unfortunately, we will show that follower entropy is not conjugacy-invariant.
However, the following result bounds the amount by which it can increase under a
conjugacy.

Theorem 3.4. If φ : X → Y is a conjugacy, r is the radius of φ, and s is the
radius of φ−1, then hF (Y ) ≤ 2(r + s)hF (X).

Proof. Suppose that φ : X → Y is a conjugacy with radius r and whose inverse
has radius s. As before, we decompose φ = ψ ◦ f [−r,r], where f [−r,r] : X → X [−r,r].
We will prove Theorem 3.4 by showing first that hF (X) = hF (X [−r,r]) and then
that hF (Y ) ≤ 2(r + s)hF (X [−r,r]). We again use Z to denote X [−r,r] and f to
denote f [−r,r]. We need the following auxiliary fact: for any n ≥ 2r and w,w′ ∈
Ln(Z), FZ(f(w)) = FZ(f(w′)) if and only if FX(w) = FX(w′) and w(i) = w′(i) for
n− 2r < i ≤ n. We omit the proof, as it is trivially similar to that of Fact 1 in the
proof of Theorem 3.3.

Then, for every n > 2r, |FX(n)| ≤ |FZ(n)| ≤ |FX(n)| · |A|2r. Upon taking
logarithms, dividing by n, and taking the limsup as n→∞, we see that hF (X) =
hF (Z). It now suffices to show that hF (Y ) ≤ 2(r+s)hF (Z). We note that ψ : Z →
Y is a 1-block map, and that its inverse ψ−1 has radius r+ s. Our key observation
is that for any w ∈ L(Y ) and u, v ∈ Ar+s for which uwv ∈ L(Y ),

(3.2)

FY (ψ(uwv)) =
⋃

x∈ψ−1(ψ(uwv))

ψ(FZ(x)) =
⋃

y∈ψ−1(u),z∈ψ−1(v) s.t. ywz∈L(Z)

ψ(FZ(ywz)).

This means that for n > 2(r + s), each follower set of an n-letter word in Y is
determined by a collection of at most |A|2(r+s) follower sets of n-letter words in Z.
Therefore,

|FY (n)| ≤
2(r+s)∑
i=1

(
|FX(n)|

i

)
≤

2(r+s)∑
i=1

|FX(n)|i ≤ 2(r + s)|FX(n)|2(r+s).

Taking logarithms, dividing by n, and taking the limsup as n → ∞ yields
hF (Y ) ≤ 2(r + s)hF (Z) = 2(r + s)hF (X), completing the proof of Theorem 3.4.

�

As an immediate corollary, we see that having zero follower entropy is a conjugacy-
invariant condition.

Corollary 3.5. Having zero follower entropy is a conjugacy invariant, i.e. if X
and Y are conjugate shift spaces and hF (X) = 0, then hF (Y ) = 0.

Follower entropy itself is, however, not conjugacy invariant.

Theorem 3.6. There exist a pair of conjugate shift spaces X,Y with hF (X) 6=
hF (Y ).
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Proof. We begin by defining a shift space X1 with alphabet {0, 1} and hF (X1) > 0.
For instance, by Corollary 2.28, we can choose Xβ with 1 < β < 2 satisfying

hP (Xβ) = log β and define X1 = X̂β . Then by Lemma 2.22, hF (X1) = hP (Xβ) =
log β > 0. Then, define X2 with alphabet {0, 1, 0′, 1′} to be the disjoint union
X1 ∪X ′1, where X ′1 consists of points of X1 with primes placed above every letter.
Clearly |FX2

(n)| = 2|FX1
(n)|, and so hF (X2) = hF (X1).

Now, we will define X3 with alphabet {0, 1, 0′, 1′, a, b, c}. Firstly, letters from
{a, b, c} cannot appear consecutively or at distance 1 in points of X3, i.e. we declare
all words xy and xzy for x, y ∈ {a, b, c} and any z to be forbidden. Secondly, for
any word of the form

w = w0d1w1d2w2 . . . dnwn,

with di ∈ {a, b, c} and wi ∈ {0, 1, 0′, 1′}∗ (w0 may be the empty word), define
an auxiliary word η(w) in {0, 1, 0′, 1′}∗ as follows: whenever di = a, use the odd-
indexed letters from wi, whenever di = b, use the even-indexed letters from wi, and
whenever di = c, ignore wi entirely. Then, η(w) is formed by concatenating the
corresponding words for each i. As an example, η(1′a011′0′b110′c11′1a0′1) = 01′10′.
We say that w ∈ L(X3) iff η(w) ∈ L(X2). Note that this includes some degenerate
cases, for instance {0, 1, 0′, 1′}∗ ⊂ L(X3) because for any w ∈ {0, 1, 0′, 1′}∗, η(w) is
the empty word, which is vacuously in L(X2).

We note that for any w ∈ Ln(X3), FX3(w) is determined entirely by its right-
most letter from {a, b, c} and by η(w) ∈ L(X2) of length at most n/2. Therefore,

|FX3
(n)| ≤ 3

∑bn/2c
i=0 |FX2

(i)|, and taking logarithms, dividing by n, and taking the
limsup as n→∞ shows that hF (X3) ≤ 1

2hF (X2) = 1
2hF (X1).

We now define X4 to be the higher-block recoding X
[0,1]
3 . By the proof of The-

orem 3.4, hF (X4) = hF (X3) ≤ 1
2hF (X1). The alphabet of X4 is now L2(X3) ⊆

{0, 1, 0′, 1′, a, b, c}2. Finally, we define a 1-block map ψ on X4 as follows: all letters
of the alphabet of X4 of the form az or bz are sent under ψ to a new symbol ∗, and
on all other letters of the alphabet of X4, ψ acts as the identity. Define X5 = ψ(X4).
We claim that ψ is injective, and therefore that X4 and X5 are conjugate. To see
this, simply note that for any x ∈ X4, (ψ(x))(−1)(ψ(x))(0)(ψ(x))(1) uniquely deter-
mines x(0); if (ψ(x))(0) 6= ∗, then (ψ(x))(0) = x(0), and if (ψ(x))(0) = ∗, then since
a, b cannot appear consecutively or separated by distance 1 in X3, both (ψ(x))(−1)
and (ψ(x))(1) are not ∗. Therefore, (ψ(x))(−1) = x(−1) and (ψ(x))(1) = x(1),
and by the definition of X4 as a higher-block recoding, x(−1) and x(1) determine
x(0). We have then shown that X4 and X5 are conjugate, and it remains only to
show that hF (X5) > hF (X4).

To see this, we begin by defining an injection from FX1
(n)×FX′1(n) to FX5

(2n).
For any pair (F, F ′) ∈ FX1

(n) × FX′1(n), arbitrarily choose v ∈ Ln(X1) and v′ ∈
Ln(X ′1) for which F = FX1

(v) and F ′ = FX′1(v′). Then, define a word π(F, F ′) by

π(F, F ′) = ∗(v(1)v′(1))(v′(1)v(2))(v(2)v′(2)) . . . (v(n)v′(n)).

Firstly, we claim that π(F, F ′) ∈ L2n(X5); this is because v ∈ L(X1), and so
av(1)v′(1) . . . v(n)v′(n) ∈ L(X3). Next, we claim that for any pairs (F1, F

′
1) 6=

(F2, F
′
2) ∈ FX1

(n) × FX′1(n), FX5
(π(F1, F

′
1)) 6= FX5

(π(F2, F
′
2)). Either F1 6= F2

or F ′1 6= F ′2; we begin with the former case. Let’s say that vi ∈ Ln(X1) and
v′i ∈ Ln(X ′1) (i = 1, 2) were used in the definition of π(Fi, F

′
i ), meaning that

Fi = FX1
(vi) and F ′i = FX′1(v′i). Without loss of generality, we assume that there

is a word w = w(1) . . . w(m) ∈ F1 \ F2.
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Now, we claim that

u = (v1(n)0)(0w(1))(w(1)0)(0w(2))(w(2)0) . . . (0w(m))(w(m)0)

is in FX5
(π(F1, F

′
1)), but is not in FX5

(π(F2, F
′
2)). To see that π(F1, F

′
1)u ∈ L(X5),

we just note that v1w ∈ L(X1), and so

av1(1)v′1(1)v1(2)v′1(2) . . . v1(n)v′1(n)w(1)0w(2)0 . . . w(m)0 ∈ L(X3).

Assume for a contradiction that π(F2, F
′
2)u ∈ L(X5). Then, by definition of ψ

and X4 as a higher-block presentation, there must be some word of the form

tv2(1)v′2(1) . . . v2(n)v′2(n)w(1)0w(2)0 . . . w(m)0

in L(X3), where t ∈ {a, b}. However, clearly t 6= b, since if it were, the word
v′20m would have to be in L(X2), which is impossible since the letters of v′2 are in
{0′, 1′}. Therefore, t = a, and so by definition of X3, v2w ∈ L(X1), a contradiction
to w /∈ F2 = FX1(v2). This implies that FX5(π(F1, F

′
1)) 6= FX5(π(F2, F

′
2)) when

F1 6= F2. The case for F ′1 6= F ′2 is trivially similar, and so the map sending (F, F ′)
to FX5

(π(F, F ′)) is injective.
This implies that |FX5

(2n)| ≥ |FX1
(n)| · |FX′1(n)| = |FX1

(n)|2. Taking loga-
rithms, dividing by 2n, and taking the limsup as n → ∞ shows that hF (X5) ≥
hF (X1). Since we showed earlier that hF (X4) ≤ 1

2hF (X1), hF (X5) > hF (X4), and
the theorem is proved.

�

We will show that under factor maps, nothing similar can be said, and also
that even though extender entropy is a conjugacy invariant, it does not necessarily
decrease under factor maps.

Theorem 3.7. There exist a shift space X and a factor map φ : X → Y such that
hE(X) = hF (X) = 0, but hE(Y ), hF (Y ) > 0.

Proof. The alphabet of X will be {1, 2, 3, a, b, c}. The points of X are exactly those
sequences

. . . a0x
(1)
0 x

(2)
0 x

(3)
0 a1x

(1)
1 x

(2)
1 x

(3)
1 a2 . . .

with an ∈ {1, 2, 3} for every n ∈ Z, x
(j)
n ∈ {a, b, c} for all n ∈ Z and j ∈ {1, 2, 3},

and for which the point (x
(an)
n )n∈Z is in the context-free shift C.

First, we claim that hE(X) = 0, which will trivially imply that hF (X) = 0. To

see this, we first claim that for v ∈ L(X) of the form a1x
(1)
1 x

(2)
1 x

(3)
1 . . . anx

(1)
n x

(2)
n x

(3)
n ,

EX(v) is completely determined by EC(κ(v)), where κ(v) denotes x
(a1)
1 . . . x

(an)
n ∈

L(C); the proof is left to the reader. Then, for an arbitrary word w ∈ L(X), we
can decompose as w = pvs, where v has the form above, p has length at most
3 and consists of letters in {a, b, c}, and s has length at most 3, has first letter
in {1, 2, 3}, and all remaining letters in {a, b, c}. Then, EX(w) is a projection of
EX(v) determined by p and s, meaning that EX(w) is completely determined by
EC(κ(v)), p, and s. Therefore,

|EX(n)| ≤ (27 + 9 + 3 + 1)2EC(dn/4e).
Since hE(C) = 0, taking logarithms, dividing by n, and letting n→∞ shows that
hE(X) = 0, trivially implying that hF (X) = 0 as well.

We now define a simple 1-block factor map on X: φ maps 1, 2, and 3 to a new
symbol ∗ and each of a, b, c to themselves. We denote φ(X) by Y , a shift space
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with alphabet {∗, a, b, c}. We claim that hF (Y ) > 0, which will obviously imply
that hE(Y ) > 0 as well. To verify this, we will show that for any n, all words of the
form ∗w1 ∗ w2 . . . ∗ wn, where each wi is either aba or abc, are in L(Y ), and have
distinct follower sets in Y .

The first claim is fairly simple: clearly, since a∞ ∈ C, for any choice of the words
wn (between aba and abc), the point . . . 1w11w21w3 . . . is in X, and so every point
of the form . . . ∗ w1 ∗ w2 ∗ w3 . . . is in Y . To see the second claim, consider any n
and unequal words v = ∗w1 ∗ w2 . . . ∗ wn and v′ = ∗w′1 ∗ w′2 . . . ∗ w′n. Since v 6= v′,
there exists i so that wi 6= w′i; without loss of generality we assume that wi = abc
and w′i = aba.

We claim that the word u = (∗aaa)i(∗bbb)n ∗ ccc is in FY (v) \ FY (v′). To see
that vu ∈ L(Y ) (i.e. that u ∈ FY (v)), we simply note that

2w12w2 . . . 2wi−13wi1wi+1 . . . 1wn(1aaa)i(1bbb)n1ccc

is in L(X), since the word spelled out by the indicated letters is bi−1canbnc, which
is in L(C). The φ-image of this word is vu, which is therefore in L(Y ).

Assume for a contradiction that v′u ∈ L(Y ). Then, some word of the form

a1w
′
1a2w

′
2 . . . anw

′
nan+1aaa . . . an+iaaaan+i+1bbb . . . a2n+ibbba2n+i+1ccc

would have to be in L(X), where each ai ∈ {1, 2, 3}. In particular, this implies that
a word of the form

b1b2 . . . bna
ibnc

is in L(C), where each bi ∈ {a, b, c}. Note that since w′i = aba, bi 6= c. However,
by definition of C, aibnc for n > i must be immediately preceded by can−i in any
point of C. This is a contradiction since bi 6= c. Therefore, v′u /∈ L(Y ). We
have then shown that FY (v) 6= FY (v′), and since v and v′ were arbitrary, that
|FY (4n)| ≥ 2n. We take logarithms, divide by n, and take the limsup as n→∞ to

see that hF (Y ) ≥ log 2
4 > 0; clearly hE(Y ) ≥ hF (Y ) > 0, and our proof is complete.

�

4. Applications

The key to both applications mentioned in the introduction is Corollary 2.28.

Theorem 4.1. For all β outside a meager set of zero Lebesgue measure, the β-shift
(Xβ , σ) is not conjugate to its inverse.

Proof. For any β outside the meager set of Lebesgue measure 0 from Corollary 2.28,

hF (β) = 0 and hP (Xβ) > 0. Then by Lemma 2.22, hF (X̂β) = hP (Xβ) > 0, and

so by Corollary 3.5, (Xβ , σ) and (X̂β , σ) are not conjugate. Then by Lemma 2.21,
(Xβ , σ) and (Xβ , σ

−1) are also not conjugate. �

Remark 4.2. This fact could be proved in a similar fashion by using the left and
right constraint entropies from [1].

Theorem 4.3. For any x ≤ y, there exists a shift space X with hE(X) = x and
h(X) = y.

Proof. It is clearly sufficient to treat the cases x = 0 and x = y only, since h(X)
and hE(X) are additive under products (Theorem 3.2), and one can write (x, y) as
(0, y − x) + (x, x).
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Consider any x > 0. By Corollary 2.28, there exists α > x where x/α /∈ Q and
where hE(Xβ) = h(Xβ) = α. Take S to be a Sturmian shift space with rotation
number x/α ∈ (0, 1) \ Q. (We will not define Sturmian shift spaces here, but the
only properties we will need is that for S Sturmian with rotation number η, the
alphabet is {0, 1} and every word in Ln(S) contains either bnηc or dnηe 1 symbols.
See Chapter 6 of [2] for a complete introduction to Sturmian shifts.)

Then, define a new shift space Z as follows. Choose ∗ /∈ A and define the
alphabet of Z to be (∗, 0) t (A × {1}). If we write a sequence z on this alphabet
as z = ((z(n))1, (z(n))2)n∈Z, then the shift space Z is the set of all such z where
((z(n))2)n∈Z ∈ S and ((z(n))1){n : z(n)2=1} ∈ Xβ , i.e. the first coordinates of z at
locations where the second coordinate has a 1, taken in order, comprise a point of
Xβ .

We claim that h(Z) = hE(Z) = x. Let’s first show that h(Z) = x. For any v ∈
Ln(S), denote by |v|1 the number of 1 symbols in v. Then, for each u ∈ L|v|1(Xβ),
we can create w(u, v) ∈ Ln(Z) by placing v in the second coordinate, ∗ in the first
coordinate at each location where v has a 0, and placing u in the first coordinate
along the set of indices where v has 1s. By definition, Ln(Z) is in fact the set of all
such w(u, v), and the map (u, v) 7→ w(u, v) is a bijection. To estimate |Ln(Z)|, we
therefore need only to estimate the number of such pairs (u, v).

Recall that since S is Sturmian, |v|1 is always either bnx/αc or dnx/αe, and that
|Ln(S)| = n+ 1. Therefore,

(n+ 1)|Lbnx/αc(Xβ)| ≤ |Ln(Z)| ≤ (n+ 1)|Ldnx/αe(Xβ)|.

But then, taking logarithms, dividing by n, and letting n → ∞ yields h(Z) =
(x/α)h(Xβ) = x.

Then hE(Z) ≤ h(Z) = x, so we need only show that hE(Z) ≥ x. For this, we
fix v ∈ Ln(S), and claim that if u, u′ ∈ L|v|1(Xβ) and EXβ (u) 6= EXβ (u′), then
EZ(w(u, v)) 6= EZ(w(u′, v)). To see this, assume that EXβ (u′) 6⊂ EXβ (u), choose a
pair (s, t) ∈ EXβ (u′) \ EXβ (u), and choose (a, b) ∈ ES(v) where a has |s| 1s and b
has |t| 1s. Then, create p with a in the second coordinate, ∗ in the first coordinate at
all locations of 0s in a, and s spelled out along the first coordinate at indices where
a has 1 symbols. Similarly create q from b and t. It’s immediate from the definition
of z that (p, q) ∈ EZ(w(u′, v)) \ EZ(w(u, v)), and so EZ(w(u, v)) 6= EZ(w(u′, v)).
Then, all distinct extender sets among u ∈ L|v|1(Xβ) yield distinct extender sets in
words of Ln(Z), i.e.

|EZ(n)| ≥ |EXβ (|v|1)|.

Since |v|1 = bnx/αc or |v|1 = dnx/αe, taking logarithms, dividing by n, and
letting n → ∞ yields hE(Z) ≥ (x/α)hE(Xβ) = x, completing the proof that
h(Z) = hE(Z) = x.

It remains only to construct Y with hE(Y ) = 0 and h(Y ) = x. First, choose n
with log n > x and x/ log n /∈ Q, and define F to be the full shift on n symbols.
Then, h(F ) = log n and hE(F ) = 0. Perform exactly the same procedure as above,
where F replaces Xβ and S is chosen to have rotation number x/ log n. Then,
exactly as above, hE(Y ) = (x/ log n)hE(F ) = 0, and h(Y ) = (x/ log n)h(F ) = x,
completing the proof.

�
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