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Abstract. In [9], Hochman and Meyerovitch gave a complete characterization

of the set of topological entropies of Zd shifts of finite type (SFTs) via a
recursion-theoretic criterion. However, the Zd SFTs they construct in the proof
are relatively degenerate and in particular lack any form of topological mixing,

leaving open the question of which entropies can be realized within Zd SFTs
with (uniform) mixing properties. In this paper, we describe some progress on

this question. We show that in order for α P R�
0 to be the topological entropy

of a block gluing Z2 SFT, it cannot be too poorly computable; in fact it must
be possible to compute approximations to α within arbitrary tolerance ε in

time 2Opε�2q. As a partial converse, we present a new technique to realize a
large class of computable real numbers as entropies of block gluing Zd SFTs

for any d ¡ 2. Also as a corollary of our methods, we construct, for any N ¡ 1,
a block gluing Zd SFT (d ¡ 2) with entropy logN but without a full N -shift
factor, strengthening previous work [6] by Boyle and the second author.

1. Introduction and Main results

This paper studies the class of real numbers which appear as topological entropies
of Zd shifts of finite type (SFTs) in the presence of a uniform mixing property called
“block gluing” which was introduced in [5] (see also Section 2.1).

Topological entropy is the most important numerical invariant of a topological
dynamical system. For subshifts over finite alphabets, topological entropy is given
by the exponential growth rate of (globally) admissible patterns for the subshift on
larger and larger shapes. It is thus defined as a limit (for a formal definition, again
see Section 2.1) which, in the case of a non-empty subshift, yields a non-negative
real number. Since any non-negative real number is realizable as the entropy of
some Z subshift, this naturally leads to the question of which numbers actually
appear as entropies within certain subclasses of Z (or Zd) subshifts.

For the fundamental class of (mixing) Z shifts of finite type this question was
completely answered by Lind [14] in 1984. Recall that any Z SFT X � XA can
be represented by a finite directed graph – therefore this class of symbolic systems
is countable (up to topological conjugacy) and so can not realize all non-negative
real numbers – whose adjacency matrix A contains all of the information about
admissible patterns (words). (Specifically, the number of legal words of a given
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length is just the sum of the entries of the corresponding power of A.) Applying
the well-known Perron-Frobenius theorem immediately implies that the entropy has
the simple closed form htoppXAq � log λA, where λA P R� is the Perron eigenvalue
of the non-negative integer matrix A. In particular, this shows that only logarithms
of certain algebraic integers can appear as entropies of general (or mixing) Z SFTs,
and Lind showed that all of those numbers are in fact realizable:

Theorem 1.1 ([14]). The class of topological entropies of Z shifts of finite type
coincides with the class of non-negative rational multiples of logarithms of Perron
numbers1, and the class of topological entropies of mixing Z shifts of finite type
coincides with the class of logarithms of Perron numbers.

For Zd subshifts, the situation is much more complicated: even for the funda-
mental (again countable) class of Zd SFTs, in general there is neither a closed form
to represent nor a general algorithm to compute the exact value of the topological
entropy. In fact, only for very few isolated non-trivial examples are there methods
to compute the exact value of the entropy [2, 12, 13], while for other even more basic
examples, like the Z2 golden mean shift, only approximations to htoppXq are known
[3, 7, 19]. Despite the intrinsic difficulties in finding a closed form for topological
entropy, in 2007 Hochman and Meyerovitch [9] completely classified the family of
numbers realizable as entropies of Zd SFTs. Surprisingly, this characterization,
rather than involving algebraic conditions as in the Z setting, is given entirely in
recursion-theoretic terms.

Theorem 1.2 ([9]). For any d ¥ 2, the class of topological entropies of Zd shifts
of finite type coincides with the class of right-recursively enumerable non-negative
real numbers.

Here a real number r P R is called “right-recursively enumerable” if there exists
a Turing machine which, for any input n P N, computes a rational approximation
rn P Q such that the sequence prnqnPN is decreasing and converges to r. It is easy
to check that the class of right-recursively enumerable numbers strictly contains
the class of algebraic numbers as well as the class of computable numbers. (A real
number r P R is called “computable” if there exists a Turing machine which, for any
input n P N, computes a rational approximation rn P Q such that |r � rn|   1

n .)
The construction technique used by Hochman-Meyerovitch to realize an arbitrary

right-recursively enumerable number as the entropy of a Zd SFT however is very
rigid. Unsurprisingly, it involves simulation of a Turing machine within the SFT
itself, and the deterministic nature of the Turing machine precludes any form of
topological mixing. Their classification therefore does not extend to any subclass
of mixing Zd SFTs as in Lind’s result. In addition, the Hochman-Meyerovitch
construction involves first constructing a zero-entropy Zd SFT in which certain
symbols appear with frequencies only up to a certain value, and then creating the
desired entropy by introducing independent copies of those specific symbols. Hence
the resulting Zd SFT always has this initial Zd SFT as a non-trivial zero-entropy
factor, thus precluding in particular uniform mixing conditions such as block gluing
(see Theorem B.2 from [5]).

This raises the question of whether general right-recursively enumerable num-
bers, for which no estimates on the rate of convergence of the sequence prnqnPN to

1A Perron number is a real algebraic integer larger than or equal to 1 which in modulus exceeds
all its algebraic conjugates.
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r are available, can appear as entropies only for degenerate Zd SFTs or whether
poorly computable numbers persist as entropies within subclasses of (uniformly)
mixing Zd SFTs. It was already shown in [9] that in the presence of the strongest
uniform mixing condition, strong irreducibility, the entropies of Zd SFTs must sat-
isfy the strictly stronger recursion-theoretic condition of computability.

Hochman-Meyerovitch then asked the question of which computable numbers ap-
pear as entropies for strongly irreducible SFTs, but neither necessary nor sufficient
conditions for realizability of a computable number as the entropy of such a Zd SFT
are known. We will show in this paper that any uniform mixing property necessar-
ily forces an upper bound on the computation time of the rational approximations
prnqnPN (i.e. very badly-computable numbers cannot be realized as the entropy of
any such SFT), and that within the remaining class of computable numbers, many
can actually be realized as entropies within the block gluing subclass.

Our main results are stated in the remainder of this section. The first theorem
shows that not all computable non-negative real numbers can appear as topological
entropies of block gluing, let alone strongly irreducible, Z2 SFTs.

Definition 1.3. Let ptn P NqnPN be a non-decreasing sequence of natural numbers.
A real number r P R is computable with rate ptnqnPN if there exists a determin-
istic Turing machine which, for any n P N, calculates in at most tn steps a rational
approximation rn P Q of r such that |r � rn| ¤ 1

n .

Theorem 1.4. For any block gluing Z2 shift of finite type there exists some constant

C P R such that its topological entropy is computable with rate
�
2C�n

2�
nPN.

Unfortunately our proof – given in Section 3 – only works for d � 2. The
argument however does extend to a version for Zd SFTs with d ¥ 3, but it requires
additional hypotheses, namely the uniform filling property and existence of a point

with finite orbit, to imply computability of the entropy with rate
�
2C�n

d�
nPN.

Our next result gives a sufficient condition for realizability; we will show that
any non-negative real number which is well-approximable in a certain sense (given
by a condition on the computation time of its continued fraction expansion, defined
below) is indeed realizable as the entropy of some block gluing Zd SFT.

The concept of a Turing machine (TM) – whose connection to multidimensional
symbolic dynamics was established by the work of Berger [4] – has recently seen
several important applications [8, 9, 1]. In these works, the relevant property of
the TM is its ability to recursively enumerate an effective set of forbidden words
by only locally modifying the content of a tape in the neighborhood of the read-
write head’s current position. This makes it possible to embed such computations
row-by-row into specifically marked regions, containing consecutively all instanta-
neous descriptions of the TM’s discrete time evolution, within points of Z2 SFTs.
However, in such simulations, the capabilities of standard TMs do not exploit all
of the possibilities given by local rules. Hence, first we define an extension of the
concept of a TM which seems better adapted to use within Zd SFTs and captures
exactly the computational capabilities of local rules. We call this new concept an
accelerated Turing machine (for a formal definition, see Section 4) due to the
fact that it can compute the same class of objects as a standard TM, but usually
in considerably less time.
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Definition 1.5. A real number α P R satisfies computability condition (C) if
it allows a representation α � α1 � logM for a natural number 1  M P N and some
α1 P R which is either rational or which has an infinite continued fraction expansion
α1 � ra0; a1, a2, a3, . . .s with the following property: for the sequence ptn P NqnPN0

recursively defined by t0 :� 1, t1 :� a1 and tn :� an � tn�1 � tn�2 for all n ¥ 2,
there exists an (accelerated) Turing machine, which recursively enumerates
the sequence of partial quotients panqnPN in such a way that for every N P N, a
(binary) representation of all of the first N partial quotients a1, a2, a3, . . . , aN has
been produced within the first aN � tN�1 steps.

Before we state our second main theorem (Theorem 1.7) we give some families
of real numbers that satisfy computability condition (C):

Examples 1.6. All (non-negative) real numbers α � α1 � logM (1  M P N) with

 α1 P Q an arbitrary rational number or

 α1 P RzQ an irrational number with an

(1) eventually constant continued fraction expansion (e.g. numbers like?
5�1
2 � r0; 1, 1, 1, 1, . . .s and

?
2
2 � r0; 1, 2, 2, 2, . . .s etc. )

(2) eventually periodic continued fraction expansion (i.e. all irrational
quadratic algebraic numbers)

(3) eventually affine continued fraction expansion, meaning that there
exist constants C P N and D P Z and a starting point n1 P N such that
for all n P N, n ¥ n1, the partial quotients are of the form an � C �n�D

(4) eventually affine-periodic continued fraction expansion, meaning
that there exist constants C0, C1, . . . , Cp�1 P N andD0, D1, . . . , Dp�1 P
Z (p P N) and a starting point n1 P N such that for all n P N, n ¥ n1,
the partial quotients are of the form an � Cn pmod pq � n�Dn pmod pq

satisfy computability condition (C).
Note that classes (1) to (4) form a strictly increasing diamond lattice and that

classes (3) and (4) in particular include well known (transcendental) numbers like

tanh
�
1
k

�
� r0; k, 3k, 5k, 7k, . . .s with an :� 2k � n� k

tanp1q � r1; 1, 1, 3, 1, 5, 1, 7, 1, . . .s

tan
�
1
k

�
� r0; k � 1, 1, 3k � 2, 1, 5k � 2, 1, 7k � 2, 1, . . .s (k ¡ 1)

expp1q � r2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . .s or

exp
�
1
k

�
� r1; k � 1, 1, 1, 3k � 1, 1, 1, 5k � 1, 1, 1, 7k � 1, 1, 1, . . .s (k ¡ 1)

for arbitrary k P N.
We give a short explanation why numbers in class (3) satisfy the computability

condition (C) in Section 4. The argument for (the more general) class (4) is similar.
We remark that many other non-negative real numbers satisfy computability

condition (C) as well, e.g. numbers α1 with any other fast enough computable

“regularity” in their partial quotients like an :�

"
2 if n is a perfect square

1 otherwise
but also

– as we will prove in Section 6 – numbers like α1 :� logL
logM with 1   L   M P N

coprime, for which no regularity in their continued fraction expansion is known.

Theorem 1.7. Suppose d ¥ 3. For any non-negative real number α P R�
0 which

satisfies computability condition (C), there exists a block gluing Zd shift of finite
type X with topological entropy htoppXq � α.
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As an application of the construction used to prove Theorem 1.7 (given in Section
5), we are also able to prove a new result about non-existence of certain entropy-
preserving factor maps. In a previous work [6] by Mike Boyle and the second author,
the following result was proven:

Theorem 1.8 ([6, Theorem 2.1]). Suppose d ¥ 2 and 1   L P N. Then there exists
a Zd shift of finite type X with topological entropy htoppXq � logL which does not
factor onto the full Zd shift on L symbols.

Adapting the argument from [6] to our newly constructed family of block gluing
Zd SFTs, we are able to show that the same result still holds true (for d ¥ 3) even
if we require X to be block gluing.

Theorem 1.9. Suppose d ¥ 3 and 1   L P N. Then there exists a block gluing Zd

shift of finite type X with topological entropy htoppXq � logL which does not factor
onto the full Zd shift on L symbols.

We point out that this new theorem stands in stark contrast to another result of
the authors (again with Mike Boyle) contained in [5] which, in the presence of the
block gluing property, guarantees the existence of strictly lower-entropy full shift
factors even for general (non-SFT) shifts.

Theorem 1.10 ([5, Theorem 3.2]). Suppose d ¥ 1 and L P N. Any block gluing Zd

shift X with topological entropy htoppXq ¡ logL factors onto the full Zd shift on L
symbols.

Theorems 1.9 and 1.10 thus demonstrate a conceptual difference between entropy-
preserving and entropy-decreasing factor maps in the block gluing regime.

The remainder of this paper is organized as follows: In Section 2, we recall
some basic definitions from (multi-dimensional) symbolic dynamics, as well as some
facts about continued fraction expansions and Sturmian sequences necessary for the
construction proving Theorems 1.7 and 1.9. In Section 3, we prove the necessity
of the rate-of-computability hypothesis from Theorem 1.4. Accelerated Turing
machines are formally introduced in Section 4. Section 5 contains a detailed de-
scription of the construction of our family of block-gluing Z3 SFTs realizing certain
topological entropies as stated in Theorem 1.7. This construction has two distinct
steps: In the first, we construct a Z3 SFT with the desired topological entropy hav-
ing a property we call upgradability. The second step is given by Theorem 5.11,
which demonstrates a general procedure to add symbols to any upgradable Zd SFT
(d ¥ 2) which make it block gluing without increasing its entropy; a result which
might be of independent interest. Finally, Section 6 describes the modifications of
the argument from [6] necessary to prove Theorem 1.9.

2. Preliminaries

2.1. Symbolic dynamics. We assume a basic familiarity with symbolic dynamics
(for additional background refer to [15]), and so only recall a few definitions and
notations.

For d P N let us consider Zd as a metric space w.r.t. the maximum metric δ8, i.e.
for every pair ~u, ~w P Zd we define δ8p~u, ~wq :� ‖~u� ~w ‖8 � max1¤k¤d |~uk � ~wk|.
We can also extend δ8 in the natural way to obtain a non-negative symmetric
function δ8pU,W q :� min~uPU,~wPW δ8p~u, ~wq representing the separation between
non-empty subsets U,W � Zd.
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For ~u, ~w P Zd we define the partial order given by coordinatewise dominance:
~u ¨ ~w denotes that ~uk ¤ ~wk for every 1 ¤ k ¤ d. B :� t~v P Zd | ~u ¨ ~v ¨ ~wu
will then be called a non-empty (finite) (rectangular/cuboid) solid block in Zd

defined by ~u ¨ ~w P Zd.
As we are mainly dealing with the case Z2 and Z3, we will refer to the (cardinal)

~e1, ~e2 directions as horizontal and vertical and an ~e1~e2-cross section of Z3 will be a
set Z2 � tmu :�

 
~u P Z3

�� ~u3 � m
(
for some fixed m P Z.

Every finite (discrete) alphabet A gives rise to a d-dimensional full shift AZd

for any d P N, and when equipped with the product topology, this compact space

supports a natural expansive and continuous Zd (shift) action σ : Zd�AZd

Ñ AZd

given by translations as pσ~upxqq~v � pσp~u, xqq~v :� x~u�~v for all ~u,~v P Zd, x P AZd

.

Any closed shift-invariant subset of AZd

is called a Zd (sub)shift, and a sub-
system Y � X of a Zd subshift X is itself a closed shift-invariant subset of X,
together with the restriction σ|Zd�Y of the Zd shift action to this set.

Let A�,d :�
�

F�Zd finite AF denote the countable set of all patterns made by

assigning letters of A on finite subsets of Zd and let A� :� A�,1. Every Zd subshift
on A can also be defined by specifying a set of forbidden patterns F � A�,d

and defining XpFq :�
 
x P AZd �� @F � Zd finite : x|F R F

(
to be the subshift of

all points of the full Zd shift on A which do not contain any patterns from F . If
X � XpFq for some finite F , then X is called a (d-dimensional) shift of finite
type (Zd SFT), and we may assume without loss of generality that F � AF is a
set of excluded patterns (local rules) for a single finite non-empty shape F � Zd.

GivenX � XpFq � AZd

, a (finite) pattern P P A�,d is called locally admissible
in X if it contains no element from F as a subpattern, whereas P is called globally
admissible in X if it actually shows up in a point of X, i.e. if P can be extended
to a valid configuration on all of Zd which does not contain any element from F .
The set of locally admissible patterns LlocpXpFqq :�

 
P P A�,d �� @Q � P : Q R F

(
in general depends on the choice of F and strictly contains the set of globally
admissible patterns LpXq :�

 
x|F

�� x P X ^ F � Zd finite
(
; the latter is also

known as the language of X. Each of these sets can be written as the union over
all finite shapes F � Zd of all sets of (locally/globally) admissible patterns with this
shape F ; the latter sets are denoted by Lloc

F pXpFqq :�
 
P P AF

�� @Q � P : Q R F
(

resp. LF pXq :� tx|F | x P Xu � LpXq. When the shape is a rectangular (cuboid)
solid block in Z2 (resp. Z3) with side-lengths i, j P N (resp. k, l,m P N), we will also
use Lloc

i,j pXq (resp. Lloc
k,l,mpXq) and Li,jpXq (resp. Lk,l,mpXq) to denote these sets.

One important invariant associated with a Zd subshift X is its topological
entropy, a non-negative real number measuring the exponential growth rate of the
number of globally admissible patterns on Cl :� t~u P Zd | ‖~u ‖8 ¤ lu, defined as

htoppXq :� lim
lÑ8

log |LCl
pXq|

|Cl|
.

A surjective continuous map between two Zd subshifts commuting with the re-
spective shift actions is called a (topological) factor map and the image of a
Zd subshift X under such map is referred to as a factor of X. Note that a factor
map φ : X Ñ Y between Zd subshifts can never increase topological entropy. In
the case where htoppXq � htoppY q we say φ is entropy-preserving, and in the
remaining case, i.e. when htoppXq ¡ htoppY q, φ is called entropy-decreasing.
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Another highly important concept in the theory of Zd subshifts (for d ¡ 1) is
the notion of topological mixing with a uniform distance, usually called uniform
mixing. We give a few examples of uniform mixing conditions here.

Definition 2.1. A Zd subshift X

(1) is called block gluing with gap size g P N0 if for any pair of two solid
blocks B1, B2 � Zd with separation δ8pB1, B2q ¡ g and any pair of valid
points y, z P X there exists a valid point x P X such that x|B1

� y|B1
and

x|B2 � z|B2 .
(2) has the uniform filling property (UFP) with filling length l P N0

if for any solid block B � Zd and any pair of valid points y, z P X there
exists a valid point x P X with x|B � y|B and x|ZdzpB�Clq � z|ZdzpB�Clq
for Cl :� t~u P Zd | ‖~u ‖8 ¤ lu as above.

(3) is called strongly irreducible with gap size g P N0 if for any pair of non-
empty (disjoint) finite subsets U,W � Zd with separation δ8pU,W q ¡ g
and any pair of valid points y, z P X there exists a valid point x P X such
that x|U � y|U and x|W � z|W .

A Zd subshift X is called block gluing (resp. UFP, etc.) if it is block gluing at
gap g (resp. has the UFP with filling length g, etc.) for some g P N0.

We mention that strong irreducibility clearly implies the uniform filling property,
which in turn implies block gluingness (see the Appendices of [5], which provide a
more detailed background on those uniform mixing conditions).

2.2. Continued fractions. We will give only the briefest of introductions to con-
tinued fractions; for more information, see the book of Hardy and Wright [11].

Definition 2.2 ([11, Chapter X]). Let α1 P RzQ be an irrational real number. The
infinite continued fraction expansion of α1 is given as

α1 � ra0; a1, a2, a3, . . .s :� a0 �
1

a1 �
1

a2� 1
a3�...

where a0 P Z and an P N for all n P N.

We remark that the continued fraction expansion of an irrational α1 is unique,
i.e. the value a0 and the sequence panqnPN of partial quotients is completely
determined by the value of α1. For reasons which will become clear in Section 5,
we are mostly interested in irrational numbers α1 P r0, 1szQ for which we get an
infinite expansion α1 � r0; a1, a2, a3, . . .s starting with a0 :� 0.

Truncating the continued fraction expansion after a finite number of steps yields
a sequence p enfn qnPN0 of rational numbers called the approximants to α1; the nth

approximant is thus defined as

en
fn

:� a0 �
1

a1� . . .
an�1� 1

an

P Q .

The integers en, fn with n ¥ 0, can also be defined recursively by

e�1 :� 1,

f�1 :� 0,

e0 :� a0,

f0 :� 1,

en :� an � en�1 � en�2

fn :� an � fn�1 � fn�2
@n P N .(i)

The following lemma and its corollary will be useful in Section 6.
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Lemma 2.3. For any β P R� and any n P N,

a0 �
1

a1� ...
an�1� 1

β

�
βen�1 � en�2

βfn�1 � fn�2
.

Proof. We use induction on the depth of the truncated continued fraction ex-
pansion. For n � 1, using the initial values in (i), the claim simply becomes

a0 �
1
β � βe0�e�1

βf0�f�1
� βa0�1

β , which is obviously true. Now assume the claim has

been established for depth n � N and define β1 :� aN � 1
β P R�. Again using the

recursion (i), this immediately yields the desired equality for n � N � 1:

a0 �
1

a1� . . .
aN� 1

β

� a0 �
1

a1� . . .
aN�1� 1

β1

�
β1eN�1 � eN�2

β1fN�1 � fN�2
�

�

1
β eN�1 � aNeN�1 � eN�2

1
β fN�1 � aNfN�1 � fN�2

(i)
�

1
β eN�1 � eN
1
β fN�1 � fN

�
βeN � eN�1

βfN � fN�1
,

finishing the proof. �
As a corollary, we have the following alternate characterization of the partial

quotients an (n P N) in terms of α1 and the previous two approximants.

Corollary 2.4. For every n P N the nth partial quotient an is the unique integer

for which α1 is between anen�1�en�2

anfn�1�fn�2
and pan�1qen�1�en�2

pan�1qfn�1�fn�2
.

Proof. For β :� ran; an�1, an�2, . . .s P R�, by Lemma 2.3 α1 � βen�1�en�2

βfn�1�fn�2
. The

corollary now follows directly by noting that β P pan, an� 1q and that the function

gpxq :� xen�1�en�2

xfn�1�fn�2
is strictly monotone in x. �

2.3. Sturmian sequences. The family of Sturmian sequences is defined as the
subset of one-sided infinite binary sequences over the alphabet t0, 1u which satisfy
any (both) of the equivalent conditions stated in the following theorem.

Theorem 2.5 ([16, Chapter 2]). Let y � pyiqiPN0 P t0, 1u
N0 be an infinite sequence

of 0s and 1s. The following are equivalent:

(1) y is the sequence obtained from coding the (forward) orbit of a point x P R{Z
in the circle under the action of an irrational rotation Rα1 : R{Z Ñ R{Z,
x ÞÑ x � α1 pmod 1q by some fixed irrational angle α1 P r0, 1szQ where the

coding yi :�

#
0 if Ri

α1pxq P r0, 1� α1q
1 if Ri

α1pxq P r1� α1, 1q
for every i P N0 takes place with

respect to the intervals I0 :� r0, 1� α1q and I1 :� r1� α1, 1q.
(2) y is aperiodic (i.e. @ p P N D i P N0 : yi � yi�p), balanced (i.e. @u, v � y

finite subwords of y with |u| � |v|: |#1puq �#1pvq| ¤ 1)2, and has limiting

frequency of ones limiÑ8
#1pyr0,i�1sq

i equal to α1.

For any given α1 P r0, 1szQ, there is a particular Sturmian sequence cα1 P t0, 1u
N0

with limiting frequency of ones α1, called the characteristic sequence for α1. This
sequence cα1 has the following useful algorithmic description:

2Here #1puq :� |ti P N | ui � 1u| denotes the number of 1 symbols seen in the word u P A�.
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Facts 2.6 ([16, Chapter 2]). Let y P t0, 1u
N0 and let α1 P r0, 1szQ.

(1) A Sturmian sequence y (of frequency α1) is called characteristic if and
only if 0y and 1y are both Sturmian sequences. Such y � cα1 corresponds
to the coding of the (forward) orbit of the point α1 under the action of Rα1 ,

i.e. pcα1qi :�

#
0 if Ri

α1pα1q P I0

1 if Ri
α1pα1q P I1

for all i P N0.

(2) If α1 has continued fraction expansion α1 � r0; a1, a2, a3, . . .s then there is
a recursively defined sequence of finite words

�
wn P t0, 1u

��
nPN0

with3

w0 :� 0 , w1 :� 0a1�1 1 , wn :� wn�1
an wn�2 @n ¥ 2

such that cα1 � limnÑ8 wn (in fact, pcα1qr0,|wn|�1s � wn for all n P N).

3. A necessary condition – Proof of Theorem 1.4

Suppose that X � AZ2

is a block gluing Z2 SFT with alphabet A. Since it is not
hard to check that any higher-block recoding of a block gluing SFT is still block
gluing (with increased gap size), we may without loss of generality assume X to be
nearest-neighbor. Define g P N0 to be a gap size for which X is block gluing. We
begin with a lemma relating local and global admissibility of patterns for X:

Lemma 3.1. Let X � AZ2

be a block gluing nearest neighbor Z2 shift of finite type
with gap size g P N0 and let m P N. An m�m square pattern P P Am�m on A is in
LpXq if and only if there exists a rectangular locally admissible pattern Q P Lloc

i,j pXq

with i ¤ |A|2g�1
pg � mq � 1, j ¤ 2g � m � 2, which has identical left and right

edges and identical top and bottom edges, and which contains P as a subpattern.

Proof. “ðù”: We first prove the “if” direction. Suppose that P is a subpattern of
a pattern Q P Lloc

i,j pXq as described in the lemma. Since X is a nearest neighbor
shift of finite type, Q can clearly be used to (periodically) tile the plane yielding a
valid point of X. But then P is a subpattern of this point, and so P P LpXq.

“ùñ”: We now prove the “only if” direction. Let K :� |A|2g�1
. Choose any

globally admissible square pattern P P Lm,mpXq and any R P LpK�1qpg�mq,1pXq of
width

�
|A|2g�1

� 1
�
pg�mq and height 1. By block gluing of X, there exists a still

globally admissible rectangular pattern Q1 P LpK�1qpg�mq,2g�m�2pXq such that its
top and bottom edge equal R, i.e.

Q1|r1,pK�1qpg�mqs�t1u � Q1|r1,pK�1qpg�mqs�t2g�m�2u � R

and, for any 0 ¤ k ¤ K, Q1 contains a copy of P at

Q1|r1�kpg�mq,m�kpg�mqs�rg�2,g�m�1s � P .

For 0 ¤ k ¤ K consider the subpatterns Q1
k :� Q1|t1�kpg�mqu�r1,2g�m�2s which

appear as equispaced columns of height 2g�m�2 and width 1 inside Q1 (see Figure
1). All of them contain as their middle part Q1

k|t1u�rg�2,g�m�1s the leftmost column
of P which is surrounded above and below by an arbitrary pattern of symbols from
A of size 1 � pg � 1q where the top and bottom symbol of Q1

k have to coincide.

Note that there are |A|2g�1
� 1 of these columns Q1

k, which have only 2g � 1 non-
forced sites, so by the pigeonhole principle, there must exist two indices 0 ¤ k  

3Note that the sequence ptn P NqnPN0
used in Definition 1.5 satisfies tn � |wn| for all n P N0.
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Figure 1. Q1 and its subpatterns P , R, and Q1
k (0 ¤ k ¤ K).

k1 ¤ K such that Q1
k � Q1

k1 . Then taking Q :� Q1|r1�kpg�mq,1�k1pg�mqs�r1,2g�m�2s
completes the proof. �

The following lemma is standard; see [18] for a proof. (The version in [18]
has the hypothesis that X satisfies a stronger uniform mixing condition (strong
irreducibility), but goes through with no changes in the block gluing case.)

Lemma 3.2. If X is a block gluing nearest neighbor Zd shift of finite type with gap
size g P N0, then for any m P N,

log
∣∣Lr1,msdpXq

∣∣
pm� gqd

¤ htoppXq ¤
log

∣∣Lr1,msdpXq
∣∣

md
.

The first inequality in Lemma 3.2 comes from the possibility to generate valid
points in X by independently placing arbitrary globally admissible cuboid patterns
of shape r1,msd � Zd with their lower left corners on the grid pm� gqZd ¤ Zd and
filling the remaining sites using block gluing of X. The second inequality is obvious
from the definition of topological entropy.

We can now prove Theorem 1.4.

Proof of Theorem 1.4. Consider an arbitrary block gluing Z2 SFT X. It follows

from Lemma 3.2 that for large m P N the quantity
log|Lm,mpXq|

m2 is a close approxi-

mation of htoppXq. In particular, for every m P N, we get a bound linear in 1
m :∣∣∣∣htoppXq � log |Lm,mpXq|

m2

∣∣∣∣ ¤ log |Lm,mpXq| �
� 1

m2
�

1

pm� gq2

	
¤

2g log |Lm,mpXq|
m2 � pm� gq

¤
2g log |A|
m� g

¤
2g log |A|

m
.

(In the second to last inequality, the trivial estimate |Lm,mpXq| ¤ |A|m
2

was used.)
So, to get an upper bound on the time it takes to calculate an approximation of
htoppXq to within a certain error linear in 1

m , it suffices to determine how many
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steps are needed to actually compute the number of globally admissible m � m
square patterns, i.e. to determine the cardinality |Lm,mpXq|.

For any fixed m P N, we can do this with the following algorithm:

(1) Initialize Counter :� 0.
(2) Enumerate all locally admissible m�m square patterns P P Lloc

m,mpXq. To

do this generate – one at a time – all |A|m
2

possibilities to fill am�m square
with symbols from A and, when placing each new symbol, check with its
already placed neighbors to ensure that none of the nearest neighbor rules
defining X is violated. This takes a constant number of steps per symbol
and thus the whole enumeration gives at most a multiplicative factor of

Op|A|m
2

q for the run-time of Steps (3) and (4).
(3) For each locally admissible pattern P constructed in Step (2), enumerate

all patterns Q1 P Ap|A|2g�1�1qpg�mq�p2g�m�2q which respect the restrictions
given in the proof of Lemma 3.1, namely the top and bottom row of Q1

have to be equal and the horizontal strip of height m in the center of Q1

has to contain |A|2g�1
� 1 copies of the pattern P , separated from each

other by the gap size g. Note that each such pattern Q1 has only�
|A|2g�1

� 1
�
pg �mq � p2g �m� 1q �

�
|A|2g�1

� 1
�
�m2

¤
�
|A|2g�1

� 1
�
p3g � 1qpg �mq P Opmq

a priori undetermined sites, which can be successively filled with symbols
from A. Validity of the nearest neighbor rules is again checked during the
construction of all possible Q1 (rejecting those Q1 which are not locally
admissible for X) and only increases the run-time by a fixed multiplicative

constant. So enumerating all such patterns Q1 takes at most |A|Opmq
steps.

(4) If any (the first) complete pattern Q1 is constructed for P , the Counter
variable is increased by one (Counter :� Counter � 1) and the algorithm
continues at Step (2) with the next pattern P . This step takes a constant
amount of time which is uniform over all P .

(5) After all patterns P have been tested, the algorithm outputs the actual
value of Counter and terminates.

As was shown in Lemma 3.1, it is possible to finish the construction of a locally
admissible pattern Q1 in Step (3) iff Q1 has a subpattern Q containing P which peri-
odically tiles the plane. Hence for every increase of Counter, the corresponding pat-
tern P is globally admissible, and at the end of the algorithm Counter � |Lm,mpXq|.

Analyzing the total run-time of the algorithm yields the existence of constants
C1, C2 P R (depending only on the actual implementation of the algorithm) such

that the maximal number of steps is bounded from above by C1 � |A|m
2

� |A|C2�m,

which is asymptotically less than |A|C3�m2

for a slightly bigger constant C3 P R. To
get an approximation of htoppXq with error at most 1

n (n P N), we therefore need no

more than |A|C3�p2g�n�log|A|q2
¤ 2C�n

2

steps, where C P R is again another sufficiently
large explicit constant. This establishes our claim and finishes the proof. �

We quickly point out that for any d ¡ 2, if X is assumed to have the uniform
filling property and to contain at least one periodic point x� P X, then it is clear
that a version of Lemma 3.1 is true for Q with all dimensions bounded from above
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by m � 2g � p for p P N the largest of the cardinal periods of x�. Then the same
algorithm will generate an approximation to htoppXq with error less than 1

n in

runtime less than 2C�n
d

for some constant C P R.

4. Accelerated Turing machines

Assuming the reader is familiar with the standard notion of a Turing machine
(TM) we will not repeat its formal definition, but rather refer to the classic textbook
by Hopcroft and Ullman [10] for further details. Here instead of using a standard
TM, we introduce the novel concept of an accelerated Turing machine. The main
additional property of an accelerated TM is that it can instantly execute certain
predefined operations affecting the currently used (finite) segment of tape-space in
a single step, while an ordinary TM would need to execute a corresponding (finite)
subroutine. The idea behind this notion is to have a model for computations given
by local rules which is better adapted to the capabilities of simulating computations
inside a multilayer Z2 SFT than standard TMs. We point out that our new model
does not increase the computational power which is still that of a standard TM.
However, it does decrease computation time considerably (instant operations do
NOT just provide a linear speed-up of computation time).

Definition 4.1. The term accelerated Turing machine will denote a deter-
ministic (or non-deterministic) multi-tape Turing machine (with its usual finite set
of states and an arbitrary but fixed number of tapes whose cells contain symbols
from a finite alphabet) starting off with each read-write head on the leftmost cell
of the corresponding one-sided infinite tape which is initially filled entirely with an
otherwise unused blank symbol. Computation now follows the rules of a standard
TM – in each step, all but finitely many cells on each tape are still filled with the
blank symbol and each head only modifies the symbol at its current position and
either stays at this position or moves one cell left/right – except when certain des-
ignated machine states are reached, in which case an additional predefined instant
operation (still defined cell-wise only using local rules) is performed on a part or
on all of a tape’s content first and then the usual standard TM step is carried out.

Examples of such instant operations4 acting on whole tapes include the following
(in each operation, if a “bounded” constant is referenced, this is with respect to a
fixed uniform upper bound for the entire accelerated Turing machine):

Fill: Cell-wise fill the entire currently used segment of a tape with a single symbol
(or a fixed periodic sequence of bounded period length). This includes filling
the tape with blanks (= deleting its content) and can also be used to check the
currently used tape segment has length a multiple of some constant.

Copy: Cell-wise copy the content of one tape to another tape starting from the
leftmost cell. This can also be combined with a fill/delete operation.

Shift: Cell-wise shift the content of one tape by a bounded number of cells to the
right or left (this requires filling in resp. discarding some symbols).

Multiply/divide: Multiply or divide the content of one tape (viewed as the
binary representation of a natural number) by a fixed constant. Shifting one step

4Those operations are actually more in the spirit of a register machine than a TM which,
instead of tapes, has a finite number of registers capable of holding any natural number (or finite

word over some finite alphabet) and a reduced set of steering and arithmetical operations that act
instantaneously on the content of a single (or a group of) register(s).
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to the right/left would correspond to multiplication/division by 2, shifting and
adding (with running carry on an auxiliary tape) corresponds to multiplication
by 3 etc. More generally a tape’s content can be modified by cell-wise applying
any fixed local (cellular automaton) replacement rule.

Add/subtract: Cell-wise add or subtract the content of one tape to/from an-
other (both contents are viewed as binary representations of natural numbers)
starting at the leftmost cell using an auxiliary tape to store a running carry of
adding each corresponding pair of cells from the other tapes.

Compare: Cell-wise compare the content of two (or more) tapes, starting from
the leftmost/rightmost cell. By using an auxiliary tape for sending a correspond-
ing signal, information about the outcome of the comparison can be transferred
back to the read-write head, to update its state in the following step.

Send signal: Send the read-write head’s current symbol or the tape’s right-
most/leftmost symbol to all currently used cells, using an auxiliary tape which
gets filled with this symbol. The information about this symbol is then available
everywhere (e.g. at the read-write heads’ positions of other tapes).

Move head: Transfer the read-write head’s position, along with its current state,
to the leftmost/rightmost currently used cell or the previous/next occurrence of
some symbol. Again, this can be combined with some other instant operations.

An even more powerful set of instant operations can be obtained by using mark-
ers, i.e. special symbols which can be placed in and removed from cells by the read-
write head in the course of the standard TM steps (or in an instant fill/replace
operation). This allows us to have any of the above operations (and their combina-
tions) act on a thereby marked segment of the tape, e.g. fill/compare/add only cells
between a pair of such markers, check markers are spaced by a multiple of some
fixed length, send information from a marked cell to the head’s current position,
let the head jump to the previous/next marker instead of the end of the tape, etc.

All this models a (non-)deterministic algorithm evolving in discrete time steps,
modifying the content of a bounded (sufficiently large) number of one-sided infinite
tapes5 according to a finite set of local rules. The time evolution of this algorithm
thus can be embedded into (consecutive rows within points of) a Z2 SFT.

Note, however, that the notion of computability in this new framework coincides
with the usual one. Our accelerated Turing machines have the same computational
power as standard (deterministic, one-tape) TMs; the only difference is in compu-
tation time. One can think of their enhanced capabilities as calling a subroutine,
given by another deterministic standard TM, which performs the corresponding
instant operation. The running time of this subroutine would be linear in the cur-
rently used space on the machine’s tapes, whereas the accelerated TM performs the
whole subroutine in a single step. Hence our accelerated TMs are not just standard
TMs using a constant linear speed-up. In fact the overall decrease in computation
time of an algorithm depends on the number of instant operations each of which
lets us gain a number of steps comparable to the length of the currently used tape
segment, which might grow unbounded during the algorithm’s execution.

Now that we have defined the concept of an accelerated TM, let us prove that
numbers with an eventually affine continued fraction expansion (i.e. numbers in
class 1.6.(3)) satisfy the computability condition (C):

5The content of those tapes will fill the rows on different superimposed layers of our Z2 SFTs.
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Let α1 � ra0; a1, a2, . . . , an1�1, an1 , an1�1, . . .s with an � C � n�D for all n ¥ n1

(C P N, D P Z fixed) and, by increasing n1 if necessary, suppose that an1 ¥ C.
Clearly there exists a (standard) Turing machine that has a hard-wired algorithm
which – starting from a blank tape – writes down the binary representation of a
single partial quotient an with n   n1 one bit at a time. Here and in the following,
our convention for such binary representations is to have the least significant bit
at the left end of the tape and all following bits consecutively to its right. By
putting those TMs as subroutines into an accelerated TM, we can ensure that
the tape contains such binary representations of the first N partial quotients after°N

n�1

�
tlog2 anu � 1

�
steps, which is surely sufficient for the bound in condition

(C). Recall that in an accelerated TM, whenever a binary representation has been
finished, independently of its length, it can be instantly stored on another tape and
be deleted by immediately filling the work tape with blanks in one step; this works
due to the enhanced copying and filling capabilities of an accelerated TM.

Once the first n1 � 1 partial quotients are finished, the accelerated TM switches
to a second part of its program, now using three tapes, defined as follows: starting
from blank tapes as before, the TM now puts down at the same time a binary
representation of an1 � C � n1 �D on one tape and a binary representation of the
parameter C on the second tape (both starting at the left end of their respective
tape). Since C ¤ an1 , this takes not more than tlog2 an1u � 1 steps and already
produces an1 . Starting from here, the accelerated TM now is capable of producing
all remaining partial quotients in real time, i.e. one per step, by simply adding the
content of the second tape, i.e. C, to the content of the first tape over and over
again, using the third tape to propagate the carry produced by adding each pair
of bits from the left to the right. Hence the bound from condition (C) is met (for

N P N, N ¥ n1, aN is ready after at most
°n1

n�1

�
tlog2 anu� 1

�
� pN � n1q steps).

Roughly speaking, for numbers in class 1.6.(4), we would need a similar acceler-
ated TM, using 2p�1 tapes instead of 3, which are then used to store and add the co-
efficients C0, C1, . . . , Cp�1 to their corresponding partial quotients aip, aip�1, . . . , aip�p�1

for ip ¥ n1 (i P N), while keeping track of which coefficient is being worked on via
a p-cycle in the machine’s states. We leave the details to the interested reader.

Let us be a little more specific about how the computations of such accelerated
TMs can be implemented inside a N2-quarter-plane, using only local rules. (Those
local rules will then be used to define a Z2 SFT as usual.) Assuming that the
accelerated TM has I P N one-sided infinite tapes, each containing a single read-
write head, we will use I � 2 superimposed layers to encode the corresponding
computation on N2 (and thus later in a Z2 SFT). Rows on the first I of those layers
will be used to hold the content of the respective tape, i.e. a one-sided infinite
sequence over some finite alphabet eventually ending in all blank symbols, in the
respective step of the computation. Moreover, the current position of the read-write
head will be marked by a “^” (decorating the usual symbol contained in a cell) and,
to ensure that on each tape there is (at most) one such position, we force all symbols
to the right of the head’s position to be decorated by “Ñ”, while all symbols to its
left must carry a “Ð”. To summarize, the alphabet for the ith layer (1 ¤ i ¤ I) is
defined to be the product Γi�

 ÐÝ, p ,ÝÑ(
, where Γi is the ith tape’s alphabet. Then,

a nearest neighbor rule only allows horizontal transitions of the form ÐÝc1 ÐÝc2 , ÐÝc1 pc2,pc1ÝÑc2 or ÝÑc1 ÝÑc2 for c1, c2 P Γi. Now, layer I � 1 will be used to actually control the
computation, while layer I�2 acts as an auxiliary layer, whose rows may be used in
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some of the instant operations. Each of the rows on layer I � 1 contains a constant

sequence t8 of some symbol t P δ � Q�
±I

i�1 Γi�Q�
±I

i�1 Γi�tL,N,Ru
I
, which

codes a legal transition of the TM (here Q denotes its set of states, tL,N,Ru is
the set of possible head movements, and δ is the usual transition function/relation
of a (non-)deterministic multi-tape TM). This way, all of the following is available
at all cells: the machine’s current and next state, as well as the symbols seen
at all read-write heads’ positions, their replacements in the actual step, and the
heads’ movements. Consistency of the computation is assured by the following
rules, all of which have a simple and obviously local character (in each of the
following, t �

�
q, pc1, c2, . . . , cIq, q

1, pc11, c
1
2, . . . , c

1
Iq, pm1,m2, . . . ,mIq

�
P δ represents

the transition tuple used in row j P N of layer I � 1):

 The symbol marked by “^” on layer i (1 ¤ i ¤ I) in row j is forced to be pci. (In
the exceptional case caused by compactness of the Z2 SFT where there is no symbol
marked by “^” in row j on layer i, the corresponding ci in t is unconstrained.)

 Whenever state q1 is one of the ordinary TM states not triggering an instant
operation, all symbols c P Γi in row j of each layer i at positions not marked by
“^” are kept unchanged, i.e. reappear at the same position in row j � 1, whereas
the remaining symbol at the position of the “^” in row j is forced to be a decorated
version of c1i in row j�1 (again if there is no such position, nothing is implied here).
In addition, on each layer i the position of the marking “^” in row j�1 has shifted
with respect to its position in row j according to the value of mi (either it stays
unchanged “N” or it moves one step to the left “L” or right “R”); furthermore row
j � 1 on the auxiliary layer I � 2 is forced to be entirely filled with blanks.

 If state q1 is one of the TM states designated to perform an instant operation
defined by local rules, this operation is executed by first modifying the content of
some (all) tape(s) and possibly the heads’ positions, thus producing the symbols
and decorations for row j � 1 on layers 1 to I (including row j � 1 on the auxiliary
layer I � 2 which can either be used in the operation, e.g. to store a running carry
or to send back-and-forth some information, or, if not needed, is again to be filled
with blanks). The content of tapes not affected by the instant operation is kept
unchanged and the replacements of symbols at positions marked by “^” given by
pc11, c

1
2, . . . , c

1
Iq as well as the shifts of the decorations according to pm1,m2, . . . ,mIq

then take place as before.

 In both cases, state q1 has to reappear as the first component of the transition
tuple t1 P δ used in row j � 1 on layer I � 1, so that the consecutive machine states
match up forming a legal computation.

5. A sufficient condition – Proof of Theorem 1.7

The goal of this section is to construct, for any non-negative real number α P R�
0

which satisfies computability condition (C), a block gluing Z3 SFT X of topological
entropy htoppXq � α. The portion of Theorem 1.7 for d ¡ 3 then follows from
taking full Zd�3-extensions of those Z3 shifts.

Suppose α � α1 � logM is the representation given by Definition 1.5. Note that
we can basically restrict ourselves to the case where α1 P p0, 1q; for α1 � 0 the trivial
one-point SFT is block gluing of entropy zero, for α1 � 1 there is a full Z3 shift onM
symbols that is clearly block gluing of entropy α � logM , and whenever α1 ¡ 1, we
can use the product of a full Z3 shift on M tα1u symbols with a block gluing Z3 shift
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of finite type (to be constructed below) of entropy
�
α1�tα1u

�
logM , which is clearly

block gluing of topological entropy α � α1 logM �
�
α1 � tα1u

�
logM � logM tα1u.

Our main construction proceeds in several steps: The first is to use methods

similar to [9] to construct an auxiliary zero-entropy Z3 SFT X 1 � A1Z3

in which the
alphabet A1 can be partitioned into two sets A1 � A1

0 9YA1
1 such that the frequency

of symbols fromA1
1 in every point ofX 1 is very close to α1 P p0, 1q. The second step is

to create a new Z3 SFT X2 � A2Z3

with alphabet A2 :� A1
0 9Y

�
A1

1�t1, 2, . . . ,Mu
�

by splitting each symbol in A1
1 into M independent copies, which, as in [9], will

cause X2 to have entropy α1 logM . Thus, we will think of α1 as a frequency of
certain symbols in our Z3 SFTs X 1 and X2 which, in the latter shift, come with
multiplicity M . Unfortunately, the construction in these first two steps only yields
a degenerate and highly non-mixing Z3 SFT X2, which is why we need the third
and final step. Here, we create X from X2 by introducing some new symbols
to A2, called “wall symbols”, which will cause X to finally be block gluing. The
fundamental difficulty is to ensure that the entropy is not increased by this addition,
since if it were, we would have no real technique for controlling the exact increase.

We remark that if we instead wanted X to have the uniform filling property (or
to be strongly irreducible) rather than being just block gluing, this last step could
not possibly work. It is known (see [22, Lemma 2.7]) that a Zd SFT satisfying the
uniform filling property is entropy minimal, meaning that it cannot contain a proper
subsystem of equal entropy, thus making an entropy-preserving construction of
X � X2 impossible. Luckily, for some Zd SFTs it is possible to introduce additional
symbols so as to make (or keep) those shifts block gluing without increasing their
entropy. This was first done in [22] and in [5] for a full shift. It turns out that in
order for the entropy to not increase under our method, a subshift must satisfy a
very restrictive technical property which we state in the following definition:

Definition 5.1. A Z3 shift of finite type Z is upgradable6 if there is a non-
negative real constant C P R�

0 so that
��Lloc

k,l,mpZq
�� ¤ ehtoppZqklm�Cpkl�km�lmq holds

for all k, l,m P N.
Note that a full shift on any alphabet A obviously satisfies Definition 5.1, as��Lloc
k,l,m

�
AZ3��� � ��Lk,l,m

�
AZ3��� � elog|A|�klm; this is the reason behind similar argu-

ments used in [5, 22]. Nevertheless, being upgradable is a quite restrictive condition,
and thus our construction of X2 is by necessity fairly intricate in order to achieve
upgradability.

We begin our construction with any non-negative real number α P R�
0 satisfying

computability condition (C). As we will see, this restriction on α is an intrinsic
consequence of our method and in view of Theorem 1.4, some condition on the
computability of α seems unavoidable. By Definition 1.5 and the remarks above
we may assume α � α1 � logM with 1   M P N a natural number and α1 P p0, 1q.
Depending on the value of α1 we distinguish two principal constructions:

First, suppose α1 � r
s P QXp0, 1q. In this case we may simply defineX 1 � t0, 1u

Z3

to be the full Z2-extension of the Z shift of finite type Y 1 :� Orb tp0s�r 1rq8u, i.e.
X 1 :�

 
x P t0, 1u

Z3

| @~ı P Z3 : x|~ı�Z~e1 P Y 1(. It is apparent that Y 1 can be

6Similarly we could define upgradability for general Zd shifts of finite type (d � 3), e.g.

requiring
∣∣Lloc

k,lpZq
∣∣ ¤ ehtoppZqkl�Cpk�lq for all k, l P N in the 2-dimensional setting. However in

our construction we will be focusing on the case d � 3.
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defined by local (1-dimensional) rules, hence X 1 is a Z3 SFT. As each row of a
point in X 1 is actually an element of Y 1 it is easy to see that the frequency of
1s – which is just the frequency of 1s in the periodic point p0s�r 1rq8 – is equal
to r

s � α1 and constant across all elements of X 1. Moreover the entropy of X 1

is zero and thus splitting 1s into M independent copies immediately results in a
Z3 SFT X2 of entropy htoppX

2q � α1 � logM � α. Theorem 5.11, proved later
in this section, allows us to upgrade X2 to a block gluing version X with equal
entropy as long as X2 satisfies the condition stated in Definition 5.1. Denote by
Y 2 :�

 
x|Z~e1

�� x P X2( the horizontal projective subdynamics of X2 (i.e. the Z
subshift consisting of the rows of X2), which is basically Y 1 with the 1s split into

M independent copies, and note that then
∣∣Lloc

k pY 2q
∣∣ ¤ s �Mα1�k�r for every k P N.

This is because there are s ways to pick a starting point in the orbit of p0s�r 1rq8,
and the maximal number of 1s in a block of length k is bounded by k times the
frequency α1 � r

s , plus a possible overage less than or equal to r, from the cases

where k is not a multiple of s. As X2 is (still) a full Z2-extension of Y 2, this yields��Lloc
k,l,mpX

2q
�� � ��Lloc

k pY 2q
��lm ¤

�
s �Mα1�k�r

�lm
� ps �Mrqlm �Mα1�klm

� eplog s�r logMqlm � ehtoppX2qklm

which clearly implies upgradability of X2 for C :� log s � r logM P R�
0 . Theo-

rem 5.11 then concludes the proof of our main result for α1 P Q X p0, 1q. (The
construction in this case also works for d � 2.)

The complementary case of α1 P p0, 1qzQ is less straightforward and will take up
most of the remainder of this section.

Step 1 (Constructing X 1). This time our Z3 SFT X 1 will consist of various su-
perimposed layers as defined in [9]. The admissible configurations on each of those
layers can be entirely described by a set of local rules which use information from
nearby symbols both in this layer as well as in some (or all) of the other layers.

The first layer, which we from now on refer to as the base layer, consists of
0s and 1s, and is forced by simple nearest neighbor rules to be constant in the
directions of the cardinal vectors ~e2 and ~e3. Therefore, the base layer of any point
inX 1 will be entirely determined by its restriction to a single row in the ~e1-direction.
We will use the rules on the other layers to restrict further these 0{1-configurations,
controlling what rows can actually show up on the base layer.

The next layer, called the board layer, will be used to, for any point x1 P X 1,
partition each ~e1 ~e2-cross section x1|Z2�tmu (m P Z fixed) into square “boards” on
which accelerated Turing machines – running on another layer called the construc-
tion layer (to be defined below) – will eventually perform some computation. Rather
than using the more general construction of Mozes (introduced in [17]) as was done
in [9], we use the Robinson tilings from [21]. This is because in light of Definition
5.1, we need very good control on the number of locally admissible patterns on
large rectangular prisms to show upgradability of X2, and the use of the simpler
and more explicit Robinson system makes such technical conditions easier to verify.

For an easy-to-read synopsis of the Robinson system and its relevant properties,
see [20], pp. 39-47. In Figure 2 we recall the 56 square tiles forming its alphabet.
The nearest-neighbor rules for putting together these decorated squares to produce
a valid tiling of Z2 are that across every edge shared by a pair of adjacent tiles,
arrows of each type (thick or thin) must match head to tail, and the parity check
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Figure 2. The alphabet used in the Robinson tilings (displayed
tiles can still be rotated giving a total of 4� 14 � 56 symbols).

symbols (0, 1 or 2) on both sides of the shared edge must sum to 2. This forces parity
check symbols in any row or column either to be constantly 1 or to strictly alternate
between 0s and 2s and those two types of rows/columns again must strictly alternate
in each tiling. In our construction of the board layer, we will not use all of the
information contained in these tiles, but will be primarily interested in the locations
of the two tiles from the leftmost column of Figure 2 – usually called crosses, as
in their interior the thinline arrows spread out in all 4 directions – in a valid tiling.
So, to distinguish them from the rest of the tiles, we mark these two cross symbols
with a central “black dot”. The remaining non-cross symbols – also called arms
in [20, 21] – can be thought of as carrying a “white dot” (not shown). With this
simplification, points of the Robinson system then almost correspond to points
of the substitution system defined in Section 6 of [9]. There are, however, some
exceptional points in the Robinson system which contain a “fault line” consisting
entirely of white dots (arms), in which the two half-planes adjacent to the fault line
have a non-zero offset; such points do not exist in the substitution system. Figure
3 shows the position of the black dots (together with the information about the
thickline arrows) induced by a typical point of the Robinson system.

Now we define the board layer, which will actually consist of three sublayers:
Two of them, called Robinson sublayers, are independently formed from valid
Robinson tilings, and the third one, called the synchronization sublayer, is
used to relate the two Robinson sublayers to force the final structure of square
boards mentioned above. More specifically: the first sublayer is constant along
the ~e1-direction, and must contain a legal point of the Robinson system on each
(identical) ~e2~e3-cross section which is enforced by the standard Robinson rules.
The second sublayer is constant along the ~e2-direction, and must contain a legal
Robinson tiling on each (identical) ~e1~e3-cross section. A priori any pair of points of
the Robinson system can be used in the respective cross sections to induce these first
two sublayers, while the synchronization sublayer will impose an additional relation
between them, breaking their independence. Note that since the Robinson system is
defined by local rules, and it is trivial to force constancy along a cardinal direction
with nearest neighbor rules, the SFTness property extends to the two Robinson
sublayers. As each Robinson sublayer is constant in one of the cardinal directions,
this means that each sublayer can be thought of as consisting of lines in Z3 traced
out by the black dots. The first sublayer induces such lines in the ~e1-direction, the
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Figure 3. The black and white dots induced by a (typical) point
of the Robinson system (thickline arrows shown as gray lines; par-
ity of rows/columns recorded along the left and bottom edges).

second induces lines in the ~e2-direction; thus their union will create a rectangulation
of each ~e1~e2-cross section of Z3 (possibly including infinite rectangles).

For our construction, we would like these rectangulations on (most) ~e1~e2-cross
sections to be regular grids given by aligned copies of congruent squares rather than
general rectangles. This is basically (aside from some possible exceptional cross-
sections) accomplished by superimposing the synchronization sublayer, which has
an extremely simple SFT structure. Its alphabet consists of two symbols,l (blank)
and m (diagonal), and there are two types of local rules. The first is that a blank
symbol l is not allowed to coexist at the same site with two black dots (crosses)
on the two Robinson sublayers (at least one of those symbols has to be a white
dot), and a diagonal symbol m on the synchronization layer can only coexist with
either two black dots (crosses) or two white dots (arms) present at the same site
on each of the two Robinson sublayers. The second local rule is that the presence
of a diagonal symbol m at any site ~ı P Z3 forces the presence of diagonal symbols
at sites ~ı � ~e1 � ~e2 and ~ı � ~e1 � ~e2. This way diagonal symbols have to propagate
infinitely along the p~e1�~e2q-direction and have to cross through all corners, forcing
complete rectangles to be squares. This finishes the board layer’s description.

In order to show the claimed upgradability of our Z3 SFT X 1 we have to control
the structure of locally admissible cuboid patterns in the board layer. For this we
first need to recall some facts about locally admissible patterns in the Robinson
system. Here we essentially follow Sections 3 and 8 of [21]. First recall that the
parity check symbols in the tiles of Figure 2 force the presence of crosses (with
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parity symbols 1s along their 4 edges) at alternating sites in every other row (and
column) of any locally admissible pattern P with rectangular shape R � r1, ks�r1, ls
(4 ¤ k, l P N). This then forces arms (with parity symbols 1s and 2s) adjacent
to these crosses. Moreover any two of those crosses with horizontal (or vertical)
separation 2 either face each other, meaning that the tips of their thickline arrows
point towards each other, or are back-to-back, i.e. thickline arrows point away from
each other. If k, l ¥ 6 our locally admissible rectangular pattern P contains what
is called a 3-square in [21], having as its corners 4 crosses at distance 2 pairwise
facing each other. Note that the central tile in such a 3-square again has to be a
cross (with parity symbols 0s) and that the 3 tiles adjacent to either side of the
3-square have to be arms. In particular the orientation of its central cross forces
the orientation of the arms adjacent to one of the 3-square’s corners and also forces
another cross (with parity symbols 0s) diagonally adjacent to this corner. This
behavior then repeats on bigger scales forcing four 3-squares to be aligned into a
7-square, four 7-squares to form a 15-square etc. as long as those p2i�1�1q-squares
(i P N) are completely contained inside the rectangle R. This process also excludes,
for k, l ¥ 2i�3 (i P N), the presence of more than one horizontal resp. vertical fault
line having non-aligned complete p2i�1�1q-squares on either side; a fact which will
be key in the proof of the next lemma. So looking only at the complete p2i�1 � 1q-
squares inside R the pattern P has to fall into one of the following 3 categories:

(1) all complete p2i�1 � 1q-squares inside R are aligned;
(2) there is a unique vertical fault line with a non-zero vertical offset of even

size between the complete p2i�1 � 1q-squares to its left and its right;
(3) there is a unique horizontal fault line with a non-zero horizontal offset of

even size between the complete p2i�1 � 1q-squares above and below it.

p1q p2q p3q

Figure 4. Types (1)–(3) of locally admissible patterns on rect-
angles R � r1, ks � r1, ls (k, l ¥ 2i�3) in the Robinson system
(displaying the possible alignment of complete p2i�1� 1q-squares).

Figure 4 illustrates categories (1)–(3) where we explicitly leave some room near
the boundary of R possibly containing incomplete and not aligned p2j�1�1q-squares
(j ¤ i) which we can not fully control with the local rules of the Robinson system.

Lemma 5.2. For any k, l ¥ 2i�3 (i P N) and any pattern P locally admissible for
the Robinson system and with rectangular shape R � r1, ks � r1, ls the following
holds: If for some r P NX r1, ls row r of P contains either zero crosses or a single
cross, then for any s P N X r1, ls such that 2i - pr � sq, row s of P contains two
consecutive crosses with separation 2ν2pr�sq�1. (Here, for any integer n P Zzt0u,
ν2pnq :� maxtm P N0 | 2

m divides nu denotes the 2-adic valuation.)
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Proof. The proof of this claim in the case where P is a full p2i � 1q-square for any
i P N is easily proved by induction, and we leave it to the reader. It remains to use
this to prove the lemma for general P .

First note that the hypothesis k, l ¥ 2i�3 forces P to contain at least 9 complete
p2i�1 � 1q-squares arranged in a (skew) 3 � 3 configuration and that thus – no
matter which category (1)–(3) P falls into – a rectangular portion of width at leastP
k�1
2

T
¥ 2i�2 and height at least

P
l�1
2

T
¥ 2i�2 containing 4 of those p2i�1 � 1q-

squares forming a complete p2i�2 � 1q-square will be on one side of a possibly
existing horizontal resp. vertical fault line. Call this complete p2i�2 � 1q-square
Q � R and let c P NX r1, ls be the number of its central row seen as a row in P .

Suppose row r of P contains at most one cross. As a consequence of the inductive
definition of p2j�1 � 1q-squares (j P N), see [21], all rows s P NX r1, ls intersecting
Q, except its central row, i.e. row c, contain at least two consecutive crosses with
separation 2ν2pc�sq�1. This immediately implies that row r of P either has to
contain the central row of Q (thus having a single cross) or otherwise must not
intersect Q at all. We will show that in either case the difference r � c has to be
divisible by 2i which allows us to conclude that ν2pr�sq � ν2pc�sq and will finally
prove the lemma. Let us look at the rows above Q; the argument for rows below
Q being identical. If the distance from the top row of Q to the top row of R is at
least 2i�1 the following situation has to occur: First there is a (possibly empty) pile
of pairs of horizontally adjacent complete p2i�1 � 1q-squares sitting right above Q,
horizontally exactly aligned with Q and separated from Q as well as one from the
next by a single row. Note that all the rows in between those pairs of p2i�1 � 1q-
squares have distance from row c a multiple of 2i (in fact 2i�1). Hence the lemma
actually does not make any claim about them as long as we can prove 2i | pr � cq.
Clearly all rows in P intersecting those pairs of p2i�1 � 1q-squares contain at least
two crosses and are thus excluded from appearing as row r. Moreover the separation
of consecutive crosses in any such row s P NXr1, ls is still given as 2ν2pc�sq�1. Above
this pile of exactly aligned pairs of p2i�1 � 1q-squares there might be another pile
of complete p2i�1 � 1q-squares showing a non-zero horizontal offset with respect to
Q. However, since P has to fall into categories (1)–(3) above, the uniqueness of a
horizontal fault line then forces this misaligned pile of complete p2i�1 � 1q-squares
to extend up to a distance less than 2i�1 from the top row of R without allowing
any further horizontal offset. Again all rows separating the p2i�1 � 1q-squares in
this second pile as well as their central rows have distance to row c a multiple of
2i, while all other rows s P NXr1, ls inside the pile contain at least two consecutive
crosses with separation 2ν2pc�sq�1. This leaves us with either 2i | pr � cq or row r
sitting above the last complete p2i�1 � 1q-square of the second pile.

Finally we repeat the same argument starting from the top of Q looking at
p2i� 1q-squares instead. There has to be a (possibly empty) pile of exactly aligned
groups of 4 horizontally adjacent complete p2i � 1q-squares followed by a (possibly
empty) pile of misaligned groups of 3 horizontally adjacent complete p2i�1q-squares
extending all the way up to within a distance of at most 2i � 1 from the top row
of R. All rows intersecting these p2i� 1q-squares contain at least three consecutive
crosses at the correct separation and thus can not appear as r. The rows in between
have distance a multiple of 2i from row c (and, except possibly the very last one,
have already been analyzed as part of the p2i�1 � 1q-squares above). We continue,
dealing with p2j � 1q-squares for all values of j   i, and the same argument goes
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through virtually unchanged, excluding all remaining rows near the top ofR, forcing
the distance between rows r and c to be a multiple of 2i as claimed. (The only
change is that for j   i there are even more than 3 forced horizontally adjacent
squares.) �

Next we describe the structure of locally admissible patterns in the board layer:

Lemma 5.3. For any k, l,m ¥ 2i�4 (i P N) and any pattern P locally admissible for
the board layer with cuboid shape r1, ks� r1, ls� r1,ms, there exists t P NXr1,ms so
that for any s P NXr1,ms with 2i�1 - pt� sq, the ~e1~e2-cross section P |r1,ks�r1,ls�tsu
is a subpattern of a gridding of Z2 by aligned squares of size 2ν2pt�sq�1.

In other words, as we increase the ~e3-coordinate, the ~e1~e2-cross sections of P can
be labeled by a subword of the periodic sequence p� 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 . . . 1 2 1loooooooooooooooooooomoooooooooooooooooooon

length 2i�1

q8,

where the label j P N represents that the corresponding cross section is part of
a rectangulation of Z2 by aligned congruent squares of size 2j (hereafter called
boards), and the label � represents that no information is given about that par-
ticular cross section.

Proof. Clearly any such locally admissible pattern P is induced by two patterns
P1, P2 filling the cross sections of the Robinson sublayers, both locally admissible
for the standard Robinson system and with rectangular shapes R1 � r1, ks � r1,ms
and R2 � r1, ls � r1,ms respectively.

First let r P NX r1,ms be such that row r has at least two crosses (black dots)
in one and at least one cross in the other of the two patterns P1 or P2. The
corresponding ~e1~e2-cross section in the synchronization layer then has to contain
diagonals spreading from the (at least) 2 crossings of the corresponding lines traced
out by the black dots in P1 and P2. As each of those diagonals continue, they hit
the other line(s) and thus force both rows r in P1 and P2 to have consecutive crosses
with the same constant separation appearing periodically throughout all of row r.

Now we define intervals K � r1, ks and L � r1, ls both of length 2i�3 such that
the restrictions P 1

1 :� P1|K�r1,ms and P 1
2 :� P2|L�r1,ms each contain a complete

p2i�3 � 1q-square; this is clearly possible, since k, l,m ¥ 2i�4, no matter which
category (1)–(3) that P1 and P2 lie in. Let c1, c2 P N X r1,ms be the central rows
of such complete p2i�3 � 1q-squares (thus containing a single cross) in P 1

1 and P 1
2

respectively. Without loss of generality we may assume that c1 ¤ c2 by switching
the role of P 1

1 and P 1
2 if necessary. We claim that c1 � c2 pmod 2i�1q. Suppose for

a contradiction that this is not true. By Lemma 5.2, row pc2 � 2i�1q of P 1
2 must

contain two consecutive crosses with separation 2ν2p2i�1q�1 � 2i. However, since
c2 � 2i�1 � c1 � pc2 � c1q � 2i�1, and since pc2 � c1q � 2i�1 is not divisible by 2i�1,
hence neither by 2i, Lemma 5.2 again shows that the same row in P 1

1 must contain
two consecutive crosses with separation 2j for j :� ν2ppc2 � c1q � 2i�1q � 1   i. By
the argument above, the synchronization layer then clearly yields a contradiction
(diagonals would force the same separation on row pc2 � 2i�1q in P 1

1 and P 1
2). This

means that for any s P N X r1,ms not equal to c1 (and therefore also not equal to
c2) modulo 2i�1, any pair of consecutive crosses in row s of either P1 or P2 have to
occur at the same constant separation 2ν2pc1�sq�1, completing the proof. �
Corollary 5.4. For any k, l,m ¥ 2i�4 (i P N), any pattern P locally admissible for
the board layer with cuboid shape r1, ks�r1, ls�r1,ms, and any j P NXr1, i�1s, there
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exists an ~e1~e2-cross section of P which consists of a subpattern of a rectangulation
of Z2 by aligned squares of size 2j.

The function of the square boards is to provide the infrastructure for the remain-
ing two layers, which we will now informally describe. The first of these, called the
construction layer, uses accelerated Turing machines to construct prefixes of the
characteristic Sturmian sequence cα1 . Roughly speaking, the construction layer
uses two main components, each of which, inside each finite (or infinite) board,
simulates row-by-row the run of an accelerated Turing machine whose space and
runtime is confined by the size of the boards. In other words, given an ~e1~e2-cross
section with square boards of size 2j (j P N), computation is initialized in the start-
ing state with empty tapes (seen as rows on the respective sublayers, all initially
filled with blanks) of length 2j and all read-write heads positioned on the leftmost
symbol of each tape on the bottom row of each such square board. As described
in Section 4, there are also control and auxiliary layers, which are initialized at the
bottom of each board with the constant sequence of some initial transition tuple
and the constant sequence of all blanks respectively. Each subsequent row, again
the superposition of all tapes, the control and auxiliary sublayers, then contains
the consecutive instantaneous description of the Turing machine run, determined
by purely local rules, until the top of the board is reached after the simulation of
exactly 2j�1 steps, at which point the computation is stopped and reinitialized on
the next board’s bottom row. As we have seen, locally admissible cuboid patterns
contain ~e1~e2-cross sections with boards of varying sizes and thus both the length of
the tapes of our Turing machines and the number of computational steps, though
finite on each individual board size, are globally unbounded in points in X 1.

The final layer, called the pruning layer, runs a simple checking procedure to
match the prefixes of cα1 produced by the construction layer against subwords of
the 0{1-sequences seen in the base layer to ensure that the latter have roughly the
correct proportion α1 of 1 symbols. This is slightly different than the procedure in
[9] where the authors controlled the frequency α1 of 1s by forcing the base sequences
to have a regular (binary) Toeplitz structure – which is not enough for our purposes.
The reason why we need a more restrictive construction is again the desired upgrad-
ability property of X2; a regular Toeplitz sequence on t0, 1u with frequency α1 of 1
symbols has the property that for any j P N, there exist subwords of length m P N
exponential in j containing mα1�j 1 symbols. This is unsatisfactory in our setting,
as it would yield the existence of a locally (in fact globally!) admissible pattern in
X 1 on a rectangular prism with shape r1,ms3 with more than m3α1� jm2 symbols

1 on the base layer, which would mean that
∣∣Lloc

m,m,mpX
2q
∣∣ ¥ ehtoppX2qm3�j logM �m2

,
and since j was arbitrary, this would preclude upgradability of X2. This intrinsic
and quintessential problem is obviated by instead checking the base against a Stur-
mian sequence, which is balanced: for any m, the number of 1 symbols within a
subword of length m can take only two different values in N0 X rmα1 � 1,mα1 � 1s.

Local rules, as explained in detail in Section 4, are used to define both the con-
struction and pruning layers uniformly on all ~e1~e2-cross sections. These rules thus
apply both to cross sections which see subpatterns of square griddings of Z2 on the
board layer and to the (possible) exceptional cross sections containing incomplete
and/or infinite boards where there is no left end of the tapes or no bottom row to
initialize the computation. On such exceptional cross sections our rules may in fact
allow the construction and pruning layers to contain strange, not well-controlled
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configurations. Luckily, in any locally admissible pattern on a large rectangular
prism, the combined volume (according to Lemma 5.3) of all such exceptional cross
sections is so small that this does not affect the desired upgradability property of
X 1 (and X2).

We begin with an informal description of the construction layer. Roughly speak-
ing, it will be based on two accelerated Turing machines working together: The first
TM can be more or less considered a black box consecutively producing the partial
quotients panqnPN of the continued fraction expansion of α1, while the second TM,
whose job is to construct longer and longer prefixes of the characteristic Sturmian
sequence cα1 , with lengths increasing by one each TM step, can be described in full
detail. To do this, the second machine emulates the recursive construction from (2)
of Facts 2.6; each time wn�1 is completed, it continues appending copies of wn�1

until reaching a total of an copies, after which it appends a copy of wn�2, complet-
ing wn. For this the second machine clearly needs access to each an in time to know
that it has completed the desired number of copies of wn�1 and should append a
copy of wn�2, which must be begun in step an � tn�1 � 1. Note that Definition 1.5
precisely implies that an can be computed by this time by the first TM.

Unfortunately, there could be a slight complication in this process if the se-
quence of “computation times” of the partial quotients is very irregular. For ex-
ample, suppose that for some strictly increasing sequence pniqiPN of positive inte-
gers, our accelerated black-box TM can generate the successive partial quotients
ani , ani�1, . . . , ani�1�2 very fast, say almost one per time step, while each one of the
sparse partial quotients ani�1�1 (i P N) takes a very long time to compute, always
finishing just before time step ani�1�1 � tni�1�2 � 1. For such a sequence panqnPN
the bound in computability condition (C) would still be satisfied. However, the
“requests” for ani , ani�1, . . . , ani�1�2 from the second TM would yet come at a very
regular rate, i.e. for every N P N, aN is asked for between step aN�1 � tN�2� 1 and
aN � tN�1. So at the time when (for instance) ani is requested, the first TM might
be already in the middle of the (long) computation of ani�1�1, and no longer have
access to ani .

Note that in such a situation it is neither possible to simply hold the computa-
tion of the next partial quotient until the present one was requested nor to store all
of the yet unrequested partial quotients on an additional tape, as both their size
and their number (growing gaps between ni’s) might be unbounded, which would
not allow us to copy them back in a single time step. Nevertheless, using the capa-
bilities of an accelerated TM, it is still possible to store a single bit of information
about every one of them (which thus can be transmitted over arbitrarily long tape
distances in one time step). This allows the computation times of the first Turing
machine to be “regularized”, finally leading to a solution for our problem.

We now give a formal description of the construction layer. Its first com-
ponent consists of layers implementing the run of an accelerated Turing machine
T1 successively generating the partial quotients panqnPN of the continued fraction
expansion of α1, where for each N P N all a1, a2, . . . , aN are finished before time
step aN � tN�1 � 1. The existence of T1 is guaranteed by the assumption that α1

satisfies computability condition (C). Every time an an is completed, the machine
checks the status of a tape, called the request-tape, which is shared with the sec-
ond component (see below). If its leftmost cell contains a symbol “?”, signaling
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a request, T1 copies the binary representation of an onto this shared request-tape
using an instant operation. If there is no request present on the shared tape, T1

just examines the value of an and copies one bit of information onto an additional
tape (which we call the 1{�-tape): this bit will be either a 1 if an � 1, or a � if
an ¡ 1. The transfer of each such bit is done via an instant operation sending the
information to the right end of the already used part of the 1{�-tape where the
bit is put down by the read-write head which then moves one cell further right,
thus always staying at the right end of the occupied tape segment. Therefore, at
any point throughout the construction, the 1{�-tape (initially starting off with all
blanks and the read-write head on its leftmost cell) acts like a queue containing a
simplified record of the already produced (but not yet used) partial quotients an.

Though a bit inelegant, for organization’s sake, we need a few facts about the
second component (which will be proved below) in order to completely describe
the first component’s behavior. We will for now take on faith (and soon verify)
the following facts: Firstly, the second component will simulate an accelerated
TM T2 which creates prefixes of the characteristic sequence for α1, at the rate of
one symbol per time step. Secondly, T2 will send “requests” to the first component
asking for a partial quotient aN , each request being sent at time step aN�1 �tN�2�1.
These “requests” are communicated via instant operations acting on a tape, called
request-tape, shared by the two components, in a way which will be described
in a moment. Also we add another tape, called counter-tape, to the second TM
T2, whose job is to store a binary representation of the index N of the currently
requested partial quotient aN . Starting from zero the value on this counter-tape
is incremented by one every time a “request” is sent by T2, i.e. at time steps
aN�1 � tN�2 � 1. Now each request triggers the following instant operations: First
the leftmost symbol on the 1{�-tape, corresponding to the bit of information stored
about the partial quotient aN , is examined. If it is a blank symbol (and thus
the read-write head is positioned at the leftmost cell), then aN has not yet been
computed by T1, and so nothing needs to be done; the request-tape stays unchanged
and T1 will compute aN and copy it to the request-tape before time step aN �tN�1�1
by the definition of computability condition (C), in time to be picked up by the
second component. If the examined symbol of the 1{�-tape is a 1 or a �, the complete
content of the 1{�-tape (including the read-write head’s position) is shifted one cell
to the left deleting the leftmost symbol. In case of a 1, an instant operation is then
used to copy this symbol directly to the shared request-tape (overwriting the “?”),
where it will be available when needed by the second component. If the examined
symbol from the 1{�-tape is a �, then we know that aN ¥ 2. This gives the machine
T1 enough time to invoke a subroutine given as another accelerated TM T 1

1, run
in parallel on separate layers. This TM T 1

1 instantly deletes the request-tape and
then simulates a version of T1, enhanced by a linear speed-up by a factor of 2, to
recompute all partial quotients up to aN . (Such a speed-up is easily implemented by
creating a version of T1 which executes two steps of computation of the original TM
T1 in a single step by modifying its transition function or by using twice the number
of tapes/sublayers.) Note that (for N ¥ 3) the time difference between the request
for aN at step aN�1 � tN�2 � 1 and the time by which it has to be ready, namely
aN � tN�1, satisfies: ∆t :� aN � tN�1�paN�1 � tN�2�1q ¥ aN � tN�1�paN�1 � tN�2�
tN�3q � paN � 1qtN�1. Since aN ¥ 2, this yields ∆t

aN �tN�1
¥ aN�1

aN
� 1 � 1

aN
¥ 1

2 .

Therefore the subroutine executed by T 1
1 can proceed as follows: it will copy the
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current binary value on the counter-tape holding the index N to one of its own
tapes using an instant operation and then will use the twice-as-fast version of T1 to
recompute a1, . . . , aN . Whenever the twice-as-fast version of T1 produces a partial
quotient, it decrements the value of the copied counter. As long as this value is
bigger than zero, the partial quotient is discarded and computation continues, while
once it has reached zero the corresponding partial quotient, i.e. aN , is instantly
copied to the shared request-tape. Since the computation time of aN in this twice-
as-fast subroutine is at most 1

2aN � tN�1, this happens before time step aN � tN�1 as
claimed. In particular the computation of the subroutine finishes before the next
request arrives, and thus the relevant tapes/layers of T 1

1 will be free if T 1
1 is required

to restart for a future an.
To be clear, what we have shown so far is that if, for any N P N, the second

component sends the request for aN via the shared tape at step aN�1 � tN�2 � 1,
then the described accelerated TM(s) T1 (and T 1

1) will in an instant operation copy
the requested partial quotient aN to the shared tape after the request, but not after
step aN � tN�1. It remains to describe the second component, and to show that if it
receives aN between time steps aN�1 � tN�2� 1 and aN � tN�1, then it will send the
next request at time step aN � tN�1 � 1 while producing longer and longer prefixes
of the sequence cα1 (row r P N of each big enough board will contain cα1 |r0,r�1s).

The second component starts from a single 0 or 1 in the lower left corner (the
remainder of this row is filled with blanks). Each subsequent row repeats the finite
word of 0s and 1s seen in the row below, and appends a single new symbol 0 or 1 to
its right end according to certain rules, keeping the blanks thereafter. This process
continues until the top row of a finite board is reached, which is completely filled
with a prefix of cα1 . To be a bit more specific, the accelerated TM T2 has exactly
4 tapes and thus is implemented by local rules on 6 sublayers (the 4 tapes, along
with a control sublayer and an auxiliary sublayer). It starts off (at the bottom of a
finite board) with all 4 read-write heads at the left end and tapes 1 to 3 filled with
a symbol 0 followed by all blanks while tape 4, which will be used to record the
prefixes of cα1 , begins with a single 0 or 1 (the first symbol of cα1 , which is a 0 if
a1 ¡ 1 and a 1 if a1 � 1) followed by all blanks. Following a hard-wired procedure,
the TM T2 then runs for a1 � 1 ¥ 0 steps, putting down symbol-by-symbol the
remainder of the word w1 � 0a1�11 on tape 4, moving the head one cell to the
right in each step while the other tapes and head positions are not changed. Once
finished with this part, T2 enters an infinite loop, repeating for each value of N P N
(N ¥ 2) the following steps to recursively produce the words wN (see Figure 5):

Phase 1: A combined instant operation copies the complete content of tape 3
to tape 2 and the complete content of tape 4 to tape 3, placing the heads on both
tapes 2 and 3 at their left end. The same instant operation fills tape 1 with a 1
followed by all blanks (i.e. puts a binary 1 while keeping its head at the left end)
and then compares this value against the content of the shared request-tape, which
either contains a “?” (request) or the binary value of the partial quotient aN . The
result of this comparison steers the behavior of T2 during an inner loop: if the two
quantities are unequal (this includes the case where the request tape contains a
“?”), it moves to Phase 2; if they are equal, it moves to Phase 3.

Note that after the instant operation from Phase 1, the content of the tapes is
as follows: tapes 3 and 4 both contain a copy of the word wN�1, tape 2 contains
a copy of the word wN�2, and tape 1 contains the value 1 in binary (here N P N
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starting from N � 2 increases with every completed cycle of the infinite loop).

Tape 4:

.

.

.
.
.
.

.

.

.

01001001001010010010010100
0100100100101001001001010 � w4

010010010010100100100101
01001001001010010010010
0100100100101001001001
010010010010100100100
01001001001010010010
0100100100101001001
010010010010100100
01001001001010010
0100100100101001
010010010010100
01001001001010
0100100100101
010010010010
01001001001 � w3

0100100100
010010010
01001001
0100100
010010
01001
0100
010 � w2

01 � w1

0

Tape 3:

.

.

.
.
.
.

0100100100101 . . . 10
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
01001001001
010
010
010
010
010
010
010
010
01
0
0

Tape 2:

.

.

.
.
.
.

01001 . . . 01
010
010
010
010
010
010
010
010
010
010
010
010
010
010
01
01
01
01
01
01
01
01
0
0
0

Tape 1:

.

.

.

1
01
01
01 � a4

1
1
1
1
1
1
1
1
1
1
1 � a4

11
11 � a3

01
01
01 � a3

1
1
1 � a3

1 � a2

0
0

Figure 5. First steps of the run of the accelerated Turing machine
from the second component of the construction layer for an irra-
tional α1 � r0; 2, 1, 3, 2, 5, . . .s. (On all 4 tapes blanks are omitted
and the read-write head’s position is marked by an overline.)

Phase 2: If the comparison from Phase 1 was unsuccessful, i.e. the content of
tape 1 did not (yet) match the content of the request-tape, then at least one more
copy of wN�1 is needed to complete a prefix of wN . To accomplish this, the content
of tape 3 (i.e. wN�1) is appended to the end of the word present on tape 4, moving
the head on both tapes to the right and sending one symbol at a time across (using
the auxiliary sublayer). This takes |wN�1| � tN�1 (standard TM) steps.

When finished, another instant operation sends the read-write head on tape 3
back to the tape’s left end and, to make note of the newly completed copy of wN�1,
the value on tape 1 is incremented by 1 (addition of 1 in binary) and again compared
against the content of the shared request-tape. If the comparison is successful, the
accelerated TM T2 moves to Phase 3, otherwise it repeats Phase 2.

After a finite number of iterations (namely aN � 1) of Phase 2, the value on
tape 1 will have reached aN . By this time, i.e. precisely at the beginning of step
aN � tN�1 � 1, the shared request-tape already has to contain the binary repre-
sentation of the partial quotient aN produced by the first component’s TM T1, so
the comparison will be successful and T2 exits the inner loop and enters Phase 3.
(Note that this inner loop can not finish earlier, as in all previous iterations the
strictly increasing value on tape 1 has not yet reached aN , always resulting in an
unsuccessful comparison against aN or “?”.)
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Phase 3: An instant operation deletes the content of the request-tape and
replaces it with a “?” to request the next partial quotient aN�1. Also the value on
the shared counter-tape holding the binary representation of N is incremented by
1 in this instant operation. Note that after a successful comparison tape 4 exactly
contains the word wN�1

aN . To complete it to wN , all that remains to do is to
append a copy of wN�2, which is done by copying the content of tape 2 one symbol
at a time with the same technique as above, which takes |wN�2| � tN�2 (standard
TM) steps. This concludes the procedure generating wN precisely in step tN and
starts the next cycle of the TM’s infinite loop, i.e. returns it to Phase 1.

Finally, we note that with this procedure, the second component will indeed send
the “requests” at the desired times, as long as provided with the partial quotients aN
between request times. This means that all components work together as desired,
and in particular that the second component will fill the entire top row of any
complete board with a prefix of the characteristic Sturmian sequence for α1.

We now superimpose a last layer, called the pruning layer, whose purpose is to
compare the prefixes of the characteristic Sturmian sequence cα1 generated on the
top row of each (finite) square board against subwords of the unique 0{1-sequence
seen in all rows of the base layer. The pruning layer will ensure that the number
of 1s in both such words and all their subwords having the same length differ by
at most one, thus restraining the 0{1-base sequence to be “almost” Sturmian. This
is achieved by using two sublayers with very simple local rules: The first sublayer,
called the prefix sublayer, consists of 0s and 1s and is constant along the ~e1�~e2-
direction. In addition on each ~e1~e2-cross section containing finite boards its symbols
are determined by the symbols from the construction layer seen on the top row of
those boards, i.e. whenever a site is part of the top row of a square board, a local
rule forces the symbols present at this site on the prefix sublayer and the sublayer
containing tape 4 of the TM T2 in the construction layer to coincide. Since all
square boards in a ~e1~e2-cross section have the same size, are aligned, and have the
same 0{1-word on their top rows, this additional rule is consistently well defined.
The second sublayer, called checking sublayer, uses the alphabet t�1, 0,�1u
and along every row implements a running total of the difference between the
number of 1s in certain subwords of length 2j (j P N) of the two 0{1-sequences
seen in the prefix sublayer and the base layer. The local rules for the checking
sublayer are specified as follows: At every site ~ı P Z3 where the synchronization
sublayer contains a diagonal symbol m the checking layer (re-)starts its count with
a symbol c~ı :� b~ı � p~ı P t�1, 0,�1u, while on all other sites ~ı the checking layer
has to contain the symbol c~ı P t�1, 0,�1u corresponding to the result of the sum
c~ı :� b~ı�p~ı�c~ı�~e1 , where b~ı P t0, 1u is the symbol from the base layer, p~ı P t0, 1u is
the symbol on the prefix sublayer and c~ı�~e1 P t�1, 0,�1u is its left neighbor on the
checking sublayer. Since the only legal symbols in the checking sublayer are �1, 0,
and �1, this implies that – whenever the pruning layer can be legally filled in all
of a point in X 1 – the difference in the number of 1 symbols has to be within �1
for arbitrary lengths 2j . In fact, the construction implies the same for any finite
subword of length n P N of the 0{1-sequence present in the base layer: its number of
1s has to be within �1 of the number of 1s of a length-n prefix of the characteristic
Sturmian sequence cα1 , hence has to fall in the range N0 X rnα1 � 2, nα1 � 2s.

This completes the description of X 1, and we now begin to prove the properties
of X 1 which will eventually imply the upgradability of its extension X2.
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Lemma 5.5. There exists a constant C 1 P R so that for any dimensions k, l,m P N,
the number of locally admissible patterns satisfies

��Lloc
k,l,mpX

1q
�� ¤ eC

1pkl�km�lmq.

Remark 5.6. We note that this clearly implies that htoppX
1q � 0, and so this is just

the upgradability condition for X 1 as given in Definition 5.1.

Proof. As the total number of locally admissible patterns on any fixed shape F � Z3

in X 1 is bounded from above by the product of the numbers of locally admissible
patterns of shape F on each layer, it suffices to show the claimed inequality sepa-
rately for each layer. Also note that if a layer has the property that each locally
admissible pattern on a rectangular prism is completely determined by the symbols
on its boundary, this immediately implies the desired inequality for this layer.

Due to constantness along one direction, any locally admissible pattern with
cuboid shape on the base layer, the board layer (consisting of the two Robin-
son sublayers and the synchronization sublayer) and the prefix sublayer is forced
by its boundary symbols. Moreover, given the base, synchronization, and prefix
(sub)layers, the checking sublayer is uniquely determined as well. Hence we are
already done with the base, board and pruning layers of X 1.

The only remaining layer is the construction layer, whose analysis is a bit more
complicated, because although it is entirely deterministic on any complete (finite)
square board, it is not obvious what happens on infinite and/or incomplete boards.
Consider any dimensions k, l,m P N, choose i P N0 such that 2i ¤ mintk, l,mu  
2i�1 and let P P Lloc

k,l,mpX
1q be any locally admissible cuboid pattern in X 1. W.l.o.g.

we may assume i to be large (i ¡ 5), as for small i the constant C 1 trivially exists.

Then by Lemma 5.3, there are at most
P

m
2i�5

T
¤ 25�m�2i

2i ¤ 33m
2i   66m

mintk,l,mu
exceptional ~e1~e2-cross sections of P whose board layers might not consist of sub-
patterns of square griddings of Z2, while all other ~e1~e2-cross sections of P are
regular, containing a subpattern of aligned finite square boards of a certain size.
First consider any non-exceptional ~e1~e2-cross section P |r1,ks�r1,ls�tsu (s P NXr1,ms)
with a regular configuration on the board layer. As already mentioned, the con-
struction layer is entirely determined on each complete finite square board which is
filled by the instantaneous descriptions of the TM runs. We also claim that for any
incomplete board, the construction layer’s configuration within a partial board is
completely determined by the symbols on the boundary of every such partial board.
This is not difficult to see: the accelerated Turing machines defining the construc-
tion layer are mostly deterministic; as long as one has perfect information about
a complete instantaneous description (row) and the TM’s transitions, the whole
future evolution of the TM run (rows above, i.e. along the vertical direction) within
the board is forced. This is even true if the construction layer’s first component
T1 is a non-deterministic accelerated TM. In this case we simply force constantness
along rows in its control sublayer on all non-exceptional ~e1~e2-cross sections con-
taining diagonals m. Thus the non-deterministic evolution of the TM runs have to
coincide across all horizontally aligned square boards and knowledge of the symbols
on the boundary of the locally admissible pattern P again forces determinism. The
difficulty with a partial board is that we might only see part of the (infinite) tape
and that the read-write head may “disappear” at the right and/or left end of an
incomplete row. However, due to the construction using tape, control and auxiliary
sublayers, information about the TM’s current state, movements of the read-write
heads and possible instant operations is available everywhere along a row. If we
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are given the symbols on the entire boundary of the incomplete board, the bottom
most (partial) row gives us a (partial) instantaneous description to start from and
via the symbols along the right- and leftmost columns of the partial board we then
know all rows where the read-write head exits and re-enters, so again the behavior
on the interior is determined uniquely. Finally, again through the complete distri-
bution of information along rows in the control sublayer, given the boundary, we
know in which rows (if any) instant operations are performed and how they act on
the partial tape’s instantaneous description.

This means that on any non-exceptional ~e1~e2-cross section, the construction layer
on the entire cross section is determined uniquely by knowledge of the symbols from
the finite alphabet Ac of the construction layer on the union of the boundaries of all
partial boards. Regardless of the board size, the union of those boundaries traces
the perimeter of the entire ~e1~e2-cross section at most four times, and so has size
not more than 4 � p2k�2lq. The total number of ways to choose these symbols in all
of P , given a particular assignment of the base, board and pruning layers, is then
bounded from above by |Ac|

8km�8lm. We must only now account for the (possible)
exceptional cross sections from Lemma 5.3, which have combined volume bounded
from above by 66m

mintk,l,mukl. By combining these bounds, we see that the number

of ways to assign a construction layer to P , given the base, board and pruning
layers, is bounded from above by |Ac|

8km�8lm�66klm{mintk,l,mu ¤ |Ac|
74pkl�km�lmq,

completing the proof of the desired inequality for the construction layer and thus
the whole proof of the lemma. �

Lemma 5.7. There exists a constant D P R�
0 so that for any dimensions k, l,m P N

and any locally admissible pattern P P Lloc
k,l,mpX

1q, the number of 1s seen in the base

layer of P satisfies #1pπbasepP qq ¤ α1klm�Dpkl � km� lmq.

Proof. Fix any k, l,m P N, and choose i P N0 so that 2i ¤ mintk, l,mu   2i�1.
Consider an arbitrary pattern P P Lloc

k,l,mpX
1q. Since the base layer of P is constant

along the ~e3-direction, we can define Q :� πbasepP q|r1,ks�r1,ls�t1u P t0, 1ur1,ks�r1,ls,
the pattern consisting of the common base layer of P on every ~e1~e2-cross section.

We first note that since the dimensions of P are k, l,m ¥ 2i (again assume i ¡ 5
while using the trivial bound with D :� 25�1 � 64 for i ¤ 5), by Corollary 5.4 for
any j P NX r1, i� 5s there exists a (non-exceptional) ~e1~e2-cross section of P whose
collective board size is 2j .

Consider an ~e1~e2-cross section of the board layer of P which consists of a sub-
pattern of a gridding of Z2 by square boards of size 2i�5. Since k, l ¥ 2i, there are
several complete square boards in this cross section. In particular the cross section
contains a row r P NXr1, ls sitting in between the top rows of two horizontal strips
of aligned complete boards such that a diagonal from the synchronization sublayer
hits the left border of P exactly in row r (see Figure 6). This means that the 2i�5-
letter prefixes of the characteristic Sturmian sequence cα1 produced in the top rows
of those complete square boards, i.e. above and below row r, are propagated along
the ~e1�~e2-direction in the prefix sublayer and are eventually checked against 2i�5-
letter base layer subpatterns (words) on row r. Our earlier analysis of the pruning
layer assures that those words have at most α1 � 2i�5 � 2 1s. The same overage of
at most 2 holds true for shorter words starting from a diagonal on their left (as the
checking sublayer is guaranteed to start the running total there with a 0). This lets
us conclude that the number of 1s in row r is bounded by α1 times its length k plus
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r

Figure 6. The pattern Q and its row r. (Two strips of complete
boards of size 2i�5 in dark gray, diagonals from the synchronization
sublayer in light gray.) Arrows indicate the propagation of the
prefixes of cα1 produced on the top rows of (complete) boards which
are then checked against subwords of the base layer in row r.

an overage of at most 2 for each subword seen between two consecutive diagonals:
#1pQ|r1,ks�truq ¤ α1 � k � 2

P
k

2i�5

T
. As the rows in Q are constant and Q appears

on every ~e1~e2-cross section in the base layer of P we get:

#1pπbasepP qq ¤
�
α1k � 2

P
k

2i�5

T�
� lm ¤ α1klm� 27 � klm

2i�1 � 2lm

¤ α1klm� 128pkl � km� lmq � 2lm

where we used mintk, l,mu   2i�1. The lemma is thus proved for D :� 130. �

Step 2 (ConstructingX2). We now wish to add entropy toX 1. Define the partition
A1 �: A1

0 9YA1
1 of its alphabet A1, where A1

i is the set of elements of A1 which see

i P t0, 1u on the base layer. Then write A1
1 �

 
b
p1q
1 , . . . , b

p1q
I

(
(I :� |A1

1|) and

define disjoint copies A1
j :�

 
b
pjq
1 , . . . , b

pjq
I

(
for 2 ¤ j ¤M , to get the new alphabet

A2 :� A1
0 9Y 9�M

j�1A1
j . Finally, define a Z3 SFT X2 � A2Z3

on A2 by the rule that

a pattern on A2 is in LpX2q if and only if replacing any symbol b
pj1q
i P 9�M

j�2A1
j

by b
p1q
i P A1

1 (1 ¤ i ¤ I) yields a pattern in LpX 1q, i.e. X2 :� π�1
8 pX 1q is the

preimage of X 1 under the projection π8 induced by the 1-block map π : A2 Ñ A1,

b ÞÑ

#
b if b P A1

0

b
p1q
i if b � b

pjq
i P A2zA1

0

collapsing back the newly introduced sets A1
j with

2 ¤ j ¤ M onto A1
1. Informally, each symbol in A1

1 is split into M independent
copies to create points in X2 from a point in X 1 preserving SFTness.

Lemma 5.8. There exists a non-negative real constant C P R�
0 so that for any

dimensions k, l,m P N,
��Lloc

k,l,mpX
2q
�� ¤ eα

1 logM �klm�Cpkl�km�lmq.

Proof. This follows from the definition of X2 together with Lemmata 5.5 and 5.7:
the 1-block map π also induces a surjection πloc

8 : Lloc
k,l,mpX

2q Ñ Lloc
k,l,mpX

1q which

for any i P t1, 2, . . . , |A1
1|u changes all symbols b

pjq
i with j P t2, 3, . . . ,Mu, back to

b
p1q
i . Then by Lemma 5.7, there existsD so that

∣∣pπloc
8 q�1pP q

∣∣ ¤Mα1klm�Dpkl�km�lmq
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holds for the fiber of any locally admissible pattern P P Lloc
k,l,mpX

1q, and therefore��Lloc
k,l,mpX

2q
�� ¤ Mα1klm�Dpkl�km�lmq��Lloc

k,l,mpX
1q
��

¤ eα
1 logM �klm�pD logM�C1qpkl�km�lmq

by Lemma 5.5. This proves the lemma for C :� D logM � C 1 P R�
0 . �

Proposition 5.9. The entropy of X2 satisfies htoppX
2q � α1 logM � α.

Proof. It is clear from Lemma 5.8 that htoppX
2q ¤ limmÑ8

log|Lloc
m,m,mpX2q|

m3 � α. It
remains to show that htoppX

2q ¥ α. To see this, consider any Sturmian sequence
y P t0, 1uZ obtained from coding the complete Z-orbit of a point in the circle under
the rotation Rα1 by the fixed irrational α1, and construct a point x1 P X 1 by putting
y in each row of the base layer of x1 and filling the remaining layers as dictated by
the SFT rules of X 1. It is fairly easy to see that this can be done to create a valid
point in X 1: the only layer which could cause a problem is the pruning layer, but
this will always complete successfully; since Sturmian sequences are balanced, finite
subpatterns of y (from the base layer) and the prefixes of cα1 (produced at the top
of any complete board in the construction layer) which are compared against each
other will have numbers of 1s within one of each other.

Then, since the overall frequency of symbols from A1
1 in x1 is equal to α1, for

any m P N there exists a subpattern Pm P Lm,m,mpX
1q of x1 on a rectangular prism

r1,ms3 with a proportion of at least α1 A1
1-letters. The fiber of Pm under π8 then

yields at least Mα1m3

patterns in Lm,m,mpX
2q by independently changing each

symbol b
p1q
i P A1

1 (i P t1, 2, . . . , |A1
1|u) in Pm into one of its M copies b

pjq
i P A1

j (j P

t1, 2, 3, . . . ,Mu), and so htoppX
2q � limmÑ8

log|Lm,m,mpX2q|
m3 ¥ α1 logM � α. �

Lemma 5.8 and Proposition 5.9 obviously yield the following final corollary.

Corollary 5.10. X2 is an upgradable Z3 shift of finite type with htoppX
2q � α ¡ 0.

Step 3 (Constructing X). The last step of our proof is based on the following
general result, which, together with Steps 1 and 2 obviously implies Theorem 1.7.

Theorem 5.11. For any upgradable Z3 shift of finite type Z with htoppZq ¡ 0,

exists a block gluing Z3 shift of finite type rZ containing Z with htopp rZq � htoppZq.

Remark 5.12. The same result also holds for Z2 SFTs (with a similar definition of
upgradability for such SFTs). This basically follows from adopting our argument
below to the wire symbols from [22] instead of the wall symbols introduced in
Figure 7. In the following proof, the reader may thus first think of the wire shift as
a two-dimensional “toy model”, which might make it easier to follow the argument.

Proof. Suppose Z � AZ3

is a Z3 SFT with alphabet A which is upgradable, with
constant C P R�

0 such that
��Lloc

k,l,mpZq
�� ¤ ehtoppZqklm�Cpkl�km�lmq for all k, l,m P N.

As a first step we define a new alphabet rA :� A 9YAw where Aw is the alphabet
of the 65 unit-cube symbols specified in Figure 7 – actually there are 39 “wall
symbols” plus 26 additional symbols called “shadow symbols”, but nevertheless
we will refer to the whole set Aw as the wall alphabet7. The 26 distinct shadow

7Readers familiar with the wire shift [22] will recognize this as a three dimensional version of

the alphabet consisting of the 6 wire symbols plus 26 � 33�1 (in two dimensions only 8 � 32�1)
types of blank symbols in this context called shadow symbols.
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symbols are used to fill in the collar left over when putting a locally admissible
pattern P P Lloc

k,l,mpZq (k, l,m P N) in the center of a larger rectangular prism being
surrounded by wall symbols. This larger prism is subdivided into 27 � 3 � 3 � 3
smaller prisms by the 6 planes supporting one of the 6 faces of the central prism
and each of the 26 non-central subprisms is to be filled with shadow symbols of
one particular type “S~c” where ~c P t�1, 0,�1u3ztp0, 0, 0qu indicates the position of
the subprism relative to the central one. For the sake of simplifying notation we
sometimes use arrows “Ò” pointing in the 6 principal orientations �~ei (i P t1, 2, 3u)
to denote the six shadow symbols “S�~ei” (see also Figure 7).

S~c Ò

3�

20� 6�

3� 2 � 6� 3� 2 � 6� 3� 2 � 6�

3� 2 � 6� 3� 2 � 6� 3� 2 � 6�

Ò
ÑÕ ~e1

~e2
~e3

Figure 7. The 65 symbol wall alphabet Aw consisting of the
26 “shadow symbols” (marked either with the letter “S~c” for

~c P t�1, 0,�1u3 with ‖~c ‖1 �
°3

i�1 |~ci| ¥ 2 or with an arrow hav-
ing one of the six principal orientations) and the 39 “wall symbols”
(counted with multiplicity: the principal, i.e. largest, wall segment
may be oriented parallel to the ~e1~e2-, ~e1~e3- or ~e2~e3-plane and all
wall symbols having additional wall segments may then be reflected
about this principal segment).

Now we define our Z3 SFT rZ � rAZ3

using the following local rules: symbols from
the original alphabet A may either sit next to other symbols from A according to
the SFT rules imposed on points in Z, or they may be placed adjacent to a shadow
symbol containing an arrow pointing away from the symbol in A, i.e. if site ~ı P Z3

contains a symbol in A while site ~ı � ~ei (i P t1, 2, 3u) contains a shadow symbol,
it has to be of type “S�~ei”. In particular this forces connected patterns composed
of symbols from A to have the shape of (possibly infinite) rectangular prisms, and
forces such patterns to be locally admissible for Z. The 26 shadow symbols can

a priori occur next to any other symbol in rA. However using nearest-neighbor
constraints, we forbid an increase by 2 and any decrease in the i-th coordinate
as well as any change in the j-th coordinate (i � j P t1, 2, 3u) of the index ~c P
t�1, 0,�1u3ztp0, 0, 0qu when moving through consecutive shadow symbols along the
�~ei-direction, i.e. suppose sites~ı P Z3 and~ı�~ei both contain shadow symbols “S~c”
and “S~c 1” respectively, then 0 ¤ ~ci

1 � ~ci ¤ 1 and ~cj
1 � ~cj for j � i. This implies in

particular that in points of rZ, any finite “run” of adjacent shadow symbols “S�~ei”
along the �~ei-direction must begin with a symbol from A (sitting on the boundary
of a rectangular prism filled with symbols from A) and must continue until it hits a
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wall symbol. Finally, a wall symbol may either appear next to a shadow symbol or
next to other wall symbols; it may not appear next to any symbol from A. We force
the obvious nearest-neighbor constraints of having any wall segments intersecting
(hitting) the boundary of any symbol (from the wall alphabet Aw as visualized in
Figure 7) to “match up”. More formally, whenever two symbols from Aw appear
next to each other in either of the three cardinal directions they share a common
square face, and the wall segments in either of the symbols touching this face from
one side have to pass through the face and be continued inside the second symbol.
In particular, a wall symbol can only occur adjacent to a shadow symbol if no wall
segment hits the face the two symbols have in common. In addition to this, for each
i P t1, 2, 3u we impose the following nearest-neighbor rule: If site ~ı P Z3 contains
a wall symbol while site ~ı � ~ei (resp. ~ı � ~ei) contains a shadow symbol “S~c”, then
~ci � �1 (resp. ~ci � �1).

Let s P N be a constant to be determined later which will represent the min-
imal width of the shadow cast by wall symbols in the following sense: if, in

some point of rZ, a wall symbol appears at site ~ı P Z3, then the whole cube
~ı � Cs �

 
~ı� ~ | ~ P Z3 ^ ‖~ ‖8 ¤ s

(
� Z3 of side length 2s � 1 centered at ~ı

must contain only symbols from the wall alphabet Aw (i.e. at the sites inside this
cube we forbid the occurrence of any symbol from A).

Finally, we impose a local rule which forbids the existence of two parallel wall
segments at a distance smaller than 2s� 2 in any of the three cardinal directions,
which has the effect of separating walls by a distance at least 2s� 2 which always
allows filling in some symbols from A between shadows cast by walls. For example,
if we place the third symbol from the top row of Figure 7 at site ~ı P Z3, then
none of the wall symbols containing a wall segment parallel to the ~e2~e3-plane can
appear at any sites in t~ı� k~e1 | k P Z ^ 1 ¤ |k| ¤ 2s� 1u � Z3, and none of the
wall symbols containing a wall segment parallel to the ~e1~e3-plane in its right half
can appear at any sites in t~ı� l~e2 | l P Z ^ 1 ¤ |l| ¤ 2s� 1u � Z3. Note that this
symbol at ~ı does not cause any constraint on segments of wall symbols parallel to
the ~e1~e3-plane in the left half of sites in t~ı� l~e2 | l P Z ^ 1 ¤ |l| ¤ 2s� 1u � Z3

nor any restrictions on segments of wall symbols parallel to the ~e1~e2-plane.

As a consequence of all of these rules, points in rZ are forced to have the global
structure indicated in Figure 8: walls built from the wall symbols inAw partition Z3

into cells that have the shape of (possibly infinite) rectangular prisms whose sides
always have a length of at least 2s � 1. Those rectangular prisms are filled by a
collar of width at least s (from the prism’s boundary) consisting entirely of shadow
symbols, while the remaining central rectangular prism of side lengths at least 1
sitting inside this collar is filled with a locally admissible pattern from Z. The
location of this central prism then completely forces the types of shadow symbols
seen in the collar.

Since all those constraints are given by local rules of radius not bigger than the
maximum between 2s � 2 and the radius necessary to define Z, the Z3 subshiftrZ � rAZ3

is again of finite type and clearly contains Z as a proper subsystem –
obviously any point of Z (not containing any wall symbols) satisfies the constraint

on local admissibility in all of Z3 and thus is globally admissible in rZ.

We now have to prove the two main properties of rZ announced in the theorem.

Claim 5.11.1. htopp rZq � htoppZq.
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Figure 8. A two dimensional cross section through a typical point

in rZ (in the picture we chose a minimal width of s � 2 for the
shadow and suppressed the type ~c of shadow symbols “S~c”, except
in the case ~c � �~ei.

Proof. Since Z � rZ, we immediately conclude that htoppZq ¤ htopp rZq and thus it
suffices to show the reversed inequality. The main step here is finding an upper

bound on the cardinality
��Ln,n,np rZq�� of cube-shaped globally admissible patterns

for large sizes n P N. The core of the argument, which refines similar proofs used by

the authors in [5, 19], is based on the fact that points of rZ cannot contain a maximal
connected component of wall symbols of finite size, i.e. any wall symbol within a

globally admissible pattern P P Ln,n,np rZq has to be part of a connected component
of walls which has to extend all the way to the boundary of P . This allows us
to define an algorithm to produce (and estimate the number of) all possible ways
to assign the wall symbols of a globally admissible pattern of shape Z3 X r1, ns3,
starting from the boundary. As this part is a bit tedious and similar to an argument
in [5], we only give a brief summary, and refer to [5, C.4] for details.

Fix any integer 0 ¤ q ¤ n3 – which represents the number of wall symbols within

a pattern P P Ln,n,np rZq. We will prove that the number of globally admissible ways
to place exactly this many wall symbols, while also determining the position and
types of all shadow symbols, inside the cube r1, ns3 is bounded from above by

286n
2

� 576q by defining a deterministic algorithm which can generate any one of
such patterns. The bound comes from counting the number of possible inputs of
this algorithm where the input consists of two pieces: First there is a finite list B P

BZ3Xr1,ns3zr2,n�1s3 over the alphabet B :� t�, wu 9YtS~c | ~c P t�1, 0,�1u
3ztp0, 0, 0quu

specifying the configuration of shadow symbols on the boundary (ordered e.g. lex-
icographically) of the cube r1, ns3. Note that the cardinality of the boundary and
thus the length of B is

∣∣Z3 X r1, ns3zr2, n� 1s3
∣∣ � 6n2� 12n� 8 and that elements

in B tell us to fill each site of the boundary with one of the 26 shadow symbols “S~c”,
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to use this site as the starting point of a connected component of wall symbols (“w”)
or to simply skip filling this site (“�”) as it may be used later or may be part of a
central prism reserved to be filled with a locally admissible pattern from Z. The sec-
ond piece of the input is a finite ordered list I of exactly q instructions – commands
to place a single wall symbol plus adjacent shadow symbols. Each instruction in
I is itself a 4-tuple pai, si, fi, diq (1 ¤ i ¤ q), where ai P Awz tshadow symbolsu
selects one of the 39 wall symbols to be placed next, si P tS, arrowu 9YtS, arrowu2

coarsely specifies the type of the (up to two) shadow symbol(s) adjacent to the wall
symbol ai, fi P trevert, continueu is a simple flag used to steer the course of actions
taken by the algorithm, and di P t1, 2, 3, 4u is a number indicating – depending on
the present symbol ai and the wall symbols already placed around it – the cardinal
direction in which the next wall symbol will be placed.

The algorithm now works like a Turing machine processing its input and putting
down symbols on an initially empty cube (tape) Z3 X r1, ns3, starting by moving
its read-write head along all cells in the boundary of the cube r1, ns3 placing there
the (partial) configuration specified by B. Sites for which B provides a symbol “�”
are skipped, while symbols “S~c” are placed immediately. Whenever the algorithm
encounters a symbol “w” as part of B it consecutively executes instructions from
I as follows: Each 4-tuple pai, si, fi, diq from the list I first causes the head to
write down the wall symbol ai at its present location, and then to write down the
information about the type of adjacent shadow symbol(s) specified by si. There are
at most two of these, since at least four faces of any wall symbol contain segments
which force another wall symbol, and we may suppose that the six neighbors of
a site ~ı P Z3 are considered in the order ~ı � ~e1,~ı � ~e1,~ı � ~e2,~ı � ~e2,~ı � ~e3,~ı � ~e3
for consistency. After this the algorithm checks which of the 6 neighboring sites
of the current position are still inside the cube Z3 X r1, ns3, share a square face
with the symbol ai which is hit by a wall segment, and which have not yet been
filled in by another wall symbol. Note that for each wall symbol at most 4 of its
neighboring sites satisfy those conditions (at most 5 faces are hit by wall segments,
and of the 5 corresponding adjacent sites, one is either outside r1, ns3 or has already
been assigned a wall symbol in the process of arriving at the present location).
Now, if the flag fi signals “continue”, the read-write head moves to the di-th of
those unassigned neighboring sites (again with respect to the previously described
ordering on the six neighbors) and continues with the next instruction. If the flag
fi signals “revert”, the read-write head instead backtracks along the way it came
until it finds the first site at which there are unassigned neighboring sites, moves
in the direction indicated by di from there, and again continues with the next
instruction from I. If on its way back the read-write head does not find any sites
with unassigned neighbors, then the current connected component of wall symbols
inside the cube r1, ns3 is completed, so di is discarded and the read-write head
instead moves to the next site in the boundary which is again filled according to
B. This process continues until the end of B (and I) is reached, at which point
at most q wall symbols have been placed. (Exactly q � |I| wall symbols will have
been placed for correctly chosen B and I.)

Note that for any element in Ln,n,np rZq, there exists an input for which this
algorithm generates all of its wall symbols. To see this, note that in each of the
finitely many connected components of wall symbols, one may choose a spanning
tree rooted at a symbol in the boundary of the cube which, in addition, has a
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wall segment meeting this boundary and whose site is recorded by a symbol “w”
in B. This tree then determines a possible list of instructions (4-tuples for I)
traversing the spanning tree depth-first, placing the corresponding symbols in its
nodes while moving along its branches. On the other hand, while many of its

outputs might not correspond to actual globally admissible patterns of rZ, for any
possible input, the algorithm produces a unique pattern of wall and shadow symbols
on r1, ns3. Moreover given the shadow symbols in the boundary, the wall symbols
and the coarse information about shadow symbols adjacent to walls provided by
the instruction in I is enough to uniquely determine the position and types of all
remaining shadow symbols within the cube r1, ns3. Hence the number of different
inputs with |I| � q gives a loose upper bound on the number of different patterns

in Ln,n,np rZq containing exactly q wall symbols (plus a particular configuration of
shadow symbols). Since |B| � 28,

∣∣Z3 X r1, ns3zr2, n� 1s3
∣∣ ¤ 6n2 and (separating

different cases) there are not more than p3 � 4 � 3� 36 � 2 � 4q� p3 � 4� 36 � 2q � 3 � 576
distinct 4-tuples which we actually need to build I, we recover the above stated

upper bound 286n
2

� 576q.

Now to give an upper bound on
��Ln,n,np rZq�� we have to check how many distinct

globally admissible patterns P P Ln,n,np rZq may be produced once we fix an ar-
bitrary globally admissible way of placing exactly q wall plus all shadow symbols
inside a cube of side length n. Note that the portion of Z3 X r1, ns3 not occupied
by wall symbols has to consist of disjoint rectangular prisms, which we will refer
to as cells. Those each have a collar of width at least s filled by shadow sym-
bols. The type (arrow or “S~c”) of the shadow symbols along the boundary of each
such cell (including partial cells at the boundary) have already been assigned in
the previous procedure by B and the second entry of each instruction in I, and
this information uniquely determines all shadow symbols inside the collar, leaving
undetermined a (non-empty) central rectangular prism, which must be filled with
a locally admissible pattern in Z. Since the fillings of these central rectangular
prisms are independent of each other, the number of ways to extend the initially
given pattern of wall and shadow symbols to the entire cube is thus the product
over all cells of the numbers of locally admissible patterns in Z on the corresponding
central prisms.

As stated in the beginning, the purpose of the upgradability condition is to
bound those numbers from above. To wit, suppose there are R P N0 such cells
containing non-empty central rectangular prisms, and that these central prisms
have dimensions kr � lr � mr (kr, lr,mr P N) for each 1 ¤ r ¤ R. Fixing the

minimal width of the shadow to be s :�
Q

C
2 htoppZq

U
� 3

Q
log 576
htoppZq

U
P N where C P R�

0

is the upgradability constant of Z, we claim the following inequality:

(ii) q � q � log 576
htoppZq�

Ŗ

r�1

�
kr �

C
htoppZq

	�
lr �

C
htoppZq

	�
mr �

C
htoppZq

	
¤ pn� 2sq3 .

To see this, consider the cube of side length n� 2s given by enlarging the original
cube by s in each direction. Due to the forced collars of shadow symbols, this
enlarged cube clearly contains the disjoint union of the central rectangular prisms
in each cell extended by C

2 htoppZq in each direction. The union of all those enlarged

central prisms has volume equal to the third term on the left-hand side of (ii).
Moreover, even once this union is removed from the enlarged cube of volume pn�
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2sq3, each cell still contains a remaining collar of shadow symbols of width at least

3
P
log 576
htoppZq

T
. The total volume of those reduced collars exceeds the second summand

on the left-hand side of (ii), as for each one of the q wall symbols there is at least one
direction perpendicular to its principal wall segment where only shadow symbols
occur throughout the whole reduced collar. Since each one of the symbols in the
reduced collar can be part of this for up to three principal segments (there is some
overlap near corners of a cell) each wall symbol in the original cube forces a volume

of at least 1
3 � 3

P
log 576
htoppZq

T
in the union of the reduced collars. Finally there are the

q wall symbols themselves giving the additional q on the left and completing the
proof of (ii).

We now apply (ii) to get

(iii)

R¹
r�1

��Lloc
kr,lr,mr

pZq
�� ¤ R¹

r�1

ehtoppZqkrlrmr�Cpkrlr�krmr�lrmrq

¤
R¹

r�1

e
htoppZq

�
kr� C

htoppZq

��
lr� C

htoppZq

��
mr� C

htoppZq

�
� e

htoppZq
°R

r�1

�
kr� C

htoppZq

��
lr� C

htoppZq

��
mr� C

htoppZq

�
¤ ehtoppZq�pn�2sq3�q log 576�q htoppZq .

In other words, for any fixed choice of wall and shadow symbols within a pattern

of Ln,n,np rZq, the number of ways to legally fill the remaining central prisms with

letters of A is less than or equal to ehtoppZq�pn�2sq3�q log 576�q htoppZq. We can now
multiply the upper bound on the number of distinct patterns with q wall (plus
shadow) symbols obtained above by (iii) and sum over all possible values of q to
get the desired bound for the cardinality of globally admissible patterns:

(iv)

@n P N :
��Ln,n,np rZq�� ¤ n3¸

q�0

286n
2

� 576q �
R¹

r�1

��Lloc
kr,lr,mr

pZq
��

¤
n3¸
q�0

286n
2

� 576q � ehtoppZq�pn�2sq3�q log 576�q htoppZq

¤ pn3 � 1q � 286n
2

� ehtoppZq�pn�2sq3

which finally yields – as s is a fixed natural number – the sought-after inequality

htopp rZq � limnÑ8
log |Ln,n,np rZq|

n3 ¤ htoppZq. �

Claim 5.11.2. rZ is block gluing with gap size g � 6s� 6.

Proof. By symmetry of the wall alphabet Aw and the rules defining rZ it suffices
to prove the claim for the cardinal direction ~e1, i.e. we show that for every pair

x, y P rZ of points, it is always possible to find another valid point z P rZ such
that z|p�8,0s�Z2 � x|p�8,0s�Z2 and z|rg,8q�Z2 � y|rg,8q�Z2 for some fixed universal
g P N0. The same argument will then work for the other cardinal directions as well.

Consider a point x P rZ and note that by definition of rZ, its Z2-cross section
x1 :� x|t0u�Z2 yields a rectangulation of Z2 by disjoint (possibly infinite) rectangu-
lar cells – cross sections of the cells in x – induced by the wall symbols in x1. Now

to define z P rZ, we first wish to extend all rectangular cells appearing in the cross
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section x1 along the ~e1-direction for exactly 2s � 1 steps. We begin with the wall
symbols, which can be extended simply by continuing all wall segments parallel
to the ~e1~e2- or ~e1~e3-plane, thus keeping the cell structure of the cross section x1

unchanged over this distance. To fill each of those extended rectangular prisms
defined by the wall symbols, we distinguish 4 different cases depending on what
symbols we see inside each rectangular cell of the cross section x1:

Case 1: If an entire cell in the cross section x1 is filled with shadow symbols
“S~c” where ~c1 � �1, we are already in the right part of the collar and may just let
each shadow symbol continue for another 2s� 1 steps to the right.

Case 2: If we see symbols of the original alphabet A the cross section x1 slices
through a locally admissible pattern of Z sitting in the central prism of a cell. As
such a pattern may not be extensible further along the ~e1-direction, we place im-
mediately to the right of each symbol in A a shadow symbol with an arrow oriented
in the �~e1-direction and immediately to the right of all other shadow symbols in
the cell’s cross section a corresponding shadow symbol “S~c” with ~c1 � �1. Now we
are back to Case 1, and extend this pattern in a constant way for another 2s steps.

Case 3: If a cell of the cross section x1 contains only shadow symbols and there
is a site occupied by an arrow pointing in the �~e1-direction, those arrows determine
the rectangular “left” face of the central prism to be filled with a locally admissible
pattern of Z. Hence we first extend the collar of shadow symbols for exactly s
steps, fill in the ts� 1u � Z2-cross section of the extended prism with an arbitrary
rectangular locally admissible pattern of Z having the correct size (and position)
and being surrounded by a corresponding collar of shadow symbols and finish as
before with a stack of s layers of shadow symbols forming the right part of the collar.

Case 4: Finally if a rectangular cell in x1 consists entirely of wall symbols with
their principal segment parallel to the ~e2~e3-plane (and all further segments to its
left), the extended prism can be completely filled with an arbitrary pattern seen in

a cell of the correct size in a point of rZ.

Now, since each rectangular cell in the cross section x1 fell into one of these cases,
the s right-most cross sections (filling ts � 2, . . . , 2s � 1u � Z2) of this extension
constructed from x have rectangular cells filled with shadow symbols of type “S~c”
with ~c1 � �1. We can therefore “top off” this entire extension with a cross section
filling the plane t2s�2u�Z2 consisting entirely of wall symbols with their principal
segments parallel to the ~e2~e3-plane and any additional segments (forced by the
extension) pointing to the left. The same strategy (with all ~e1 directions reversed)
is used to close all rectangular cells in the cross section y1 :� y|tgu�Z2 within 2s� 2

steps, now with a left-most cross section (filling tg�2s�2u�Z2) consisting entirely
of wall symbols with their principal segments parallel to the ~e2~e3-plane and any
additional segments (forced by the extension) pointing to the right.

If we choose the gap size g :� 6s � 6 P N0, then taking the union of these two
extensions yields a point with a single undefined plane of width 2s�1 sitting between
the two cross sections t2s � 2u � Z2 and t4s � 4u � Z2 both consisting entirely of
“outwards-pointing” wall symbols. Filling each ~e2~e3-cross section tku � Z2 in this
region completely with shadow symbols containing a symbol “Sp~c1,�1,�1q” with
~c1 :� δk¡3s�3 � δk 3s�3 P t�1, 0,�1u (2s � 3 ¤ k ¤ 4s � 3) then finishes the

construction of z, which clearly is an admissible point in rZ. �
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�

Remark 5.13. Although the construction presented in this section only works in
three (or more) dimensions, it seems likely that a similar result holds in two dimen-
sions. In fact, recent work of Nathalie Aubrun and Mathieu Sablik [1] proposes a
constructive method to realize any effective Z shift as the one-dimensional subdy-
namics seen on one layer of a Z2 SFT consisting of multiple superimposed layers.
Hence one could hope to apply this technique to realize Z Sturmian subdynamics of
a certain frequency α1 P r0, 1szQ in a still upgradable Z2 SFT, though computabil-
ity condition (C) might need to be modified. As the construction in Section 5 is
already quite complicated and elaborate in three dimensions, we have here refrained
from attempting an even more intricate construction for d � 2.

6. No equal entropy full shift factor – Proof of Theorem 1.9

In our proof of Theorem 1.9, we will apply the construction of Theorem 1.7 to
α � logL with 1   L P N. Obviously logL satisfies computability condition (C)
since it can be decomposed as 1 � logL, however for our argument we need to use
the decomposition logL

logM � logM with L  M P N coprime natural numbers. It must

then be verified that the partial quotients of the continued fraction expansion of
α1 � logL

logM can be computed at the rate proscribed in Definition 1.5.

Proposition 6.1. For any pair of natural numbers L  M P N with gcdpL,Mq � 1,

the representation α � logL
logM � logM P R satisfies computability condition (C).

Proof. Following essentially a version of the Euclidean algorithm we describe an
accelerated TM procedure to generate the partial quotients of the continued fraction
expansion for the irrational α1 � logL

logM and then analyze its runtime. Our algorithm

involves two recursively defined auxiliary sequences penq, pfnqnPN0 , along with the
generated continued fraction partial quotients panqnPN. Let the initial values e�1 :�
1, e0 :� 0, f�1 :� 0 and f0 :� 1 be hard-coded into an accelerated TM. Further
values of these sequences are then computed recursively, starting from n � 1: if n is
odd, an is defined to be the largest integer such that Lanfn�1�fn�2  Manen�1�en�2 ,
and if n is even, an is defined to be the largest integer such that Lanfn�1�fn�2 ¡
Manen�1�en�2 . In either case, we also define en :� anen�1 � en�2, fn :� anfn�1 �
fn�2, allowing computation of an�1 and the continuation of the recursion.

We claim that
�
en
fn

�
nPN0

is the sequence of continued fraction approximants to

α1 � logL
logM and that panqnPN are the partial quotients. Obviously the recursions

en � anen�1 � en�2 and fn � anfn�1 � fn�2 (and their starting values) are
correct. Also, for odd indices n, another way of stating the definition of an is
that Lanfn�1�fn�2   Manen�1�en�2 and Lpan�1qfn�1�fn�2 ¡ M pan�1qen�1�en�2 , or

equivalently, pan�1qen�1�en�2

pan�1qfn�1�fn�2
  logL

logM   anen�1�en�2

anfn�1�fn�2
. Recall that by Corollary 2.4,

this uniquely determines an. The reasoning for n even is similar.
All that remains is to explicitly describe the implementation of this algorithm

in an accelerated Turing machine and to bound its runtime. Our TM will have 9
tapes, labeled by integers 1 through 9. We describe the computation of an for odd
indices n, since the case for even indices n is trivially similar. In the first step of
the computation of an, tape 1 and tape 2 both contain (a binary representation of)
en�1, tape 3 contains en�1 � en�2, tape 4 contains Men�1�en�2 , tape 5 and tape 6
both contain fn�1, tape 7 contains fn�1 � fn�2, tape 8 contains Lfn�1�fn�2 , and
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tape 9 contains the number 1, all in binary. (Clearly for n � 1, this information
will have to be hard-coded into the TM as a starting condition for the 9 tapes.)
The machine now runs a loop: in each of the next en�1 steps, simultaneously,
tapes 2 and 6 are decremented by 1, tapes 3 and 7 are incremented by 1, tape 4
is multiplied by M , and tape 8 is multiplied by L. As 1, L,M are constants those
additions and multiplications each take only 1 step. Now, tape 2 will contain 0,
which signals a new phase. For the next fn�1�en�1 steps, simultaneously, tape 6 is
decremented by 1, tape 7 is incremented by 1, and tape 8 is multiplied by L. After
this, tapes 2 and 6 will both contain 0, which signals the end of the loop. At this
point, the contents of tapes 4 and 8 are compared in an instant operation. Recall
that gcdpL,Mq � 1, so the powers of M and L on tapes 4 respectively 8 can not be
equal. If the number on tape 8 is larger, then the loop stops (we will describe the
procedure for this momentarily). If the number on tape 4 is larger, then the loop
repeats as follows: before the next step, tapes 2 and 6 are reset to en�1 and fn�1

(this is done with an instant copy respectively from tapes 1 and 5, whose only role
is to store the values of en�1 and fn�1 for this resetting), and the value of tape 9 –
i.e. the eventual value of an – is incremented by 1. Then the above loop can repeat
just as before, with the phases corresponding to the first en�1 steps (until tape 2
reaches 0) and the next fn�1 � en�1 steps (until tape 6 reaches 0).

As stated above, the loop stops at the first comparison in which the content of
tape 8 is larger than that of tape 4, without increasing the value on tape 9 again.
At this point, a signal is sent that the current content of tape 9 is the correct
value of an. It should be clear that an is in fact the correct partial quotient of the
continued fraction expansion, since, as was outlined above, it is the largest integer
a P N for which Lafn�1�fn�2  Maen�1�en�2 . We summarize the content of the rest
of the tapes at this step: tape 1 contains en�1, tape 2 contains 0, tape 3 contains
en�2 � pan � 1qen�1 � en � en�1, tape 4 contains Men�2�pan�1qen�1 � Men�en�1 ,
tape 5 contains fn�1, tape 6 contains 0, tape 7 contains fn�2 � pan � 1qfn�1 �
fn � fn�1, tape 8 contains Lfn�2�pan�1qfn�1 � Lfn�fn�1 , and tape 9 contains an.
To initialize the machine for the computation of the next partial quotient an�1,
tapes 1 and 2 are overwritten in an instant operation by tape 3 minus tape 1, i.e.
en, tapes 5 and 6 are overwritten by tape 7 minus tape 5, i.e. fn, and tape 9 is reset
to 1. At this point, the content of the tapes is as initially described above with n
replaced by n � 1, and so the accelerated TM can continue in a recursive fashion
to compute the next partial quotient. (Note that now n is even and the condition
for the comparison between tapes 4 and 8 has to be reversed.)

Since each iteration of the described loop takes fn�1 steps, and the loop is run
an times, the number of TM steps that were used to compute an is exactly anfn�1.
The computation time for the first N P N partial quotients a1, . . . , aN is thus:

Ņ

n�1

anfn�1 ¤ aNfN�1 �
N�1̧

n�1

fn ¤ paN � 1qfN�1 �
N�2̧

n�1

fn

¤ paN � 3qfN�1 ¤ 4aNfN�1

where we used the recursion for fn and the fact that
°N�2

n�1 fn ¤ 2fN�1. Since the
sequence ptnqnPN0 used in Definition 1.5 coincides with the sequence pfnqnPN0 , by
implementing a linear speed-up by a factor of 4 (via extra tapes, for example), our
accelerated TM has the desired computation time satisfying condition (C). �
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We can now use our techniques from Section 5 to construct for d ¥ 3 an upgrad-
able zero-entropy Zd SFT X 1 on alphabet A1 so that letters from a certain subset
A1

1 � A1 appear in all points of X 1 with frequency α1 � logL
logM . (A1

1 is just the

set of letters from A1 which contain a 1 on the base layer.) Then, by splitting
symbols in A1

1 into M independent copies, we can create an upgradable Zd SFT
X2 with entropy htoppX

2q � α1 logM � logL, and by applying Theorem 5.11, we
can upgrade X2 to a block gluing Zd SFT X again with entropy htoppXq � logL.

In order to apply the techniques from [6], we need the following proposition:

Proposition 6.2. Let Z be an upgradable Z3 shift of finite type with htoppZq ¡ 0

and let rZ � Z be its equal entropy block gluing version as constructed in Theorem

5.11. Then any measure of maximal entropy on rZ has support contained in Z.

Proof. Consider any ergodic shift-invariant probability measure of maximal entropy

µ on rZ, and assume for a contradiction that the support of µ is not contained in Z.

Define the probabilities pw :� µ
�
tz P rZ | z~0 is a wall symbolu

�
and ps :� µ

�
tz PrZ | z~0 is a shadow symbolu

�
. Clearly the sum pw � ps has to be strictly positive.

We break the argument into two cases depending on whether or not pw ¡ 0.

If pw � 0, then µ
��

~ıPZ3tz P rZ | z~ı is a wall symbolu
�
� 0 by shift-invariance of

µ, and so µ-a.e. point of rZ contains no wall symbols. Clearly the only such points
either purely consist of shadow symbols – let us call them pure shadow points –
or consist of a single non-empty (finite or infinite) rectangular prism filled with a
locally admissible pattern from LlocpZq, surrounded by shadow symbols.

Consider the latter points first. For each 1 ¤ i ¤ 3 and any non-empty (finite

or one-sided infinite) interval I � Z, denote by rZ~ei,I � rZ the set of points for

which the ~ei-dimension of this rectangular prism is the interval I. The sets rZ~ei,I

cannot have positive µ-measure, since all their shifts σn~ei
� rZ~ei,I

�
� rZ~ei,I�n (n P Z)

are disjoint and have to have the same measure. Therefore, µ-a.s., the rectangular
prism in question can not be a non-empty proper subset of Z3. Since µ is assumed

to be ergodic with ps ¡ 0, this implies that µ-a.e. point in rZ has to be a pure
shadow point. However, there are only countably many pure shadow points most
of which do not carry measure. A full proof would be quite technical and we leave
it to the reader to confirm the details, but roughly speaking there are three cases:
If a pure shadow point contains a shadow symbol “S�~ei” (w.l.o.g. assume i � 1),
then such shadow symbols have to occur at sites in Z � R for a (finite or infinite)
rectangle R � Z2, and R uniquely determines the whole point. If a pure shadow
point contains no shadow symbols “S�~ei” but contains a shadow symbol “S~c” with
‖~c ‖1 � 2 (w.l.o.g. assume ~c � p1, 1, 0q), then such shadow symbols occur at sites
in Z2 � I for a (finite or infinite) interval I � Z, and I uniquely determines the
whole point. Finally, if a pure shadow point contains no shadow symbols “S~c”
with ‖~c ‖1   3, then it is constant; all sites contain identical shadow symbols. This
clearly gives only countably many choices (selecting R, I and ~c ). However, again
by shift-invariance of µ, all non-constant pure shadow points must have µ-measure
zero, therefore µ is supported entirely on the 26 constant pure shadow points, and
so has entropy zero, a contradiction.

If pw ¡ 0, then by the ergodic theorem, for µ-a.e. z P rZ,

lim
nÑ8

∣∣t~ı P r0, n� 1s3 | z~ı is a wall symbolu
∣∣

n3
� pw .
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Then, for any 0   ε   pw and n P N, if we define An,ε to be the set of patterns in

Ln,n,np rZq containing at least n3ppw � εq wall symbols, then for µ-a.e. z P rZ, there
exists N P N so that z|r0,n�1s3 P An,ε for n ¡ N . Therefore, there exists N P N so
that µpAn,εq ¡ 1� ε for all n ¡ N .

However, the same argument which gave (iv) in the proof of Theorem 5.11 shows
that |An,ε| is bounded from above by

(v)
|An,ε| ¤

n3¸
q�rn3ppw�εqs

286n
2

� 576q � ehtoppZq�pn�2sq3�q log 576�q htoppZq

¤ pn3 � 1q � 286n
2

� ehtoppZqppn�2sq3�n3ppw�εqq .

Let AA
n,ε :� Ln,n,np rZqzAn,ε. By the definition of measure-theoretic entropy:

(vi)

hµp rZq � lim
nÑ8

1

n3

¸
PPLn,n,np rZq

�µprP sq logµprP sq

� lim
nÑ8

1

n3

� ¸
PPAn,ε

�µprP sq logµprP sq �
¸

PPAA
n,ε

�µprP sq logµprP sq
	
.

Now the first sum is trivially bounded from above by log |An,ε| while for n ¡ N
the second sum is bounded by¸

PPAA
n,ε

�µprP sq logµprP sq ¤
¸

PPAA
n,ε

�
� ε
|AA

n,ε| log
ε

|AA
n,ε|

�
¤ ε log

� |Ln,n,np rZq|
ε

�
since µpAA

n,εq   ε. Putting those two bounds into (vi) and using (v), we get:

(vii)

hµp rZq ¤ lim
nÑ8

1

n3

�
logpn3 � 1q � 6n2 log 28� pn� 2sq3 htoppZq

� n3ppw � εq htoppZq � ε log |Ln,n,np rZq| � ε log ε
	

� htoppZq � ppw � εqhtoppZq � εhtopp rZq .
However, clearly for small enough ε ! pw, this is strictly less than htoppZq,

contradicting the fact that µ was a measure of maximal entropy for rZ. �

Proof of Theorem 1.9. In [6], the following was shown: Suppose a Zd SFT W with
entropy htoppW q � logL is created from a zero-entropy Zd SFT Z by introducing

M independent copies of each symbol in a subset A � rA whose elements appear in
points of Z with frequencies bounded from above by (but which can be arbitrarily

close to) α1 � logL
logM . Then, if L,M are coprime, there cannot exist a measure µ of

maximal entropy on W (i.e. hµpW q � logL) and a topological factor map φ under
which µ maps to the uniform Bernoulli measure mB on the full L-shift. This was
used in [6] to show that such a subshift W does not factor topologically onto the
full L-shift; if it did (say under φ), then the measure mB would have to have a
preimage under φ, which would be forced to have entropy logL.

Now consider our situation. Suppose for a contradiction that X factors onto the
full L-shift via a topological factor map φ. Then the uniform Bernoulli measure
mB on the full L-shift has a preimage µ under φ, which has entropy hµpXq � logL
and so is a measure of maximal entropy on X. By Proposition 6.2, µ has support
contained inX2. However, X2 was constructed fromX 1 by creatingM independent
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copies of each symbol from a set of symbols A1
1 � A1 whose elements appear in

points of X 1 with frequencies bounded from above by (but arbitrarily close to)

α1 � logL
logM , so by the result from [6] given above, µ cannot map to the uniform

Bernoulli measure mB on the full L-shift under φ, and we have a contradiction. �
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