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ABSTRACT. The notions of “limiting entropy” and “independence entropy”
for one-dimensional subshifts were introduced by Louidor, Marcus, and the
second author in [15]. It was also implicitly conjectured there that these two
quantities are always equal. We verify this conjecture, which implies, among
other things, that the limiting entropy of any one-dimensional SFT is of the
form %bgk’ for k,n € N. Our proof also completely characterizes the weak
limits (as d — o0) of isotropic measures of maximal entropy; any such measure
is a Bernoulli extension over some zero entropy factor from an explicitly defined
set of measures. We also discuss connections of our results to various models
and results arising in statistical mechanics.

1. INTRODUCTION

In statistical mechanics, many types of systems are known or believed to exhibit
mean field behavior in high dimensions. The original context of this term applies to
the Ising model on Z¢, where the asymptotic behavior in high dimensions resembles
the Ising model on a complete graph, also known as the “Curie-Weiss model.” More
loosely, the term is used to indicate that in high dimensions the distribution at
different sites is approximated by independent interactions with a global “mean
field.” The results obtained in this paper are of a related flavor. We state and
prove them in the framework of symbolic dynamics. Some examples illustrating the
relevance to statistical mechanics are discussed in Section 5.

Symbolic dynamics is a branch of dynamics concerned primarily with the study
of particular Z? topological dynamical systems called subshifts. A Z¢ subshift is
defined by a finite set X, called an alphabet, and a (possibly infinite) set F of
functions from ¥ to finite subsets of Z¢, which are called configurations. The Z¢
subshift with alphabet ¥ induced by F, denoted by X (F), is defined to be the set
of infinite configurations in ¥Z* which do not contain any translate of any of the
forbidden configurations from F. In the special case where F is finite, X is called
a Z% shift of finite type, or SFT.

In this paper we obtain results describing the asymptotic behavior of high-
dimensional isotropic Z%-subshifts. The adjective “isotropic” here refers to an ob-
ject (e.g. subshift, measure) which exhibits the same behavior along each cardinal
direction. We show that a uniformly chosen large configuration from such a subshift
exhibits a nearly site-wise independent distribution when conditioned on an explic-
itly defined “almost-trivial” o-algebra. The formal statement of this is deferred to
Section 4, following introduction of terminology and technical definitions in Section
2.

Given a one-dimensional subshift X = X (F), the set of possible infinite configu-
rations in $Z° for which words from F do not occur in any row along any cardinal
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direction is a d-dimensional subshift, which we call the dth azial power of X and
denote by X®9¢. For instance, for ¥ = {0, 1,2} and F = {00, 11,22}, X®9 contains
all {0, 1,2}-colorings of Z? where adjacent sites (sites with distance 1) have distinct
colors.

Our main result concerns the limiting topological entropies of Z¢ axial powers for
a fixed one-dimensional subshift, and was implicitly conjectured in [15], where key
definitions and machinery were also developed, including two entropy-like quantities
associated with any nonempty one-dimensional subshift X.

The first is called the limiting entropy of X and is denoted hoo(X). The lim-
iting entropy is defined as a limit of topological entropies for the sequence of d-
dimensional axial powers of X. The limit here exists since the topological entropies
of axial powers of X form a nonincreasing sequence; see [15] for details. The lim-
iting entropy hoo(X) can also be viewed as the topological entropy of a suitably
defined “infinite-dimensional” axial power, which will form the foundation of our
proof.

The second quantity is the independence entropy of X and denoted hgnq(X).
Informally, this is a measure of how much of the topological entropy of X comes
from sitewise independent behavior. If a one-dimensional subshift X has alphabet
Y., then we say that a string A, A, ... A, of nonempty subsets of ¥ is “independently
legal for X7 if a; ... a, appears in a point of X for every choice of a1 € Ay,...,a, €
A,.

For example, consider the one-dimensional subshift of finite type consisting of
all z € {0,1}? which do not contain consecutive 1s, called the golden mean shift
and denoted by G. Then {0,1}{0}{0,1} is independently legal for G, since all
four words 000,001,100, 101 appear in points of G. However, {0,1}{0,1}{0} is not
independently legal for G, since the word 110 is illegal in G. (This is because 110
contains consecutive 1s.)

Any independently legal string of subsets for a subshift X can be thought of as a
source of words appearing in points of X which are induced by sitewise independent
choices. The independence entropy of X is defined as the asymptotic exponential
growth rate (in n) of the maximum number of words in X so induced by a single
n-letter independently X-legal string.

It was shown in [15] that hina(X) < heo(X) for all subshifts X, and implicitly
conjectured that the quantities are always equal. Our main result is that this
conjecture is true.

Theorem 1.1. For any Z subshift X, hinq(X) = hoo(X).

For any SFT X, it was shown in [15] that h;,q(X) is of the form % where
k,n € N, and that there is an simple algorithm to compute h,q(X). Thus, an
important consequence of our result is that the limiting entropy for subshifts of
finite type can be easily computed, and is always a rational multiple of the logarithm
of a natural number. This is in sharp contrast to the topological entropy of d-
dimensional subshifts, for which there is no known explicit expression, even for
some of the simplest nontrivial examples.

The remainder of the paper is organized as follows. Section 2 contains necessary
definitions and preliminary results for our arguments and results. Section 3 con-
tains the proof of Theorem 1.1. Section 4 contains results regarding measures of
maximal entropy for our infinite-dimensional axial power X, including a uniqueness
criterion. Section 5 discusses some previously existing results for specific models
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and how our results fit into this framework, and Section 6 discusses some natural
questions and directions for future work.

Acknowledgement: We are grateful to Brian Marcus for his encouragement
and for many stimulating discussions. We would also like to thank the math de-
partment of the University of British Columbia and the Pacific institute for Math-
ematical Sciences for hosting a visit of the second author, when the initial part of
this research took place.

2. DEFINITIONS AND PRELIMINARIES

Many symbolic dynamical concepts and notation are valid for subshifts on any
countable amenable group G. For our purposes, we will only consider G either
equal to Z¢ for some d € N, or G = @Dy Z, which we denote by Z>.

In other words, Z*> = @ Z is the countable group of infinite sequences of
integers which have only finitely many non-zero terms.

Each of these groups is amenable because they admit a Fglner sequence, which

is a sequence F;, of finite subsets for which % — 0 for all g € G. For any
n n—oo

d € N, [-n,n]¢ is a Fglner sequence in Z%, though we will rarely need to refer to
the amenability of Z?. For the group Z>°, an example of a Fglner sequence is given
by F,, = [-n,n]™ x {0}°°; unless explicitly stated otherwise, F;, will refer to these
specific sets.

For any finite set ¥, which we call an alphabet, and any d € NU {co}, define the
d-dimensional full shift to be the topological dynamical system given by the space
»%" endowed with the shift Z-action (0y), defined by (o,x)g = x(g + v) for all
v,g € Z% and z € $Z° The full shift is always endowed with the (discrete) product
topology, with respect to which each shift is a homeomorphism.

A configuration is defined to be any ¢ € ¥°, for a finite set S C Z?. The set S is
called the shape of the configuration. For any finite set of configurations wq, ..., w,
with disjoint shapes S1, ..., Sy, their concatenation is the configuration wyws - - - wy,
with shape (J!_; S; defined by (wyws - - wy)s, = w; for 1 <i <n.

A 7% subshiftis a closed subset of the Z¢ full shift which is shift-invariant. Any Z¢
subshift X can be defined by a (possibly infinite) set F of forbidden configurations
in the following way:

X=X(F)={ze€ IR Tsin ¢ F for all finite S C Z¢ and n € Z9}.

When F is finite, we say that X (F) is a Z¢ subshift of finite type or SFT. For d = 1,
if 7 C 240k} we say that X (F) is a k-step SFT.

For any Z< subshift X, we define the language of X, written £(X), to be the
set of all configurations which appear within points of X. For any finite S C Z<,
denote by £(X,S) := £L(X) N ¥° the set of configurations in £(X) with shape S.
For any Z< subshift X and w € £(X, 9), the set [w] := {x € X : x5 = w} is called
the cylinder set of w.

Given a Z subshift X Cc X% and any d € N, let X®¢ C YZ* denote the ZI-
subshift defined by

X® = {2 e :VgezlVie{l,...,d}, xg1ze, € X},

where x47., € X% is the sequence obtained by shifting z by g and projecting it in
the ith direction.
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Similarly, we define X®> ¢ %7 by
X®® ={ze X% . VgeZOVieN, x4z, € X}.
It is clear that X®? is always a Z¢ subshift, since it is closed w.r.t. the product
topology on EZd, and is invariant with respect to the shift Z%-action on Nz,

We start with a simple lemma showing that for a fixed d-dimensional shape S,
the set of legal configurations with shape S in X ®d" ig the same for any d’ > d.

Lemma 2.1. For any Z subshift X, any d € N, and any finite S C Z¢, L(X®?,S) =
L(X®> S).

Proof. The inclusion £(X®>, ) C £(X®? S) is trivial since the projection x4 is
clearly in X®4 for any x € X®>. It therefore suffices to show the reverse inclusion.

Consider any w € L£(X®4 S). By definition, there exists » € X®? so that
x5 = w. We will use x to construct a point of X®>®. Define 2/ € X2~ by 2/(g) :=

(oo}
(91,92, -, 9d—1, Zgi). Clearly 27, = x, so ¥’ = w. Also, for any g € Z> and
i=d
i € N, the row x ;. is a row of z; either in the x;-direction if i < d or in the
xg-direction if 4 > d. Since x € X®¢, all such rows are in X, and so ' € X®>. We
have then shown that w € £(X®%,S), completing the proof.

O
The topological entropy of a Z® subshift X (d € NU {oo}) is defined as

h(X) = lim L

log |L(X, F;
Jim e log [£(X, F)

where F}, is a Fglner sequence for Z¢.
We define the limiting entropy of a Z subshift X as

heo(X) := dli_)rg<> h(X®D).

The limit exists because h(X®?) is nonincreasing in d; see [15] for a proof.

The next few definitions involve measures on Z¢ subshifts (d € NU {oo}. All
such measures will be taken to be Borel probability measures with respect to the
product topology. We say that y is shift-invariant if o,pu = p for all v € Z<.

For a shift-invariant measure p on X, the measure-theoretic entropy of p is

where
H, (Fy) = — / log ([, ))dpu(z)

is the Shannon entropy of the discrete random variable zp, .

The following fundamental theorem of entropy theory generalizes to any count-
able amenable group, and beyond. However, our statement deals only with the
amenable groups X ©.

Theorem (Variational principle). For any d € NU {co} and Z¢ subshift X,
h(X) = sup h(p),
o

where the supremum on the right-hand side is over all shift-invariant measures on

X.



For a proof of the variational principle in the general amenable group setting,
see [17]. For an elegant Z?-proof (d < 00), see [16].

Since the shift Z?-action on the d-dimensional full shift is always expansive, the
function p + h(u) is upper semi-continuous for measures on any Z? subshift. It
follows that the supremum on the right hand side is attained by at least one measure
. For proofs and details see [1], for instance.

A measure p for which h(X) = h(u) is called a measure of mazimal entropy on
X.

We also need the notion of conditional entropy. For any finite F' C Z¢, d €
NU{oo}, any measure p on the d-dimensional full shift, and any o-algebra A which
is measurable with respect to u, we define

H(F | 4) = = [toga(iar] | A) duo)

and correspondingly define the conditional entropy of u with respect to A as

1
h = lim —H,,(F .
(u [ A) = lim TN u(F | A)
A standard application of the definition of conditional entropy shows that we
can also write

. 1
| A) = Jim | T AP dula),

where p | A denotes the conditional measure of p given A.

We will typically consider the case where A is the image of the underlying o-
algebra for the measure space under a p-measurable factor map 7; in this case, we
will write the factor 7 in lieu of A.

The following two well-known results relate non-conditional and conditional en-
tropies.

Theorem. (Rokhlin-Abramov formula [23]) For any shift-invariant measure
w on a Z% subshift X (d € NU{oo}), and any u-measurable factor map m on X,

h(p | 7) = h(p) — h(m(p)).

Theorem 2.2. (See, for instance, p. 318 of [8]) For any d € NU {oco}, denote by
P, the lezicographic past of 0 in Z%, i.e. the set of all g € Z* which have at least
one nonzero coordinate, the first of which is negative. Then for any shift-invariant
measure pu on 27, h(p) = h,({0} | 7p,).

(Here and elsewhere, for a set S C Z?, mg represents the projection map z + xg.)

The proof of Lemma 2.2 in [8] formally applies only to the case d < oo, but a
simple limiting argument yields the d = oo case.

The above definitions and statements about entropy are all independent of the
particular choice of Fglner sequence F),,. For general references on the entropy
theory for amenable groups, see for example [17, 19].

We will naturally identify Z% as a subgroup of Z% whenever d; < dy < oo
via the embedding (v1,...,v4,) — (v1,...,04,,0,...), and say that a sequence of
measures i, € P(X%") converges in the weak-* topology to a measure y in P(¥%7)
if p,([wr]) = p([wr]) for all finite F C Z*° and all wr € XF.

The relevance of X®° to the problem of limiting entropy is manifested by the
following lemmas:



Lemma 2.3.
h(X®°°) = heo(X).

Proof. By definition, we have
hoo(X) = lim h(X®%).

d—o0

We have

1
®d\ _ 13 ®d [_ d
h(X®%) = lim TN N ]d||£(X ,[=N, N]%)].

Thus, we can find an increasing sequence of integers (N1, Na,...), so that

hoo(X) = lim

1
- ®d [_ d
d->00 \[—Nd,Nd]d||£(X  [=Na, Na] )|

As F I(V(i )is a Fglner sequence in Z°°, we also have

1
AM(X®®)= lim —
) = I, ov v

Since L(X®>®, [~Ng, NgJ¢) = L(X®L [~Ny, Ng|?) by Lemma 2.1, it follows that
hoo (X) = h(X©%°). O

|L(X®, [=Na, Na]*)|.

Lemma 2.4. Let 1, o, ..., tn, ... be a sequence of measures where pi, is a mea-
sure on X",

(1) If py, — p in the weak-+ topology, where p is a measure on Y27 then
p(X®*) = 1.

(2) If, in addition, every p, is a measure of mazimal entropy of X®™, then u
is a measure of mazimal entropy of X®>.

Proof. To prove (1), choose any sequence u,, which approaches a weak-+ limit p.
Choose any finite F' C Z>. For some sufficiently large dy, F' C Z%, by definition
of Z®°. By Lemma 2.1, £L(X®% F) = £(X®4 F) for all dy < d < co. Thus, for
all d > do, pa(zr € L(X®? F)) = 1. It follows that u({zr € L(X®>, F)}) = 1.
Thus,

M(X®OO) =p ( m {zr € ‘C(X®OO’F)}> =1,
FCZe>
where the intersection is over all finite F' C Z°°. This completes the proof of (1).
Now, (2) follows by combining (1), the relation h(X®>) = h(X) from Lemma 2.3,
and upper semi-continuity of measure-theoretic entropy. O

2.1. Multi-choice subshifts and independence entropy. We now recall some
definitions and results from [15]. Let 3 denote the set of non-empty subsets of 3.
Let X be a Z? subshift over 3, where d € NU{oo}. The multi-choice shift X c S
is the set
X={se¥ . scX}
where & € $2° is naturally interpreted as a subset of X, obtained by Cartesian
products.
The independence score of a configuration w € $F with shape F' is defined by

. 1 N

ner
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We analogously define the independence score for € 5zt by

S(z) = limsup S(Z|F, ).

n—roo

Finally, we define the independence score of any shift-invariant measure /i on X as
S) = [ S@dia).

Observe that for any shift-invariant measure ji and finite ' C Z%, S(u) =
[ S(#F)du(2). In particular, since & — S(&) is a function which is invariant under
shifts, it follows that for an ergodic measure fi, S(Z) = S(fi) fi-almost everywhere.
Also, by the pointwise ergodic theorem, the limsup in the definition of S(&) is
actually a limit p-almost surely.

Following [15], we define the independence entropy hinq(X) of a Z subshift X as

hina(X) = lim (sup{S(zZ}) e E(X,Fn)}).

See Section 4 of [15] for details on how existence of the limit follows from sub-
additivity.

The following lemma states convenient equivalent definitions of the independence
entropy:

Lemma 2.5. Let X be a Z% subshift. The following are equivalent definitions of
the independence entropy hing:

(1) hina(X) =sup{S(z) : & e X}.

(2) hina(X) is equal to sup, S(j1) where the supremum is over shift-invariant

measures on X.

Proof. Clearly, for any pu, S(u) < sup{S(#) : & € X}. Since & — S(&) is a
shift-invariant function, it is constant for any ergodic p. In fact, for ergodic pu,
S(z) = S(p) p-almost surely.

For any given € > 0, there are infinitely many n’s and w, € E(X , F,) with
S(W) > hind(X) — €. Since S(w) is an average of S(w’) for subwords w’ of smaller
length, we can assume w, is a prefix of w,1;. By compactness of X , there is
# € X with S(2) > hina(X) — €. It follows that the orbit closure of & supports an
invariant measure p with S(p) > hina(X) — € (see [6] for a classical presentation of

this correspondence principle).
O

2.2. Exchangeability and de Finetti’s theorem. One of the main tools in the
proof of Theorem 1.1 is de Finetti’s Theorem, which we review here for complete-
ness.

Let P := Perm(N) denote the group of finite permutations of the positive inte-
gers, i.e. permutations of N which fix all but finitely many integers. PP is a countable,
amenable group.

Definition 1. A sequence (X,) of random wvariables is called exchangeable if
for any n and n-tuples of distinct integers i1,io,...,i, and j1,j2,---,jn, the joint
distributions of X;,,...,X,, and Xj,,...,X;, are the same. Equivalently, (X,,) is
exchangeable if all joint distributions are invariant under the action of P on (X,)
by permutation of indices.
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The simplest examples of exchangeable sequences of random variables are i.i.d.
or Bernoulli sequences, which are clearly exchangeable. However, not every ex-
changeable sequence is Bernoulli. For instance, one can define the X; so that either
they must all be equal to 0 (say with probability 0.3) or all must be equal to 1
(say with probability 0.7). The reader may check that this sequence is exchange-
able, but clearly it is not Bernoulli. However, it is a mixture of the two (trivial)
Bernoulli sequences which are a.s. constant with value 0 and a.s. constant with
value 1 respectively. In fact, this is not an anomaly: de Finetti’s theorem states
that all exchangeable sequences are mixtures of i.i.d. distributions.

Theorem (de Finetti’s theorem). Any exchangeable sequence (Yy,) of random
variables each taking values in a finite set ) is a mixture of identically distributed
random variables. In other words, there is a measure 6 on the simplex of probability
measures on ) such that

P (mm =ak}> ~ [ T ptax)doto)
k=1 k=1

for any ay,...ay € Q.

For our purposes, de Finetti’s theorem for finite-valued exchangeable sequence
is sufficient. We note that there is a stronger version, due to Hewitt and Savage
([10]), which applies to random variables taking values in a Borel measurable space.

In particular, for exchangeable random variables, the exchangeable o-algebra
coincides with the tail o-algebra: Any measurable function of an exchangeable
sequence which is invariant under finite permutations of the variables is measurable
with respect to the tail. In the case of exchangeable variables taking values in a finite
set €2, the particular i.i.d. distribution in the mixture can be recovered by observing
the empirical distributions fi,(X1,...,Xn,...) == lim, e 2[{i < n : X; = a}|,
a € Q.

2.3. Allowable local perturbations. A useful notion in the proof and statement
of our results is the notion of “allowable local perturbations” for a point in a Z¢
subshift.

For any subshift X C ZZd, d € NU{oo}, shift-invariant measure p on X, z € X,
and g € Z%, we say that a letter a is a p-allowable local perturbation of x at g if the
conditional probability

Pegla) i =p({z€ X 1 zg=a} | {2z 1 zig3e = T(g3c})
is greater than 0.
For any shift-invariant measure p on X, define a map 7, : X — sz by

T (z)g ={a€X : pgqla) >0}

This is a measurable factor map to szt p-almost surely, (7,(z)), # @ for all
g € Z%, since by definition p({z, € 7, (x),}) = 1.

3. PROOF OF THEOREM 1.1

The group P acts on Z*° in a natural way by permuting coordinates: for p € P

and g € Z>, (p(9))i := gp(s)- Through the action of P on Z>°, P also acts on X®.

We will consider measures of maximal entropy on X®> which are in addition

invariant with respect to the action of P on X®°. The existence of such measures
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follows from amenability of P, upper semi-continuity of measure-theoretic entropy,
and the fact that the action of P on X® preserves measure-theoretic entropy.

To be specific, choose any shift-invariant measure v on X®>, and take any weak-

1
x limit point p of the sequence —— Z pog(v), where the sum is over g € F,, and

|Pn‘ pEPy
p € P,, where P, C PP is the set of permutations which fix all integers greater than
n.
Clearly, h(v) = h(pv) for any permutation p € P. Since v — h(v) is an affine and
upper semi-continuous function, it follows that p is a measure of maximal entropy
whenever v is a measure of maximal entropy.

Lemma 3.1. For any P-invariant measure v on X®*° and any finite F C Z°°\{0},
xo and T are conditionally v-independent given T pe\ (o} -

Proof. Define m = ma}g(max{k e N : g # 0}, and define 7 : Z®° — Z> by
ge
(91,92,---) — (0,91, 92,...). It follows from P-invariance of v that
Tp, Lrmp,Tr2mp,...

is an exchangeable sequence of random variables. For any a € ¥ and sequence (C,,)
of elements of XF, define

fa(Co,Cl,CQ,...) = I/(xo =a | Tp = 0071'7-mF = Cl,xTZmF = CQ,...).

fa is a function of Cy, Cy,... which is invariant under all finite permutations.

It follows from de Finetti’s theorem that it is measurable with respect to the

tail o-algebra. This proves that z( is conditionally independent from zp given
{xkmp : k> 1}, and by our choice of m, TF™F C F¢ for all k.

O

Lemma 3.2. Let p be a measure on X®> which is both shift-invariant and P-
invariant. Then for a set of x € X®> of full p-measure, any y € L2 obtained by
a finite number of p-allowable local-perturbations is in X©°°. Also, for any such x,

T (z) € X®,

Proof. By compactness of X®_ it is sufficient to show that for py-a.e. z € X,
any finite F C Z°°, and any configuration yp € ¥ with y, € 7, (z), for all g € F,
there exists z € X®° with zp = yp.

It will suffice to show that for p-a.e. 2 € X®> and for any choices y, € 7,(z),
for all g € F,

(1) p{z € X5 2p = yp | zpe = wpe}) = [] oy (¥e)-
geF

This is because integrating (1) with respect to p shows that p([yr]) > 0, and since
i is a measure on X ®*° this would show that yr € L(X®*), completing the proof
as explained above.

We prove (1) by induction on n = |F|. For n = 1, (1) is just the definition of
Pa,g- For the inductive step, assume that |F| = n and that (1) is true for all sets of
cardinality less than n.

Choose some g € F, and let I := F \ {g}. For p-a.e. z € X®, the definition
of conditional probability gives

p({z € XO° :z2p =yp | zpe = wpe}) = p({z € X 2p, = yp, | 2re = Yre })Pag(Yg)-
9



The inductive hypothesis on F; implies that

p({z € X¥% :zm = ym | 26 =yre}) = [ pun(on),
heF;

so showing (1) for F' has been reduced to showing that py 4(vg) = py,q(yg)-
To see this, note that Lemma 3.1 implies that p-almost surely with respect to
x, for any finite F' C Z*° \ {g},

Pag(yg) = n({z € X®% 1 2y = yy | 2(gye = w(gye}) = p({z € XO° 1 2y = yy | 2pe = xpe}).
In particular,

P,9(Yg) = Py,g(Yg)

since x and y are identical off the finite set F, and we are done.
O

In other words, for p as above, the measure-theoretic factor map 7, maps to

L —

X® py-almost surely. We denote by ji the measure 7, (1) on ?@?O, which is just
the pushforward of p under .

Our next step is to characterize the structure of P-invariant measures of maximal
entropy on X ®>,

Lemma 3.3. For any P-invariant measure of mazimal entropy p on X<,

2) p= [ ns dia)

X0
where for any & € f@, uz denotes the independent product of the uniform mea-
sures on Ty over all g € Z*°.

Proof. The conditional entropy of u given m,, satisfies

Mol m) = [ B0} [ mo)) din < [ o aol di(o),

X6

with equality holding in the second inequality iff the conditional distribution of xg
under p given m,(x) is p-a.s. uniform over the finite set m,(x)o.

Thus, if 1 does not satisfy the formula (2), we could define a measure v =
//\ wg di(&) for which h(v) > h(p), which would contradict the fact that u is a

X ®o0
measure of maximal entropy. |

Lemma 3.4. Let u be a P-invariant measure of mazimal entropy on X®. The
measure-theoretic entropy of the measure ji with respect to the Z°°-action by shifts
18 zero:

h(i) = 0.

Proof. Suppose for a contradiction that h := h(ii) > 0. First, we note that by
definition, for any g € Z°°, 7, ()4 is p-a.s. uniquely determined by x(g. as the set
{a € ¥ : pyy(a) >0} But by Lemma 3.3, p-a.s., m,(x), is independent of xge
given 7, (x)gye. It is clear that if two random variables are independent and the
first is a function of the second, then the first must be constant. Therefore, 7, (),
must be conditionally constant given 7, (z)(41c. In other words, p-a.s., m,(z)¢gye
uniquely determines 7, (z),.
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This means that there exists N so that 7, (z)o is determined by 7, () py\ {0} With
pu-probability 1—4, for 6 < ﬁ\zl' Choose d large enough that ﬁHﬂ (Fq) < h+e,
where € < ﬁ We now decompose Hj, (Fn X Fy) as a sum of conditional entropies:

Hp(Fy x Fa) = Ha((Fy \{0}) x Fa) + Hy({0} x Fa | m(py\{0})xF,)
< (IFn| = D[ Fal(h + €) + [Faldlog 3]
h € dlog ||
— |Fy||Fa| |h— —— 4 ¢ — +
e[ g+ e g+
h h h 1
< |Fn||Fa| |h — + + }zF Fh(l—).
e[ g+ g + | = A (1 g

From the general theory of entropy for amenable groups (as in [17], p. 59), for any

finite set P C Z°°, ‘—}DlHﬂ(P) > h, and so we have a contradiction.

+e+

h 510g|2|}
< |E~N|IE4| |h —
}— vl d'[ ] ]

O

Proof of Theorem 1.1. Let p be a P-invariant measure of maximal entropy on X ®°°,
By Lemma 3.2, 7, is a measure-theoretic factor from the Z*-system (X®°, p) into

(X, ).
The Rokhlin-Abramov formula gives
h(u) = h(f) + h(p [ 7).,

where

| ) = [l o H (| 7o) d

Xex n—oo ||

is the relative entropy of p over m,. However, by Lemma 3.4, h(fi) = 0. Since
Hy(Fy | mu(x)) < S(mu(2)r, ),

B) helX) =h(w) = hia | m) < [ tmsup o S(er,) di(o)

X®cc n—oo |Fn|

—

However, for any & € X®>,

1
limsup ——S(ZrF,) < hina(X),
80 hoo(X) < hing(X). Finally, we already know from [15] that hinqa(X) < heo(X),
so we have shown that heo(X) = hjnq(X).
Il

4. LIMITING MEASURES OF MAXIMAL ENTROPY

We now wish to discuss the structure of the measure(s) of maximal entropy p on
X®°, We will show that we can completely describe tlist\ructure it\he measures
of maximal entropy which are P-invariant. Denote by X®> .. C X®> the set of
points & with S(&) = hipq(X). This is a shift-invariant and P-invariant subset of
X@x,

For any shift-invariant measure v supported on Wmax, define a shift-invariant
measure ®(v) on X®> by

@ Bv) = |__ s dv(a),
11



where for any & € X®> .., pz is the independent product of the uniform measures
over &, for g € Z>.

Theorem 4.1. For any P-invariant measure of maximal entropy p on X, there
exists a measure [i supported on X®% .. such that p = ®(i1).

Proof. If p is a P-invariant measure of maximal entropy for X®°°, define fi = 7, ().
Then,

hooX) = (0} [7p) = [ H(O} m)due) = [ B0} e xm) duta)

< /X®oo H, ({0} | ) dp(z) < /X®oo log |7, (2)o dp(z) = /;7@\ S(i0) diu(z) < hina(X).

The third equality holds since h(ji) = 0. By Theorem 1.1, hoo(X) = hina(X).
Therefore, all inequalities above are in fact equalities. The first inequality being
an equality implies that x is conditionally p-independent from xp, given m,(z).
This clearly implies that p-almost every fiber p; in the disintegration of y over =,
is a sitewise independent product. The second inequality being an equality implies
that p-a.s., the distribution of uz on a site g € Z* is uniform over £,. Finally, the
third inequality being an equality implies that fi-a.s., S(Z) = hinqa(X), and so fi is

supported on X®> . .
O

Theorem 4.2. ® is an injective map which sends shift-invariant measures sup-

—_—
ported on X®>®, .. to measures of mazimal entropy on X, Also, ® preserves
P-invariance of measures.

Proof. Injectivity of @ follows from the easily checked fact that 7z o ®(i1) = f

for any measure fi supported on Wmax.
For any such [, define p := ®(2). Then h(p) = h(p | 7,) = //\ log |&o| di1(Z),
X ®o0
but since i is supported on @max, //\ log |Zo| di(2) = hina(X®>°). Thus,
Xo

(1) = hing(X®%) which is equal to h(X®>) by Theorem 1.1, so p is a measure
of maximal entropy.
If /i is P-invariant, and p € P, then

pop= /A e dv(pd) = / e dv(2) = p,
®oo X ®oco

so p is P-invariant.

(]

Theorems 4.1 and 4.2 show that there is a bijective correspondence between the
P-invariant measures of maximal entropy on X®> and the P-invariant measures
supported on X®> . .

We now recall some technical facts, shown in [15], about independence entropy
for Z SFTs. It was shown in Theorem 2 from [15] that for any Z SFT X, there
exists a word w € £(X,[1,m]) such that %> € X and % = hina(X). Any such

> is called a mazimizing cycle for X. A word W € E(X) is called a mazimizing
word for X if W is a maximizing cycle for X.

12



For completeness, we give a self-contained proof of the following refinement of
the above statement, which is essentially in [15].

Lemma 4.3. For any k-step Z-SFT X, X has a mazrimizing word w with no
repeated k-letter subword.

Proof. Consider a maximizing word w for X, and denote its length by m. If w
has no repeated k-letter subword, we are done. Suppose then that @ does have
a repeated k-letter subword, call it u. Let’s say that W ;4r—1) = W[ j4r—1 = U,
i < j. Define @ = 1y j_1) and b= Wj,m)Wi1,i—1]- We now claim that both a and
b are also maximizing words for X. Note that every k-letter subword of a*° was
already a subword of wj; j4 41}, which is clearly in L(X ) since w is. Similarly, every
k-letter subword of 6> was already a subword of Wik,m]W[1,i+k—1), Which is in L(X)
since w? is. Therefore, both 4> and b are in X.

Finally, we note that since each letter of w is contained in exactly one of a or l;,
S() = hina(X) is a weighted average of S(a) and S(b). Both S(a) = S(a>) and
S(b) = S(b>) are less than or equal to hy,q(X) by definition, so both are equal
t0 hina(X), and therefore both a> and b> are maximizing cycles for X. Then
a and b are maximizing words for X , and since each has length less than w, we
can continue this procedure until we arrive at a maximizing word for X with no
repeated k-letter subwords. O

We say that a maximizing word for a k-step Z SFT is simple if it has no repeated
k-letter subwords, and that a maximizing cycle is simple if it can be written as W™
for a simple maximizing word w. Now, for any /si@le maximizing word W, we
will construct a specific finite orbit contained in X®% ... The method is simple:
define z(w) € 2% by r(W)y = W g, (mod |w|)- Lhen for any d,m and g € Z°,
T(W)g1mey = WS g,4m (mod |w])> and 50 2(wW)g4ze, is just a shift of the sequence
w*. Clearly, this implies that z(w) € f@)?’omax. Denote by O(w) the finite (IP-
invariant) orbit of z(w) under Z*°, and by fi; the uniform measure on O(w). Then
by Theorem 4.2, ®(jiy) is a P-invariant measure of maximal entropy on X®>,

Theorem 4.4. For any Z SFT X, there is a unique P-invariant measure of max-
imal entropy on X®>° if and only if the following two conditions are satisfied:

(1) X has a unique (up to shifts) simple mazimizing cycle
(2) There is only one finite orbit of points in nZ for which each row and each
column is a shift of the sequence W%, namely the orbit of the periodic point 1w

. (2 .
defined by w;j) = Witj (mod |0])-

Proof. (=) If condition (1) is violated, then X has two simple maximizing cycles
> and w' which are not shifts of each other, which induce points z(w) and
x(z/u\’) with different finite orbits O(w) and O(@\’) contained in Y@Twmax. Then by
injectivity of ®, ®(fiy) and ®(fi~) are distinct P-invariant measures of maximal

entropy on X®°,

If condition (1) is satisfied but condition (2) is violated, then X has a unique

—~(2 .
(up to shifts) simple maximizing cycle w> and a point w’ ®) in 3%° whose rows and
13



columns are all shifts of ¥, but which is not a shift of (). We now construct
an uncountable family of shift-invariant and P-invariant measures supported on
@max, which by Theorem 4.2 will yield an uncountable family of P-invariant
measures of maximal entropy on X®. First, for any o € (0,0.5), define 7, to be
the Bernoulli measure on {0, 1} which gives probability a to 0 and 1 — « to 1 at

each site. Define v to be the uniform measure on {0, 1,...,|®|—1}. Define a factor
map 7 from {0,1,..., @] — 1} x {0,1}N to %7 by
—(2)

T(iaj’ (un))(g) =w i+ Z gns J+ Z In

{n : u,=0} {n : u,=1}

We first claim that 7 maps to X®> ... This is easy to check: by definition,
—~(2
for any 4, j, and (u,), every row of 7(¢,J, (u,)) is just a row or column of w’( ),

which will always be a shift of ¥%. Now, for any a € (0,0.5), define p, to be the

push-forward of v X v X 1, under 7. Clearly each pu, is a measure on X®> . .
The reader may check that P-invariance of . follows from the fact that 7, is i.i.d.,
and that shift-invariance of u, follows from the uniformity of v and the fact that

—~(2

w’( : is periodic with respect to (J@w|,0) and (0, |@|). All that remains is to show
that all u, are distinct. For any «, define v, to be the marginalization of u, to
Z? x {0}°. Tt is clear that v, is always a finitely supported measure, which is a

—~(2
shift of w(?) with probability a?+ (1 —a)?, a shift of w’( ) with probability a(1—«),
—~(2 —~(2 —~(2
and a shift of w’ ® with probability (1 — ), where w’ ® is obtained from w’ ® by
permuting the first and second coordinates. But then since w(? is different from
—(2 —(2
both w’( ) and w’( ), and since o + (1—a)? is injective on (0,0.5), clearly all v, are
distinct, implying that all p, are distinct, and therefore that all ®(u, ) are distinct
P-invariant measures of maximal entropy on X®°,

(<) If conditions (1) and (2) are satisfied, then we will show that any shift-

invariant measure supported on @max is in fact supported on O(w). Clearly the
only such measure is iy, and Theorem 4.1 then implies that the only P-invariant
measure of maximal entropy on X®> is ®(fi).

Suppose that fi is a shift-invariant measure on X®> ... and choose any d € N.

Then S(it) = //\ S(Zze,) dip(2) = hina(X), so clearly S(&ze,) = hina(X)
X

[=S)
max

f-almost surely. Choose k so that X isa k-step SFT, and consider any 4 which
contains no repeated k-letter word and for which 4*° € X is not a shift of w™.
Since @ was the unique (up to shifts) simple maximizing cycle for X, S(i) <
hina(X). If fi([a]) > 0, then for fi-a.e. & € X, 4 occurs within 2z, with positive
frequency. Denote by © the k-letter prefix of 4. Then we can decompose any 2z,
as ...0u_10ugdu10 ..., where vu; = @ for a set of integers ¢ of positive density.
Then, since (0u;)>™ € X for every i, the same argument from Lemma 4.3 shows
that S(0u;) < hipg(X) for all ¢, and so S(&ze,) < hind(X), a contradiction. So,
f([a]) = 0. Clearly, this shows that fi-a.s., &z, is just a shift of ¥w>. By shift-
invariance, for fi-a.e. & € X®% it is also the case that for any g € 2> and d € N,
Zg4ze, is also a shift of w™>.
14



Consider any such &, where every row in every direction is a shift of w>. Then
for any dimensions d; < ds and any g € Z*°, consider the infinite two-dimensional
configuration Tg47ey, +Ze,,- Bach row and column of Lgie,, +2e,, 1S @ shift of .
But then by condition (2), £g4ze,, +7Ze,, i a shift of ) and so is periodic with
respect to eq, — eq,. Since this is true for all dy, ds, and ¢, £ must be periodic with
respect to eq, — eq, for all d; < dy. This implies in turn that & is periodic with
respect to any g € Z*° with > g; = 0. It is simple to check that any point in $Z=
which is periodic with respect to all such vectors and whose marginalization to Ze;
is a shift of w™ must be a shift of z(w).

We have then shown that any shift-invariant measure i on X®>°, .. is supported
on O(z(w)), which implies that ®(jiy) is the unique P-invariant measure of maximal
entropy on X®>® as explained above.

O

The techniques of Theorem 4.4 also allow us to give one more case in which the
set of P-invariant measures of maximal entropy can be completely described.

Theorem 4.5. If X is a Z SFT such that X has k different (up to shifts) simple
mazimizing cycles w;, 1 < i < k, and if no two w; share a common letter of f], and
if for each i € [1,k], there is only one finite orbit of points in I for which each
row and each column is a shift of the sequence fu\iz, then there are exactly k ergodic
P-invariant measures of mazimal entropy on X®.

Proof. We will only sketch a proof, as the details are almost the same as in the
proof of Theorem 4.4. Firstly, by the same reasoning used there, for any ergodic
P-invariant measure of maximal entropy g on X® and for any g € Z* and d € N,
it is ji-a.s. the case that &4z, is a shift of one of the simple maximizing cycles
w;°°. But then since no two w; share a common letter, this ¢ must be the same
for all g and d, and by ergodicity, it is fi-a.s. constant. So, there exists ¢ for which
fra.s., for any g € Z*° and d € N, 2447, is a shift of w;"".

Then a similar argument as was used above shows that 4 must be supported on
O(z(w;)), and so p = ®(fiz;). Since there are only k possible choices for i, and
each clearly gives a different measure, we are done.

O

5. APPLICATIONS TO SPECIFIC MODELS

The purpose of this section is present some applications of our general results to
various specific models which have appeared in the litrature.

5.1. Hard-square model. The underlying Z subshift, also known as the golden
mean shift, is

Ho={r € {0,1}* : z,2p41 # 11}
The d-dimensional hard-square model is then defined as H®?.

It is easily checked that heo(H) = hina(H) = 31og(2). As shown in [15], the
results of Galvin and Kahn [7] can be used to show that h(H®?) — ho(H) at an
exponential rate, with explicit numerical bounds. In this case, it is easily checked
that (0{0,1})> is the unique (up to shifts) simple maximizing cycle for H, and
so Theorem 4.4 implies that there is a unique P-invariant measure of maximal
entropy on H®>. In fact by [7], uniqueness holds even without the assumption of
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P-invariance. The unique measure of maximal entropy is not weak mixing; since
p-a.s. each point of H®> either has 0s on all odd sites or 0s on all even sites (the
parity of v € Z* is just the parity of the sum of its coordinates), and p-a.s. only
one of these can hold, clearly p has an eigenfunction with eigenvalue of —1. The
combinatorial methods of Galvin and Kahn show that this eigenvalue is also present
in the (unique) measure of maximal entropy on H®? for all sufficiently large d.

5.2. n-coloring shifts. The one-dimensional n-coloring shift is

Co={zc{l,....,n}" : zp #2011}
The d-dimensional n-coloring shift is defined as C2.
By our results, hoo(Cn) = hina(Cn) = 1 log( Ln/?J) + 3 log([n/2]). ThereAare
<Ln72 J) (up to shifts) simple maximizing cycles for C,,, namely all sequences (ab)>°

for which & and b form a partition of ¥ and |a| = L%lj Since no two of these cycles
share a common letter, by Theorem 4.5 there are exactly (Ln72 J) ergodic P-invariant

measures of maximal entropy on h(C2>), each of which has eigenvalue —1 as in
the hard-square model.

The case n = 3 is of particular interest, since 3-colorings have useful connections
to the well known “square-ice” model for d = 2 [13]. In [15], it was shown that
h(CY) — hoolCs) = mTz exponentially fast. The argument involved creating a
correspondence between configurations in the d-dimensional hard-square and 3-
coloring shifts, and then exploiting the previously mentioned results of Galvin and
Kahn. From a recent paper of Peled [20], it follows that for sufficiently large d
there are exactly 3 measures of maximal entropy (even without the assumption of
P-invariance), each of which admits an eigenfunction with eigenvalue —1, just as in
the hard-square case.

5.3. Beach model. In [2], Burton and Steif defined the d-dimensional beach model,
for any M > 0, to be the nearest-neighbor Z¢ SFT on the alphabet {—M, ..., —1,
1,..., M} defined by the restriction that adjacent letters must have product greater
than or equal to —1. In other words, a negative and positive cannot be adjacent in
any cardinal direction unless they are 1 and —1. These are clearly all axial powers
of the one-dimensional beach model, which we denote by Bjy.

It is easy to show that h,q(Bys) = log M, and that for M > 2, there are exactly
two simple maximizing cycles for By, namely {—M, ..., —1}> and {1,..., M}*°.
(When M =1, By is just the full shift on two symbols, and when M = 2, there is
an additional maximizing cycle {—1,1}>°. We will not address these special cases
further here.) Therefore, our results show that h(B$?) — log M, and that B{™
has exactly two ergodic P-invariant measures of maximal entropy.

In fact, it was also shown in [2] that for any fixed d and for M > 4e28¢, Bf&d
has exactly two ergodic measures of maximal entropy. Our result would seem to
suggest that the same is true for fixed M and sufficiently large d, and in fact this
was stated as a conjecture in [3].

The beach model was further studied in [9], where it was extended to a more
general class of models, with a real-valued parameter M replacing the previous
integer-valued parameter, Disagreement percolation techniques were used to show
that for any fixed d and M < ggzigf} , the d-dimensional beach model has a unique
measure of maximal entropy. Unfortunately, this only applies to values of M less
than 2, and so never applies to the classical beach model.
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5.4. Run length limited shifts. For any 0 < d < k < oo, the (d, k) run-length
limited shift, also denoted by RLL(d, k), is the SF'T on the alphabet {0, 1} consisting
of all sequences in which all maximal “runs” of Os have length inside the interval
[d, k]. For instance, RLL(0, c0) is the full shift on two symbols, and RLL(1,00) is
the usual golden mean shift. For any 0 < d < k < o0, it was shown in [21] that

|[(k—=d)/(d+1)]In2 an
[(k+1)/(d+1)](d+1)
In2

hinda(RLL(d, 00)) = T

It was shown in [18], using combinatorial methods, that for any d, h(RLL(d, 00)®%) —
hina(RLL(d, o0)), and that the rate is exponential. Our results show that this same
convergence is true for any d and & (but say nothing about the rate.)

It is relatively simple to check that there is a unique (up to shifts) simple maxi-
mizing cycle for any d and k. (This was essentially done, without using our termi-
nology, in [21].) These cycles are given by the maximizing words

w = 0440, 1} for RLL(d, 00) and
= 091(0%{0, 1}) L k=D/ D] for RLL(d, k).

All of these unique maximizing cycles 1w are symmetric, meaning that (W Wp|—1 - - - W1)

is just a shift of w*. Therefore, for any RLL(d, k), we can construct a point

—~(2 —~(2
w’ ® defined by w’;j) = Wi—j (mod |w|)> N Which all rows and columns are shifts

of Ww*>. In all cases except RLL(1,00) and RLL(0,1) (for which the associated
simple maximizing words have length 2) and RLL(0,00) (for which the associ-

ated simple maximizing word has length 1), w ? is not equal to the point w2
from Lemma 4.4, and so if X is any run-length limited shift except RLL(1, o),
RLL(0,1), or RLL(0,00), then X®* has multiple P-invariant measures of maxi-
mal entropy. For each of these three special cases, X®> has a unique P-invariant
measure of maximal entropy, which we already knew, as these are simply the golden
mean shift, the golden mean shift with digits 0 and 1 reversed, and the full shift on
two symbols, respectively.

5.5. Even shift. The even shift is the sofic shift £ on the alphabet {0, 1} consisting
of all sequences in which all maximal “runs” of Os have even length. It is easy to
show that hing(€) = 0; in fact, & = {{0},{1},{0,1}}, and it is not hard to check
that the maximum number of times the symbol {0,1} can appear in a point of I
is two. So, our results imply that h () = 0.

Finding ho.(£) was of particular interest for two reasons. Firstly, in [14], a
combinatorial argument was used to show that for the similarly defined odd shift
O, h(0®%) = L for all d. Secondly, it was shown in [15] that s (X) = 0 for any Z
SFT X with zero independence entropy, and it was naturally wondered if the same
was true for sofic shifts.

5.6. Dyck shift. This non-sofic subshift D C ({a1,...,an} U {B1,...,Bu})% is

obtained by considering the alphabet letters as M “types” of “brackets.” The

constraints are that matching open and closed brackets must be of the same “type,”

which in our terminology means the same subscript. This interesting non-sofic

shift originated in the study of formal languages. It was introduced into symbolic
17
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dynamics in [12], where it was shown that A(D) = log(M + 1) and that there are
exactly 2 ergodic measures of maximal entropy.

It is easily shown that h;,q(D) = log M, and that there are precisely two (up to
shifts) simple maximizing cycles on D, namely {ag,...;apy > and {B1,..., B }*°.
Thus heo (D) = log M, and since these cycles contain no common letter, Theo-
rem 4.5 shows that there are precisely two ergodic P-invariant measures of maximal
entropy on D®>,

5.7. Symmetric nearest-neighbor SFTs. In recent work of Engbers and Galvin
[5], they study, for any finite undirected graph H, the limiting behavior of the
distribution of uniformly chosen graph homomorphisms from discrete d-dimensional
m-tori an ={1,... ,m}d to H as d — oco. Recall that a graph homomorphism from
G, = (V1,Ey) to Gy = (Va, Es) is a function = : Vi — V5 such that (z(v), z(w))
is an edge in Fy whenever (v,w) € E;. In particular, for a fixed finite undirected
graph G = (V, E), the collection of graph homomorphisms from Z< to G is precisely
the nearest-neighbor SFT X¢ C V2" defined by enforcing (Zpy Tpye;) € E for all
n € Z%and i =1...d, which is a d-dimensional axial power of a symmetric nearest-
neighbor SFT.

The authors prove that for any fixed m and undirected finite graph H = (V,E),
with probability tending to 1 as d — oo, a uniformly chosen random graph homo-
morphism  from ZZ to H has corresponding disjoint A, B C V which induce a
complete bipartite graph, with |A||B| maximal, such that z, € A for a large pro-
portion of even vertices n € Z¢, and z,, € B for a large proportion of odd vertices
m € Z4,.

These results are related to ours in that they provide an alternative proof for
some of our results for the particular case of symmetric nearest-neighbor SFTs.
Observe that for any symmetric nearest-neighbor SFT X C X%, there is always a
simple maximizing word in X of length 2, and that any such word corresponds to
a maximal induced complete bipartite graph of H.

However, the methods of Engbers and Galvin are apparently very different then
ours, and in particular give additional finitistic results.

6. FURTHER PROBLEMS AND RESEARCH DIRECTIONS

Here we summarize a few possible directions for extensions or generalizations of
our results.

6.1. Pressure and equilibrium measures. In statistical mechanics, it is com-
mon to introduce a “potential” or “activity function,” in which case the role of
topological entropy is replaced by topological pressure, and measures of maximal
entropy are generalized to equilibrium measures. From the ergodic-theoretic point
of view, many results generalize without difficulty (see, for example, [22] for a
statement and proof of the variational principle for pressure).

In [7] and in [5], for some specific Z subshifts, an analysis of equilibrium measures
was carried out with respect to a single-site potential on X®? as d — oco.

It is rather easy to generalize the statements and proofs of our results to the
setting where entropy is replaced by pressure with respect to a so-called “single-site
potential” f: X — R, given by f(x) = F(z¢) for some function F : ¥ — R. From
the statistical mechanics viewpoint, f doesn’t involve any “interactions” between
sites.
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Here is a brief formulation of the analogous result: For w € L(X ,F), define
1
Sp(w) = ya Z log Z F(a). Define P;,q(X, f) analogously to hi,q(X), with S

neF a€Wy,
replacing S, and

Poo(X, f) = Jim P(X®, f(D),

where (4 : X®? 4 R is again given by f(z) = F(z0).

By following our proof of Theorem 1.1, one can deduce that Pjq(X,f) =
Pu(X, f).

It is more difficult to generalize to interactions involving multiple sites, even to
the case where f depends only on the letters at the pair of adjacent sites zy and
x1. We believe a version of our result to be true for any interaction f which is
finite-range (meaning that f depends only on the letters at finitely many sites), but
it is not completely clear what the proper hypotheses would be, and in particular
what a “natural” definition of f(%) would be in this case.

6.2. Finitistic results. Our techniques involve studying the system X ®°°, which
is a sort of “infinite-dimensional” axial power of X. It is natural to wonder what
information we can glean about the finite-dimensional axial powers X®¢. For in-
stance, we have shown that h(X®9) — h,q(X), but with no information about the
rate. This is a question of particular interest, since it was noted in [15] that for all
examples where the rate of convergence is known, this rate is exponential.

Another example of useful finite-dimensional information regards measures of
maximal entropy. As described in Section 5, our results allow us to count the
P-invariant measures of maximal entropy on X®> for many models, such as the
hard-square model and n-coloring shift. It is natural to assume that such results
should allow us to draw conclusions about the number of P-invariant measures of
maximal entropy on X®9 for large enough d, but we have not yet been able to do
S0.

One reason why we believe such finitistic results should be provable is that one
of the keys to our proofs, de Finetti’s Theorem, has versions which apply to finite
sets of exchangeable random variables. ([4]) We hope to use these finite versions to
answer some finitistic questions in future work.

One specific case in which exponential convergence of h(X®9) to hi,q(X) has
been proven is in the case where X is an SFT and hi,q(X) = 0. ([15]) Interestingly,
in the case where X is nearest neighbor, this convergence is trivial.

Lemma 6.1. For any nearest-neighbor Z. SFT X with zero independence entropy,
h(X®2%) = 0.

Proof. Let X C % be an.n. SFT with zero independence entropy. We can restrict
to the non-wandering part of X, which is a disjoint union of irreducible subshifts
of finite type, thus we may assume X is irreducible without loss of generality.

First we show that for any a,b € 3, there is at most one ¢ € ¥ such that acb €
L(X). If this were not the case, there would exist distinct ¢1,co € ¥ with ac;b €
L(X) for i = 1,2, and then for some dy,...,d; € &, {a}{c1,ca}{b}{d1} - {di }{a}
would be in £(X), which would yield a point ({a}{c1, o} {b}{d1} - {dx})> with
positive independence score, contradicting h;,q(X) = 0.
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Next we claim that for any finite F C Z, and any ¢ € 2% there is at most one
X®2_admissible configuration d € A¥Y9F with dyr = ¢; this is done by induction
on |F|.

The base case of the induction is |F| = 1; say F = {(n,m)}. Then (n —
1,m),(n,m+1) € OF. Let a = c(n—1,m) and b = ¢, m+1): it follows that there is
at most one ¢ for which achb € L(X). Since X is nearest neighbor, this means that
there is at most one ¢ for which ac and cb are both X-admissible. Thus, d(, ,,)c is
the only X ®2-admissible filling.

For the inductive step, choose (n,m) € F so that (n —1,m),(n,m + 1) € OF.
(For instance, take (n,m) to be the greatest element of F' lexicographically.) By
the same argument, there is at most one letter d(, ,,) which can fill (n,m) in a
X®2_admissible way given C(n—1,m) and ¢(, my1)- Now the induction hypothesis
on F\ {(n,m)} implies that there is at most one X®?-admissible filling of F'UJF
given ¢ and dp -

This implies that |£(X®2,[1,n]2)| < |97l for any n, and so that h(X®2) =
0.

O

For subshifts of finite type which are not nearest-neighbor, there is no finite d
for which zero independence entropy implies 2(X®?) = 0; it was demonstrated in
[11] that h(RLL(n, k)®?) = 0 iff k = n+ 1, yet hina(RLL(n,k)) = 0 if k < 2n.
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