
Strong coding trees

and

applications to Ramsey theory on infinite graphs

Natasha Dobrinen

University of Denver

50 Years of Set Theory in Toronto

Dobrinen Strong coding trees University of Denver 1 / 79



Thanks!

To the organizers for the invitation.

To the Fields Institute for support to participate in this conference.

To National Science Foundation for Grant DMS-1600781 for supporting
this research.

To Stevo for taking me as an unofficial postdoc in 2008, catalyzing my
research into Ramsey theory.

Dobrinen Strong coding trees University of Denver 2 / 79



Finite Ramsey’s Theorem

Finite Ramsey Theorem. (Ramsey, 1929) Given k ,m, r ≥ 1, there is
an n ≥ m such that for each coloring of the k-element subsets of n into
r colors, there is an X ⊆ n of size m such that the coloring takes one
color on the k-element subsets of X .

(∀k ,m, r ≥ 1) (∃n ≥ m) n→ (m)kr
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Infinite Ramsey’s Theorem

Infinite Ramsey’s Theorem. (Ramsey, 1929) Given k , r ≥ 1 and a
coloring c : [ω]k → r , there is an infinite subset X ⊆ ω such that
c is constant on [X ]k .

(∀k , r ≥ 1) ω → (ω)kr

Graph Interpretation: For k ≥ 1, given a complete k-hypergraph on
infinitely many vertices and a coloring of the k-hyperedges into finitely
many colors, there is an infinite complete sub-hypergraph in which all
k-hyperedges have the same color.
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Infinite Dimensional Ramsey Theory

A subset X of the Baire space [ω]ω is Ramsey if each non-empty open set
O ⊆ [ω]ω contains another non-empty open subset O′ ⊆ O such that
either O′ ⊆ X or else O′ ∩ X = ∅.

Nash-Williams Theorem. (1965) Clopen sets are Ramsey.

Galvin-Prikry Theorem. (1973) Borel sets are Ramsey.

Silver Theorem. (1970) Analytic sets are Ramsey.

Ellentuck Theorem. (1974) Sets with the property of Baire in the
Ellentuck topology are Ramsey.

ω →∗ (ω)ω
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Fräıssé Classes and Their Limits

A collection K of finite structures forms a Fräıssé class if it satisfies the
Hereditary Property, the Joint Embedding Property, and the
Amalgamation Property.

The Fräıssé limit of a Fräıssé class K, denoted Flim(K) or K, is (up to
isomorphism) the ultrahomogeneous structure with Age(K) = K.

Examples. Finite linear orders LO; Flim(LO) = Q.

Finite graphs G; Flim(G) = Rado graph.
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Finite Structural Ramsey Theory

For structures A,B, write A ≤ B iff A embeds into B.

A Fräıssé class K has the Ramsey property if

(∀A ≤ B ∈ K) (∀r ≥ 1) Flim(K)→ (B)Ar

Some classes of finite structures with the Ramsey property:
Linear orders, complete graphs, Boolean algebras, vector spaces over a
finite field, ordered graphs, ordered hypergraphs, ordered graphs
omitting k-cliques, ordered metric spaces, and many others.

Recent Motivation: Kechris-Pestov-Todorcevic correspondence
between Ramsey property and extreme amenability.
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Infinite Structural Ramsey Theory

Let K be a Fräıssé class and K = Flim(K).

(KPT 2005) For A ∈ K, T (A,K) is the least number T , if it exists, such
that for each k ≥ 1 and any coloring of the copies of A in K, there is a
substructure K′ ≤ K, isomorphic to K, in which the copies of A have no
more than T colors.

(∀k ≥ 1) K→ (K)Ak,T (A,K)

K has finite big Ramsey degrees if T (A,K) is finite, for each A ∈ K.

Motivation. Problem 11.2 in (KPT 2005) and (Zucker 2019).
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Structures with finite big Ramsey degrees

• The infinite complete graph. (Ramsey 1929)

• The rationals. (Devlin 1979)

• The Rado graph, random tournament, and similar binary relational
structures. (Sauer 2006)

• The countable ultrametric Urysohn space. (Nguyen Van Thé 2008)

• Qn and the directed graphs S(2), S(3). (Laflamme, NVT, Sauer 2010)

• The random k-clique-free graphs. (Dobrinen 2017 and 2019)

• Several more universal structures, including some metric spaces with
finite distance sets. (Mašulović 2019)

• Profinite graphs. (Huber-Geschke-Kojman, and Zheng 2018)
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Infinite Dimensional Structural Ramsey Theory

(KPT 2005) Given K = Flim(K) and some natural topology on IK :=
(K
K
)
,

K→∗ (K)K

means that all “definable” subsets of IK are Ramsey.

Motivation. Problem 11.2 in (KPT 2005).

Examples. The Baire space [ω]ω = Iω. Any topological Ramsey space.
Very little known about infinite dimensional Ramsey theory for Fräıssé
structures.
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Several results on big Ramsey degrees use

(1) Trees to code structures.

(2) Milliken’s Ramsey theorem for strong trees, and variants.
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Using Trees to Code Binary Relational Structures

Rationals. (Q, <) can be coded by 2<ω.

Graphs. Let A be a graph with vertices 〈vn : n < N〉. A set of nodes
{tn : n < N} in 2<ω codes A if and only if for each pair m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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Strong Trees

For t ∈ 2<ω, the length of t is |t| = dom(t).

T ⊆ 2<ω is a tree if ∃L ⊆ ω such that T = {t � l : t ∈ T , l ∈ L}.

For t ∈ T , the height of t is htT (t) = o.t.{u ∈ T : u ⊂ t}.

T (n) = {t ∈ T : htT (t) = n}.

For t ∈ T , SuccT (t) = {u � (|t|+ 1) : u ∈ T and u ⊃ t}.

S ⊆ T is a strong subtree of T iff for some {mn : n < N} (N ≤ ω),

1 Each S(n) ⊆ T (mn), and

2 For each n < N, s ∈ S(n) and u ∈ SuccT (s),
there is exactly one s ′ ∈ S(n + 1) extending u.
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Example: A Strong Subtree T ⊆ 2<ω

The nodes in T are of lengths 0, 1, 3, 6, . . .
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Example: A Strong Subtree U ⊆ 2<ω

The nodes in U are of lengths 1, 4, 5, . . . .
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A Ramsey Theorem for Strong Trees

A k-strong tree is a finite strong tree with k levels.

Thm. (Milliken 1979) Let T ⊆ 2<ω be a strong tree with no terminal
nodes. Let k ≥ 1, r ≥ 2, and c be a coloring of all k-strong subtrees of
T into r colors. Then there is a strong subtree S ⊆ T such that all
k-strong subtrees of S have the same color.
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Big Ramsey degrees of the Rado graph

Fact. (Henson 1971) Vertices have big Ramsey degree 1.

Thm. (Erdős-Hajnal-Pósa 1975) Edges have big Ramsey degree ≥ 2.

Thm. (Pouzet-Sauer 1996) Edges have big Ramsey degree exactly 2.

Thm. (Sauer 2006) All finite graphs have finite big Ramsey degree.

Idea: Since the Rado graph is bi-embeddable with the graph coded by
all nodes in 2<ω, one can use Milliken’s Theorem on strong trees and
later take out a copy of the Rado graph to deduce upper bounds for its
big Ramsey degrees.

Thm. Actual big Ramsey degrees found structurally in
(Laflamme-Sauer-Vuksanovic 2006) and computed in (J. Larson 2008).
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My induction to studying Henson graphs

In early 2012, while reading Stevo’s book on Ramsey Spaces, I got
interested in whether the ultrahomogeneous universal triangle-free graph
has finite big Ramsey degrees.

Later that year, at the Fields Thematic Semester, I asked Stevo about it
and he told me one would need a new Milliken theorem, but no one knew
what that should be.
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Hk : The k-Clique-Free Random Graph

For k ≥ 3, a k-clique, denoted Kk , is a complete graph on k vertices.

The the k-clique-free Henson graph, Hk , is the Fräıssé limit of the Fräıssé
class of finite Kk -free graphs.

Thus, Hk is the ultrahomogenous Kk -free graph which is universal for all
k-clique-free graphs on countably many vertices.

Henson graphs were constructed by Henson in 1971.
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Henson Graphs: History of Results

Thm. (Henson 1971) For each k ≥ 3, Hk is weakly indivisible.

Thm. (Nešetřil-Rödl 1977/83) The Fräıssé class of finite ordered
Kk -free graphs has the Ramsey property.

Thm. (Komjáth-Rödl 1986) H3 is indivisible.

Thm. (El-Zahar-Sauer 1989) For all k ≥ 4, Hk is indivisible.

Thm. (Sauer 1998) Edges have big Ramsey degree 2 in H3.

Thm. (Dobrinen 2017 and 2019) For each k ≥ 3, Hk has finite big
Ramsey degrees.
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New Methods

Problem for Henson graphs: no Milliken theorem, and no nicely definable
structure which is bi-embeddable with Hk .

Question. How do you make a tree that codes a Kk -free graph which
branches enough to carry some Ramsey theory?

Key Ideas in the proof that Henson graphs have finite big Ramsey
degrees include

(1) Trees with coding nodes.

(2) Use forcing mechanism to obtain (in ZFC) new Milliken-style
theorems for trees with coding nodes.

Other ideas and methods were developed, but we will concentrate
mostly on these two today.
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Structure of Proof

Proof Strategy: Follow the outline of Sauer’s proof, but start with the end
in mind and develop what is needed from scratch.

I Develop strong Hk -coding trees which code Hk .

These are analogues of Milliken’s strong trees able to handle forbidden

k-cliques.

II Prove a Ramsey Theorem for strictly similar finite antichains.

This is an analogue of Milliken’s Theorem for strong trees. The proof uses

forcing for a ZFC result, building on ideas of Harrington for the

Halpern-Läuchli Theorem.

III Apply Ramsey Theorem for strictly similar antichains finitely many
times. Then take an antichain of coding nodes coding Hk .

Similar to the end of Sauer’s proof.
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Trees with Coding Nodes

A tree with coding nodes is a structure 〈T ,N;⊆, <, c〉 in the language
L = {⊆, <, c} where ⊆, < are binary relation symbols and c is a unary
function symbol satisfying the following:

T ⊆ 2<ω and (T ,⊆) is a tree.

N ≤ ω and < is the standard linear order on N.

c : N → T is injective, and m < n < N −→ |c(m)| < |c(n)|.

c(n) is the n-th coding node in T , usually denoted cTn .
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Kk-Free Branching Criterion

Note: A collection of coding nodes {cni : i < k} in T codes a k-clique
iff i < j < k −→ cnj (|cni |) = 1.

A tree T with coding nodes 〈cn : n < N〉 satisfies the Kk -Free Branching
Criterion (k-FBC) if for each non-maximal node t ∈ T , t_0 ∈ T and

(∗) t_1 is in T iff adding t_1 as a coding node to T would not code
a k-clique with coding nodes in T of shorter length.

Dobrinen Strong coding trees University of Denver 24 / 79



Henson’s Criterion for building Hk

Henson gave a criterion for building Hk , interpreted to our setting here:

A tree with coding nodes satisfies (Ak)tree iff

(i) T satisfies the Kk -Free Criterion.

(ii) Let 〈Fi : i < ω〉 be any enumeration of finite subsets of ω such that
for each i < ω, max(Fi ) < i − 1, and each finite subset of ω appears
as Fi for infinitely many indices i . Given i < ω, if for each subset
J ⊆ Fi of size k − 1, {cj : j ∈ J} does not code a (k − 1)-clique, then
there is some n ≥ i such that for all j < i , cn(lj) = 1 iff j ∈ Fi .

Thm. (D.) Suppose T is a tree with no maximal nodes satisfying the
Kk -Free Branching Criterion, and the set of coding nodes dense in T .
Then T satisfies (Ak)tree, and hence codes Hk .
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Strong K3-Free Tree

c−1

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

•

v−1

v0

v1

v2

v3

v4

v5

Figure: A strong triangle-free tree S3 densely coding H3
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Strong K4-Free Tree

c−2

c−1

c0

c1

c2

c3

c4

•
•
•
•
•
•
•

v−2

v−1

v0

v1

v2

v3

v4

Figure: A strong K4-free tree S4 densely coding H4
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Almost sufficient

One can develop almost all the Ramsey theory one needs on strong
Kk -free trees

except for vertex colorings: there is a bad coloring of coding nodes.

Solution: Skew the levels of interest.
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Strong H3-Coding Tree T3

d0 = c−1

c0

c1

c2

c3

•

•

•

•

•

v−1

v0

v1

v2

v3
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Strong H4-Coding Tree, T4

d0 = c−1

d1

d2

d3 c0
d4

d5

d6

d7 c1
d8

d9

d10

d11

d12

d13

c2

•

•

•

•

v−1

v0

v1

v2
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Pre-a-Clique: A key concept

Let k ≥ 3 be fixed, and let a ∈ [3, k]. A level set X ⊆ Tk of size at least
two, with nodes of length `X , has a pre-a-clique if there are a− 2 coding
nodes in Tk coding an (a− 2)-clique, and each node in X has passing
number 1 by each of these coding nodes.

The Point. Pre-a-cliques for a ∈ [3, k] code entanglements that affect
how nodes in X can extend inside T.
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A level set U with a pre-3-clique

u0 u1

cn

The yellow node is a coding node in Tk not in U.
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A level set X with a pre-3-clique

x0 x1 x2

cn

The yellow node is a coding node in Tk not in X .
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A level set Y with a pre-4-clique

y0 y1

cm

cn

The yellow node is a coding node in Tk not in Y .
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A level set Z with a pre-4-clique

z0 z1 z2

cm

cn

The yellow node is a coding node in Tk not in Z .
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The Space of Strong Hk-Coding Trees Tk

Two subtrees S and T of Tk are stably isomorphic iff there is a strong
similarity map f : S → T which preserves maximal new pre-cliques in each
interval. Such a map f is a stable isomorphism.

Idea: Stable isomorphisms preserve

1 the structure of the trees with respect to tree and lexicographic orders

2 placement of coding nodes

3 passing numbers at levels of coding nodes

4 whether or not an interval has new pre-cliques.

Tk is the collection of all subtrees of Tk which are stably isomorphic to Tk .

The members of Tk are called strong Hk -coding trees.

Dobrinen Strong coding trees University of Denver 36 / 79



Part II: Ramsey Theorem for Strictly Similar Finite Antichains

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of
level sets. This builds on ideas from Harrington’s ‘forcing proof’ of
the Halpern-Läuchli Theorem.

(b) Then weave together to obtain an analogue of Milliken’s Theorem.

(c) New notion of envelope.
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Ramsey Theorem for Strictly Similar Antichains

Thm. (D.) Let Z be a finite antichain of coding nodes in a strong
Hk -coding tree T ∈ Tk , and suppose h colors of all subsets of T which
are strictly similar to Z into finitely many colors. Then there is an
strong Hk -coding tree S ≤ T such that all subsets of S strictly similar
to Z have the same h color.
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Some Examples of Strict Similarity Types for k = 3

Let G be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding G .
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G a graph with three vertices and no edges

A tree A coding G
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G a graph with three vertices and no edges

B codes G and is strictly similar to A.

〈〉
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The tree C codes G

C is not strictly similar to A.
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The tree D codes G

D is not strictly similar to either A or C .

Dobrinen Strong coding trees University of Denver 43 / 79



The tree E codes G and is not strictly similar to A - D
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The tree F codes G and is strictly similar to E
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Envelopes and Witnessing Coding Nodes

Envelopes add some neutral coding nodes to a finite tree so that all new
pre-cliques are witnessed by a coding node.

Envelopes for an antichain A in a strong coding tree T do not always exist
in T .

Instead, given T where the Ramsey theorem has been applied to the strict
similarity type of a prototype envelope of A, we take S ≤ T and a set of
witnessing coding nodes W ⊆ T so that each antichain in S has an
envelope in T , using coding nodes from W .

We now give some examples of envelopes.
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H codes a non-edge

H is its own envelope.
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I codes a non-edge

I is not its own envelope.
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An Envelope E(I )

w

An envelope of I .
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The antichain E from before
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An envelope E(E )

w0

w1

w3

w2

The coding nodes w0, . . . ,w3 make an envelope of E .
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The tree F from before is strictly similar to E
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E(F ) is strictly similar to E(E )

w0

w1

w2

w3

The coding nodes w0, . . . ,w3 make an envelope of F .
Dobrinen Strong coding trees University of Denver 53 / 79



Edges have big Ramsey degree 2 in H3

These are their own envelopes.
T (Edge,G3) = 2 was obtained in (Sauer 1998) by different methods.
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Non-edges have 5 Strict Similarity Types in H3 (D.)
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Infinite Dimensional Ramsey Theory of the Rado Graph

Thm. (Galvin-Prikry 1973) Every Borel subset of the Baire space is
Ramsey.

ω
Borel−−−→(ω)ω.

Question. (KPT 2005) Which Fräıssé structures have infinite
dimensional Ramsey theory for definable subsets?

For the Rado graph, R, the natural topology would be the one induced
by ordering the vertices of R in order-type ω, and viewing

(R
R
)

as a
subspace of the product space 2ω with the Tychonoff topology.

By the work of Laflamme, Sauer and Vuksanovic, we would need to
restrict to copies of the Rado graph which are strongly similar.
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The Space of Strong Rado Coding Trees (TR,≤, r)

Let 〈un : n < ω〉 be a well-ordering of 2<ω.

Define TR = (2<ω, ω;⊆, <, c), where for each n < ω, c(n) is the
lexicographically least node in 2n extending un.

TR consists of all trees with coding nodes (T , ω;⊆, <, cT ), where

1 T is a strong subtree of 2<ω; and

2 The strong tree isomorphism ϕ : TR → T has the property that for
each n < ω, ϕ(c(n)) = cT (n).

The members of TR are called strong Rado coding trees.
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Strong Rado Coding Tree TR
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A Strong Rado Coding Tree T ∈ TR
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Thm. (D.) Every Borel subset of TR has the Ramsey property.

So there is a topological space of Rado graphs which has infinite
dimensional Ramsey theory.
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Why only Borel and not Property of Baire?

Similarly to strong Hk -coding trees, the collection of strong Rado trees
form a space satisfying all of Todorcevic’s Axioms for topological Ramsey
spaces, except for A.3(2).

A “forced” Halpern-Läuchli-style theorem provides a means for fusion
arguments in the style of Galvin-Prikry.

Question. Is there a topological Ramsey space of Rado graphs?
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Future Directions

1 Extend methods to other infinite structures with forbidden
configurations. In-progress: Ultrahomogeneous partial order, metric
spaces, bowtie-free graph, etc.

2 Trees with coding nodes and these forcing arguments have allowed
the development of infinite dimensional Ramsey theory on copies of
the Rado graph. Extend these methods to other structures with finite
big Ramsey degrees. It looks like they extend to the Henson graphs.
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Thanks for your attention!

Happy 50th Birthday, Set Theory in Toronto!
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Part II: Ramsey Theorem for Finite Trees with
the Strict Witnessing Property.

A closer look

Ideas:

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of
level sets. This builds on ideas from Harrington’s ‘forcing proof’ of
the Halpern-Läuchli Theorem.

(b) Then weave together to obtain an analogue of Milliken’s Theorem.
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Set-up for level set colorings

Let T ∈ Tk and A ⊆ B ⊆ T finite valid subtrees of T with WP, and
max(A) ⊆ max(B).

Let A+ be the set of immediate extensions in T̂ of max(A).

Let Ae ⊆ A+ contain 0(lA+1) and have at least two members.

Suppose that X̃ is a level set of nodes in T extending Ae and A ∪ X̃ is a
finite valid subtree of T satisfying WP.

Assume moreover that 0(lX̃ ) ∈ X̃ .

Case (a). X̃ contains a splitting node.

Case (b). X̃ contains a coding node.

ExtT (A, X̃ ) = {X ⊆ T : X w X̃ is a level set, A ∪ X ∼= A ∪ X̃ ,
and A ∪ X is valid in T}.
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Ramsey Theorem for Level Set Colorings

Thm. Assume the previous set-up.

Given any coloring h : ExtT (A, X̃ )→ 2, there is a strong coding tree

S ∈ [B,T ] such that h is monochromatic on ExtS(A, X̃ ).

If X̃ has a coding node, then the strong coding tree S is, moreover,

taken to be in [rm0−1(B ′),T ], where m0 is the integer for which

there is a B ′ ∈ rm0 [B,T ] with X̃ ⊆ max(B ′).
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Strict Witnessing Property

A subtree A of Tk satisfies the Strict Witnessing Property (SWP) if

A satisfies the Witnessing Property and for each interval (|dA
m|, |dA

m+1|]:

1 If dA
m+1 is a splitting node, A has no new pre-cliques in the interval.

2 If dA
m+1 is a coding node, A has at most one new pre-clique in this

interval.

3 If Y is a new pre-clique in this interval, then each proper subset of Y
has a new pre-clique in some interval (|dA

j |, |dA
j+1|], where j < m.

Lem. (D.) If A ⊆ Tk has the Strict Witnessing Property and B ∼= A,
then B also has the Strict Witnessing Property.

Any B stably isomorphic to A is a copy of A.
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Ramsey Theorem for Finite Trees with SWP

Thm. (D.) Let T ∈ Tk and A be a finite subtree of T with the Strict

Witnessing Property. Let c be a coloring of all copies of A in T .

Then there is a strong Hk -coding tree S ≤ T in which all copies of A

in S have the same color.

This is an analogue of Milliken’s Theorem for strong coding trees.
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Forcing Arguments for Colorings of Level Sets

Case (i): level set X contains a splitting node.
List the immediate successors of max(A) as s0, . . . , sd , where sd denotes
the node which the splitting node in X extends.

Let Ti = {t ∈ T : t ⊇ si}, for each i ≤ d .

Fix κ large enough so that κ→ (ℵ1)2dℵ0 holds.

Such a κ is guaranteed in ZFC by a theorem of Erdős and Rado.
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The forcing for Case (i)

P is the set of conditions p such that p is a function of the form

p : {d} ∪ (d × ~δp)→ T � lp,

where ~δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the splitting node extending sd at level lp;

(ii) For each i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti � lp.

(iii) ran(p) has no pre-determined new pre-cliques in T .

q ≤ p if and only if ~δq ⊇ ~δp, lq ≥ lp, and

(i) q(d) ⊃ p(d), and q(i , δ) ⊃ p(i , δ) for each δ ∈ ~δp and i < d ; and

(ii) ran(q � ~δp) has no new pre-cliques above ran(p).
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Case (i): Set-up for the Ctbl Coloring

For i < d , α < κ, let ḃi ,α denote the α-th generic branch in Ti , and ḃd
the generic branch in Td .

Let U̇ be a P-name for a non-principal ultrafilter on L̇, a name for the
levels in ḃd .

For ~α = 〈α0, . . . , αd−1〉 ∈ [κ]d , let ḃ~α := 〈ḃ0,α0 , . . . , ḃd−1,αd−1
, ḃd〉.

• For ~α ∈ [κ]d , take some p~α ∈ P with ~α ⊆ ~δp~α such that

1 p~α decides an ε~α ∈ 2 such that p~α 
 “c(ḃ~α � l) = ε~α for U̇ many l”;

2 c({p~α(i , αi ) : i < d}) = ε~α.
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Case (i): The Countable Coloring

Let I be the collection of functions ι : 2d → 2d such that

{ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d − 2), ι(2d − 1)}.

For ~θ ∈ [κ]2d , ι ∈ I determines two sequences of ordinals in [κ]d :

ιe(~θ ) := (θι(0), θι(2), . . . , θι(2d−2))) and ιo(~θ ) := (θι(1), θι(3), . . . , θι(2d−1)).

For ~θ ∈ [κ]2d and ι ∈ I, define

f (ι, ~θ ) = 〈ι, ε~α, k~α, p(d), 〈〈p~α(i , δ~α(j)) : j < k~α〉 : i < d〉,
〈〈i , j〉 : i < d , j < k~α, δ~α(j) = αi 〉,
〈〈j , k〉 : j < k~α, k < k~β, δ~α(j) = δ~β(k)〉〉, (1)

where ~α = ιe(~θ ), ~β = ιo(~θ ), k~α = |~δp~α |, and 〈δ~α(j) : j < k~α〉 enumerates
~δp~α in increasing order. For ~θ ∈ [κ]2d , define f (~θ ) = 〈f (ι, ~θ ) : ι ∈ I〉.
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Case (i): f gives fixed ranges and color

Note: dom(f ) = [κ]2d and ran(f ) is a countable set.

Since κ→ (ℵ1)2dℵ0 , take K ∈ [κ]ℵ1 homogeneous for f .

Take Ki ∈ [K ]ℵ0 so that K0 < · · · < Kd−1 and K ′ :=
⋃

i<d Ki thin in K .

Lem 1. There are ε∗ ∈ 2, k∗ ∈ ω, and 〈〈ti ,j : j < k∗〉 : i < d〉, such that
for all ~α ∈

∏
i<d Ki ,

ε~α = ε∗, k~α = k∗, and (∀i < d) 〈p~α(i , δ~α(j)) : j < k~α〉 = 〈ti ,j : j < k∗〉.

Pf uses homogeneity of f .

Lem 2. For ~α, ~β ∈
∏

i<d Ki , if j , j ′ < k∗ and δ~α(j) = δ~β(j ′), then j = j ′.

Pf uses ‘sliding’ idea.
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Case (i): A compatible set

Lem 3. {p~α : ~α ∈
∏

i<d Ki} is compatible.

By homogeneity of f , there is a strictly increasing sequence
〈ji : i < d〉 ∈ [k∗]d such that for each ~α ∈

∏
i<d Ki , δ~α(ji ) = αi .

Then for each ~α ∈
∏

i<d Ki ,

p~α(i , αi ) = p~α(i , δ~α(ji )) = ti ,ji =: t∗i .

The t∗0 , . . . , t
∗
d provide good starting nodes for constructing the tree

homogeneous for the coloring on ExtT (A, X̃ ).
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Case (i): building a tree homog. for level set coloring

We alternate between building the subtree by hand and using the forcing
to find the next level where homogeneity is guaranteed.

Remarks. (1) No generic extension is actually used.

(2) These forcings are not simply Cohen forcings; the partial orderings
are stronger in order to guarantee that the new levels we obtain by
forcing are extendible inside T to another strong coding tree.

(3) The assumption that A ∪ X̃ satisfies the Witnessing Property is
necessary.
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Case (ii): Coloring level sets with a coding node

This case is harder.

After obtaining a Ramsey theorem for level sets extending a given finite
tree, there is a third case, using another forcing, to homogenize over
monochromatic cones.

After this, much induction produces the Milliken analogue: The Ramsey
Theorem for trees with the Strict Witnessing Property.

Envelopes are then used to obtain the final Ramsey Theorem for Strict
Similarity Types.
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