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Outline: Lecture 1

(1) Ramsey theory on sets and structures

(2) Ramsey theory on the rationals and the Rado graph

(3) Milliken’s Ramsey theorem for strong trees

(4) Trees coding sets of rationals and graphs

(5) Applications of Milliken’s Theorem to big Ramsey degrees of the
rationals and the Rado graph

(a) Strong similarity types of trees

(b) Strong tree envelopes

(6) Connection: structural Ramsey theory and topological dynamics

(7) The Halpern-Läuchli Theorem and its “forcing proof”
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Outline: Lecture 2

(8) The question of big Ramsey degrees for infinite structures

(9) Overview of known results

(10) Henson graphs have finite big Ramsey degrees

(11) Techniques of the proof

(a) Trees with coding nodes

(b) Ramsey theorems for strong coding trees - “forcing proofs”

(c) Strict similarity types and envelopes

(12) Future directions in big Ramsey degrees and infinite dimensional
structural Ramsey theory
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Infinite Ramsey’s Theorem

Infinite Ramsey’s Theorem. (Ramsey, 1929) Given k , r ≥ 1 and a
coloring c : [ω]k → r , there is an infinite subset X ⊆ ω such that
c is constant on [X ]k .

Graph Interpretation: For k ≥ 1, given a complete k-hypergraph on
infinitely many vertices and a coloring of the k-hyperedges into finitely
many colors, there is an infinite complete sub-hypergraph in which all
k-hyperedges have the same color.
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Example

Given a 2-coloring of the edges of a complete graph on ω vertices,

0 1 2 3 4 5 6 ...
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Example

There is an infinite complete subgraph such that all edges have the same
color.

0 1 2 3 4 5 6 ...
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Finite Ramsey’s Theorem and Logic

Ramsey deduced the finite version from the infinite version.

Finite Ramsey Theorem. (Ramsey, 1929) Given k ,m, r ≥ 1, there is
an n ≥ m such that for each coloring of the k-element subsets of n into
r colors, there is an X ⊆ n of size m such that the coloring takes one
color on the k-element subsets of X .

This theorem appears in Ramsey’s paper, On a problem of formal logic,
and is motivated by Hilbert’s Entscheidungsproblem:

Find a procedure for determining whether any given formula is valid.

Ramsey applied his theorem to solve this problem for formulas with
only universal quantifiers in front (Π1).
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Finite Structural Ramsey Theory

Note: Ramsey’s theorems may be thought of as involving the class of
complete graphs (or hypergraphs) on finitely many vertices, or the
class of finite linear orders.

For structures A,B, write A ≤ B iff A embeds into B.

A class K of structures has the Ramsey property if for each pair A ≤ B
in K and r ≥ 1, there is some C in K such that for each coloring of the
copies of A in C into r colors, there is a B ′ ≤ C isomorphic to B such
that all copies of A in B ′ have the same color.

Some classes of finite structures with the Ramsey property:
Linear orders, complete graphs, Boolean algebras, vector spaces over a
finite field, ordered graphs, ordered hypergraphs, ordered graphs
omitting k-cliques, ordered metric spaces, and many others.
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Do analogues of the Infinite Ramsey Theorem hold for infinite structures?

Dobrinen Ramsey Theory, Trees, and Graphs University of Denver 9 / 1



Test Case: The Rationals as a Linear Ordering (Q, <)

Fact. (Q, <) is indivisible: Given any partition of the rationals into
finitely many pieces, one of the pieces contains a copy of the rationals.

Question. Given a coloring of pairs of rationals into two colors, can one
find a subset Q ⊆ Q such that (Q, <) ∼= (Q, <) and all pairsets in Q
have the same color?

Answer. Not necessarily! Sierpiński designed the following example:

Let ≺ be a well-ordering of the rationals.
Define c({p, q}) = 0 iff the two orders ≺ and < agree on {p, q}.
Otherwise, c({p, q}) = 1.
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A modern proof uses a Ramsey theorem for strong trees.
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Strong Subtrees of 2<ω

For t ∈ 2<ω, the length of t is |t| = dom(t).

T ⊆ 2<ω is a tree if ∃L ⊆ ω such that T = {t � l : t ∈ T , l ∈ L}.

For t ∈ T , the height of t is htT (t) = o.t.{u ∈ T : u ⊂ t}.

T (n) = {t ∈ T : htT (t) = n}.

For t ∈ T , SuccT (t) = {u � (|t|+ 1) : u ∈ T and u ⊃ t}.

S ⊆ T is a strong subtree of T iff for some {mn : n < N} (N ≤ ω),

1 Each S(n) ⊆ T (mn), and

2 For each n < N, s ∈ S(n) and u ∈ SuccT (s),
there is exactly one s ′ ∈ S(n + 1) extending u.
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Example: A Strong Subtree T ⊆ 2<ω

The nodes in T are of lengths 0, 1, 3, 6, . . .
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Example: A Strong Subtree U ⊆ 2<ω

The nodes in U are of lengths 1, 4, 5, . . . .
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A Ramsey Theorem for Strong Trees

Thm. (Milliken 1979) Let T ⊆ 2<ω be a strong tree with no terminal
nodes. Let k ≥ 1, r ≥ 2, and c be a coloring of all k-strong subtrees of
T into r colors. Then there is a strong subtree S ⊆ T such that all
k-strong subtrees of S have the same color.

A k-strong tree is a finite strong tree where all terminal nodes have
height k − 1.

We give some examples for T = 2<ω.
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Milliken’s Theorem for 3-Strong Subtrees of T = 2<ω

Given a coloring c of all 3-strong trees in 2<ω into red and blue:
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Milliken’s Theorem for 3-Strong Subtrees of T = 2<ω
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Milliken’s Theorem for 3-Strong Subtrees of T = 2<ω
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Milliken’s Theorem for 3-Strong Subtrees of T = 2<ω

Milliken’s Theorem guarantees a strong subtree in which all 3-strong
subtrees have the same color.
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The Rationals Coded in 2<ω

For x , y ∈ 2<ω, define x / y iff one of the following holds:

1 x <lex y ,

2 x < y and y(|x |) = 1, or

3 y < x and x(|y |) = 0.

s

t

u

In this picture, t / s / u.

Note: (2<ω, /) ∼= (Q, <).
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Sierpiński’s result viewed in trees

Given a pair of nodes s, t in 2<ω with |s| < |t|, let

c({s, t}) =

{
0 if s / t

1 if t / s

Given any subset S ⊆ 2<ω for which (S , /) ∼= (Q, <), both colors will
persist in S .
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Thm. (Galvin) Given any coloring of pairs of rationals into finitely
many colors, there is a subset which is again a dense linear order in
which at most two colors are used.

Given s, t ∈ 2<ω with |s| < |t|, a strong tree envelope is a 3-strong tree
which contains s and t and has nodes of lengths |s ∧ t|, |s|, |t|.

Example 1: |s| < |t| and s / t

s

t
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A strong tree envelope of s and t

Thm. (Galvin) Given any coloring of pairs of rationals into finitely
many colors, there is a subset which is again a dense linear order in
which at most two colors are used.

Given s, t ∈ 2<ω with |s| < |t|, a strong tree envelope is a 3-strong tree
which contains s and t and has nodes of lengths |s ∧ t|, |s|, |t|.

Example 1: |s| < |t| and s / t

s

t
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Another strong tree envelope of s and t

Thm. (Galvin) Given any coloring of pairs of rationals into finitely
many colors, there is a subset which is again a dense linear order in
which at most two colors are used.

Given s, t ∈ 2<ω with |s| < |t|, a strong tree envelope is a 3-strong tree
which contains s and t and has nodes of lengths |s ∧ t|, |s|, |t|.

Example 1: |s| < |t| and s / t

s

t
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Example 2: |s| < |t| with t / s

s

t
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Example 2: A strong tree envelope

s

t
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Example 2: Another strong tree envelope

s

t
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Strong Similarity Types

Two finite antichains A,B ⊆ 2<ω are strongly similar iff they have the
same cardinality, and the lexicographic preserving map from the tree
induced by A to the tree induced by B is a tree isomorphism preserving
passing numbers at levels of meets and maximal nodes.
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Big Ramsey Degree for Pairs of Rationals is 2

1 Let c be a coloring of [Q]2 into finitely many colors.

2 Transfer the coloring to pairs of nodes in 2<ω. There are two strong
similarity types for pairs.

3 Fix one strong similarity type. For each pair of nodes s, t of that type,
color all 3-strong trees containing s and t with the color c({s, t}).

4 Apply Milliken’s Theorem to 3-strong trees. Get one color for all pairs
with that similarity type.

5 Repeat for the second strong similarity type.

6 Take a strongly diagonal antichain A ⊆ 2<ω such that
(A, /) ∼= (Q, <).
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(Q, <) has an approximate Infinite Ramsey Theorem

Thm. (Laver (bounds, unpublished), Devlin (exact bounds) 1979)

Given k ≥ 2, there is a number T (k,Q) such that for each coloring of
the k-element subsets of Q into finitely many colors, there is a copy Q
of Q in which no more than T (k,Q) colors occur.
These are actually tangent numbers.

So (Q, <) does not have the exact analogue of Ramsey’s Theorem for N.

But this structure still behaves quite nicely in that finite bounds exist.
These bounds T (k,Q) are called the big Ramsey degrees of k in Q.
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Next, we look at Ramsey theory on the Rado graph.

Dobrinen Ramsey Theory, Trees, and Graphs University of Denver 31 / 1



The Rado Graph R = (R ,E )

The Rado graph is the homogeneous graph on countably many vertices
which is universal for all countable graphs.

homogeneous: Any isomorphism between two finite subgraphs of R
extends to an automorphism of R.

universal: Each graph on countably many vertices embeds into R.

The Rado graph is indivisible: Given any partition of the vertices into
finitely many pieces, one piece contains a copy of R.

However, Erdős, Hajnal and Posa found a two-valued edge coloring for
which both colors persist on every subgraph isomorphic to R.
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Ramsey Theory on the Rado graph

First, some terminology:

Let G be a finite graph. T (G ,R) denotes the minimal number T such
that given a coloring of the copies of G in R into finitely many colors,
there is an induced subgraph R′ ⊆ R isomorphic to R in which the copies
of G take no more than T colors.

T (G ,R) is called the big Ramsey degree of G in R, if it exists.

Fact. (Folklore) Vertices have big Ramsey degree 1: R is indivisible.

Thm. (Erdős-Hajnal-Pósa 1975) Edges have big Ramsey degree ≥ 2.

Thm. (Pouzet-Sauer 1996) Edges have big Ramsey degree exactly 2.
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Ramsey Theory on the Rado graph

Thm. (Sauer 2006, Laflamme-Sauer-Vuksanovic 2006)

Every finite graph has a finite big Ramsey degree.

Actual degrees were found structurally in (Laflamme-Sauer-Vuksanovic
2006) and computed in (J. Larson 2008).
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Colorings of Finite Graphs

Example: The path of length 2 embeds into the graph B.

Figure: Graph B
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Copies of the Path of Length 2 in B

A star with all paths blue.
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Nodes in Trees can Code Graphs

Let A be a graph. Enumerate the vertices of A as 〈vn : n < N〉.

A set of nodes {tn : n < N} in 2<ω codes A if and only if for each pair
m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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Diagonal Trees Code Graphs

A tree T is diagonal if there is at most one meet or terminal node per level.

T is strongly diagonal if passing numbers at splitting levels are all 0
(except for the right extension of the splitting node).

t0

t1

t2

•

•

•

v0

v1

v2

Every graph can be coded by the terminal nodes of a diagonal tree.
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A Different Strongly Diagonal Tree Coding a Path

•

•

•

v0

v1

v2
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Strongly diagonal trees can be enveloped into strong trees
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Another strong tree envelope
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Outline of Proof: R has finite big Ramsey degrees

1 The Rado graph is bi-embeddable with the graph coded by all nodes
in the tree 2<ω.

2 Each finite graph can be coded by finitely many strong similarity
types of strongly diagonal trees.

3 Each strongly diagonal tree can be enveloped into a finite strong tree.

4 Apply Milliken’s Theorem finitely many times to obtain one color for
each type.

5 Choose a strongly diagonal antichain coding the Rado graph.
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Big Ramsey Degrees of Infinite Structures

Let S be an infinite structure. For a finite substructure A ≤ S, let
T (A,S) denote the least number, if it exists, such that for each coloring
of the copies of A in S into finitely many colors, there is a substructure S ′
isomorphic to S in which the copies of A take no more than T (A,S)
colors.

(Kechris, Pestov, Todorcevic, 2005) S has finite big Ramsey degrees if for
each finite A ≤ S, T (A,S) exists.
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Structures with finite big Ramsey degrees

• The infinite complete graph. (Ramsey 1929)

• The rationals. (Devlin 1979)

• The Rado graph, random tournament, and similar binary relational
structures. (Sauer 2006)

• The countable ultrametric Urysohn space. (Nguyen Van Thé 2008)

• Qn and the directed graphs S(2), S(3). (Laflamme, NVT, Sauer 2010)

• The random k-clique-free graphs. (Dobrinen 2017 and 2019)

• Several more universal structures, including some metric spaces with
finite distance sets. (Mašulović 2019)
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Ramsey Theory and Topological Dynamics

(Kechris, Pestov, Todorcevic 2005) The KPT Correspondence:
A Fräıssé class K has the Ramsey property iff Aut(Flim(K)) is extremely
amenable.

(Zucker 2019) Characterized universal completion flows of
Aut(Flim(K)) whenever Flim(K) admits a big Ramsey structure
(big Ramsey degrees with a coherence property).

A class K of finite structures is a Fräıssé class if it is hereditary, has the
Joint Embedding Property, and the Amalgamation Property.

Flim(K) is a homogeneous countable structure into which each member
of K embeds.
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Halpern-Läuchli Theorem - strong tree version

Notation:
⊗
i<d

Ti :=
⋃
n<ω

∏
i<d

Ti (n)

Theorem. (Halpern-Läuchli, 1966) Let Ti ⊆ ω<ω, i < d , be finitely
branching trees with no terminal nodes and let r ≥ 2. Given a coloring
c :

⊗
i<d Ti → r , there are strong subtrees Si ≤ Ti with nodes of the

same lengths such that c is constant on
⊗

i<d Si .

This was discovered as a key lemma in the proof that the Boolean
Prime Ideal Theorem is strictly weaker than the Axiom of Choice over
ZF. (Halpern-Lévy, 1971) It is also the crux of Milliken’s Theorem.
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We now give some examples of colorings of level products of two trees
T0 = T1 = 2<ω, and show visually what the Halpern-Läuchli Theorem
does.
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Coloring Products of Level Sets: T0(0)× T1(0)
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HL gives Strong Subtrees with 1 color for level products

S0 S1
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Application to Products of Rationals

Thm. (Laver, 1984) Given d < ω and a coloring of Qd into finitely
many colors, there are Xi ⊆ Q, i < d , isomorphic to Q such that
X0 × · · · × Xd−1 takes at most d ! many colors.
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Harrington’s ‘Forcing’ Proof of Halpern-Läuchli Theorem

Harrington devised a proof of the Halpern-Läuchli Theorem that uses
forcing methods, but never goes to a generic extension.

Fix d ≥ 2 and let Ti = 2<ω (i < d) be finitely branching trees with no
terminal nodes. Fix a coloring c :

⊗
i<d Ti → 2.

Thm. (Erdős-Rado, 1956) For r < ω and µ an infinite cardinal,

ir (µ)+ → (µ+)r+1
µ

Let κ = i2d . Then κ→ (ℵ1)2dℵ0 .
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Harrington’s ‘Forcing’ Proof: The Forcing

The Forcing: P is the set of functions p of the form

p : d × ~δp →
⋃
i<d

Ti � lp

where ~δp ∈ [κ]<ω, lp < ω, and ∀i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti � lp.

q ≤ p iff lq ≥ lp, ~δq ⊇ ~δp, and ∀(i , δ) ∈ d × ~δp, q(i , δ) ⊇ p(i , δ).

P adds κ branches through each tree Ti , i < d .

P is Cohen forcing adding κ new branches to each tree.
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Harrington’s ‘Forcing’ Proof: Set-up for the Ctbl Coloring

For i < d , α < κ, let ḃi ,α denote the α-th generic branch in Ti :

ḃi ,α = {〈p(i , α), p〉 : p ∈ P, and (i , α) ∈ dom(p)}.

Note: If (i , α) ∈ dom(p), then p 
 ḃi ,α � lp = p(i , α).

Let U̇ be a P-name for a non-principal ultrafilter on ω.

For ~α = 〈α0, . . . , αd−1〉 ∈ [κ]d , let ḃ~α := 〈ḃ0,α0 , . . . , ḃd−1,αd−1
〉.

• For ~α ∈ [κ]d , take some p~α ∈ P with ~α ⊆ ~δp~α such that

1 p~α decides an ε~α ∈ 2 such that p~α 
 “c(ḃ~α � l) = ε~α for U̇ many l”;

2 c({p~α(i , αi ) : i < d}) = ε~α.
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Harrington’s ‘Forcing’ Proof: The Countable Coloring

Let I be the collection of functions ι : 2d → 2d such that

{ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d − 2), ι(2d − 1)}.

For ~θ ∈ [κ]2d , ι ∈ I determines two sequences of ordinals in [κ]d :

ιe(~θ ) := (θι(0), θι(2), . . . , θι(2d−2))) and ιo(~θ ) := (θι(1), θι(3), . . . , θι(2d−1)).

For ~θ ∈ [κ]2d and ι ∈ I, define

f (ι, ~θ ) = 〈ι, ε~α, k~α, 〈〈p~α(i , δ~α(j)) : j < k~α〉 : i < d〉,
〈〈i , j〉 : i < d , j < k~α, δ~α(j) = αi 〉,
〈〈j , k〉 : j < k~α, k < k~β, δ~α(j) = δ~β(k)〉〉, (1)

where ~α = ιe(~θ ), ~β = ιo(~θ ), k~α = |~δp~α |, and 〈δ~α(j) : j < k~α〉 enumerates
~δp~α in increasing order. For ~θ ∈ [κ]2d , define f (~θ ) = 〈f (ι, ~θ ) : ι ∈ I〉.
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Harrington’s ‘Forcing’ Proof: f gives fixed ranges and color

Note: dom(f ) = [κ]2d and ran(f ) is a countable set.

Since κ→ (ℵ1)2dℵ0 , take K ∈ [κ]ℵ1 homogeneous for f .

Take Ki ∈ [K ]ℵ0 so that K0 < · · · < Kd−1 and K ′ :=
⋃

i<d Ki thin in K .

Lem 1. There are ε∗ ∈ 2, k∗ ∈ ω, and 〈〈ti ,j : j < k∗〉 : i < d〉, such that
for all ~α ∈

∏
i<d Ki ,

ε~α = ε∗, k~α = k∗, and (∀i < d) 〈p~α(i , δ~α(j)) : j < k~α〉 = 〈ti ,j : j < k∗〉.

Pf. Let ι ∈ I be the identity function on 2d . For any ~α, ~β ∈
∏

i<d Ki ,

there are ~θ, ~θ′ ∈ [K ]2d such that ~α = ιe(~θ ) and ~β = ιe(~θ′ ). Then
f (ι, ~θ ) = f (ι, ~θ′ ) implies the conclusion. �
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Harrington’s ‘Forcing’ Proof: Same ordinals, same position

Lem 2. For ~α, ~β ∈
∏

i<d Ki , if j , j ′ < k∗ and δ~α(j) = δ~β(j ′), then j = j ′.

Pf Idea. (sliding argument) Suppose δ~α(j) = δ~β(j ′).

Let ρi ∈ {<,=, >} be the relation such that αi ρi βi , (i < d).

Take ι ∈ I so that for any ~ζ ∈ [K ]2d and i < d , ζι(2i) ρi ζι(2i+1).

Fix ~θ ∈ [K ′]2d such that ιe(~θ) = ~α and ιo(~θ) = ~β.

Take ~γ ∈ [K ]d such that (∀i < d) αi ρi γi and γi ρi βi .

Take ~µ, ~ν ∈ [K ]2d with ιe(~µ) = ~α, ιo(~µ) = ιe(~ν) = ~γ, and ιo(~ν) = ~β.

δ~α(j) = δ~β(j ′) implies 〈j , j ′〉 is in the last sequence in f (ι, ~θ).

f (ι, ~µ) = f (ι, ~ν) = f (ι, ~θ) implies δ~γ(j) = δ~β(j ′) = δ~α(j) = δ~γ(j ′),

which implies j = j ′. �
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Harrington’s ‘Forcing’ Proof: Set of compatible conditions

Main Lemma. {p~α : ~α ∈
∏

i<d Ki} is compatible.

Pf. Suppose TAC ∃~α, ~β ∈
∏

i<d Ki with p~α⊥ p~β.

By Lem 1, for each i < d and j < k∗, p~α(i , δ~α(j)) = p~β(i , δ~β(j)).

So p~α⊥ p~β implies ∃i < d and j , j ′ < k∗ with δ~α(j) = δ~β(j ′) but

p~α(i , δ~α(j)) 6= p~β(i , δ~β(j ′)).

Note that p~α(i , δ~α(j)) = ti ,j and p~β(i , δ~β(j ′)) = ti ,j ′ imply j 6= j ′.

But by Lem 2, j 6= j ′ implies δ~α(j) 6= δ~β(j ′). →← �

By homogeneity of f , there is a strictly increasing sequence
〈ji : i < d〉 ∈ [k∗]d such that for each ~α ∈

∏
i<d Ki , δ~α(ji ) = αi .

Then for each ~α ∈
∏

i<d Ki ,

p~α(i , αi ) = p~α(i , δ~α(ji )) = ti ,ji =: t∗i .
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Harrington’s ‘Forcing’ Proof: The Construction

Build strong subtrees Si ⊆ Ti homogeneous for c : Let stem(Si ) = t∗i .

Induction Assumption: m ≥ 1, and we have constructed m-strong
subtrees

⋃
j<m Si (j) of Ti such that c takes color ε∗ on

⋃
j<m

∏
i<d Si (j).

Let Xi be the set of immediate extensions in Ti of the nodes in

Si (m − 1). Let Ji ⊆ [Ki ]
|Xi |. Label the nodes in Xi as {q(i , δ) : δ ∈ Ji}.

Let ~J =
∏

i<d Ji . For each ~α ∈ ~J and i < d , q(i , αi ) ⊇ t∗i = p~α(i , αi ).

Let ~δq =
⋃
{~δ~α : ~α ∈ ~J}. For each pair (i , γ) with γ ∈ ~δq \ Ji , ∃~α ∈ ~J

and ∃j ′ < k∗ such that δ~α(j ′) = γ. By Main Lemma, ~β ∈ ~J and γ ∈ ~δ~β
imply that p~β(i , γ) = p~α(i , γ) = t∗i ,j ′ . Let q(i , γ) be the leftmost

extension of t∗i ,j ′ in T . This defines q. Check that q ∈ P.

Note that q ≤ p~α, for all ~α ∈ ~J.
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Harrington’s ‘Forcing’ Proof of Halpern-Läuchli Theorem

To construct Si (m), take r ≤ q for which r 
 “∀~α ∈ ~J, c(ḃ~α � lr ) = ε∗”.

Then it is simply true in the ground model that

c({r(i , αi ) : i < d}) = ε∗, for each ~α ∈ ~J.

For each i < d , we define Si (m) = {r(i , δ) : δ ∈ Ji}. This set extends Xi .

Then c takes value ε∗ on
∏

i<d Si (m).

Set Si =
⋃

m<ω Si (m). c is monochromatic on
⊗

i<d Si . � HL

Dobrinen Ramsey Theory, Trees, and Graphs University of Denver 59 / 1



Milliken’s Ramsey Theorem for Strong Trees

The Halpern-Läuchli Theorem is the basis for

Thm. (Milliken 1979) Let k ≥ 1, r ≥ 2, and c be a coloring of all
k-strong subtrees of 2<ω into r colors. Then there is a strong subtree
S ⊆ 2<ω such that all k-strong subtrees of S have the same color.

The proof is by induction on k using the Halpern-Läuchli Theorem.
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Outline: Lecture 2

(8) The question of big Ramsey degrees for infinite structures

(9) Overview of known results

(10) Henson graphs have finite big Ramsey degrees

(11) Techniques of the proof

(a) Trees with coding nodes

(b) Ramsey theorems for strong coding trees - ‘forcing proofs’

(c) Strict similarity types and envelopes

(12) Future directions in big Ramsey degrees and infinite dimensional
structural Ramsey theory
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Big Ramsey Degrees of Infinite Structures

Let S be an infinite structure and A be a finite substructure. T (A,S)
denotes the least number, if it exists, such that for each coloring of the
copies of A in S into finitely many colors, there is a substructure S ′
isomorphic to S in which the copies of A take no more than T (A,S)
colors.

(KPT 2005) S has finite big Ramsey degrees if for each finite A ≤ S,
T (A,S) exists.

Question. Which infinite structures have finite big Ramsey degrees?
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Structures with finite big Ramsey degrees

• The infinite complete graph. (Ramsey 1929)

• The rationals. (Devlin 1979)

• The Rado graph, random tournament, and similar binary relational
structures. (Sauer 2006)

• The countable ultrametric Urysohn space. (Nguyen Van Thé 2008)

• Qn and the directed graphs S(2), S(3). (Laflamme, NVT, Sauer 2010)

• The random k-clique-free graphs. (Dobrinen 2017 and 2019)

• Several more universal structures, including some metric spaces with
finite distance sets. (Mašulović 2019)
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Ramsey Theory and Topological Dynamics

(Kechris, Pestov, Todorcevic 2005) The KPT Correspondence:
A Fräıssé class K has the Ramsey property iff Aut(Flim(K)) is extremely
amenable.

(Zucker 2019) Characterized universal completion flows of
Aut(Flim(K)) whenever Flim(K) admits a big Ramsey structure
(big Ramsey degrees with a coherence property).

A class K of finite structures is a Fräıssé class if it is hereditary, has the
Joint Embedding Property, and the Amalgamation Property.

Flim(K) is a homogeneous countable structure into which each member
of K embeds.
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k-Clique-Free Random Graphs

For k ≥ 3, a k-clique, denoted Kk , is a complete graph on k vertices.

Hk , the k-clique-free Henson graph, is the homogenous Kk -free graph
which is universal for all k-clique-free graphs on countably many vertices.

Henson graphs are the k-clique-free analogues of the Rado graph.
They were constructed by Henson in 1971.
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Henson Graphs: History of Results

• For each k ≥ 3, Hk is weakly indivisible (Henson, 1971).

• The Fräıssé class of finite ordered Kk -free graphs has the Ramsey
property. (Nešeťril-Rödl, 1977/83)

• H3 is indivisible. (Komjáth-Rödl, 1986)

• For all k ≥ 4, Hk is indivisible. (El-Zahar-Sauer, 1989)

• Edges have big Ramsey degree 2 in H3. (Sauer, 1998)

There progress halted. Why?

“A proof of the big Ramsey degrees for H3 would need new
Halpern-Läuchli and Milliken Theorems, and nobody knows what those
should be.” (Todorcevic, 2012)
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Ramsey Theory for Henson Graphs

Theorem. (D.) Let k ≥ 3. For each finite k-clique-free graph A, there
is a positive integer T (A,Gk) such that for any coloring of all copies of
A in Hk into finitely many colors, there is a subgraph H ≤ Hk , with
H ∼= Hk , such that all copies of A in H take no more than T (A,Gk)
colors.
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Structure of Proof

Proof Strategy:

I Develop notion of strong Hk -coding tree to represent Hk .

These are analogues of Milliken’s strong trees able to handle forbidden

k-cliques.

II Prove a Ramsey Theorem for strictly similar finite antichains.

This is an analogue of Milliken’s Theorem for strong trees - the proof uses

forcing for a ZFC result. It also requires a new notion of envelope.

III Apply Ramsey Theorem for strictly similar antichains finitely many
times. Then take an antichain of coding nodes coding H3.

Similar to the end of Sauer’s proof.
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Trees with Coding Nodes

A tree with coding nodes is a structure 〈T ,N;⊆, <, c〉 in the language
L = {⊆, <, c} where ⊆, < are binary relation symbols and c is a unary
function symbol satisfying the following:

T ⊆ 2<ω and (T ,⊆) is a tree.

N ≤ ω and < is the standard linear order on N.

c : N → T is injective, and m < n < N −→ |c(m)| < |c(n)|.

c(n) is the n-th coding node in T , usually denoted cTn .
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Kk-Free Branching Criterion

Note: A collection of coding nodes {cni : i < k} in T codes a k-clique
iff i < j < k −→ cnj (|cni |) = 1.

A tree T with coding nodes 〈cn : n < N〉 satisfies the Kk -Free Branching
Criterion (k-FBC) if for each non-maximal node t ∈ T , t_0 ∈ T and

(∗) t_1 is in T iff adding t_1 as a coding node to T would not code
a k-clique with coding nodes in T of shorter length.
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Henson’s Criterion for building Hk

Henson gave a criterion for building Hk , interpreted to our setting here:

A tree with coding nodes satisfies (Ak)tree iff

(i) T satisfies the Kk -Free Criterion.

(ii) Let 〈Fi : i < ω〉 be any enumeration of finite subsets of ω such that
for each i < ω, max(Fi ) < i − 1, and each finite subset of ω appears
as Fi for infinitely many indices i . Given i < ω, if for each subset
J ⊆ Fi of size k − 1, {cj : j ∈ J} does not code a (k − 1)-clique, then
there is some n ≥ i such that for all j < i , cn(lj) = 1 iff j ∈ Fi .

Thm. (D.) Suppose T is a tree with no maximal nodes satisfying the
Kk -Free Branching Criterion, and the set of coding nodes dense in T .
Then T satisfies (Ak)tree, and hence codes Hk .
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Strong K3-Free Tree

c−1

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

•

v−1

v0

v1

v2

v3

v4

v5

Figure: A strong triangle-free tree S3 densely coding H3
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Strong K4-Free Tree

c−2

c−1

c0

c1

c2

c3

c4

•
•
•
•
•
•
•

v−2

v−1

v0

v1

v2

v3

v4

Figure: A strong K4-free tree S4 densely coding H4
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Almost sufficient

One can develop almost all the Ramsey theory one needs on strong
Kk -free trees

except for vertex colorings: there is a bad coloring of coding nodes.

Solution: Skew the levels of interest.
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Strong H3-Coding Tree T3

d0 = c−1

c0

c1

c2

c3

•

•

•

•

•

v−1

v0

v1

v2

v3
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Strong H4-Coding Tree, T4

d0 = c−1

d1

d2

d3 c0
d4

d5

d6

d7 c1
d8

d9

d10

d11

d12

d13

c2

•

•

•

•

v−1

v0

v1

v2
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Pre-a-Clique: A key concept

Let k ≥ 3 be fixed, and let a ∈ [3, k]. A level set X ⊆ Tk of size at least
two, with nodes of length `X , has a pre-a-clique if there are a− 2 coding
nodes in Tk coding an (a− 2)-clique, and each node in X has passing
number 1 by each of these coding nodes.

The Point. Pre-a-cliques for a ∈ [3, k] code entanglements that affect
how nodes in X can extend inside T.
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A level set U with a pre-3-clique

u0 u1

cn

The yellow node is a coding node in Tk not in U.
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A level set X with a pre-3-clique

x0 x1 x2

cn

The yellow node is a coding node in Tk not in X .
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A level set Y with a pre-4-clique

y0 y1

cm

cn

The yellow node is a coding node in Tk not in Y .
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A level set Z with a pre-4-clique

z0 z1 z2

cm

cn

The yellow node is a coding node in Tk not in Z .
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Strong Similarity Map

Let k ≥ 3 be given and let S ,T ⊆ Tk be meet-closed subsets. A bijection
f : S → T is a strong similarity map if for all nodes s, t, u, v ∈ S , the
following hold:

1 f preserves lexicographic order.

2 f preserves meets, and hence splitting nodes.

3 f preserves relative lengths.

4 f preserves initial segments.

5 f preserves coding nodes.

6 f preserves passing numbers at coding nodes.

Two subtrees S and T of Tk are stably isomorphic iff there is a strong
similarity map f : S → T which preserves maximal new pre-cliques in each
interval. Such a map f is a stable isomorphism.
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The Space of Strong Hk-Coding Trees Tk

Tk is the collection of all subtrees of Tk which are stably isomorphic to Tk .

The members of Tk are called strong Hk -coding trees.

Extension Lemmas provide conditions guaranteeing when a given finite
subtree of a strong coding tree T can be extended within T as needed.
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Part II: Ramsey Theorem for Strictly Similar Finite Antichains

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of
level sets. This builds on ideas from Harrington’s ‘forcing proof’ of
the Halpern-Läuchli Theorem.

(b) Then weave together to obtain an analogue of Milliken’s Theorem.

(c) New notion of envelope.
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Ramsey Theorem for Strictly Similar Antichains

Thm. Let Z be a finite antichain of coding nodes in a strong
Hk -coding tree T ∈ Tk , and suppose h colors of all subsets of T which
are strictly similar to Z into finitely many colors. Then there is an
strong Hk -coding tree S ≤ T such that all subsets of S strictly similar
to Z have the same h color.

Strict similarity takes into account the tree structure and the order and
intervals in which new pre-cliques appear.
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Some Examples of Strict Similarity Types for k = 3

Let G be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding G .
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Some Examples of Strict Similarity Types for k = 3

Let G be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding G .
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G a graph with three vertices and no edges

A tree A coding G
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G a graph with three vertices and no edges

B codes G and is strictly similar to A.

〈〉
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The tree C codes G

C is not strictly similar to A.
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The tree D codes G

D is not strictly similar to either A or C .
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The tree E codes G and is not strictly similar to A - D
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The tree F codes G and is strictly similar to E
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Envelopes and Witnessing Coding Nodes

Envelopes add some neutral coding nodes to a finite tree to make it satisfy
the Strict Witnessing Property.

Envelopes for an antichain A in a strong coding tree T do not always exist
in T .

Instead, given T where the Ramsey theorem has been applied to the strict
similarity type of a prototype envelope of A, we take S ≤ T and a set of
witnessing coding nodes W ⊆ T so that each antichain in S has an
envelope in T , using coding nodes from W .

We now give some examples of envelopes.
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H codes a non-edge

H is its own envelope.
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I codes a non-edge

I is not its own envelope.
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An Envelope E(I )

w

An envelope of I .
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The antichain E from before
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An envelope E(E )

w0

w1

w3

w2

The coding nodes w0, . . . ,w3 make an envelope of E .
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The tree F from before is strictly similar to E
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E(F ) is strictly similar to E(E )

w0

w1

w2

w3

The coding nodes w0, . . . ,w3 make an envelope of F .
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Part III: Apply the Ramsey Theorem to Strictly Similarity Types
of Antichains to obtain the Main Theorem.
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Bounds for Big Ramsey Degrees T (G ,Hk)

1 Let G be a finite Kk -free graph, and let f color the copies of G in Hk

into finitely many colors.

2 Define f ′ on antichains in T: For an antichain A of coding nodes in T
coding a copy, GA, of G , define f ′(A) = f (GA).

3 List the strict similarity types of antichains of coding nodes in T
coding G . There are finitely many.

4 Apply the Ramsey Theorem from Part III, once for each strict
similarity type, to obtain a strong coding tree S ≤ T in which f ′ has
one color per type.

5 Take an antichain of coding nodes, A in S , which codes Hk . Let H′
be the subgraph of Hk coded by A.

6 Then f has no more colors on the copies of G in H′ than the number
of strict similarity types of antichains coding G .
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Edges have big Ramsey degree 2 in H3

These are their own envelopes.
T (Edge,G3) = 2 was obtained in (Sauer 1998) by different methods.
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Non-edges have 5 Strict Similarity Types in H3 (D.)
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Part II: Ramsey Theorem for Finite Trees with
the Strict Witnessing Property.

Goal: Find a Ramsey theorem of the form, “Given a finitary coloring of all
copies of a finite k-clique-free graph A inside the k-clique-free Henson
graph, as coded by a stron coding tree T , find a subtree S , which is again
a strong coding tree, in which all copies of A of a given strict similarity
type have the same color.

Ideas:

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of
level sets. This builds on ideas from Harrington’s ‘forcing proof’ of
the Halpern-Läuchli Theorem.

(b) Then weave together to obtain an analogue of Milliken’s Theorem.
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Set-up for level set colorings

Let T ∈ Tk and A ⊆ B ⊆ T finite subtrees of T with max(A) ⊆ max(B),
and both have the Witnessing Property.

Let A+ be the set of immediate extensions in T̂ of max(A).

Let Ae ⊆ A+ contain 0(lA+1) and have at least two members.

Suppose that X̃ is a level set of nodes in T extending Ae and A ∪ X̃ is a
finite valid subtree of T satisfying WP, and assume 0(lX̃ ) ∈ X̃ .

Case (a). X̃ contains a splitting node.

Case (b). X̃ contains a coding node.

ExtT (A, X̃ ) = {X ⊆ T : X w X̃ is a level set, A ∪ X ∼= A ∪ X̃ ,
and A ∪ X is valid in T}.
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Ramsey Theorem for Level Sets with a Splitting Node

Thm. (D.) Assume Case (a) in the previous set-up.

Given any coloring h : ExtT (A, X̃ )→ 2, there is a strong coding tree

S ≤ T such that B < S and h is monochromatic on ExtS(A, X̃ ).
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‘Forcing Proof’

Case (i): level set X̃ contains a splitting node.

List the immediate successors of max(A) as s0, . . . , sd , where sd denotes
the node which the splitting node in X̃ extends.

Let Ti = {t ∈ T : t ⊇ si}, for each i ≤ d .

Fix κ large enough so that κ→ (ℵ1)2dℵ0 holds.

Such a κ is guaranteed in ZFC by a theorem of Erdős and Rado.
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The Forcing

P is the set of functions p such that

p : {d} ∪ (d × ~δp)→ T � lp,

where ~δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the splitting node extending sd at level lp;

(ii) For each i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti � lp.

(iii) ran(p) has no pre-determined new pre-cliques in T .

q ≤ p if and only if ~δq ⊇ ~δp, lq ≥ lp, and

(i) q(d) ⊃ p(d), and q(i , δ) ⊃ p(i , δ) for each δ ∈ ~δp and i < d ; and

(ii) ran(q � ~δp) has no new pre-cliques above ran(p).
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Set-up for applying Erdős-Rado

For i < d , α < κ, let ḃi ,α denote the α-th generic branch in Ti , and ḃd
the generic branch in Td .

Let U̇ be a P-name for a non-principal ultrafilter on L̇, a name for the
levels in ḃd .

For ~α = 〈α0, . . . , αd−1〉 ∈ [κ]d , let ḃ~α := 〈ḃ0,α0 , . . . , ḃd−1,αd−1
, ḃd〉.

• For ~α ∈ [κ]d , take some p~α ∈ P with ~α ⊆ ~δp~α such that

1 p~α decides an ε~α ∈ 2 such that p~α 
 “c(ḃ~α � l) = ε~α for U̇ many l”;

2 c({p~α(i , αi ) : i < d}) = ε~α.
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The Countable Coloring

Let I be the collection of functions ι : 2d → 2d such that

{ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d − 2), ι(2d − 1)}.

For ~θ ∈ [κ]2d , ι ∈ I determines two sequences of ordinals in [κ]d :

ιe(~θ ) := (θι(0), θι(2), . . . , θι(2d−2))) and ιo(~θ ) := (θι(1), θι(3), . . . , θι(2d−1)).

For ~θ ∈ [κ]2d and ι ∈ I, define

f (ι, ~θ ) = 〈ι, ε~α, k~α, p(d), 〈〈p~α(i , δ~α(j)) : j < k~α〉 : i < d〉,
〈〈i , j〉 : i < d , j < k~α, δ~α(j) = αi 〉,
〈〈j , k〉 : j < k~α, k < k~β, δ~α(j) = δ~β(k)〉〉, (2)

where ~α = ιe(~θ ), ~β = ιo(~θ ), k~α = |~δp~α |, and 〈δ~α(j) : j < k~α〉 enumerates
~δp~α in increasing order. For ~θ ∈ [κ]2d , define f (~θ ) = 〈f (ι, ~θ ) : ι ∈ I〉.
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f provides a large homogeneous set of conditions

Note: dom(f ) = [κ]2d and ran(f ) is a countable set.

Since κ→ (ℵ1)2dℵ0 , take K ∈ [κ]ℵ1 homogeneous for f .

Take Ki ∈ [K ]ℵ0 so that K0 < · · · < Kd−1 and K ′ :=
⋃

i<d Ki thin in K .

Main Lemma. There are ε∗ ∈ 2 and t∗i ∈ Ti such that for all
~α ∈

∏
i<d Ki , ε~α = ε∗ and p~α(i , αi ) = t∗i . Furthermore,

{p~α : ~α ∈
∏

i<d Ki} is compatible.

The t∗0 , . . . , t
∗
d provide good starting nodes for constructing the tree

homogeneous for the coloring on ExtT (A, X̃ ).
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Building a tree homogeneous for level set coloring

We alternate between building the subtree by hand and using the forcing
to find the next level where homogeneity is guaranteed.

Remarks. (1) No generic extension is actually used.

(2) These forcings are not simply Cohen forcings; the partial orderings
are stronger in order to guarantee that the new levels we obtain by
forcing are extendible inside T to another strong coding tree.

(3) The assumption that A ∪ X̃ satisfies the Witnessing Property is
necessary.

Dobrinen Ramsey Theory, Trees, and Graphs University of Denver 114 / 1



Case (b): Coloring level sets with a coding node

This case is harder, because the forcing proof only produces an
end-homogeneous strong coding tree.

Then there is a third forcing argument needed to homogenize over
monochromatic cones.

Much induction produces the Milliken analogue: The Ramsey Theorem for
trees with the Strict Witnessing Property.

Envelopes are then used to obtain the final Ramsey Theorem for Strict
Similarity Types.
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Strict Witnessing Property

A subtree A of Tk satisfies the Strict Witnessing Property (SWP) if

A satisfies the Witnessing Property and for each interval (|dA
m|, |dA

m+1|]:

1 If dA
m+1 is a splitting node, A has no new pre-cliques in the interval.

2 If dA
m+1 is a coding node, A has at most one new pre-clique in this

interval.

3 If Y is a new pre-clique in this interval, then each proper subset of Y
has a new pre-clique in some interval (|dA

j |, |dA
j+1|], where j < m.

Lem. (D.) If A ⊆ Tk has the Strict Witnessing Property and B ∼= A,
then B also has the Strict Witnessing Property.

Any B stably isomorphic to A is a copy of A.
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Ramsey Theorem for Finite Trees with SWP

Thm. (D.) Let T ∈ Tk and A be a finite subtree of T with the Strict

Witnessing Property. Let c be a coloring of all copies of A in T .

Then there is a strong Hk -coding tree S ≤ T in which all copies of A

in S have the same color.

This is an analogue of Milliken’s Theorem for strong coding trees.
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Future Directions

1 Extend methods to other infinite structures with or without forbidden
configurations.

2 Trees with coding nodes and forcing arguments have allowed the
development of infinite dimensional Ramsey theory on copies of the
Rado graph: analogues of the Galvin-Prikry Theorem. Extend these
methods to other structures with finite big Ramsey degrees.

3 Milliken was used to determine Ramsey theory of the profinite graph
(Huber-Geshke-Kojman, and Zheng). Extend to other uncountable
structures.

4 Prove lower bounds cohere so that Zucker’s work may be applied to
obtain new examples of minimal completion flows.
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