
Processing Notes

Chapter 13: Classes/Objects
We now have enough programming power to do all sorts of interesting things. But the
tools we have available are sort of awkward. Just as a early craftsmen were able to
fabricate amazing furniture and art with simple tools, modern tools make manufacture
faster and easier. Computer Science is about making better (virtual) tools and finding
new applications. Because it is a virtual world, we can make our own tools. One big
advance in tool building is called Object Oriented Programming. You may not realize
it, but you have implicitly been using an OO approach with some of your programming
already. We have created PImage objects and used methods on those objects. A
method is just a function, but, it is a function tied to a particular class. Lets develop an
working example of a better virtual tool: a class to manipulate moving rectangles more
easily.

class MovingRectangle
{
 // member data variables
 float rx, ry, rwidth, rheight ; // the x, y, width, and heigh of this rect
 float velX, velY ; // the x and y-velocties
 color currentColor ;

 MovingRectangle(float inRx, float inRy, float inRwidth, float inRheight,
 float inVelx, float inVely, float inR, float inG, float inB)
 // constructor number 1
 {
 rx = inRx ;
 ry = inRy ;
 rwidth = inRwidth ;
 rheight = inRheight ;
 velX = inVelx ;
 velY = inVely ;
 currentColor = color(inR,inG,inB) ;
 }

 // setter methods
 void setX(float inRx) { rx = inRx;}
 void setY(float inRy) { ry = inRy;}
 void setWidth(float inW) { rwidth = inW;}
 void setHeight(float inH) { rheight = inH;}

Copyright 2009, Leutenegger

1

 void setVelX(float inVx) { velX = inVx;}
 void setVelY(float inVy) { velY = inVy;}
 void setColor(float r, float g, float b) { currentColor = color(r,g,b) ; }

 // getter methods
 float getX() { return rx;}
 float getY() { return ry;}
 float getWidth() { return rwidth;}
 float getHeight() { return rheight;}
 float getVelX() { return velX;}
 float getVelY() { return velY;}
 color getColor() {return currentColor;}

 void updateLocation()
 // change the x,y location to be current plus velocities
 {
 rx += velX ;
 ry += velY ;
 if ((rx < 0) || ((rx+rwidth) > width))
 velX *= -1 ;
 if ((ry < 0) || ((ry+rheight) > height))
 velY *= -1 ;

 }

 void drawRect()
 // set the fill to current color and call Procesing rect()
 // command to draw the rectangle
 {
 fill(currentColor) ;
 rect(rx,ry,rwidth,rheight) ;
 }

} // close of the class definition

Above is the class definition for a MovingRectangle class. The general format is:

* class className
* member variables
* constructor
* getter methods
* setter methods
* additional methods

Copyright 2009, Leutenegger

2

The member variables are the holder of data necessary for the MovingRectangle
objects. In this case we need to keep track of the rectangle x-coordinate, y- coordinate,
width, height, x-velocity, y-velocity, and color. Hence, each of these is a member
variable. Next is the constructor. The constructor is a special method that is called
when an object is created. It contains the code to initialize the object. Next are the
“getter” methods. A getter method is a method (i.e. function belonging to this class) that
returns the current value of the member variables. Next are the setter methods. These
methods allow the user of the class, i.e. the person writing code to manipulate
MovingRectangle objects, to change member variable values. Finally, come the
additional methods. In this case we have included two additional methods:
updateLocation() and drawRect(). The first is called when we wan the object to move.
It does so by changing its x and y coordinate by the amount specified in velX and velY.
The drawRect() method is called when we want to draw the rectangle.

The following code shows how to create and use MovingRectangle objects:

Copyright 2009, Leutenegger

3

MovingRectangle mr1, mr2, mr3, mr4, mr5 ;

void setup()
{
 size(400,400) ;
 fill(0) ;

 mr1 = new MovingRectangle(10,10,20,20,2,3,255,0,255) ;
 mr2 = new MovingRectangle(10,100,20,20,2,3,255,0,255) ;
 mr3 = new MovingRectangle(100,10,20,20,2,3,255,0,255) ;
 mr4 = new MovingRectangle(300,10,20,20,2,3,255,0,255) ;
 mr5 = new MovingRectangle(10,300,20,20,2,3,255,0,255) ;
}

void draw()
{
 background(100) ;

 mr1.updateLocation() ;
 mr1.drawRect() ;
 mr2.updateLocation() ;
 mr2.drawRect() ;
 mr3.updateLocation() ;
 mr3.drawRect() ;
 mr4.updateLocation() ;
 mr4.drawRect() ;
 mr5.updateLocation() ;
 mr5.drawRect() ;

 if (mr5.getX() > width/2)
 mr5.setColor(255,0,0) ;
 else
 mr5.setColor(255,0,255) ;

 if (mr4.getX() > width/2)
 mr4.setWidth(50) ;
 else
 mr4.setWidth(20) ;
}

To use this code the class definition code needs to be in the same Processing sketch
file (actually, there is a way around this, but this is the easiest way for now). The class

Copyright 2009, Leutenegger

4

definition code is not repeated in the example above, but, realize it must be there else
Processing will inform you it does not know what a MovingRectangle is.

The first line:

 MovingRectangle mr1, mr2, mr3, mr4, mr5 ;

defines 5 variables that can hold objects of type MovingRectangle. As shown in the
setup() function we need to CREATE the objects by calling new() as follows:

 mr1 = new MovingRectangle(10,10,20,20,2,3,255,0,255) ;

What happens is the constructor is called with that big list of parameters. If you look
closely at the constructor you will see it initializes all the member variables with the
values passed in as parameters. Thus, for the line above, a new MovingRectangle
object is created with x and y set to 10, width and height set to 20, velX and velY set to
2 and 3 respectively, and the color set to (255,0,255). The code above creates 5 new
objects and puts them in variables mr1, mr2 , mr3, mr4, and mr5. In the draw() function
the updateLocation() and draw() methods are called for each of these 5 objects. Then,
to demonstrate using getters and setters, we make it so the object in mr4 becomes
wider when on the right hand side of the screen and the object in mr5 turns red when on
the right hand side of the screen.

Class definitions can be modified to accomodate changes such as new fuctionality. For
example, an obvious thing to add to the MovingRectangle class is a method that
determines if the rectangle is intersecting another rectangle. Consider the following
method:

boolean intersectRectangle(float inOtherX, float inOtherY,
 float inOtherWidth, float inOtherHeight)
 {
 if (
 (((rx < inOtherX) && (rx+rwidth > inOtherX)) ||
 ((rx > inOtherX) && (rx < inOtherX+inOtherWidth)))
 &&
 (((ry < inOtherY) && (ry+rheight > inOtherY)) ||
 ((ry > inOtherY) && (ry < inOtherY+inOtherHeight)))
)
 return (true) ;
 else
 return(false) ;
 }

If we add this method inside the class definition, we can not make calls to it just as we
do to the update(), draw(), and getter/setter methods. Consider the following code:

Copyright 2009, Leutenegger

5

void draw()
{
 background(100) ;

 noFill() ;
 rect(width/2-75,height/2-75,150,150) ;

 mr1.updateLocation() ;
 if (!mr1.intersectRectangle(width/2-75,height/2-75,150,150))
 mr1.drawRect() ;

 mr2.updateLocation() ;
 if (!mr2.intersectRectangle(width/2-75,height/2-75,150,150))
 mr2.drawRect() ;

 mr3.updateLocation() ;
 if (!mr3.intersectRectangle(width/2-75,height/2-75,150,150))
 mr3.drawRect() ;

 mr4.updateLocation() ;
 if (!mr4.intersectRectangle(width/2-75,height/2-75,150,150))
 mr4.drawRect() ;

 mr5.updateLocation() ;
 if (!mr5.intersectRectangle(width/2-75,height/2-75,150,150))
 mr5.drawRect() ;
}

This code assumes we have first created 5 MovingRectangle objects and put them in
mr1 .. mr5 as above. In this case every time we first draw a non-filled static rectangle in
the center of the screen. Then we update the location of each MovingRectangle object
and check to see if it intersects the center rectangle. We do this check by calling the
MovingRectangle intersectRectangle() method. If the moving rectangle object does not
intersect the center rectangle we draw it. A static screen shot of this might look like the
following, where at this instant of time the screen shot was grabbed three of the 5
moving rectangles were located inside the center rectangle and hence not drawn:

Copyright 2009, Leutenegger

6

The intersectRectangle test will test if a given object intersects with a specified
rectangle. You may want to see if it intersects with another MovingRectangle. A
method to do that is:

 boolean intersectRectangle(MovingRectangle inOtherRect)
 {
 float otherX = inOtherRect.getX() ;
 float otherY = inOtherRect.getY() ;
 float otherWidth = inOtherRect.getWidth() ;
 float otherHeight = inOtherRect.getHeight() ;

 if (
 (((rx <= otherX) && (rx+rwidth >= otherX)) ||
 ((rx >= otherX) && (rx <= otherX+otherWidth)))
 &&
 (((ry <= otherY) && (ry+rheight >= otherY)) ||
 ((ry >= otherY) && (ry <= otherY+otherHeight)))
)
 return (true) ;
 else
 return(false) ;
 }

If you insert this into your class you can then make calls to it. Note, this method has the
exact same name as the first method. This is okay as long as the signatures (i.e. the
number and types of parameters) are different. This is called overloading. We are
overloading the name “intersectRectangle” to have two different meanings, and the
language can figure out which one you mean by the signature of the method call.
Consider the following code that uses this method:

Copyright 2009, Leutenegger

7

void setup()
{
 size(400,400) ;
 mr1 = new MovingRectangle(10,10,60,60,2,3,0,0,0) ;
 mr2 = new MovingRectangle(10,100,60,60,2,3,0,0,0) ;
 mr3 = new MovingRectangle(100,10,60,60,2,3,0,0,0) ;
}

void draw()
{
 background(100) ;

 mr1.updateLocation() ;
 mr2.updateLocation() ;
 mr3.updateLocation() ;

 if (mr1.intersectRectangle(mr2) || mr1.intersectRectangle(mr3))
 mr1.setColor(255,0,0) ;
 else
 mr1.setColor(0,0,0) ;

 mr1.drawRect() ;
 mr2.drawRect() ;
 mr3.drawRect() ;

}

In this example we create three moving rectangle objects. In draw() we update their
locations. If the object in mr1 intersects either of the other two moving rectangles we
set the color of the object in mr1 to be red.

Note, we could have made use of our old intersectRectangle method also, but it would
have been less elegant:

 if (mr1.intersectRectangle(mr2.getX(), mr2.getY(),
 mr2.getWidth(), mr2.getHeight()) ||
 mr1.intersectRectangle(mr3.getX(), mr3.getY(),
 mr3.getWidth(), mr3.getHeight()))
 mr1.setColor(255,0,0) ;
 else
 mr1.setColor(0,0,0) ;

Copyright 2009, Leutenegger

8

Remember the hassle it was to write the code for Exercise 12A? This was the one
where you had one big rectangle that moved with the mouse and 5 little rectangles that
moved on their own. Do do that assignment without classes/object you had to keep
track of 30 variables: x, y, velX, velY, width, and height for each of the 5 rectangles. It
was easy to make a type that broke the code. Frankly, it was just a hassle (that was the
intention of that assignment). Using our MovingRectangle class it is now much easier.
The following is a solution to the same assignment using the MovingRectangle class:

void setup()
{
 size(400,400) ;
 mr1 = new MovingRectangle(10,10,20,20,2,3,0,0,0) ;
 mr2 = new MovingRectangle(10,100,20,20,2,3,0,0,0) ;
 mr3 = new MovingRectangle(100,10,20,20,2,3,0,0,0) ;
 mr4 = new MovingRectangle(290,10,20,20,2,3,0,0,0) ;
 mr5 = new MovingRectangle(100,300,20,20,2,3,0,0,0) ;
}

void draw()
{
 background(100) ;
 int bigRectWidth = 80 ;
 int bigRectHeight = 80 ;

 // draw a rectangle that moves with the mouse
 fill(0) ;
 rect(mouseX,mouseY,bigRectWidth,bigRectHeight) ;

 mr1.updateLocation() ;
 mr2.updateLocation() ;
 mr3.updateLocation() ;
 mr4.updateLocation() ;
 mr5.updateLocation() ;

 if (mr1.intersectRectangle(mouseX,mouseY,bigRectWidth,bigRectHeight))
 mr1.setColor(255,0,0) ;
 else
 mr1.setColor(0,0,0) ;
 if (mr2.intersectRectangle(mouseX,mouseY,bigRectWidth,bigRectHeight))
 mr2.setColor(255,0,0) ;
 else
 mr2.setColor(0,0,0) ;
 if (mr3.intersectRectangle(mouseX,mouseY,bigRectWidth,bigRectHeight))
 mr3.setColor(255,0,0) ;
 else

Copyright 2009, Leutenegger

9

 mr3.setColor(0,0,0) ;
 if (mr4.intersectRectangle(mouseX,mouseY,bigRectWidth,bigRectHeight))
 mr4.setColor(255,0,0) ;
 else
 mr4.setColor(0,0,0) ;
 if (mr5.intersectRectangle(mouseX,mouseY,bigRectWidth,bigRectHeight))
 mr5.setColor(255,0,0) ;
 else
 mr5.setColor(0,0,0) ;

 mr1.drawRect() ;
 mr2.drawRect() ;
 mr3.drawRect() ;
 mr4.drawRect() ;
 mr5.drawRect() ;
}

The code is easier to understand, easier to write, and easier to modify. By way of
comparison, here is a solution without using classes. Note the function definitions are
not included, they were shown in the previous chapter:

float rX1, rY1, rW1, rH1, velX1, velY1 ; // current x, y, width, height, velocity-X
and velocity-Y of rectangle1
float rX2, rY2, rW2, rH2, velX2, velY2 ; // current x, y, width, height, velocity-X
and velocity-Y of rectangle2
float rX3, rY3, rW3, rH3, velX3, velY3 ; // current x, y, width, height, velocity-X
and velocity-Y of rectangle3
float rX4, rY4, rW4, rH4, velX4, velY4 ; // current x, y, width, height, velocity-X
and velocity-Y of rectangle4
float rX5, rY5, rW5, rH5, velX5, velY5 ; // current x, y, width, height, velocity-X
and velocity-Y of rectangle5

float mouseRectW = 100 ; // the width of the rectangle that follows the mouse
float mouseRectH = 100 ; // the height of the same rectangle

void setup()
{
 size(400,400) ;
 fill(0) ;

 rX1 = 10 ;

Copyright 2009, Leutenegger

10

 rY1 = 10 ;
 rW1 = 20 ;
 rH1 = 20 ;
 velX1 = 2 ;
 velY1 = 3 ;

 rX2 = 50 ;
 rY2 = 100 ;
 rW2 = 20 ;
 rH2 = 20 ;
 velX2 = 2 ;
 velY2 = 3 ;

 rX3 = 50 ;
 rY3 = 300 ;
 rW3 = 20 ;
 rH3 = 20 ;
 velX3 = 2 ;
 velY3 = 3 ;

 rX4 = 300 ;
 rY4 = 60 ;
 rW4 = 20 ;
 rH4 = 20 ;
 velX4 = 2 ;
 velY4 = 3 ;

 rX5 = 200 ;
 rY5 = 80 ;
 rW5 = 20 ;
 rH5 = 20 ;
 velX5 = 2 ;
 velY5 = 3 ;

}

void draw()
{
 background(100) ;

 // update all locations
 rX1 += velX1 ;
 rY1 += velY1 ;
 if ((rX1 < 0) || ((rX1+rW1) > width))
 velX1 *= -1 ;
 if ((rY1 < 0) || ((rY1+rH1) > height))

Copyright 2009, Leutenegger

11

 velY1 *= -1 ;
 rX2 += velX2 ;
 rY2 += velY2 ;
 if ((rX2 < 0) || ((rX2+rW2) > width))
 velX2 *= -1 ;
 if ((rY2 < 0) || ((rY2+rH2) > height))
 velY2 *= -1 ;
 rX3 += velX3 ;
 rY3 += velY3 ;
 if ((rX3 < 0) || ((rX3+rW3) > width))
 velX3 *= -1 ;
 if ((rY3 < 0) || ((rY3+rH3) > height))
 velY3 *= -1 ;
 rX4 += velX4 ;
 rY4 += velY4 ;
 if ((rX4 < 0) || ((rX4+rW4) > width))
 velX4 *= -1 ;
 if ((rY4 < 0) || ((rY4+rH4) > height))
 velY4 *= -1 ;
 rX5 += velX5 ;
 rY5 += velY5 ;
 if ((rX5 < 0) || ((rX5+rW5) > width))
 velX5 *= -1 ;
 if ((rY5 < 0) || ((rY5+rH5) > height))
 velY5 *= -1 ;

 // draw mouse rectangle
 fill(0) ;
 rect(mouseX,mouseY,mouseRectW,mouseRectH) ;

 // draw the rectangles, first checking to see if touching mouseRect as if they are
make them red
 if (hit_TwoRectsIntersect(rX1,rY1,rW1,rH1, mouseX, mouseY, mouseRectW,
mouseRectH))
 fill(255,0,0) ;
 else
 fill(0) ;
 rect(rX1,rY1,rW1,rH1) ;

 if (hit_TwoRectsIntersect(rX2,rY2,rW2,rH2, mouseX, mouseY, mouseRectW,
mouseRectH))
 fill(255,0,0) ;
 else
 fill(0) ;
 rect(rX2,rY2,rW2,rH2) ;

Copyright 2009, Leutenegger

12

 if (hit_TwoRectsIntersect(rX3,rY3,rW3,rH3, mouseX, mouseY, mouseRectW,
mouseRectH))
 fill(255,0,0) ;
 else
 fill(0) ;
 rect(rX3,rY3,rW3,rH3) ;

 if (hit_TwoRectsIntersect(rX4,rY4,rW4,rH4, mouseX, mouseY, mouseRectW,
mouseRectH))
 fill(255,0,0) ;
 else
 fill(0) ;
 rect(rX4,rY4,rW4,rH4) ;

 if (hit_TwoRectsIntersect(rX5,rY5,rW5,rH5, mouseX, mouseY, mouseRectW,
mouseRectH))
 fill(255,0,0) ;
 else
 fill(0) ;
 rect(rX5,rY5,rW5,rH5) ;

}

Simply put, the above is YUCKY! (That is precise techno-talk). Message: classes/
objects can make programming a lot easier!!

We create classes to make it easier to solve some sort of programming problem. Here
is a problem: We want to be able to create sprites. The sprites should move about the
screen by themselves in two dimensions. We should be able to load an image from a
file into the sprite object. When we click on the sprite it should go away. We should be
able to make it come back somehow to.

We DESIGN a solution to this problem. There are many design solutions. Here is one
possible solution:

class MovingSprite
{
 // member data variables
 float rx, ry, rwidth, rheight, velX, velY ;
 PImage theImage ;
 boolean imageHidden ;

Copyright 2009, Leutenegger

13

 MovingSprite(float inRx, float inRy, float inVelx, float inVely, String inImageName)
 // constructor number 1
 {
 rx = inRx ;
 ry = inRy ;
 theImage = loadImage(inImageName) ;
 rwidth = theImage.width ;
 rheight = theImage.height ;
 velX = inVelx ;
 velY = inVely ;
 imageHidden = false ;

 }

 // setter methods
 void setX(float inRx) { rx = inRx;}
 void setY(float inRy) { ry = inRy;}
 void setWidth(float inW) { rwidth = inW;}
 void setHeight(float inH) { rheight = inH;}
 void setVelX(float inVx) { velX = inVx;}
 void setVelY(float inVy) { velY = inVy;}

 // getter methods
 float getX() { return rx;}
 float getY() { return ry;}
 float getWidth() { return rwidth;}
 float getHeight() { return rheight;}
 float getVelX() { return velX;}
 float getVelY() { return velY;}

 void updateLocation()
 {
 rx += velX ;
 ry += velY ;
 if ((rx < 0) || ((rx+rwidth) > width))
 velX *= -1 ;
 if ((ry < 0) || ((ry+rheight) > height))
 velY *= -1 ;
 }

 void drawSprite()
 {
 if (!imageHidden)
 image(theImage,rx,ry) ;
 }

Copyright 2009, Leutenegger

14

 boolean containsPoint(float inPx, float inPy)
 {
 if ((inPx > rx) && (inPx < (rx + rwidth)) &&
 (inPy > ry) && (inPy < (ry+rheight)))
 return (true) ;
 else
 return(false) ;
 }

 boolean isHidden()
 // returns true if the image is currently hidden
 {
 if (imageHidden)
 return (true) ;
 else
 return (false) ;
 }

 void hideImage()
 {
 imageHidden = true ;
 }

 void unhideImage()
 {
 imageHidden = false ;
 }

}

Notice this classes member variables include “theImage” and “imageHidden” of type
PImage and boolean respectively. Notice how these variables are initialized in the
constructor. Also notice the methods containsPoint(), drawSprite(), isHidden(),
hideImage() and unhideImage().

The following code shows examples of using this class. In this example we put four
moving sprites on the screen moving in different directions. When the user clicks on
one it disappears. When all four are gone they all come back but at a faster speed.
Note the global variable “numNotHidden” is used to keep track of how many objects are
still visible.

// global vars

Copyright 2009, Leutenegger

15

MovingSprite ms1, ms2, ms3, ms4, ms5 ;
int numNotHidden ;

void setup()
{
 size(400,400) ;
 numNotHidden = 4 ;
 ms1 = new MovingSprite(width/2,height/2,random(1,2),random(2,3),"smiley1.png") ;
 ms2 = new MovingSprite(width/2,height/2,random(-2,-1),random(2,3),"smiley1.png") ;
 ms3 = new MovingSprite(width/2,height/2,random(1,2),random(-3,-2),"smiley1.png") ;
 ms4 = new MovingSprite(width/2,height/2,random(-2,-1),random(-2,-1),"smiley1.png") ;

}

void draw()
{
 background(0) ;

 ms1.updateLocation() ;
 ms1.drawSprite() ;
 ms2.updateLocation() ;
 ms2.drawSprite() ;
 ms3.updateLocation() ;
 ms3.drawSprite() ;
 ms4.updateLocation() ;
 ms4.drawSprite() ;
}

void mousePressed()
{
 if ((ms1.containsPoint(mouseX,mouseY)) && !ms1.isHidden())
 {
 ms1.hideImage() ;
 numNotHidden-- ;
 println(numNotHidden) ;
 }
 if ((ms2.containsPoint(mouseX,mouseY)) && !ms2.isHidden())
 {
 ms2.hideImage() ;
 numNotHidden-- ;
 println(numNotHidden) ;
 }
 if ((ms3.containsPoint(mouseX,mouseY)) && !ms3.isHidden())
 {

Copyright 2009, Leutenegger

16

 ms3.hideImage() ;
 numNotHidden-- ;
 println(numNotHidden) ;
 }
 if ((ms4.containsPoint(mouseX,mouseY)) && !ms4.isHidden())
 {
 ms4.hideImage() ;
 numNotHidden-- ;
 println(numNotHidden) ;
 }

 if (numNotHidden == 0)
 {
 println("complete a round") ;
 resetTheSmileys() ;
 println(numNotHidden) ;
 }
}

void resetTheSmileys()
{
 ms1.setVelX(ms1.getVelX() * 1.5) ;
 ms1.setVelY(ms1.getVelX() * 1.5) ;
 ms1.unhideImage() ;
 ms2.setVelX(ms2.getVelX() * 1.5) ;
 ms1.setVelY(ms1.getVelX() * 1.5) ;
 ms2.unhideImage() ;
 ms3.setVelX(ms3.getVelX() * 1.5) ;
 ms3.setVelY(ms1.getVelX() * 1.5) ;
 ms3.unhideImage() ;
 ms4.setVelX(ms4.getVelX() * 1.5) ;
 ms4.setVelY(ms1.getVelX() * 1.5) ;
 ms4.unhideImage() ;

 numNotHidden = 4 ;
}

Note, the MovingRectangle and MovingSprite classes we have created are just two
examples of a class. Again, the analogy we are using is that it is like tool-building: by
using the class construct we have made better tools for programming: easier to use,
easier to understand, less likely to introduce mistakes. Further, we can improve upon
our tool by adding new methods or changing them.

Copyright 2009, Leutenegger

17

 We can create our own classes for anything we want. And, a well constructed class
can be given to other programmers to use. They can use it without understanding its
implementation (i.e. the code inside the class definition), all they need to know is the
interface, i.e. the constructor, getters, setters, and how to call the additional methods.
Just as most of use do not really understand how an automobile works inside, we still
can use it. It would be way too much work to understand and tinker around with what is
under the hood.

EXERCISE 13A

Modify the MovingSprite class to have a new method called MoveTowards(x,y).
When you click on the screen the sprite will move to the point you clicked on. Hint:
you will need to change velX and velY so that the sprite moves in the direction of the
point (x,y). Suggestion: have the sprite stop once within a certain distance of the
point. This will stop the sprite for shimmying back and forth at the point.

EXERCISE 13B

Create a new class called AnimatedSprite. When a sprite object is created it should
play the animation sequence over and over. Assume the animation has exactly 4
frames (images). You should add startAnimation() and stopAnimation() methods so
that you can stop and start the animation. The constructor should have whatever
input parameters are needed/desired plus four parameters for the names of the
animation frames.

Copyright 2009, Leutenegger

18

