
P4 Game Scratch Notes

Chapter 5: Broadcast and Receive

Example Code:

• ex_comeHither.sb
• ex_scareBabies.sb

Often you will want one script to alert another script that something has happened and for
that other script to then take an action. In Scratch this is done with Broadcast and
Recieve. For example, consider the example in ex_comeHither.sb. Lets assume I want
to create two sprites, a boy and a girl. When I click on the girl she says “Come Hither”
and then the both dutifully moves over to her. We can write the girls sprites script so that
when she is clicked on, she says “Come Hither” and then broadcasts a message “come”:

When a broadcast message is sent any sprite that wants to listen for it can. If we want the
boy to move towards the girl the script needs to use the “When I receive” statement and
then move towards the girl as so:

Copyright 2009, P4games.org, Leutenegger et al.

Note that multiple sprites can hear the message, it is broadcast for all to hear. If
multiple sprites have a “when I receive come” block each of them will run the code when
the message is broadcast.

ex_scareBabies.sb: In this example there are multiple sprite babies, each of whom waits
for the message “Cassy is mad” to be broadcast.

Copyright 2009, P4games.org, Leutenegger et al.

Chapter 6: Timer

Example Code:

• timer.sb

Often a game requires a timer, for example you have to get all the bad guys before the
time runs out, or, you want to compete to see who can do a task the fastest. A timer can
be created by using a global (for all sprites) variable named Timer along with a Timer
sprite that controls the count down of the variable.

The following code will make the Timer count down to zero and then broadcast a
message of “timeUp” when it gets to zero. Note, the “hide” command hides the sprite,
whereas the show variable puts the variable on the screen to show the time counting
down.

Copyright 2009, P4games.org, Leutenegger et al.

Chapter 7: Simple Game

Example Code:

• ex_roachSquish_v1.sb
• ex_roachSquish_v2.sb

In this chapter we create a simple game. We propose the following simple model for a
game. A game will have four game states, each with its own background: 1) Splash
Screen state; 2) Level 1 state; 3) Win state; and 4) Lose state. A game starts out is the
splash state with a Splash Screen. A splash screen is the starting screen and typically
contains the instructions or any other info the player should have before starting. In our
model the game will start when the player hits the space bar. Once the space bar is hit the
game transitions to the next game state, i.e. Level 1. Different levels may have different
backgrounds, number of sprites, speeds, etc. Our model is easily adapted to multiple
levels. In this example we will have one level. There needs to be a win condition and a
lose condition. When/if the player wins the game transitions to the Win State. When/if
the player loses the game transitions to the Lose State.

There are many ways to transition between states in Scratch. Perhaps the easiest way,
and equally important easiest way to understand, is to put the logic for detecting state
changes in the Script for the Stage object. Further, when a transition is to be made a
Broadcast message is sent to trigger the change.

Enough talk, lets make a game! Our game will be called “Roach Squish” and we will
develop it in two steps. In the first step we will have a splash screen, level 1 screen, and
a win screen. In this first version of the game there will be a win condition only. The
code is in ex_roachSquish_v1.sb. (the v1 is short for “version 1”). Up until now all of
our script code has gone in the sprites, now we will be adding code to the Stage object.
Here is the code in the stage object for version 1:

Copyright 2009, P4games.org, Leutenegger et al.

When the flag is clicked we set the background to “splashScreen”. Look at the
Backgrounds tab to so we have three backgrounds for this game: splashScreen,
playScreen, and winScreen. The splashScreen background contains instructions, it
should probably have some art also to make it look more like a game. The instructions
on the splashScreen say to click on the space bar to begin.

In the script, we see that when the space key is pressed a “broadcast level1” is done. In
the same Stage script, we see on the bottom right that when the stage script receives the
level1 message, it sets up level1: sets the numRoachesLeft to 5, switchs to the
playScreen, shows the variable numRoachesLeft and then forever checks to see if
numRoacheLeft = 0. This is our WIN CONDITION: numRoachesLeft = 0 . When
this win condition becomes true the message “gameOverWin” is broadcast. As can be
seen in the bottom right script, when the message “gameOverWin” is received, the
background is switched to the winScreen, and, the numRoachesLeft variable is hidden so
the winScreen looks pretty.

At first it might seem a bit odd to use broadcasts to drive the game state transitions.
Could we not just do it with one script? Probably, but as games get more complex the
code becomes very hard to understand, hard to modify, and hard to get right. This
broadcast/receive paradigm for driving state transitions makes it easy to modify the game
for more levels and more complicated conditions.

Copyright 2009, P4games.org, Leutenegger et al.

Now lets modify the game to have a win and lose condition. Lets add a timer. If the
timer gets to zero the player loses. If the player gets all the roaches before the time gets
to zero the player wins. You can find code for this in ex_roachSquish_v2.sb.

The code for the timer class is:

The timer code counts down by one unit every second. It does this until it gets to zero.
Once the timer gets to zero the user has lost so we want to broadcast a “gameOverLose”
message, but, first we check there are still some roaches left. The reason for this check is
that if all the roaches are squished before the timer runs out, the timer is still running,
thus, without this check it would see win, and then change to lose when the timer runs
out.

Copyright 2009, P4games.org, Leutenegger et al.

