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κ-STATIONARY SUBSETS OF Pκ+ë, INFINITARY GAMES,

AND DISTRIBUTIVE LAWS IN BOOLEAN ALGEBRAS

NATASHA DOBRINEN

Abstract. We characterize the (κ, ë, < ì)-distributive law in Boolean algebras in terms of cut and

choose games G κ<ì(ë), when ì ≤ κ ≤ ë and κ<κ = κ. This builds on previous work to yield game-

theoretic characterizations of distributive laws for almost all triples of cardinals κ, ë, ì with ì ≤ ë, under

GCH. In the case when ì ≤ κ ≤ ë and κ<κ = κ, we show that it is necessary to consider whether the

κ-stationarity ofPκ+ë in the ground model is preserved by B. In this vein, we develop the theory of κ-club

and κ-stationary subsets of Pκ+ë. We also construct Boolean algebras in which Player I wins G
κ
κ (κ

+)

but the (κ,∞, κ)-d.l. holds, and, assuming GCH, construct Boolean algebras in which many games are

undetermined.

§1. Introduction. The investigation of relationships between games and distribu-
tive laws began with Jech’s work in [10], where he characterized the (ù,∞)-d.l. in
terms of Player I not having a winning strategy in the descending sequence game
of length ù. Later, he developed the theory of cut-and-choose games of length ù
and related distributive laws in [11]. One of these games yields a property strictly
intermediate between AxiomA and properness, and another of these games is used
in Gray’s Conjecture on von Neumann’s Problem concerning measurable Boolean
algebras (see [11]). In [5] we extended this work of Jech tomore general distributive
laws in Boolean algebras and related games of any cardinal length.

Theorem 1 (Dobrinen, [5]). Let B be a complete Boolean algebra.

1. If the (κ, ë)-d.l. fails in B, then I has a winning strategy for G κ1 (ë) in B. This, in
turn, implies that both the (ë<κ, ë)-d.l. and the (κ, ë<κ)-d.l. fail in B.

2. If the (κ, ë,< ì)-d.l. fails in B, then I has a winning strategy for G κ<ì(ë) in B.

This, in turn, implies that the ((ë<ì)<κ, ë,< ì)-d.l. fails in B.

Under GCH, this gives a game-theoretic characterization of the (κ, ë)-d.l. when-
ever ë < κ or cf(ë) ≥ κ, and a characterization of the (κ, ë,< ì)-d.l. whenever
ë < κ, or κ = ë and is regular. However, these results left open the case when
ë > κ.
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In this paper, we extend results of Kamburelis from [14] to regular uncountable
cardinal length games. His results hinge on the property V B |=“[ë̌]ù ∩ V is sta-
tionary”, which he showed to be the necessary and sufficient ingredient which in
conjunction with the weak (ù, ë)-d.l. characterizes Player I not having a winning
strategy for Gfin(ë) (see Theorems 7 and 8 below). When κ > ù, we have found
that instead of what would seem the obvious generalization, V B |=“[ë̌]≤κ ∩ V is

stationary”, the necessary and sufficient property is actually V B |=“[ë̌]≤κ ∩ V is
κ-stationary” (see Definition 11).
In § 2 we give the necessary definitions, including the distributive laws and games,
and discuss the background to our present work, including Kamburelis’ results.
§ 3 hosts the general theory of ≥ í-club and í-club subsets of Pκë for regular
í < κ. In § 4 the theory specific to κ-club subsets of Pκ+ë is further developed.
We give a combinatorial proof of Kueker’s Theorem 21 for κ-club subsets of Pκ+ë
and investigate the κ-club filter. The main theorems regarding the relationship
between general distributive laws and related games when ë ≥ κ are presented in
§ 5, as well as sufficient conditions for preserving the κ-stationarity of Pκ+ë of the
ground model. We arrive at conditions under which stronger general distributive
laws are equivalent to weaker ones (see Corollaries 39 and 41). In § 6 we give
several theorems which ensure preservation of all κ-stationary subsets of Pκ+ë,
also investigating a game Γκκ(ë) which naturally generalizes the properness game
to uncountable lengths. We show that Γκκ(ë) is strictly easier for Player II to win
than G κκ (ë), thus obtaining a Boolean algebra in which Player I wins G

κ
κ (κ

+) but
the (κ,∞, κ)-d.l. holds. Theorems giving sufficient conditions under which adding
no new subsets of κ implies no new sequences of length κ are added appear in §§ 5
and 6. In § 7, we show that one can shoot a κ-club set through any κ-stationary
subsets of Pκ+ë without adding any new κ-length sequences, assuming κ<κ = κ.
This yields Boolean algebras in which many games are undetermined, improving,
for these games, on the consistency result of [4] in the sense thatweaker assumptions
are used.

Acknowledgments. Great gratitude goes to Bohuslav Balcar and Stephen Simp-
son for valuable conversations and insights during the early stages of this paper.
We also wish to thank Elizabeth Θ Brown, Andres Caicedo, Matthew Foreman,
Noam Greenberg, John Krueger, Heike Mildenberger, and Greg Piper for selfless
conversations and remarks.

§2. Background and definitions. Throughout this paper, we restrict ourselves
to the class of complete Boolean algebras. We let B denote an arbitrary com-
plete Boolean algebra and B

+ denote B \ {0}. Basic set-theoretic notation is used
throughout. We let [ë]κ = {x ⊆ ë : |x| = κ}, [ë]<κ = {x ⊆ ë : |x| < κ} = Pκë,
and [ë]≤κ = {x ⊆ ë : |x| ≤ κ} = Pκ+ë. We let (ë)

<κ denote the set (or tree ordered
by end extension) of sequences from ordinals α < κ into ë.

Definition 2. [17] B satisfies the (κ, ë,< ì)-distributive law ((κ, ë,< ì)-d.l.) if
for all families {bα,â : α < κ, â < ë} ⊆ B,

∧

α<κ

∨

â<ë

bα,â =
∨

f:κ→[ë]<ì

∧

α<κ

∨

â∈f(α)

bα,â . (2.1)
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Notation. The (κ, ë,< 2)-d.l. is usually referred to as the (κ, ë)-d.l., and the
(κ, ë,< ù)-d.l. is usually referred to as the weak (κ, ë)-d.l. We say that the (< κ, ë)-
d.l. holds if the (ñ, ë)-d.l. holds for all ñ < κ.

Definition 3. [17] A quasipartition of unity (of a) is a collection W ⊆ B such
that

∨

W = 1 (
∨

W = a) and for all b, c ∈ W with b 6= c, b ∧ c = 0. A partition
of unity (of a) is a collectionW ⊆ B

+ which forms a quasipartition of unity (of a).

The following fact is well-known. A proof of (1)⇐⇒ (2) can be found in [17].
A proof of (1) ⇐⇒ (3) for ì = 2 can be found in [13], and a proof for the more
general case for any ì ≤ ë follows easily.

Fact 4. The following are equivalent.

1. B satisfies the (κ, ë,< ì)-d.l.
2. For any family Wα , (α < κ), of partitions of unity of B with each |Wα| ≤ ë,
there exists a partition of unityW such that for each b ∈ W , for each α < κ,
b ∧ c 6= 0 for less than ì-many c ∈Wα .

3. For each B-name ġ for a function from κ̌ into ë̌ and any generic filter G ⊆ B
+,

there is a function f : κ → [ë]<ì in V such that V [G ] |=“∀α < κ̌, ġ(α) ∈
f(α)”.

We now recall a game related to the (κ, ë,< ì)-d.l., which we introduced in [5].
This game generalizes a game of Jech related to the weak (ù, ë)-d.l. in [11].

Definition 5. [5] Let κ, ë be infinite cardinals and ì be a cardinal such that
2 ≤ ì ≤ ë. The game G κ<ì(ë) is played between two players in a complete Boolean
algebra B as follows: At the beginning of the game, Player I fixes some a ∈ B

+. For
α < κ, the α-th round is played as follows: Player I chooses a partition Wα of a
such that |Wα | ≤ ë; then Player II chooses some Eα ∈ [Wα]<ì. In this manner, the
two players construct a sequence of length κ

〈a,W0, E0,W1, E1, . . . ,Wα , Eα , . . . : α < κ〉 (2.2)

called a play of the game. Player I wins the play ( 2.2) if and only if
∧

α<κ

∨

Eα = 0. (2.3)

G κ<ì(∞) is the game played like G
κ
<ì(ë), except now Player I can choose partitions

of any size.

It is not hard to see that if II has a winning strategy for G κ<ì(ë) in B, then B

satisfies the (κ, ë,< ì)-d.l.

Notation. Jech’s game Gfin(ë) in [11] is G
ù
<ù(ë) in our notation. If ì = í

+, we
often write G κí (ë) instead of G

κ
<ì(ë). In particular, we write G

κ
1 (ë) for G

κ
<2(ë).

Remark. G κ<ì(∞) can be played on a partial ordering P. We say that II wins the
play iff there is a p ∈ P such that p ≤ a and ∀α < κ, Eα is pre-dense below p. If P
is a partial ordering, then Player I (II) has a winning strategy for G κ<ì(∞) in P iff

Player I (II) has a winning strategy for G κ<ì(∞) in r.o.(P).

By work of Cummings and Dobrinen, it is consistent with ZFC that for all cardi-
nals κ, ë, ìwith ë ≥ ì, there is amax(κ, ë)+-Suslin algebrawhich is (max(κ, ë),∞)-
distributive and in which G κ<ì(ë) is undetermined.
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Theorem 6 (Cummings/Dobrinen, [4]). Let κ be any infinite cardinal, and let í
be any regular cardinal such that ù ≤ í ≤ cf(κ). Suppose that�κ holds and ♦κ+(S)
holds for every stationary set S ⊆ {α < κ+ : cf(α) = í}. Then there is a κ+-Suslin
algebra which contains a <í-closed dense subset, and in which for all ñ, ë, ì with
í ≤ ñ ≤ cf(κ) and 2 ≤ ì ≤ min(ë, κ), G ñ<ì(ë) is undetermined.

Jech showed in [11] that if the weak (ù, ë)-d.l fails in B, then I has a winning
strategy for G ù<ù(ë) in B. In that paper, he asked whether the converse holds.
Kamburelis gave a complete answer via Theorems 7 and 8 below, which we extend
in Section 5.

Notation. Let ë be an ordinal. By [ë̌]ù we mean the set of all (good) B-names
for ranges of functions from ù into ë̌.

Theorem 7 (Kamburelis, [14]). Assume B satisfies the weak (ù, ë)-d.l. and
V B |=“ [ë̌]ù ∩ V is stationary”. Then Player I does not have a winning strategy
for G ù<ù(ë) in B.

Theorem 8 (Kamburelis, [14]). Assume that ‖[ë̌]ù ∩ V is non-stationary‖B > 0.
Then Player I has a winning strategy for G ùù (ë) in B.

Corollary 9 (Kamburelis, [14]). Assume that B is weakly (ù, ë)-distributive.
Then Player I has a winning strategy for G ù<ù(ë) in B iff

‖[ë̌]ù ∩V is non-stationary ‖B > 0.

Our extensions of the preceding theorems of Kamburelis appear as Theorems 33
and 37 in Section 5. The following theorem of Kueker was essential to Kamburelis’
proof of Theorem 8.

Theorem 10 (Kueker, [18]). If C ⊆ [ë]ù is club, then there exists a function
f : [ë]<ù → ë such that Cf is club and Cf ⊆ C , where Cf = {x ∈ [ë]ù :
(∀y ∈ [x]<ù) f(y) ∈ x}.

In Section 3 we present a generalization of Theorem 10, which we call the Strong
κ-club Theorem 21. This theorem will be used extensively throughout this paper to
lift results aboutPℵ1ë toPκ+ë, when κ

<κ = κ.

§3. ≥ í-club, ≥ í-stationary, í-club, and í-stationary subsets of Pκë. Along the
way to generalizing Kamburelis’s results to uncountable cardinals, the necessity of
dealing with κ-club and κ-stationary subsets of [ë]≤κ appeared, as will be seen in
Section 5. We present here the more general notions of ≥ í-club, ≥ í-stationary,
í-club, and í-stationary subsets of [ë]<κ and the basic theorems regarding such
sets. (For more on í-club and stationary subsets of κ, see [8], and [9], and [22].
≥ í-club subsets of κ+ were used by Cummings and Dobrinen in [4] to obtain the
aforementioned Theorem 6.)

Definition 11. Suppose ù ≤ í < κ ≤ ë and í, κ are regular. We say that a set
X ⊆ [ë]<κ is í-closed if for all increasing sequences 〈xα : α < í〉 ⊆ X ,

⋃

α<í xα ∈ X .
C ⊆ [ë]<κ is í-club if it is í-closed and unbounded in [ë]<κ (i.e. (∀y ∈ [ë]<κ)(∃x ∈
C ) y ⊆ x). S ⊆ [ë]<κ is í-stationary if S ∩C 6= ∅ for all í-club C ⊆ [ë]<κ. We say
that a set C ⊆ [ë]<κ is ≥ í-club if C is ñ-club for all regular ñ with í ≤ ñ < κ.
S ⊆ [ë]<κ is ≥ í-stationary if S ∩ C 6= ∅ for each ≥ í-club C ⊆ [ë]<κ.
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Note. For any regular ù ≤ ñ < κ, a set X ⊆ [ë]<κ is closed under increasing
sequences of length ñ iff X is closed under strictly increasing sequences of length ñ
iff X is closed under increasing sequences of length with cofinality ñ.

Fact 12. Suppose ù ≤ ì < í < κ ≤ ë+ and ì, í, κ are regular. On [ë]<κ ,

1. ≥ ù-club is the same as club; ≥ ù-stationary is the same as stationary.
2. ≥ ì-club =⇒ ≥ í-club =⇒≥ í-stationary=⇒ ≥ ì-stationary.
3. ≥ í-club =⇒ í-club =⇒ í-stationary=⇒≥ í-stationary.

Remark. Suppose ù ≤ ì < í < κ ≤ ë+ and ì, í, κ are regular. The ≥ í-club
and ≥ í-stationary sets form a strict hierarchy among the stationary sets of [ë]<κ.
However, there are ì-club and í-club sets which are disjoint. {x ∈ [ë]<κ : x ∩ κ
is an ordinal with cf(x ∩ κ) ≥ í} is ≥ í-club but not ≥ ì-club. If í+ < κ, then
{x ∈ [ë]<κ : x ∩ κ is an ordinal with cf(x ∩ κ) = í} is í-club, but not ≥ í-club,
nor ì-club. By Theorem 17 below, there exist≥ í-stationary (í-stationary) subsets
of [ë]<κ which are not ≥ í-club (í-club). {x ∈ [ë]<κ : x ∩ κ is an ordinal with
cf(x ∩ κ) = ì} is ì-club, but not ≥ í-stationary.

Fact 13 through Theorem 16 are easy generalizations of results about club and
stationary subsets of [ë]<κ (see [13]).

Fact 13. Suppose ù ≤ í < κ ≤ ë and í, κ are regular. The intersection of less
than κ-many ≥ í-club (í-club) subsets of [ë]<κ is ≥ í-club (í-club).

Proof. Let è < κ and Cα (α < è) be ≥ í-club (í-club) subsets of [ë]
<κ. Let

C =
⋂

α<è Cα . C is certainly ≥ í-closed (í-closed). Let y ∈ [ë]<κ. Choose some
x0 ∈ C0 such that y ⊆ x0. In general, for â = è · ã + α, where ã < í and α < è,
choose some xâ ∈ Cα such that

⋃

{xæ : æ < â} ⊆ xâ . Let x =
⋃

{xâ : â < è · í}.
For each α < è, 〈xè·ã+α : ã < í〉 is an increasing sequence in Cα which is cofinal
in 〈xâ : â < è · í〉. Hence, x =

⋃

{xè·ã+α : ã < í} ∈ Cα , since Cα is ≥ í-closed
(í-closed). ⊣

Definition 14. [13] Suppose ù ≤ í < κ ≤ ë and í, κ are regular. Given
a collection Cα (α < ë) of subsets of [ë]<κ, define the diagonal intersection of
{Cα : α < ë} to be

∆α<ëCα = {x ∈ [ë]<κ : ∀α ∈ x (x ∈ Cα)}. (3.1)

Lemma 15. Suppose ù ≤ í < κ ≤ ë and í, κ are regular. Let Cα (α < ë) be
a collection of ≥ í-club (í-club) subsets of [ë]<κ . Then ∆α<ëCα is also ≥ í-club
(í-club).

The proof is similar to that of Lemma 8.23 in [13], but using closure under
sequences of length í in place of ù. The next theorem can be proved using the stan-
dard argument for Fodor’s Theorem for stationary sets by substituting Lemma 15
where the version for club sets is normally used.

Theorem 16 (Fodor’s Theorem). Suppose ù ≤ í < κ ≤ ë, í, κ are regular, and
S ⊆ [ë]<κ is ≥ í-stationary (í-stationary). If f : S → ë satisfies f(x) ∈ x for all
x ∈ S, then there exists an α < ë such that {x ∈ S : f(x) = α} is ≥ í-stationary
(í-stationary).

The following theorem is a strengthening of Proposition 25.5 in [16]. The main
ideas are due to Baumgartner.
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Theorem 17. If í ≤ κ are regular and κ < ë, then every ≥í-stationary
(í-stationary) X ⊆ [ë]≤κ can be decomposed into ë many disjoint ≥í-stationary
(í-stationary) subsets.

Proof. Let S = {x ∈ [ë]κ : |x ∩ κ+| = κ}. S is club. Let X ⊆ [ë]≤κ be ≥ í-
stationary. We can assume that X ⊆ S, since X ∩ S is again ≥ í-stationary. For
each x ∈ X , fix an injection fx : x → x∩κ+. For α < ë, let X ′

α = {x ∈ X : α ∈ x}
and define gα : X ′

α → κ
+ by gα(x) = fx(α). X ′

α = X ∩ {x ∈ [ë]≤κ : α ∈ x} which
is ≥ í-stationary. Each gα is regressive. By Theorem 16, there is an çα < κ such
that Xα = {x ∈ X ′

α : gα(x) = çα} is ≥ í-stationary. Note that for α 6= â with
çα = çâ , Xα ∩ Xâ = ∅, since each fx is 1–1.
We have two cases. First assume cf(ë) > κ. Then there is an ç < κ such that

|{α < ë : çα = ç}| = ë. Otherwise, cf(ë) ≤ κ, and there is an ç < κ such that
|{α < κ+ : çα = ç}| = κ+. Letting Yα = {x ∈ X : gα(x) = ç} for each α with
çα = ç gives us κ+ disjoint ≥ í-stationary subsets of X . List {α < κ+ : çα = ç} in
increasing order as {αä : ä < κ

+}. Let 〈ìä : ä < cf(ë)〉 be an increasing sequence
of regular cardinals cofinal in ë such that ì0 > κ. For each ä < cf(ë), repeat the
procedure above to get ìä -many disjoint ≥ í-stationary subsets of Yαä .
Replacing each instance of ≥ í-stationary by í-stationary yields the theorem for
í-stationary sets. ⊣

More generally, at the suggestion of Piper, we have confirmed the following. The
proof is almost identical to that of Proposition 25.5 in [16].

Theorem 18. Let S = {x ∈ [ë]<κ : |x ∩ κ| = |x|}. Suppose κ is regular, ë > κ,
and (∗) is a closure property for sets on [ë]<κ such that every club set is (∗)-club and
the intersection of two (∗)-clubs is again (∗)-club. We say that a set is (∗)-stationary
if it has non-empty intersection with every (∗)-club set. Suppose the Fodor Theorem
holds for (∗)-stationary sets. If S is (∗)-stationary, then every (∗)-stationary subset
of S can be decomposed into ë disjoint (∗)-stationary sets.

The following holds for ≥í-club sets, since closure under a <í-ary function
guarantees the set to be ≥í-closed.

Lemma 19. Suppose [either (ù ≤ í < κ ≤ ë) or (ù ≤ í ≤ ë and í+ = κ)], í, κ
are regular, and è<í < κ for all è < κ.

1. For any ä < κ and any collection of functions fα : [ë]<í → [ë]<κ , (α < ä),
letting F = {fα : α < ä}, the set

CF = {x ∈ [ë]<κ : (∀α < ä)(∀y ∈ [x]<í) fα(y) ⊆ x} (3.2)

is a ≥ í-club subset of [ë]<κ.
2. For any ä < κ and any collection of functions hα : [ë]

<í → ë, (α < ä), letting
H = {hα : α < ä}, the set

CH = {x ∈ [ë]<κ : (∀α < ä)(∀y ∈ [x]<í) hα(y) ∈ x} (3.3)

is a ≥ í-club subset of [ë]<κ.

Proof. Let ñ be a regular cardinal satisfying í ≤ ñ < κ, and let 〈xâ : â < ñ〉 be
an increasing sequence in CF . Let x =

⋃

â<ñ xâ . Given y ∈ [x]<í there is some

â < ñ such that y ⊆ xâ . xâ ∈ CF implies fα(y) ⊆ xâ for all α < ä. Hence,
x ∈ CF .
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Let x0 ∈ [ë]<κ. Define x1 = x0 ∪
⋃

{fα(y) : α < ä, y ∈ [x0]<í}. In general, for
â < í, let

xâ =
⋃

ã<â

xã ∪
⋃

{

fα(y) : α < ä, y ∈
[

⋃

ã<â

xã

]<í}

. (3.4)

Each |xâ | < κ, since we are assuming that è
<í < κ for all è < κ. Let x =

⋃

â<í xâ .

Given y ∈ [x]<í , there exists a â < í such that y ⊆ xâ . For each α < ä,
fα(y) ⊆ xâ+1 ⊆ x. Thus, x ∈ CF .
By a similar argument, CH is easily shown to be ≥ í-club. ⊣

The following, essentially due to Kueker [18], is a natural generalization of The-
orem 10.

Theorem 20 (Strong Club). 1. Suppose κ ≤ ë and κ is regular. For each club
C ⊆ [ë]<κ there exists a function f : [ë]<ù → [ë]<κ such that Cf ⊆ C , where

Cf = {x ∈ [ë]<κ : (∀y ∈ [x]<ù) f(y) ⊆ x}. (3.5)

2. Suppose κ < ë and κ is regular. For each club C ⊆ [ë]≤κ, there exist functions
hα : [ë]<ù → ë, (α < κ), such that CH ⊆ C , where

CH = {x ∈ [ë]≤κ : (∀α < κ)(∀y ∈ [x]<ù) hα(y) ∈ x}. (3.6)

Moreover, Cf and CH are club.

§4. κ-club subsets of Pκ+ë. If κ < ë and κ is regular, we shall refer to ≥ κ-club
subsets ofPκ+ë simply as κ-club sets.
The requirement of κ-many functions in (2) of Theorem 20 can sometimes be
a hinderence to extending results for club subsets of [ë]ù to [ë]≤κ. Of course, if
one is willing to restrict to the club set K̃ = {x ∈ [ë]<κ : x ∩ κ ∈ κ}, then for
any club C ⊆ K̃ , there exists a function f : [ë]<ù → ë such that {x ∈ K̃ :
∀y ∈ [x]<ù , f(y) ∈ x} ⊆ C . However, the set K̃ is not absolute with respect to
forcing; in some forcing extensions, the set K̃ of the ground model may not even
be club in the Pκë of the forcing extension. This can produce problems when one
needs to define club sets in the extension merely by functions, not modulo some
club. However, the situation improves for κ-club sets. The following theorem is
essentially due to Kueker. In [19], he states result (2) (without proof) in connection
with infinitary logic. We present here a purely combinatorial proof of (2) and refine
it to (3), which increases the usefulness of the theorem. Theorem 21 is used in many
of the results in the following sections, as it allows us to lift results for club and
stationary subsets of [ë]ù to κ-club and κ-stationary subsets of [ë]≤κ, if κ<κ = κ.

Theorem 21 (Strong κ-Club). Suppose κ<κ = κ ≤ ë and C ⊆ [ë]≤κ is κ-club.
Then

1. There exist functions fα : [ë]<κ → C (α < κ) such that CF ⊆ C .
2. There exists a function f : [ë]<κ → [ë]≤κ such that Cf ⊆ C .
3. There exists a function h : [ë]<κ → ë such thatCh ⊆ C , andmoreover, ∀x ∈ Ch ,
cf (o.t.(x)) = κ.



κ-STATIONARY SUBSETS OF Pκ+ë 245

Proof. 1. We will recursively define functions fα : [ë]<κ → C so that for each
α < κ, for each x ∈ [ë]<κ,

fα(x) ⊇ x ∪
⋃

{fâ(y) : â < α, y ∈ [x]<κ}. (4.1)

For each x ∈ [ë]<κ, let f0(x) ∈ C such that x ⊆ f0(x). Having defined fâ for all
â < α, for each x ∈ [ë]<κ let fα(x) ∈ C such that fα(x) ⊇

⋃

{fâ(y) : â < α, y ∈
[x]<κ}. Note that x ⊆ f0(x) ⊆ fα(x), since x ∈ [x]<κ . The fα : [ë]<κ → C

(α < κ) satisfy ( 4.1).
Let CF = {x ∈ [ë]≤κ : (∀α < κ)(∀y ∈ [x]<κ) fα(y) ⊆ x}. CF is κ-club
by Lemma 19, since κ<κ = κ. Let x ∈ CF . Let 〈uα : α < κ〉 be an increasing
sequence of subsets of x such that

⋃

α<κ uα = x and each |uα| < κ. If â <
α < κ, then (4.1) implies fâ(uâ) ⊆ fα(uα). Since each fα(uα) ∈ C and C is
κ-closed,

⋃

α<κ fα(uα) ∈ C . Now x =
⋃

α<κ uα ⊆
⋃

α<κ fα(uα), by (4.1); and
x ⊇

⋃

α<κ fα(uα), since x ∈ CF and all uα ∈ [x]<κ . Therefore, x ∈ C .
2. Using the fα’s from part 1, define f : [ë]<κ → [ë]≤κ by f(y) =

⋃

α<κ fα(y).
Let Cf = {x ∈ [ë]≤κ : (∀y ∈ [x]<κ) f(y) ⊆ x}. Then Cf = CF .
3. For each x ∈ [ë]≤κ fix an enumeration 〈(x)α : 0 < α < κ〉 of x (possibly with
repetitions). For 0 < α < κ, define hα : [ë]<κ → ë by hα(y) = (f(y))α , the α-th
element of the enumeration of f(y). Let CH = {x ∈ [ë]≤κ : (∀0 < α < κ)(∀y ∈
[x]<κ) hα(y) ∈ x}. Then CH = Cf .
Define h0 : [ë]<κ → ë by h0(y) = (sup y) + 1. Fix a surjection φ : κ \ {0} →
κ × (κ \ {0}) such that (a) φ(1) = 〈0, 1〉; (b) ∀α ∈ κ \ {0}, φ(α) = 〈â, ã〉 implies
ã ≤ α; and (c) ∀α ∈ lim(κ), φ(α) = 〈0, α〉. Finally, define h : [ë]<κ → ë as follows:
For y ∈ [ë]<κ , if 〈yæ : æ < α〉 enumerates y in increasing order and φ(α) = 〈â, ã〉,
then h(y) = hâ({yæ : æ < ã}). We claim that Ch ⊆ CH .
Let x ∈ Ch . Let ä = o.t.(x) and 〈xæ : æ < ä〉 be the enumeration ofx in increasing
order. By (a), for each æ < ä, h({xæ}) = xæ +1 ∈ x, so ä must be a limit ordinal. If
cf(ä) < κ, then let z = 〈zæ : æ < cf(ä)〉 be a cofinal subset of x. z ∈ [x]

<κ implies
h(z) ∈ x. By (c), h(z) = h0(z) = (sup z) + 1 = (supx) + 1. Contradiction. Thus,
cf(ä) = κ.
Now let â < κ, y ∈ [x]<κ , and 〈yæ : æ < ã〉 be the increasing enumeration of y.
Take an α ∈ κ \ {0} such that φ(α) = 〈â, ã〉. By (b), α ≥ ã. cf(x) = κ implies
there is an increasing sequence 〈xæ : ã ≤ æ < α〉 ⊆ x with sup(y) < xã . Then
hâ(y) = h(y ∪ {xæ : ã ≤ æ < α}) ∈ x. Therefore, x ∈ CH . ⊣

The following decomposition theorem follows easily from the argument of Propo-
sition 25.11 in [16] of a result of Matsubara [21], using Theorem 21. We include the
proof for the sake of completeness.

Theorem 22. Suppose κ<κ = κ, 2κ < ëκ, and |(ëκ)(ë
<κ)| = |ëκ|. Then every

κ-stationary subset of [ë]≤κ can be decomposed into ëκ disjoint κ-stationary sets.

Proof. First note: ifY is cofinal in [ë]≤κ, then |Y | = ëκ. By the hypotheses, there
are ëκ many functions from [ë]<κ into [ë]≤κ. Let 〈fα : α < ëκ〉 be an enumeration
of all such functions so that each function appears cofinally often. For each α < ëκ,
the set Cfα := {x ∈ [ë]≤κ : (∀y ∈ [x]<κ) fα(y) ⊆ x} is κ-club, since κ<κ = κ. By
Theorem 21, each κ-club contains a Cfα for some α < ë

κ.
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Let X be a κ-stationary subset of [ë]≤κ. By recursion on α < ëκ, having picked

〈çâî : î < â < α〉, choose 〈ç
α
î : î < α〉 distinct members of (X ∩ Cfα) \ {ç

â
î : î <

â < α}.
For î < ëκ, set Xî = {çαî : î < α < ë

κ}. These sets are pairwise disjoint. Let C
be κ-club. Then ∃α < ëκ such that α > î and Cfα ⊆ C . Then çαî ∈ Xî ∩ Cfα ⊆
Xî ∩C . Therefore, C ∩ Xî 6= ∅. Hence, Xî is κ-stationary. ⊣

We now investigate the κ-club filter on [ë]≤κ. Krueger asked whether the κ-club
filter is just the club filter restricted to some κ-club set. Foreman later asked the
same question and showed that, indeed, it is when we are working in [H (ë)]≤κ . We
basically give his argument below.
Foreman also noted that every stationary subset of the collection of internally
approachable sets of length κ on [H (ë)]≤κ is κ-stationary. We thank both Foreman
and Krueger for helpful discussions.
Let K0 = {x ∈ [H (ë)]≤κ : [x]<κ ⊆ x} and K1 = {x ∈ [H (ë)]≤κ : (x)<κ ⊆ x}.
K0 and K1 are both κ-club in [H (ë)]≤κ . The following fact was pointed out (in
a slightly different form) by Foreman.

Fact 23. Suppose κ<κ = κ. Given a function f : [H (ë)]<κ → [H (ë)]≤κ , there is
a function g : H (ë)→ [H (ë)]≤κ such that Cg ∩K0 ⊆ Cf , where

Cf = {x ∈ [H (ë)]≤κ : ∀y ∈ [x]<κ , f(y) ⊆ x} (4.2)

and

Cg = {x ∈ [H (ë)]≤κ : ∀y ∈ x, g(y) ⊆ x}. (4.3)

Proof. First, note that as defined above, Cf is κ-club and Cg is club. Given f,
define g by g(y) = f(y) if |y| < κ, and g(y) = ∅ otherwise. Let x ∈ Cg ∩ K0
and y ∈ [x]<κ. Then y ∈ x, so g(y) ⊆ x. |y| < κ implies g(y) = f(y). Hence,
x ∈ Cf . ⊣

A similar argument works for K1. Hence, we have the following theorem.

Theorem 24. For i = 0, 1, the κ-club filter onPκ+(H (ë)) is generated by the club
sets intersected with Ki .

The proof follows immediately from Fact 23 and Theorems 20 and 21.
We now review what it means for an element of [H (ë)]<κ to be internally ap-
proachable.

Definition 25. [6] Let N ∈ [H (ë)]<κ . N is internally approachable of length â if
N =

⋃

α<â Nα , where for all â
′ < â , 〈Nα : α < â ′〉 ∈ N .

Let IA denote the set of internally approachable elements of [H (ë)]≤κ . Let K =
K0 ∩K1. That the setK ⊆ IA is not hard to show: Let x ∈ K \ {∅}. Then |x| = κ.
Let f : κ → x be a bijection. For each α < κ, let Nα = f′′α. Then x =

⋃

α<κ Nα .
For each α < κ, Nα ∈ x. Hence, for each â < κ, 〈Nα : α < â〉 ∈ (x)<κ ⊆ x.
Therefore, x is internally approachable.
It then follows from Theorem 24 that every κ-stationary subset of [H (ë)]≤κ

contains a stationary subset of IA (in fact, contains a κ-stationary subset of IA).
This can also be seen indirectly from Corollary 57 in § 6 along with Lemma 2.5
of [6]. However, the converse does not hold, but does hold for IA stationary sets of
length κ.
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Fact 26. IA\K0 and IA\K1 are stationary subsets of IAwhich are notκ-stationary.

Proof. Let C ⊆ [H (ë)]≤κ be club. Without loss of generality, assume that for
all x ∈ C , x ≺ 〈H (è),∈, . . .〉 for some fixed suitably large è. Let N0 ∈ C . Then
〈N0〉 ∈ H (ë). Given N0 ⊆ . . . ⊆ Ni in C , the sequence 〈N0, . . . , Ni 〉 ∈ H (ë). Let
Ni+1 ∈ C such that 〈N0, . . . , Ni 〉 ∈ Ni+1 and Ni ⊆ Ni+1. Let N =

⋃

i<ù Ni . Then
N ∈ C and N ⊆ IA, since for each j < ù, 〈Ni : i ≤ j〉 ∈ Nj+1 ⊆ N . However,
N 6∈ K0, since {Ni : i < ù} 6∈ N . Similarly, N 6∈ K1. ⊣

Open Problem 27. If ë<ë > ë, is the κ-club filter on [ë]≤κ equal to the club filter
restricted to some κ-club set?

We end this section by mentioning some results of Piper. In his PhD thesis [23],
Piper showed there is a cardinal and cofinality-preserving forcing which adds a de-
structible stationary set. He has noted that a similar forcingwill addì-many disjoint
destructible (∗)-stationary subsets of [ë]<κ for any ì < κ, where (∗)-stationary here
denotes any of fat stationary,≥ í-stationary for any regular í < κ, or r-stationary
(see [24] for the definition) for κ Mahlo or the successor of a regular cardinal. We
note that r-stationarity on [ë]≤κ is equivalent to κ-stationarity for regular κ. We
mention a couple of his theorems which apply to κ-stationary sets and refer the
reader to his papers for r-stationary versions when κ is Mahlo.

Theorem 28 (Piper, [24]). If κ is regular and ♦rκ+,ë,⊆, then there is a family of

2|Pκ+ë|-many κ-stationary subsets of Pκ+ë such that the intersection of any two of
them is not stationary.

Theorem 29 (Piper, [24]). If κ is regular, then ♦rκ+ë implies ♣
r
κ+,ë.

Theorem 30 (Piper, [25]). Let κ be regular. If F is a strongly normal filter over
[ë]≤κ with {x ∈ [ë]≤κ : |x ∩ κ+| = |x|} ∈ F , then the κ-club filter is contained in F .

§5. The game G κ<ì(ë) and a characterization of the (κ, ë,< ì)-distributive law
when ë ≥ κ. We now set out to extend Theorems 7 and 8 of Kamburelis. Unlike
his work with [ë]ù , we now must deal with the facts that new subsets of ë of size
less than κ may be added, and that stationary sets no longer play the decisive role,
rather, κ-stationary sets do.
The following generalizes Lemma 1.1 in [14] to games of uncountable length
and/or uncountable choice sets for Player II. The proof, being completely analogous
to that given by Kamburelis for G ù<ù(ë), is omitted. Recall: B denotes a complete
Boolean algebra.

Lemma 31. There is a natural correspondence ó 7→ ḟó between strategies ó for
Player I in G κ<ì(ë) and B-valued names ḟó such that ‖ḟó : ([ë̌]<ì̌)<κ̌ → ë̌‖ > 0.

Moreover, ó is a winning strategy for I iff for each branch x in ([ë]<ì)<κ (in V ),

‖(∀α < κ̌) ḟó(x̌ ↾ α) ∈ x̌(α)‖ = 0. (5.1)

Notation. By [ë̌]≤κ̌ we denote the set of (good) B-names for ranges of functions
from κ̌ into ë̌. Thus, in V [G ], [ë̌]≤κ̌ denotes the collection of ranges of functions
in V [G ] from from the ordinal κ̌ into the ordinal ë̌, regardless of their cardinalities
in V [G ]. This is equal to the collection of subsets (in V [G ]) of the ordinal ë̌
of cardinality less than or equal to the cardinality of κ̌ in V [G ]. So there is
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no ambiguity about what we mean by [ë̌]≤κ̌ in V [G ]. Similarly for ([ë̌]<ì̌)<κ̌.
Whenever B preserves κ as a regular cardinal, we write [ë̌]≤κ instead of [ë̌]≤κ̌ and
([ë̌]<ì̌)<κ instead of ([ë̌]<ì̌)<κ̌.

The following easy fact is useful for guaranteeing preservation of a regular cardi-
nal.

Fact 32. If κ is regular and B satisfies the (ñ, κ,< κ)-d.l. for all ñ < κ, then κ is
a regular cardinal in any extension of V by B.

The next theorem basically follows Kamburelis’ proof of Theorem 7. The main
differences are the following. When dealing with [ë̌]<κ in V B, we must keep track
of which sets are in V and which are new. The key set Ċ in the proof is not
necessarily club, but only κ-club. Also, we realized that it is only necessary to
assume B is (κ, κ,< ì)-distributive, not (κ, ë,< ì)-distributive, thereby improving
onKamburelis’ result in the case ofκ = ù. We note that forì ≤ κ, the (κ, κ+, < ì)-
d.l. holds iff the (κ, κ,< ì)-d.l. holds and κ+ is preserved.

Theorem 33. Suppose the following hold.

1. ì ≤ κ = κ<κ ≤ ë;
2. B satisfies the (κ, κ,< ì)-d.l.;
3. If ë > κ, then B preserves κ+ as a cardinal above κ;
4. V B |= “ |κ<κ | = κ and [ë̌]≤κ ∩ V is κ-stationary”.

Then Player I does not have a winning strategy for G κ<ì(ë) in B.

Proof. Sinceκ is regular inV andB is (κ, κ,< ì)-distributive, κ is again a regular
cardinal in any generic extension by B. Hence, we use κ throughout instead of κ̌,
since no ambiguity arises. Letó be a strategy for Player I, ḟó be the correspondingB-
name from Lemma 31, and a = ‖ḟó : ([ë̌]<ì̌)<κ → ë̌‖. Let Ċ be the set of “good”

B-names Ẋ for elements of [ë̌]≤κ such that ‖∀s ∈ ([Ẋ ]<ì̌)<κ ḟó(s) ∈ Ẋ‖ ≥ a.
Using the fact that V B |= “|κ<κ| = κ” and Lemma 19, it is routine to show that

a ≤ ‖Ċ is κ-club in [ë̌]≤κ‖. (5.2)

Note: Ċ is not necessarily club. We can only guarantee closure under ḟó for
sequences in Ċ of length κ.
By assumption (4), 1 = ‖[ë̌]≤κ∩V is κ-stationary‖, so a ≤ ‖Ċ ∩V ∩ [ë̌]≤κ 6= ∅‖.
Hence, by (3) there exists 0 < b ≤ a and anX ∈ [ë]≤κ inV such that b ≤ ‖X̌ ∈ Ċ‖.
Let T denote the tree ([X ]<ì)<κ in V . Since B satisfies the (κ, κ,< ì)-d.l. and
b ≤ ‖ḟó ↾ Ť : Ť → X̌‖, there exists 0 < c ≤ b and an F ∈ V such that
F : T → [X ]<ì and c ≤ ‖(∀s ∈ Ť ) ḟó(s) ∈ F̌ (s)‖.
Let x(0) = F (〈 〉). For α < κ, let x(α) = F (x ↾ α). Then x is a branch of T ,
and x ∈ V . c ≤ ‖(∀α < κ) ḟó(x̌ ↾ α) ∈ x̌(α)‖. By Lemma 31, ó is not a winning
strategy for I in G κ<ì(ë). ⊣

Remark. If B is (κ, κ+, < ì)-distributive, then κ+ is not collapsed to κ, so (3)
holds automatically.

Theorems 1 and 33 yield the following.
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Corollary 34 (GCH). 1. Suppose κ, ë are such that ¬((ë ≥ κ)∧ (κ is
singular) ∧ (cf(ë) < κ)). Then B is (κ, ë)-distributive iff I does not have
a winning strategy for G κ1 (ë) in B.

2. Suppose (ë < κ) or (κ = ë and is regular) or (κ is regular, ì ≤ κ, and
V B |=“ |κ<κ| = κ”). Then B is (κ, κ,< ì)-distributive iff I does not have
a winning strategy for G κ<ì(κ).

Example 35. Suppose κ is regular and κ ≤ ë. Let B = Coll(κ, ë). B satisfies
the (< κ,∞)-d.l. (hence preserves κ) but not the (κ, κ,< ì)-d.l. for any ì ≤ κ.
Trivially, V B |= “[ë̌]≤κ ∩ V is club in [ë̌]≤κ”. However, I wins G κ<ì(ë), since the

(κ, ë,< ì)-d.l. fails in B.

Theorem 36. Suppose κ < ë, and κ is regular. If ‖[ë̌]≤κ̌ ∩ V is non-station-
ary‖B > 0, then Player I has a winning strategy for G κκ (ë) in B.

We omit the proof of Theorem 36, as it is similar to that of Theorem 37, using
the Strong Club Theorem 20 in place of the Strong κ-Club Theorem 21.
The following theorem shows that the assumption V B |=“ [ë̌]≤κ ∩ V is κ-
stationary” was necessary for Theorem 33. Our proof basically follows that of
Kamburelis for Theorem 8, using Theorem 21 (3) in place of his use of Kueker’s
Theorem 10.

Theorem 37. Suppose that κ<κ = κ ≤ ë and B satisfies the (< κ, κ)-d.l. If
‖[ë̌]≤κ ∩V is not κ-stationary‖B > 0, then Player I has a winning strategy for G κκ (ë)
in B.

Proof. The (<κ, κ)-distributivity of B implies some useful facts. First, all cardi-
nals less than or equal to κ are preserved (so κ is still regular). Hence, we write κ
instead of κ̌ throughout. Second, for any set x ∈ V with |x| ≤ κ, [x]<κ is the same
in any extension of V by B as it is in V . Hence, V B |=“ |κ<κ | = κ”.

Let a = ‖[ë̌]≤κ ∩V is not κ-stationary‖. Then there is some B-name Ċ such that

a = ‖Ċ ⊆ [ë̌]≤κ, Ċ is κ-club, and Ċ ∩V = ∅‖. (5.3)

By the Strong κ-Club Theorem 21 in V B, there exists a B-name ḣ such that

a = ‖ḣ : [ë̌]<κ → ë̌, and Ḋ ⊆ Ċ‖, (5.4)

where

Ḋ = {x ∈ [ë̌]≤κ : (∀y ∈ [x]<κ) ḣ(y) ∈ x}. (5.5)

In V , fix a surjection 〈ð, ϕ〉 : κ \ {0} → κ × κ such that for all α < κ, ð(α) < α.
The following defines awinning strategy for Player I forG κκ (ë) inB. At the beginning
of the game, I fixes a. On round 0, I plays

W0 = {a ∧ ‖ḣ(∅) = â‖ : â < ë}, (5.6)

which is a partition of a of size ≤ ë. Then II chooses some K0 ∈ [ë]≤κ (in V ) and
plays

E0 = {a ∧ ‖ḣ(∅) = â‖ : â ∈ K0}. (5.7)
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Enumerate [K0]<κ as 〈F 0ã : ã < κ〉, allowing repetitions. (Recall: |K0| ≤ κ and

(< κ, κ)-distributivity of B imply [K0]<κ is the same in V as in any extension of V
by B.) On round 0 < α < κ, let I play the partition of a

Wα = {a ∧ ‖ḣ(F̌ ð(α)
ϕ(α)
) = â‖ : â < ë}. (5.8)

II chooses some Kα ∈ [ë]≤κ and plays

Eα = {a ∧ ‖ḣ(F̌ ð(α)
ϕ(α)
) = â‖ : â ∈ Kα}. (5.9)

Enumerate [
⋃

ä≤α Kä]
<κ as 〈F αã : ã < κ〉; continue in this manner. Let

b =
∧

α<κ

∨

Eα . (5.10)

Suppose b > 0. Let K =
⋃

α<κ Kα . Note thatK ∈ V . Fix an F ∈ [K ]<κ. There

is some â < κ for which F ⊆
⋃

æ≤â Kæ . So F = F
â
ã for some ã < κ. Take an α < κ

satisfying 〈ð(α), ϕ(α)〉 = 〈â, ã〉. Then

b ≤ ‖ḣ(F̌ ð(α)
ϕ(α)
) ∈ Ǩα‖ = ‖ḣ(F̌ ) ∈ Ǩα‖. (5.11)

Since F was arbitrary,

b ≤ ‖(∀F ∈ [Ǩ ]<κ) ḣ(F ) ∈ Ǩ‖. (5.12)

So b ≤ ‖Ǩ ∈ Ḋ‖. b ≤ a implies b ≤ ‖Ḋ ∩ V = ∅‖, so b ≤ ‖Ǩ 6∈ V ‖.
Contradiction. Therefore, b = 0, so I wins G κκ (ë). ⊣

From Theorems 33 and 37 we can extract the following corollaries.

Corollary 38. Assume ì ≤ κ = κ<κ ≤ ë, B is (< κ, κ)-distributive, and if ë > κ
then B does not collapse κ+. Then the following are equivalent.

1. B is (κ, ë,< ì)-distributive and V B |=“ [ë̌]≤κ ∩ V is κ-stationary”.

2. B is (κ, κ,< ì)-distributive and V B |=“ [ë̌]≤κ ∩V is κ-stationary”.
3. Player I does not have a winning strategy for G κ<ì(ë) in B.

For κ = ù, (1)⇐⇒ (3) is due to Kamburelis [14].

Corollary 39. Assume the following.

1. κ = κ<κ < ë;
2. B is (< κ, κ)-distributive;
3. V B |=“ [ë̌]≤κ ∩ V is κ-stationary”.

Then ∀ì ≤ κ, B is (κ, κ+, <ì)-distributive iff B is (κ, ë,<ì)-distributive. In particu-
lar, if (1) and (3) hold, then B is (κ, 2)-distributive iff B is (κ, ë)-distributive.

Remark. The case κ = ù follows from the proof of Proposition 4.1 in Jech’s [12]:
If B preserves stationarity of [ë̌]ù ∩V for all cardinals ë and adds no new reals, then
B adds no new ù-sequences.

One might naturally want to understand the relationships of the condition
V B |=“ [ë̌]≤κ ∩ V is κ-stationary” with neighboring properties. We first point
out two trivial facts. The (κ, ë, κ)-d.l. holds in B iff the set [ë]≤κ in V re-
mains unbounded in the set [ë̌]≤κ̌ in V B; and whenever B is (κ, ë)-distributive,
then V B |=“ [ë̌]≤κ ∩ V is κ-stationary”. The condition V B |=“ [ë̌]≤κ ∩ V is κ-

stationary” is strictly weaker than preserving all κ-stationary subsets of [ë̌]≤κ, but
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non-trivial. Shooting a club through a stationary/co-stationary subset of ℵ1 is
not proper, yet satisfies V B |=“ [ë̌]ù ∩ V is stationary” for all ë since this forcing
is (ù,∞)-distributive. More generally, for κ<κ = κ, shooting a κ-club through
a κ-stationary/co-κ-stationary subset of [ë]≤κ (see Theorem 63) gives a partial or-
dering which destroys a κ-stationary subset of [ë̌]≤κ, yet preserves κ-stationarity of
[ë̌]≤κ ∩ V for all ë since this forcing is (κ,∞)-distributive.
The next Theorem 40 gives general conditions under which V B |=“ [ë̌]≤κ ∩ V is
κ-stationary” holds. The proof uses ideas from Theorem 6 of Abraham and Shelah
in [1], which gives the result for κ = ù and ë = ℵ2. Note: when κ+ is not collapsed
to κ, [ë]≤κ ∩V is the same as ([ë]≤κ)V .

Theorem 40. Let 2 ≤ n < ù. Suppose V ⊆ W are models of ZFC such that for
all m ≤ n, κ+m is the same in V as inW , and κ<κ = κ inW . Then [κ+n]≤κ ∩ V is
κ-stationary inW .

Proof. LetC be κ-club in ([κ+n]≤κ)W . InW , by the Strong κ-Club Theorem 21,
there is a function f : [κ+n]<κ → κ+n such that Cf ⊆ C , where Cf = {x ∈
([κ+n]≤κ)W : (∀y ∈ [x]<κ) f(y) ∈ x}. First we note that κ+n is closed under f in
W . The rest of the proof follows by finitely many applications of the next claim.
Its proof uses the fact that κ<κ = κ inW and all κ+m are preserved (m ≤ n) imply
that (κ+m)<κ = κ+m (m ≤ n).

Claim. Let m ≤ n. If a ⊆ κ+n in V such that |a| = κ+m and a is closed under f
inW , then there exists b ⊆ a such that b ∈ V , |b| < κ+m , and b is closed under f
inW .

a ∈ V and |a| = κ+m imply there is a bijection h : κ+m → a in V . We will
show there is a â < κ+m such that h′′â is closed under f in W . Let w0 = h′′1,
z0 = w0 ∪ {f(y) : y ∈ [w0]<κ}, x0 = h−1(z0), and â0 = sup(x0) + 1. In general,
let wæ+1 = h

′′âæ , zæ+1 = wæ+1 ∪ {f(y) : y ∈ [wæ+1]
<κ}, xæ+1 = h

−1(zæ+1),
and âæ+1 = sup(xæ+1) + 1. For limit æ < κ, let âæ = sup{âî : î < æ}. Let
â = sup{âæ : æ < κ}. Then â < κ

+m and cf(â) = κ. Let y ∈ [h′′â]<κ. Then
∃æ < κ such that y ⊆ h′′âæ ; so f(y) ∈ zæ+1 = h

′′(xæ+1) ⊆ h
′′âæ+1 ⊆ h′′â . Let

b = h′′â . Then b ∈ V and |b| = |â | < κ+m . b is closed under f in W , so
b ∈ Cf . ⊣

From Corollary 39 and Theorem 40 we obtain the following.

Corollary 41. Suppose 2 ≤ n < ù, κ<κ = κ, and B preserves κ+m for allm ≤ n.

1. If B is (κ, 2)-distributive, then B is (κ, κ+n)-distributive.
2. If ì ≤ κ, B is (κ, κ,< ì)-distributive, then B is (κ, κ+n , < ì)-distributive.

Example 42 (Kamburelis, [14]). There is a Boolean algebra in which the weak
(ù,∞)-d.l. holds, but I has a winning strategy for G ùù (ù2).

Open Problem 43. For ù < κ ≤ ë and ì ≤ κ, is there a Boolean algebra in
which the (κ, ë,< ì)-d.l. holds, yet I has a winning strategy for G κ<ì(ë)?

Such a winning strategy must be dependent on Player II’s choices, for otherwise,
the distributive law would fail. We will demonstrate later (Example 61) a solution
for this problem when ì = κ+.
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§6. Preservation of κ-stationarity and a generalized version of the proper game.

We say that B preserves κ-stationary subsets of [ë]≤κ if κ̌ is regular in V B and for
each κ-stationary S ⊆ [ë]≤κ in V , Š is a κ̌-stationary subset of [ë̌]≤κ̌ in V B. We
define a game Γκκ(ë) which is a natural generalization and refinement of the proper
game, due to Gray [7], and which is easier for Player II to win than G κκ (ë). We
map out the relationships between G κκ (ë), Γ

κ
κ(ë), and preservation of κ-stationary

subsets of [ë]≤κ, leading to a, perhaps, surprising Corollary 59.

Fact 44. If P preserves κ-stationary subsets of [ë]≤κ, then P does not collapse κ+

to κ, nor does P reduce any cofinalities κ < í ≤ ë to κ.

Proposition 45. Suppose κ<κ = κ ≤ ë, and B satisfies the (ë<κ, ë, κ)-d.l. and the
(< κ, ë)-d.l. Then every κ-club in V B contains a κ-club in V . Hence, B preserves
every κ-stationary subset of [ë]≤κ.

Proof. The (< κ, ë)-d.l. implies that all cardinals ≤ κ are preserved and that
∀x ∈ V with |x| ≤ ë, B adds no new subsets of x of cardinality less than κ. Let
S ⊆ [ë]≤κ be a κ-stationary set in V . Let G be a generic filter on B, and let Ċ be
a B-name for which V [G ] |= “Ċ is a κ-club subset of [ë̌]≤κ”. In V [G ], κ<κ = κ,
since κ<κ = κ in V and B is (< κ, κ)-distributive.
In what follows, all B-names are evaluated in V [G ]. By the Strong κ-Club
Theorem 21, there exists an ḣ : [ë̌]<κ → ë̌ such that, letting

Ḋ = {x ∈ [ë̌]≤κ : (∀y ∈ [x]<κ) ḣ(y) ∈ x}, (6.1)

Ḋ is κ-club in [ë̌]≤κ and Ḋ ⊆ Ċ . Since B satisfies the (ë<κ , ë, κ)-d.l., there exists
some g ∈ V such that g : [ë]<κ → [ë]≤κ and for all x ∈ [ë]<κ , ḣ(x) ∈ g(x). In V ,
let Cg = {x ∈ [ë]≤κ : (∀y ∈ [x]<κ) g(y) ∈ x}. Then Cg is κ-club, by Lemma 19,

so S ∩ Cg 6= ∅. Moreover, x ∈ Cg =⇒ (∀y ∈ [x]<κ) ḣ(y) ∈ g(y) ⊆ x =⇒ x ∈ Ḋ.
Hence, Ḋ ∩ S 6= ∅. Therefore, S is κ-stationary in V [G ]. ⊣

Fact 46. If B is κ+-c.c., then B is (∞,∞, κ)-distributive.

The proof is straightforward, using the forcing equivalent of the (∞,∞, κ)-d.l.
(Fact 4 (3)).

Corollary 47. Suppose κ<κ = κ ≤ ë, B is κ+-c.c., and B is (< κ, ë)-distributive.
Then B preserves all κ-stationary subsets of [ë]≤κ.

We now present a game which is a natural extension of the properness game to
uncountable lengths.

Definition 48. S κ1 (ë) is a game of length κ played on a partial ordering (P,≤)
as follows: At the beginning of the game, Player I fixes a p ∈ P. On the α-th round,
I plays æ̇α a P-name for an ordinal less than ë; then II chooses an ordinal äα < ë. II
wins the play iff there is a q ≤ p such that ∀α < κ, q 
 “(∃â < κ̌) æ̇α = äâ”.

S
κ
1 (ë) has the following equivalent version S

κ
κ (ë): On each round α < κ, instead

of choosing one ordinal äα , II now chooses a set of ordinals Bα ⊆ ë of size ≤ κ. II
wins the play iff ∃q ≤ p such that ∀α < κ, q 
 “æ̇α ∈

⋃

â<κ Bâ”.

Let S κ1 (∞) and S
κ
1 (∞) denote the games when the players are allowed to chose

names for ordinals and ordinals of any size.
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Fact 49. 1. (Gray, [7]) II has a winning strategy for Sù1 (∞) in P iff P is
proper.

2. [12] II has a winning strategy for Sù1 (ù1) in P iff P is semiproper.

Jech showed that II wins G ùù (∞) strictly implies properness, and mentioned
that by examples of Baumgartner and Shelah, Axiom A strictly implies II wins
G ùù (∞) [11]. Zapletal has shown that II wins G

ù
1 (2) implies II wins S

ù
1 (ù1).

Somewhat surprisingly, he has also shown that, assuming the consistency of the
existence of a measurable cardinal, it is consistent that there is a Boolean algebra
which is not proper, but in which II wins G ù1 (2). Moreover, in ZFC there is a proper
(ù,∞)-distributive Boolean algebra of density 2ℵ0 in which G ù1 (2) is undetermined.
See [26] for more results on G ù1 (2).
The following Γκκ(ë) is a Boolean algebraic version of S

κ
κ (ë). Γ

ù
ù(∞) can be found

in [12] under the notation G .

Definition 50. Let κ < ë. The game Γκκ(ë) is played on a complete Boolean
algebra as follows. First, Player I fixes some a ∈ B

+. On round α < κ, Player I
choosesWα a partition of a with |Wα| ≤ ë. Then for each â ≤ α, Player II chooses
a Bαâ ⊆Wâ such that |B

α
â | ≤ κ. II wins the play iff

∧

α<κ

∨

α≤ã<κ

(

∨

Bãα

)

> 0. (6.2)

Γκκ(∞) denotes the game where Player I is permitted to choose partitions of any
cardinality.

Fact 51. The games S κκ (ë), S
κ
1 (ë), and Γ

κ
κ(ë) are equivalent, in that I (II ) has

a winning strategy for one of them iff I (II ) has a winning strategy for each of them.

Fact 52. Let ë > κ.

1. If II wins G κκ (ë), then II wins Γ
κ
κ(ë); the reverse holds for Player I.

2. If Player II has a winning strategy forΓκκ(ë) inB, thenB satisfies the (κ, ë, κ)-d.l.

Remarks. 1. The property “II wins G κκ (ë)” is strictly stronger than “II wins
Γκκ(ë)”, as will be shown in Example 61. The reverse holds for Player I.

2. There is a κ-length version of Axiom A which implies that II wins G κκ (∞),
analogously to Jech’s result for ù-length games.

The following generalizes and refines the fact that if P is proper and adds no new
reals, then P adds no new ù-sequences.

Proposition 53. For ë > κ, if II wins S κκ (ë) in P and r.o.(P) is (κ, 2)-distributive,
then r.o.(P) is (κ, ë)-distributive.

Proof. Let ô̇ = 〈ô̇α : α < κ〉 be a sequence of names for ordinals below ë. Let
p ∈ P. On round α, let I play ô̇α . Let II choose an ordinal îα < ë according
to II’s winning strategy. Let B = {îα : α < κ}. There exists a q ≤ p such that
q 
 (∀α < κ̌) ô̇α ∈ B. Since r.o.(P) is (κ, 2)-distributive and B ∈ V , the evaluation
of 〈ô̇α : α < κ〉 in any generic extension of P is an element of V . Hence, P adds no

new functions from κ̌ into ë̌. ⊣

We make the following definition, analogously to one given (but not named) by
Jech in [12].
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Definition 54. Let κ be regular and κ < ë. We say that B is κ-club distributive
over ë if for each b > 0, for every collectionWα = {bαâ : â < ë}, α < ë, such that
each Wα is a quasipartition of b, there is a κ-club C ⊆ [ë]≤κ such that for each
x ∈ C ,

∧

α∈x

∨

â∈x

bαâ > 0. (6.3)

Themain ideas of the followingProposition 55 come from Jech’s proof for the case
κ = ù, which can be found in [12]. Again, we use the Strong κ-Club Theorem 21
in place of Theorem 10.

Proposition 55. Suppose κ<κ = κ < ë.

1. If II has a winning strategy for Γκκ(ë) played in B, then B is κ-club distributive
over ë.

2. Suppose also ë = ë<κ, B is (< κ, κ)-distributive, and B is κ-club distributive
over ë. Then B preserves all κ-stationary subsets of [ë]≤κ.

Proof. To prove (1), suppose κ<κ = κ < ë and II has a winning strategy ó for
Γκκ(ë). Let b > 0 andWα = {bαâ : â < ë}, α < ë, be quasipartitions of b. Define
a function F : [ë]<κ → [ë]≤κ as follows. Let e ∈ [ë]<κ . For each enumeration

〈αj : j < ä〉 of e, let {B
j
i }
j<ä
i≤j denote the moves of II using ó against 〈Wαj : j < ä〉.

Take F (e) ∈ [ë]≤κ so that for each enumeration 〈αj : j < ä〉 of e, ∀i ≤ j < ä,

(bαi ,â ∈ Bji → â ∈ F (e)). Let CF = {x ∈ [ë]≤κ : ∀e ∈ [x]<κ , F (e) ⊆ x}. CF is
κ-club, by Lemma 19.
Let x ∈ CF and 〈αi : i < κ〉 be an enumeration of x. Consider the game Γκκ(ë)
when I fixes b and plays 〈Wαi : i < κ〉. For each i < κ, {αk : k ≤ i} ∈ [x]<κ, so
F ({αk : k ≤ i}) ⊆ x. Thus, for each fixed i < κ,

∨

â∈x bαi ,â ≥
∨

{bαi ,â : â ∈ F (e) for some e ∈ [x]<κ}

≥
∨

i≤j<κ

(

∨

B ij

)

.
(6.4)

Since ó is a winning strategy for II,

∧

α∈x

∨

â∈x

bαâ =
∧

i<κ

∨

â∈x

bαi ,â ≥
∧

i<κ

∨

i≤j<κ

(

∨

B ij

)

> 0. (6.5)

Now assume the hypotheses of (2). Let S ⊆ [ë]≤κ be a κ-stationary set. (< κ, κ)-
distributivity of B and κ<κ = κ imply that V B |= “κ̌ is a regular cardinal and
|κ̌<κ̌ | = κ̌ ”. So the Strong κ-Club Theorem 21 applies in V B. Hence, it suffices to

show that for any B-name ḣ : [ë̌]<κ → ë̌ and each b > 0, there is an x ∈ S such that
0 < b ∧ ‖x̌ is closed under ḣ‖.
In V , let 〈eα : α < ë〉 be a fixed enumeration of [ë]<κ. Define f : [ë]<κ → ë by
f(e) = the least α such that e = eα . Cf = {x ∈ [ë]≤κ : (∀y ∈ [x]<κ) f(y) ∈ x}

is κ-club, by Lemma 19. Let b > 0. For each α, â < ë, let bαâ = b ∧ ‖ḣ(ěα) = â‖.
Then for each α < ë, {bαâ : â < ë} is a quasipartition of b. Since B is κ-
club distributive over ë, there is a κ-club C ⊆ [ë]≤κ such that for each x ∈ C ,
∧

α∈x

∨

â∈x bαâ > 0. Let x ∈ S ∩ C ∩ Cf and let a =
∧

α∈x

∨

â∈x bαâ . x ∈ Cf
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implies for each e ∈ [x]<κ there is an α ∈ x such that e = eα . B is (< κ, κ)-
distributive implies [x]<κ is the same in V as in V B. Therefore,

‖(∀α ∈ x̌)(∃â ∈ x̌) ḣ(ěα) = â‖ ≤ ‖(∀e ∈ [x̌]<κ)(∃â ∈ x̌) ḣ(e) = â‖. (6.6)

So, we have 0 < a ≤ b∧‖x̌ is closed under ḣ‖. Therefore,B preserves κ-stationarity
of S. ⊣

Remark. By using arguments of Jech [11], one can directly show that if κ<κ = κ,
B is (< κ, κ)-distributive, and II wins G κκ (ë) in B, then B preserves all κ-stationary
subsets of [ë]≤κ. This does not require ë<κ = ë, as does (2) of Proposition 55.

The following extends a theorem of Menas to κ-club sets. (A proof of his result
can be found in [13].) His argument works here, just replacing his use of Kueker’s
Theorem 10 with the Strong κ-Club Theorem 21.

Lemma 56. Let A ⊆ B with |A| ≥ κ. For X ⊆ [A]≤κ, let X ∗ = {y ∈ [B]≤κ :
y ∩A ∈ X}. For Y ⊆ [B]≤κ , let Y ↾ A = {y ∩ A : y ∈ Y}.

1. If C ⊆ [A]≤κ is κ-club, then C ∗ is κ-club in [B]≤κ . Hence, if S ⊆ [B]≤κ is
κ-stationary, then S ↾ A is κ-stationary in [A]≤κ.

2. Assume κ<κ = κ. If C ⊆ [B]≤κ is κ-club, then C ↾ A contains a κ-club set in
[A]≤κ. Hence, if S ⊆ [A]≤κ is κ-stationary, then S∗ is κ-stationary in [B]≤κ .

Corollary 57. Suppose κ<κ = κ, B is (< κ, κ)-distributive, and Player II has
a winning strategy for Γκκ(∞) in B. Then B preserves all κ-stationary subsets of [ë]≤κ

for all cardinals ë ≥ κ. Hence, κ<κ = κ and < κ+-closure imply preservation of all
κ-stationary subsets of [ë]≤κ for all cardinals ë ≥ κ.

Proof. Let ë ≥ κ be given. Let è = ëκ. Then è<κ = è. Let S ⊆ [ë]≤κ be
κ-stationary. By Lemma 56, S∗ = {x ∈ [è]≤κ : x ∩ë ∈ S} is κ-stationary in [è]≤κ.
II wins Γκκ(è) implies B preserves κ-stationarity of S∗, by Proposition 55. Let G be

a B-generic filter and evaluate the following in V [G ]. Let C ⊆ [ë̌]≤κ be κ-club, and
let C ∗ = {x ∈ [è̌]≤κ : x ∩ ë̌ ∈ C}. C ∗ is κ-club, by Lemma 56. Let x ∈ S∗ ∩ C ∗.

Then x ∩ ë̌ ∈ S ∩ C . Thus, S is a κ-stationary subset of [ë̌]≤κ in V [G ]. ⊣

Examples 58. Assume κ<κ = κ. Let P(κ) denote perfect tree forcing on κ2.
Kanamori investigated this forcing for κ > ù [15]. When κ = ù this is just Sacks
forcing. Let S(κ) denote superperfect tree forcing on κκ, when κ > ù. This has the
same flavor as Miller forcing. Brown investigated S(κ) in [3]. Both P(κ) and S(κ)
are< κ-closed; and by κ-length fusion, II has awinning strategy forG κκ (∞). Hence,
they preserve all κ-stationary subsets of [ë]≤κ for all ë ≥ κ. In r.o.(P(κ)), I wins
G κ1 (2), since a new function from κ into 2 is added. If κ is strongly inaccessible,
then II has a winning strategy for G κ<κ(∞). In r.o.(S(κ)), I wins G

κ
<κ(κ), since the

forcing adds a new unbounded function from κ into κ.

The next Corollary follows from Theorem 33, Proposition 55, and Corollary 57.

Corollary 59. 1. Suppose ì ≤ κ<κ = κ < ë = ë<κ and B is (<κ, κ)-
distributive and (κ, κ,<ì)-distributive. If II has a winning strategy for Γκκ(ë),
then I does not have a winning strategy for G κ<ì(ë).

2. Suppose ì ≤ κ<κ = κ and B is (<κ, κ)-distributive and (κ, κ,<ì)-distributive.
If II has a winning strategy for Γκκ(∞), then I does not have a winning strategy
for G κ<ì(∞).
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We now show that the games G κκ (ë) and Γ
κ
κ(ë) are not in general equivalent.

What follows is a family of forcings which are variations on Baumgartner’s adding
a club to ù1 with finite conditions. Letting í ≤ κ be regular cardinals, we shall say
that a functionf : κ+ → κ+ is≥ í-normal iff is strictly increasing and continuous
at each ordinal æ < κ+ such that cf(æ) ≥ í.

Definition 60. Let í, κ be regular and ù ≤ è ≤ í ≤ κ. Let P
í
κ(è) denote the

following forcing notion. Conditions are partial functions p satisfying |p| < è,
dom(p) ⊆ κ+, p : dom(p)→ κ+, and there is a≥ í-normal functionf : κ+ → κ+

such that f ⊇ p. q ≤ p iff q ⊇ p.

Example 61. Suppose κ<è = κ. P
í
κ(è) adds a new ≥ í-club subset of κ+. In

r.o.(Píκ(è)), I wins G
í
κ (κ

+) but II wins Γκκ(∞); hence, the (κ,∞, κ)-d.l. holds.

Proof. The argument follows the basic outline of Jech’s proofs for the case of
κ = ù, as given in [11] and [12]. We give our generalized version here for the sake
of an unambiguous presentation.
By the usual density arguments, one can see that Píκ(è) adds a new ≥ í-normal
function from κ+ into κ+; its range yields a new ≥ í-club subset of κ+.

Claim 1. Player I wins G íκ (κ
+).

LetW0 = {{(0, î)} : î < κ+}. Let II choose some E0 ∈ [W0]≤κ and let ã0 = 0.
Let ã1 < κ+ be an ordinal satisfying ã1 = κã1 and ã1 > sup{î < κ+ : {(0, î)} ∈ E0}.
In general, given α < í and ãα , let I play Wα = {{(ãα , î)} : {(ãα , î)} ∈ P

í
κ(è)}.

II chooses some Eα ∈ [Wα ]≤κ. Pick a ãα+1 < κ+ satisfying ãα+1 = κãα+1 and
ãα+1 > sup{î < κ+ : {(ãα , î)} ∈ Eα}. For limit ordinals α < í, choose ãα < κ+

satisfying ãα = κãα and ãα > supâ<α ãâ .

Suppose I does not win G íκ (κ
+). Then there is a p ∈ P

í
κ(è) such that for each

α < í, p ≤
∨

Eα . Let ë = supα<í ãα . Since |p| < è ≤ í and í is regular,
there is an α < í such that dom(p) ∩ ë = dom(p) ∩ ãα . Let f be ≥ í-normal
witnessing that p ∈ P

í
κ(è). If there is a â with α < â < í and f(ãâ) ≥ ãâ+1, then

let q = p ∪ {(ãâ , f(ãâ ))}. Then q ≤ p. But for all r ∈ Eâ , q⊥r, contradicting that
p ≤

∨

Eâ . Thus, for all â with α < â < í, f(ãâ) < ãâ+1. Hence, f(ë) = ë.
We will find a q ≤ p such that q⊥r for all r ∈ Eα+1. Define g : κ+ → κ+ as
follows. For all æ ≤ ãα , let g(æ) = f(æ). Let g(ãα + 1) = ãα+2. If ãα < æ < ë, let
g(æ + 1) = g(æ) + 1. For limit æ with ãα < æ < ë, let g(æ) = supî<æ g(î). For all

æ ≥ ë, let g(æ) = f(æ). g is continuous at ë, since ë is indecomposable. So g is
≥ í-normal. Let q = p∪ {(ãα+1, g(ãα+1))}. Then g(ãα+1) > ãα+2 implies that r⊥q
for all r ∈ Eα+1, contradicting p ≤

∨

Eα+1. Therefore, I wins G íκ (κ
+).

Let C = {α < κ+ : α = ùα}. C is club. Let C í = {α < κ+ : α = ùα and
cf(α) ≥ í}. C í is ≥ í-club.

Claim 2. If p ∈ P
í
κ(è), α ∈ C í , and p ⊆ α × α, then p ∪ {(α,α)} ∈ P

í
κ(è).

Let f be a ≥ í-normal function witnessing that p ∈ P
í
κ(è). Let â = sup{æ + 1 :

æ ∈ dom(p)}. Then â < α and cf(â) < í. For æ < â , let g(æ) = f(æ). Let
g(â) = supã<â f(ã). (Note that g(â) < α.) Let g(æ + 1) = g(æ) + 1 for all

â < æ < α. Set g(æ) = supî<æ g(î) for limit â < æ < α. Finally, let g(æ) = æ for all

æ ≥ α. We claim that g is ≥ í-normal. It suffices to show that ∀æ < α, g(æ) < α,
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since g is strictly increasing. But this is trivial, since α is indecomposable. Thus,
p ∪ {(α,α)} ∈ P

í
κ(è).

For a maximal antichainW in P
í
κ(è), let

C (W ) = {ë ∈ C í : ∀α < ë∃â < ë ∀p ⊆ α×α ∃q ⊆ â×â (q ∈W and q‖p)}.
(6.7)

C (W ) is ≥ í-club (since κ<è = κ).

Claim 3. II wins Γκκ(∞).

Let I fix p0 ∈ P
í
κ(è). On round 0, when I plays a partitionW0 of p0, let II choose

some ë0 ∈ C (W0) such that p0 ⊆ ë0 × ë0 and play B00 = {p ∈W0 : p ⊆ ë0 × ë0}.
|B00 | ≤ κ, since κ

<è = κ. On round α < κ, when I plays a partitionWα of p0, let II
choose some ëα > supâ<α ëâ such that ëα ∈

⋂

â≤α C (Wâ ) and play for all ã ≤ α,

Bαã = {p ∈ Wã : p ⊆ ëα × ëα}. Also, we require that II choose ëα+1 > ëα · 2.

Let ë = supα<κ ëα . ë ∈
⋂

α<κ C (Wα), since these sets are all ≥ í-club. Let
q = p0 ∪ {(ë, ë)}. q ∈ P

í
κ(è) by Claim 2, since ë ∈ C

í .
We claim that ∀r ≤ q, ∀α < κ, ∃s ∈

⋃

α≤ã<κ B
ã
α such that s‖r. Let r ≤ q and

α < κ. Let r′ = r ∩ (ë× ë). Since |r| < í, ∃â < κ such that r′ ⊆ ã × ã for some
ã < ëâ . Take such a â > α. ëâ ∈ C (Wα) implies ∃s ⊆ ëâ × ëâ such that s ∈ Wα
and s‖r′. Such an s must be in Bâα . Let f witness that r′ ∪ s ∈ P

í
κ(è) and h witness

that r ∈ P
í
κ(è). Note that r

′ ∪ s ⊆ ëâ × ëâ .
Let ç = sup{æ + 1 : æ ∈ dom(s ∪ r′)}. We now have two cases. Suppose
h(ë) = ë. Then let g(æ) = f(æ), ∀æ < ç. g(ç) = supæ<ç f(æ). g(æ +1) = g(æ) + 1,

∀ç ≤ æ < ë. g(æ) = supî<æ g(î), for all limit ç < æ < ë. g(ë) = ë. g(æ) = h(æ)
∀ë < æ < κ+. g witnesses that r ∪ s ∈ P

í
κ(è). Otherwise, h(ë) > ë. Then let

ç ≤ î < ë be least such that g(î) < h(î). Define g ′(æ) = g(æ) for all æ ≤ î, and
g ′(æ) = h(æ) for all æ > î. Then g ′ witnesses that r ∪ s ∈ P

í
κ(è). Therefore, II wins

Γκκ(∞). ⊣

Open Problems 62. 1. Is P
í
κ(è) (< κ, κ)-distributive; or more generally, does

the forcing P
í
κ(è) preserve all κ-stationary subsets of [ë]

≤κ?
2. Assuming κ<κ = κ, does preservation of all κ-stationary subsets of [ë]≤κ

(∀ë > κ) plus (< κ, κ)-distributivity imply II has a winning strategy for Γκκ(ë)
(Γκκ(∞))?

§7. Adding κ-club subsets of [ë]≤κ without adding new κ-sequences. Recall that
by Theorem 17, if κ is regular and κ ≤ ë, every κ-stationary X ⊆ [ë]≤κ can be
decomposed into ë many disjoint κ-stationary subsets.
The following generalizes a proposition of Kamburelis in [14] to regular un-
countable κ. As a consequence, if κ<κ = κ, we can always add a κ-club set through
a κ-stationary subset of κ+. This contrasts with the necessity of a stationary subset
of ë being fat in order to add a club set through it, (see [1]). (Huuskonen, Hyttinen,
and Rautila found the precise characterization of subsets of ë through which it is
possible to shoot a í-club subset of ë [8].)

Theorem 63. Suppose ë > κ = κ<κ and S ⊆ [ë]≤κ is κ-stationary. Then there is
a (κ,∞)-distributive, ë+-c.c. forcing PS which adds a new κ-club set through S.
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Proof. Let PS be the set of all one-to-one functions f such that dom(f) is
an ordinal less than κ+, ran(f) ⊆ ë, and for each ordinal æ ≤ dom(f) with
cofinality κ, f[æ] ∈ S. Let g ≤ f ↔ g ⊇ f. PS is separative and atomless.

Claim. PS is (κ,∞)-distributive.

Let {Dα : α < κ} be a family of open dense subsets of PS . Let g ∈ PS . Let (ë)<κ

denote the set of sequences of elements of ë of length less than κ. There is a family
{gs : s ∈ (ë)<κ} ⊆ PS such that

1. g〈 〉 ≤ g
2. s ⊇ t → gs ≤ gt
3. dom(s) = α → gs ∈ Dα
4. ran(s) ⊆ ran(gs ).

Weproceed inductively on the length of s ∈ (ë)<κ. Choose oneg〈 〉 ∈ D0 such that
g〈 〉 ≤ g. Suppose α = â + 1 < κ. Let s ∈ (ë)

α and t = s ↾ â . If ran(s) ⊆ ran(gt),
letf = gt . Otherwise, {s(â)} = ran(s)\ ran(gt), so letf = gt∪{〈dom(gt), s(â)〉}.
Choose some gs ∈ Dα such that gs ≤ f.
Now suppose α < κ is a limit ordinal. Let s ∈ (ë)α , f =

⋃

â<α gs↾â , and

ä = dom(f). ran(s) ⊆ ran(f). If cf(ä) 6= κ, then f ∈ PS . If cf(ä) = κ, then
cf(α) < κ implies there is some â < α such that for all â ≤ â ′ < α, gs↾â′ = gs↾â .
So f = gs↾â ∈ PS . Take some gs ≤ f with gs ∈ Dα .
Let C = {x ∈ [ë]≤κ : ∀s ∈ (x)<κ ran(gs ) ⊆ x}. C is κ-club, assuming κ<κ = κ.
Let x ∈ C ∩ S and fix an enumeration 〈æα : α < κ〉 of x. For each α < κ,
let sα = 〈æâ : â < α〉. Let f =

⋃

α<κ gsα . Note that x =
⋃

α<κ ran(sα) ⊆
⋃

α<κ ran(gsα ) ⊆ x, since x ∈ C . Therefore, ran(f) = x. x ∈ S implies f ∈ PS .
Finally, f ∈ Dα for all α < κ.

Claim. PS adds a κ-club set through S.

LetG bePS -generic, ð =
⋃

G , andC ∗ = {ð[α] : α < κ+, cf(α) = κ}. Ifα < κ+

and cf(α) = κ, then ð[α] ∈ S. Let x ∈ [ë̌]≤κ. Since ð is onto ë̌, there is an α < κ+

such that x ⊆ ð[α] ∈ C ∗. So C ∗ is unbounded in [ë̌]≤κ. Let 〈xα : α < κ〉 be
a strictly increasing sequence in C ∗. For each α < κ, let æα denote the ordinal such
that xα = ð[æα]. Then 〈æα : α < κ〉 is also strictly increasing, so cf(supα<κ æα) = κ.
Therefore,

⋃

α<κ xα = ð[supα<κ æα ] ∈ C
∗. Hence, C ∗ is κ-closed. ⊣

We now have a natural extension of an example of Jech [11]: the forcing of [2]
which shoots a club through a stationary-co-stationary subset of ù1 with count-
able conditions yields a (ù,∞)-distributive Boolean algebra in which G ùù (∞) is
undetermined.

Example 64. Ifκ<κ = κ and ë<κ = ë, then there is aBoolean algebra inwhich the
games Γκκ(è) for all è ≥ ë, and G

κ
<ì(è) for all ì ≤ κ+ and è ≥ ë are undetermined.

Proof. Let S ⊆ [ë]≤κ be κ-stationary such that [ë]≤κ \ S is also κ-stationary.
Let B = r.o.(PS). II does not have a winning strategy for Γκκ(ë), by Proposition 55.
On the other hand, (κ,∞)-distributivity of B implies I does not have a winning
strategy in any game of length ≤ κ, by Theorem 1. ⊣

This improves on the consistency result for undetermined games in [4] (recall
Theorem 6), in the sense that it uses assumptions far weaker than ♦κ+(S) for all
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stationary sets S ⊆ κ+ and �κ. However, whereas that result is consistent for all
cardinals ì ≤ ë and κ, our above example requires ì ≤ κ+ ≤ ë and κ is regular.

Open Problem 65. Assuming ù < ì ≤ κ<κ < ë, find a Boolean algebra which
is (< κ, κ)-distributive and (κ, ë,< ì)-distributive and forces [ë̌]≤κ \ V to be κ-
stationary.

By Theorems 63 and 37 solving Problem 65 would solve Problem 43. We note
that if B is (ù, ëù1)-distributive, then by a theorem ofMagidor [20] there must be an
ù1-Erdős cardinal in K in order for it to even be possible for B to force [ë̌]≤ù1 \ V
to be ù1-stationary.
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