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This talk will highlight some of the main concepts in my papers,

The Ramsey theory of the universal homogeneous triangle-free graph,
65 pp, submitted,

and

The Ramsey theory of Henson graphs, 68 pp, preprint.

This work commenced during the Newton Institute HIF Programme
(2015).
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Finite Ramsey Theorem

Finite Ramsey Theorem. (Ramsey, 1929) k ,m, r ≥ 1 with m ≥ k ,
there is an n ≥ m such that for each coloring c : [n]k → r , there is an
X ∈ [n]m such that c is monochromatic on [X ]k .
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Finite Structural Ramsey Theory

(B
A

)
denotes the set of copies of A in B.

A Fräıssé class K has the Ramsey property if for each pair A ≤ B in K and
r ≥ 1, there is some C in K such that for each coloring f :

(C
A

)
→ r , there

is a B ′ ∈
(C
B

)
such that f takes one color on

(B′
A

)
.

Some Fräıssé classes of finite structures with the Ramsey property:
Boolean algebras, vector spaces over a finite field, ordered graphs,
ordered hypergraphs, ordered graphs omitting k-cliques, ordered metric
spaces, and many others.
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Small Ramsey Degrees

A Fräıssé class K has small Ramsey degrees if for each A ∈ K there is an
integer t(A,K) such that for each B ∈ K with A ≤ B, there is a C ∈ K
with B ≤ C so that for each r ≥ 1 and each coloring f :

(C
A

)
→ r , there is

a B ′ ∈
(C
B

)
such that f takes at most t(A,K) colors on

(B′
A

)
.

∀A ∈ K ∃t(A,K) ≥ 1 ∀B ∈ K ∃C ∈ K ∀r ≥ 1, C → (B)Ar ,t(A,K).

Some Fräıssé classes of finite structures with small Ramsey degrees:
The classes of finite graphs, hypergraphs, graphs omitting k-cliques,
and others.
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Infinite Ramsey Theorem

Infinite Ramsey’s Theorem. (Ramsey, 1929) Given n, r ≥ 1 and a
coloring c : [N]n → r , there is an infinite subset N ⊆ N such that c is
monochromatic on [N]n.

Note: For n = 2, this can also be stated in terms of coloring edges in an
infinite complete graph into finitely many colors finding an infinite
complete graph with all edges having the same color.
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Ramsey’s Theorem and Logic

Ramsey’s Theorem appears in his paper, On a problem of formal logic, and
was motivated by Hilbert’s Entscheidungsproblem:

Find a procedure for determining whether any given formula is valid.

Ramsey applied his theorem to solve this problem for formulas with only
universal quantifiers in front (Π1).
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Big Ramsey Degrees of Infinite Structures

Where combinatorics, set theory, model theory, and topology meet.
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Big Ramsey Degrees of Infinite Structures

Let S be an infinite structure. For a finite substructure A ≤ S, let
T (A,S) denote the least number, if it exists, such that for each coloring c
of
(S
A

)
into finitely many colors, there is an S ′ ∈

(S
S
)

such that c takes no

more than T (A,S) colors on
(S′
A

)
.

(Kechris, Pestov, Todorcevic, 2005) S has finite big Ramsey degrees if for
each finite A ≤ S, T (A,S) exists.

Infinite structures known to have finite big Ramsey degrees: The
infinite complete graph (Ramsey 1929); the rationals (Devlin 1979); the
Rado graph and random tournament (Sauer 2006); the countable
ultrametric Urysohn space (Nguyen Van Thé 2008); the Qn and the
tournaments S(2), S(3) (Laflamme, NVT, Sauer 2010), and a few
others.
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Ramsey Theory and Topological Dynamics

(Kechris, Pestov, Todorcevic 2005) Proved the correspondence: A Fräıssé
class K has the Ramsey property iff Aut(Flim(K)) is extremely amenable.

(Zucker 2019) Characterized universal completion flows of
Aut(Flim K) whenever Flim K admits a big Ramsey structure
(big Ramsey degrees).
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Missing Link: Forbidden Configurations

A large collection of Fräıssé classes have been shown to have the Ramsey
property or small Ramsey degrees, starting in the 1970’s and more in
recent years motivated by the Kechris-Pestov-Todorcevic correspondence.

However, few Fräıssé structures have been shown to have big Ramsey
degrees, and

Infinite structures with forbidden configurations have presented particular
difficulties.

The Problem: Lack of tools for representing such Fräıssé structures and
lack of a viable Ramsey theory for such (non-existent) representations.
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Guiding Example: Big Ramsey degrees of the Rado graph

The Rado graph R is the universal ultrahomogeneous graph on countably
many vertices.

• Vertices have big Ramsey degree 1. (Folklore)

• Edges have big Ramsey degree 2. (Pouzet-Sauer 1996).

• All finite graphs have finite big Ramsey degree. (Sauer 2006)

• Actual degrees were found structurally in (Laflamme-Sauer-Vuksanovic
2006) and computed in (J. Larson 2008).

The previously known big Ramsey structures have at their core Milliken’s
Ramsey Theorem for strong trees.
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Strong Trees

For t ∈ ω<ω, |t| = dom(t) =: the length of t.

T ⊆ ω<ω is a tree if ∃L ⊆ ω such that T = {t � l : t ∈ T , l ∈ L}.

For t ∈ T ⊆ ω<ω, heightT (t) = o.t.{u ∈ T : u ⊂ t}.

T (n) = {t ∈ T : heightT (t) = n}.

For t ∈ T , SuccT (t) = {u ∈ T̂ : u ⊃ t and |u| = |t|+ 1}.

S ⊆ T is a strong subtree of T iff there is an infinite set {mn : n < ω}
such that

1 Each S(n) ⊆ T (mn), and

2 For each n < ω, s ∈ S(n) and u ∈ SuccT (s), there is exactly one
s ′ ∈ S(n + 1) extending u.
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Example: A Strong Subtree S ⊆ 2<ω

The nodes in S are of lengths 0, 1, 3, 6, . . .
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Example: A Strong Subtree U ⊆ 2<ω

The nodes in U are of lengths 1, 4, 5, . . . .
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A Ramsey Theorem for Strong Trees

Thm. (Milliken 1979) Let T ⊆ ω<ω be a finitely branching tree with
no terminal nodes. Let k ≥ 0, r ≥ 2, and c be a coloring of all k-strong
subtrees of T into r colors. Then there is a strong subtree S ⊆ T such
that all k-strong subtrees of S have the same color.
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Ex: Milliken’s Theorem for 3-Strong Subtrees of T = 2<ω

Given a coloring c of all 3-strong trees in 2<ω into red and blue:
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Ex: Milliken’s Theorem for 3-Strong Subtrees of T = 2<ω
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Ex: Milliken’s Theorem for 3-Strong Subtrees of T = 2<ω

and this

Milliken’s Theorem guarantees a strong subtree in which all 3-strong
subtrees have the same color.
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Remark. Milliken’s space M of infinite strong trees forms a topological
Ramsey space.

This means that, similarly to the Baire space, there is a topology so
that all definable subsets of M have the Ramsey property.

How is Milliken’s Theorem applied to get upper bounds for the Ramsey
degrees of the Rado graph?
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Nodes in Trees can Code Graphs

Let A be a graph. Enumerate the vertices of A as 〈vn : n < N〉.

A set of nodes {tn : n < N} in 2<ω codes A if and only if for each pair
m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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Diagonal Trees Code Graphs

A tree T is diagonal if there is at most one meet or terminal node per level.

T is strongly diagonal if passing numbers at splitting levels are all 0
(except for the right extension of the splitting node).

t0

t1

t2

•

•

•

v0

v1

v2

Every graph can be coded by the terminal nodes of a diagonal tree.
Moreover, there is a strongly diagonal tree which codes R.
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A Different Strongly Diagonal Tree Coding a Path

〈〉

•

•

•

v0

v1

v2
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Strongly diagonal trees can be enveloped into strong trees

〈〉

0

00

000 001

01

010 011

1

10

100 101

11

110 111
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Another strong tree envelope

〈〉

0

00

000 001

01

010 011

1

10

100 101

11

110 111
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Outline of Sauer’s Proof: R has finite big Ramsey degrees

1 The Rado graph is bi-embeddable with the graph coded by all nodes
in the tree 2<ω.

2 Each finite graph can be coded by finitely many strong similarity
types of strongly diagonal trees.

3 Each strongly diagonal tree can be enveloped into a finite strong tree.

4 Apply Milliken’s Theorem finitely many times to obtain one color for
each type.

5 Choose a strongly diagonal antichain coding the Rado graph.
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Henson Graphs

For k ≥ 3, the k-clique-free Henson graph, Hk , is the universal
ultrahomogenous k-clique-free graph.

Main Thm. (D.) The Henson graphs have finite big Ramsey degrees.
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History of Results

• Henson constructed the graphs Hk for k ≥ 3, and proved they are
weakly indivisible in 1971.

• The Fräıssé class of finite ordered k-clique-free graphs G<k has the
Ramsey property. (Nešeťril-Rödl, 1977/83)

• Vertices in H3 have big Ramsey degree 1. (Komjáth-Rödl, 1986)

• For all k ≥ 4, Hk has big Ramsey degree 1. (El-Zahar-Sauer, 1989)

• H3 has big Ramsey degree 2 for edges. (Sauer, 1998)

There progress halted. Why?
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Main Obstacles to Big Ramsey Degrees of Hk

“A proof of the big Ramsey degrees for H3 would need new
Halpern-Läuchli and Milliken Theorems, and nobody knows what those
should be.” (Todorcevic, 2012)

Said the same thing, plus, “There is no simply representable triangle-free
graph which is bi-embeddable with H3.” (Sauer, 2013)

“So far, the lack of tools to represent ultrahomogeneous structures is the
major obstacle towards a better understanding of their infinite partition
properties.” (Nguyen Van Thé, Habilitation 2013)
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Our proof strategy

Follow the outline of Sauer’s proof of upper bounds for big Ramsey
degrees of the Rado graph, constructing new analogues at each stage.
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Main Theorem: Ramsey Theory for Henson Graphs

Theorem. (D.) Let k ≥ 3. For each finite k-clique-free graph A, there
is a positive integer T (A,Gk) such that for any coloring of all copies of
A in Hk into finitely many colors, there is a subgraph H ≤ Hk , with
H ∼= Hk , such that all copies of A in H take no more than T (A,Gk)
colors.
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Structure of Proof: Four Main Parts

I Develop notion of strong Hk -coding tree to represent Hk .

These are analogues of Milliken’s strong trees able to handle forbidden

k-cliques.

II Prove a Ramsey Theorem for trees with the Strict Witnessing
Property.

This is an analogue of Milliken’s Theorem for strong trees.

III Prove a Ramsey Theorem for strictly similar finite antichains.

This is obtained by a new notion of envelope.

IV Apply Ramsey Theorem for strictly similar antichains finitely many
times. Then take an antichain of coding nodes coding H3.

Similar to the end of Sauer’s proof.
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Part I: Strong Hk -Coding Trees

Idea: Want correct analogue of strong trees for setting of Hk .

Problem: How to make sure Kk is never encoded
but branching is as thick as possible?
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First Approach: Strong Kk-Free Trees

• Work with trees with an extra unary predicate which distinguishes
certain nodes to code vertices of a given graph (called coding nodes).

• Make a Branching Criterion so that a node s splits iff all its extensions
will never code Kk with coding nodes at or below the level of s.
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Kk-Free Branching Criterion

For a ≥ 2, given an index set I of size a, a collection of coding nodes
{ci : i ∈ I} in T codes an a-clique iff for each pair i < j in I , cj(li ) = 1.

A tree T with coding nodes 〈cn : n < N〉 satisfies the Kk -Free Branching
Criterion (k-FBC) if for each non-maximal node t ∈ T ,

(a) t_0 is always in T , and

(b) t_1 is in T iff adding t_1 as a coding node to T would not code a
k-clique with coding nodes in T of shorter length.
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Henson’s Criterion for building Hk

Henson proved that a countable graph H is universal for countable Kk -free
graphs if and only if H satisfies the property (Ak):

(i) H does not admit any k-cliques,

(ii) If V0,V1 are disjoint finite sets of vertices of H and H|V0 does not
admit any (k − 1)-cliques, then there is another vertex which is
connected in H to every member of V0 and to no member of V1.

For trees with coding nodes, this becomes (Ak)tree:

(i) T satisfies the Kk -Free Criterion.

(ii) Let 〈Fi : i < ω〉 be any enumeration of finite subsets of ω such that
for each i < ω, max(Fi ) < i − 1, and each finite subset of ω appears
as Fi for infinitely many indices i . Given i < ω, if for each subset
J ⊆ Fi of size k − 1, {cj : j ∈ J} does not code a (k − 1)-clique, then
there is some n ≥ i such that for all j < i , cn(lj) = 1 iff j ∈ Fi .
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Thm. Let T be a tree with no maximal nodes and coding nodes dense
in T , and satisfying the Kk -Free Branching Criterion. Then T satisfies
(Ak)tree, and hence codes Hk .
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Strong K3-Free Tree
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Figure: A strong triangle-free tree S3 densely coding H3
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Strong K4-Free Tree
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Figure: A strong K4-free tree S4 densely coding H4
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Almost sufficient

One can develop almost all the Ramsey theory one needs on strong
triangle-free trees

except for vertex colorings: there is a bad coloring of coding nodes.
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Refined Approach: Strong H3-Coding Tree T3

d0 = c−1

c0
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v1

v2

v3

Skew the levels of interest.
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Strong H4-Coding Tree, T4
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Strong Similarity Map

Let k ≥ 3 be given and let S ,T ⊆ Tk be meet-closed subsets. A bijection
f : S → T is a strong similarity map if for all nodes s, t, u, v ∈ S , the
following hold:

1 f preserves lexicographic order.

2 f preserves meets, and hence splitting nodes.

3 f preserves relative lengths.

4 f preserves initial segments.

5 f preserves coding nodes.

6 f preserves passing numbers at coding nodes.
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Mutual Pre-a-Clique: A key concept

Let k ≥ 3 be fixed, and let a ∈ [3, k]. A level subset X of Tk of size at
least two has a (mutual) pre-a-clique if ∃ I ⊆ [ω]a−2 such that, letting
i∗ = max(I) and l∗ = |cki∗ |:

1 l∗ ≤ lX , and there are exactly the same number of nodes in the level
set X � l∗ as in X ;

2 The set {cki : i ∈ I} codes a (a− 2)-clique;

3 Each node in X+ has passing number 1 at cki , for each i ∈ I.

The Point. Pre-a-cliques for a ∈ [3, k] code entanglements that affect
how nodes can extend.
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Stable Map

Let S and T be strongly similar subtrees of Tk with M ≤ ω critical nodes.
The strong similarity map f : T → S is stable if for each m ∈ [1,M), the
following holds:

For each a ∈ [3, k], a level subset X ⊆ T � |dT
m | has a maximal new

pre-a-clique in T in the interval (|dT
m−1|, |dT

m |] if and only if f [X ] has a
maximal new pre-a-clique in S in the interval (|dS

m−1|, |dS
m|].

We say that S and T are stably isomorphic and write S ∼= T .
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The Space of Strong Hk-Coding Trees: (Tk ,≤, r)

Tk is the collection of all subtrees of Tk which are stably isomorphic to Tk .

S ≤ T iff S is a subtree of T

rn(T ) is the first n levels of T .

The space Tk is very near a topological Ramsey space.
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A structural characterization of members of Tk

A subtree T of Tk has the Witnessing Property (WP) if for each
a ∈ [3, k], each new pre-a-clique in T takes place in some interval in T of
the form (|dT

mn−1|, |c
T
n |] and is witnessed by a set of coding nodes in T .

Lem. A tree T ⊆ Tk is a member of Tk iff T is strongly similar to Tk

and has the Witnessing Property.
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Extension Lemmas

Not every finite subtree A of some T ∈ Tk can be extended within T as
desired.

A series of extension lemmas shows that whenever A has the Witnessing
Property and free level sets, then A is extendible as desired within T .

We call such finite trees valid in T .
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A subtree of T3 in which WP fails

It has a pre-3-clique not witnessed by a coding node.
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A subtree of T3 in which WP holds

Its pre-3-clique is witnessed by a coding node.

This gives the basic idea of WP.
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Part II: A Ramsey Theorem for Finite Trees with
the Strict Witnessing Property.

Ideas:

(a) Use forcing to find Halpern-Läuchli style theorems for colorings of
level sets. This builds on ideas from Harrington’s ‘forcing proof’ of
the Halpern-Läuchli Theorem.

(b) Then weave together to obtain an analogue of Milliken’s Theorem.
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(a) Set-up for level set colorings

Let T ∈ Tk and A ⊆ B ⊆ T finite valid subtrees of T with WP, and
max(A) ⊆ max(B).

Let A+ be the set of immediate extensions in T̂ of max(A).

Let Ae ⊆ A+ contain 0(lA+1) and have at least two members.

Suppose that X̃ is a level set of nodes in T extending Ae and A ∪ X̃ is a
finite valid subtree of T satisfying WP.

Assume moreover that 0(lX̃ ) ∈ X̃ .

Case (a). X̃ contains a splitting node.

Case (b). X̃ contains a coding node.

ExtT (A, X̃ ) = {X ⊆ T : X w X̃ is a level set, A ∪ X ∼= A ∪ X̃ ,
and A ∪ X is valid in T}.
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(a) Ramsey Theorem for Level Set Colorings

Thm. Assume the previous set-up.

Given any coloring h : ExtT (A, X̃ )→ 2, there is a strong coding tree

S ∈ [B,T ] such that h is monochromatic on ExtS(A, X̃ ).

If X̃ has a coding node, then the strong coding tree S is, moreover,

taken to be in [rm0−1(B ′),T ], where m0 is the integer for which

there is a B ′ ∈ rm0 [B,T ] with X̃ ⊆ max(B ′).

We will go over the idea of the ‘forcing’ proof later, if time.
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(b) Strict Witnessing Property

A subtree A of Tk satisfies the Strict Witnessing Property (SWP) if

A satisfies the Witnessing Property and for each interval (|dA
m|, |dA

m+1|]:

1 If dA
m+1 is a splitting node, A has no new pre-cliques in the interval.

2 If dA
m+1 is a coding node, A has at most one new pre-clique in this

interval.

3 If Y is a new pre-clique in this interval, then each proper subset of Y
has a new pre-clique in some interval (|dA

j |, |dA
j+1|], where j < m.

Lem. If A ⊆ Tk has the Strict Witnessing Property and B ∼= A, then B
also has the Strict Witnessing Property.

Any B stably isomorphic to A is a copy of A.
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(b) Ramsey Theorem for Finite Trees with SWP

Thm. Let T ∈ Tk and A be a finite subtree of T with the Strict

Witnessing Property. Let c be a coloring of all copies of A in T .

Then there is a strong Hk -coding tree S ≤ T in which all copies of A

in S have the same color.

This is an analogue of Milliken’s Theorem for strong coding trees.
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Part III: Ramsey Theorem for Strictly Similar Finite Antichains
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Ramsey Theorem for Strictly Similar Antichains

Thm. Let Z be a finite antichain of coding nodes in an incremental
tree T ∈ Tk , and suppose h colors of all subsets of T which are strictly
similar to Z into finitely many colors. Then there is an incremental
strong Hk -coding tree S ≤ T such that all subsets of S strictly similar
to Z have the same h color.

New Concepts: incremental new pre-cliques, strict similarity, envelopes
to transform an antichain to a tree with SWP.
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Some Examples of Strict Similarity Types for k = 3

Let G be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding G .
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G a graph with three vertices and no edges

A tree A coding G - not WP but still a valid strict similarity type
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G a graph with three vertices and no edges

B codes G and is strictly similar to A.

〈〉
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The tree C codes G

C is not strictly similar to A.
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The tree D codes G

D is not strictly similar to either A or C .
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The tree E codes G and is not strictly similar to A - D

E is incremental. More on that later.
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The tree F codes G and is strictly similar to E

F is also incremental.
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Envelopes and Witnessing Coding Nodes

Envelopes add some neutral coding nodes to a finite tree to make it satisfy
the Strict Witnessing Property.

Envelopes for an antichain A in a strong coding tree T do not always exist
in T .

Instead, given T where the Ramsey theorem has been applied to the strict
similarity type of a prototype envelope of A, we take S ≤ T and a set of
witnessing coding nodes W ⊆ T so that each antichain in S has an
envelope in T , using coding nodes from W .

We now give some examples of envelopes.
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H codes a non-edge

This satisfies the SWP, so H is its own envelope.
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I codes a non-edge

I does not satisfy the WP.
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An Envelope E(I )

w

The witnessing coding node w is added to make an envelope.
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The incremental tree E from before
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An envelope E(E )

w0

w1

w3

w2

The witnessing coding nodes w1, . . . ,w3 make an envelope of E .
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The tree F from before is strictly similar to E
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E(F ) is strictly similar to E(E )

w0

w1

w2

w3

The witnessing coding nodes w0, . . . ,w3 make an envelope of F .
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Part IV: Apply the Ramsey Theorem to Strictly Similarity Types
of Antichains to obtain the Main Theorem.
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Bounds for Big Ramsey Degrees T (G ,Hk)

1 Let G be a finite Kk -free graph, and let f color the copies of G in Hk

into finitely many colors.

2 Define f ′ on antichains in T: For an antichain A of coding nodes in T
coding a copy, GA, of G , define f ′(A) = f (GA).

3 List the strict similarity types of antichains of coding nodes in T
coding G . There are finitely many.

4 Apply the Ramsey Theorem from Part III, once for each strict
similarity type, to obtain a strong coding tree S ≤ T in which f ′ has
one color per type.

5 Take an antichain of coding nodes, A in S , which codes Hk . Let H′
be the subgraph of Hk coded by A.

6 Then f has no more colors on the copies of G in H′ than the number
of (incremental) strict similarity types of antichains coding G .
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An antichain A of coding nodes of S coding H3

cA0

cA1

The tree minus the antichain of cAn ’s is isomorphic to T3.
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Proving the lower bounds in general for big Ramsey degrees of Hk

is a work in progress.

Big Ramsey degrees for edges and non-edges have been computed.
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Edges have big Ramsey degree 2 in H3

These are their own envelopes.
T (Edge,G3) = 2 was obtained in (Sauer 1998) by different methods.
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Non-edges have 5 Strict Similarity Types in H3 (D.)
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The beginning of a more general theory

The techniques developed for Henson graphs are very broad and likely to
extend to a large class of Fräıssé structures with forbidden configurations.

I am currently working to extend this research to big Ramsey degrees of the
homogeneous partial order, homogeneous bowtie-free graph, and others.
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Remarks

If time, we present ideas of the forcing argument for Halpern-Läuchli
analogues.

Dobrinen big Ramsey degrees University of Denver 80 / 89



References

Dobrinen, The Ramsey theory of the universal homogeneous triangle-free graph,
(2018) 65 pages (Submitted).

Dobrinen, The Ramsey theory of Henson graphs, (2019) 66 pages.

El-Zahar-Sauer, The indivisibility of the homogeneous Kn-free graphs, Jour.
Combinatorial Th. (1989).
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II(a) - Case (i): level set X contains a splitting node

List the immediate successors of max(A) as s0, . . . , sd , where sd denotes
the node which the splitting node in X extends.

Let Ti = {t ∈ T : t ⊇ si}, for each i ≤ d .

Fix κ large enough so that κ→ (ℵ1)2dℵ0 holds.

Such a κ is guaranteed in ZFC by a theorem of Erdős and Rado.
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The forcing for Case (i)

P is the set of conditions p such that p is a function of the form

p : {d} ∪ (d × ~δp)→ T � lp,

where ~δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the splitting node extending sd at level lp;

(ii) For each i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti � lp.

(iii) ran(p) has no pre-determined new pre-cliques in T .

q ≤ p if and only if ~δq ⊇ ~δp, lq ≥ lp, and

(i) q(d) ⊃ p(d), and q(i , δ) ⊃ p(i , δ) for each δ ∈ ~δp and i < d ; and

(ii) ran(q � ~δp) has no new pre-cliques above ran(p).
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II(a) - Case (i): Set-up for the Ctbl Coloring

For i < d , α < κ, let ḃi ,α denote the α-th generic branch in Ti , and ḃd
the generic branch in Td .

Let U̇ be a P-name for a non-principal ultrafilter on L̇, a name for the
levels in ḃd .

For ~α = 〈α0, . . . , αd−1〉 ∈ [κ]d , let ḃ~α := 〈ḃ0,α0 , . . . , ḃd−1,αd−1
, ḃd〉.

• For ~α ∈ [κ]d , take some p~α ∈ P with ~α ⊆ ~δp~α such that

1 p~α decides an ε~α ∈ 2 such that p~α  “c(ḃ~α � l) = ε~α for U̇ many l”;

2 c({p~α(i , αi ) : i < d}) = ε~α.
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II(a) - Case (i): The Countable Coloring

Let I be the collection of functions ι : 2d → 2d such that

{ι(0), ι(1)} < {ι(2), ι(3)} < · · · < {ι(2d − 2), ι(2d − 1)}.

For ~θ ∈ [κ]2d , ι ∈ I determines two sequences of ordinals in [κ]d :

ιe(~θ ) := (θι(0), θι(2), . . . , θι(2d−2))) and ιo(~θ ) := (θι(1), θι(3), . . . , θι(2d−1)).

For ~θ ∈ [κ]2d and ι ∈ I, define

f (ι, ~θ ) = 〈ι, ε~α, k~α, p(d), 〈〈p~α(i , δ~α(j)) : j < k~α〉 : i < d〉,
〈〈i , j〉 : i < d , j < k~α, δ~α(j) = αi 〉,
〈〈j , k〉 : j < k~α, k < k~β, δ~α(j) = δ~β(k)〉〉, (1)

where ~α = ιe(~θ ), ~β = ιo(~θ ), k~α = |~δp~α |, and 〈δ~α(j) : j < k~α〉 enumerates
~δp~α in increasing order. For ~θ ∈ [κ]2d , define f (~θ ) = 〈f (ι, ~θ ) : ι ∈ I〉.
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II(a) - Case (i): f gives fixed ranges and color

Note: dom(f ) = [κ]2d and ran(f ) is a countable set.

Since κ→ (ℵ1)2dℵ0 , take K ∈ [κ]ℵ1 homogeneous for f .

Take Ki ∈ [K ]ℵ0 so that K0 < · · · < Kd−1 and K ′ :=
⋃

i<d Ki thin in K .

Lem 1. There are ε∗ ∈ 2, k∗ ∈ ω, and 〈〈ti ,j : j < k∗〉 : i < d〉, such that
for all ~α ∈

∏
i<d Ki ,

ε~α = ε∗, k~α = k∗, and (∀i < d) 〈p~α(i , δ~α(j)) : j < k~α〉 = 〈ti ,j : j < k∗〉.

Pf uses homogeneity of f .

Lem 2. For ~α, ~β ∈
∏

i<d Ki , if j , j ′ < k∗ and δ~α(j) = δ~β(j ′), then j = j ′.

Pf uses ‘sliding’ idea.
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II(a) - Case (i): A compatible set

Lem 3. {p~α : ~α ∈
∏

i<d Ki} is compatible.

By homogeneity of f , there is a strictly increasing sequence
〈ji : i < d〉 ∈ [k∗]d such that for each ~α ∈

∏
i<d Ki , δ~α(ji ) = αi .

Then for each ~α ∈
∏

i<d Ki ,

p~α(i , αi ) = p~α(i , δ~α(ji )) = ti ,ji =: t∗i .

The t∗0 , . . . , t
∗
d provide good starting nodes for constructing the tree

homogeneous for the coloring on ExtT (A, X̃ ).
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II(a) - Case (i): building a tree homog. for level set coloring

We alternate between building the subtree by hand and using the forcing
to find the next level where homogeneity is guaranteed.

Remarks. (1) No generic extension is actually used.

(2) These forcings are not simply Cohen forcings; the partial orderings
are stronger in order to guarantee that the new levels we obtain by
forcing are extendible inside T to another strong coding tree.

(3) The assumption that A ∪ X̃ satisfies the Witnessing Property is
necessary.
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