Barren Extensions

Natasha Dobrinen University of Denver

European Set Theory Conference July 1–5, 2019

joint work with Daniel Hathaway, University of Vermont

Research partially supported by NSF grant DMS-1600781

Dobrinen

Barren Extensions

In their paper, "A barren extension," Henle, Mathias and Woodin proved that assuming $\omega\to(\omega)^\omega,$

- Forcing with $([\omega]^{\omega}, \subseteq^*)$ adds no new sets of ordinals.
- Onder an additional assumption, ([ω]^ω, ⊆^{*}) preserves all strong partition cardinals.

In joint work with Hathaway, we extend these results to a large collection of σ -closed forcings which add ultrafilters with weak partition properties.

These ultrafilters can have rich Rudin-Keisler and Tukey structures below them, with a Ramsey ultrafilter at the bottom.

Part I: Barren Extensions

A Barren Extension

 $\omega \to (\omega)^{\omega}$ means that for each $c : [\omega]^{\omega} \to 2$, there is an $N \in [\omega]^{\omega}$ such that c is constant on $[N]^{\omega}$. This holds, for instance, in the $L(\mathbb{R})$ of $V^{\operatorname{Coll}(\omega,<\kappa)}$, where κ is strongly inaccessible (Mathias), and in $L(\mathbb{R})$ in the presence of a supercompact in V (Shelah-Woodin).

Thm. (Henle-Mathias-Woodin) Let M be a transitive model of ZF + $\omega \to (\omega)^{\omega}$ and let N be a forcing extension via $([\omega]^{\omega}, \subseteq^*)$. Then M and N have the same sets of ordinals; moreover every sequence in N of elements of M lies in M.

Note: $([\omega]^{\omega}, \subseteq^*)$ forces a Ramsey ultrafilter.

Question: Which other σ -closed forcings adding ultrafilters have similar properties?

Ultrafilters with Weak Partition Relations

 $\mathcal{U}
ightarrow (\mathcal{U})_{I,r}^2$

means that for each $X \in \mathcal{U}$ and $c : [X]^2 \to I$, there is a $U \subseteq X$ in \mathcal{U} such that c takes at most r colors on $[U]^2$.

The least r such that for all $l, \mathcal{U} \to (\mathcal{U})_{l,r}^2$ is the Ramsey degree of \mathcal{U} , denoted $r(\mathcal{U})$.

Examples

 $\mathcal{P}(\omega)/\mathsf{Fin}$, equiv. ([ω]^{ω}, \subseteq *), forces a Ramsey ultrafilter \mathcal{U} : $r(\mathcal{U}) = 1$.

A forcing of Laflamme produces a weakly Ramsey ultrafilter U_1 : $r(U_1) = 2$.

(Laflamme) There is a hierarchy forcings \mathbb{P}_{α} ($\alpha < \omega_1$) which produce ultrafilters \mathcal{U}_{α} . For $k < \omega$, $r(\mathcal{U}_k) = 2^k$.

Dobrinen

Examples

(Navarro Flores): For each $k \ge 1$, $\mathcal{P}(\omega^k)/\operatorname{Fin}^{\otimes k}$ forces an ultrafilter \mathcal{G}_k with $r(\mathcal{G}_k) = \sum_{i \le k} 3^i$. (Blass for k = 2)

(Blass): *n*-square forcing produces an ultrafilter with r(U) = 5.

(Baumgartner-Taylor): For $k \ge 2$, \mathbb{Q}_k produces a k-arrow/not (k+1)-arrow ultrafilter $\mathcal{A}_k : \mathcal{A}_k \to (\mathcal{A}_k, k)^2$ but $\mathcal{A}_k \not\to (\mathcal{A}_k, k+1)^2$.

(D.-Mijares-Trujillo): Fraïssé classes can be used to generalize the previous two constructions to produce ultrafilters with various Ramsey degrees. Their Rudin-Keisler structures can be as complex as Fraïssé classes.

Thm. (D.-Hathaway) Assuming a supercompact cardinal, let \mathcal{U} be any of the above ultrafilters forced over $\mathcal{L}(\mathbb{R})$. Then $\mathcal{L}(\mathbb{R})[\mathcal{U}]$ has the same sets of ordinals as $\mathcal{L}(\mathbb{R})$. Moreover it adds no new functions from any ordinal to $\mathcal{L}(\mathbb{R})$.

Remark. This theorem holds for many other ultrafilters as well, including stable ordered union. The main tool is topological Ramsey spaces (dense inside these forcings) endowed with σ -closed partial orders which behave similarly to ($[\omega]^{\omega}, \subseteq^*$).

The Essence of this HMW Theorem

$$\mathbb{P} = \langle P, \leq, \leq^* \rangle \text{ is strongly coarsened if}$$

$$\mathbb{P} = \langle P, \leq, \leq^* \rangle \text{ is strongly coarsened if}$$

$$\mathbb{P} \quad \forall x, y \in P, \quad x \leq y \longrightarrow x \leq^* y, \text{ and}$$

$$\mathbb{P} \quad \forall x \in P \quad \forall y \leq^* x \quad \exists z \leq x \text{ such that } z =^* y.$$

For $x \in P$, let $[x] = \{y \in P : y \le x\}$ and $[x]^* = \{y \in P : y \le^* x\}$.

Examples: $([\omega]^{\omega}, \subseteq, \subseteq^*)$ More generally, $([\omega]^{\omega}, \subseteq, \subseteq^{\mathcal{I}})$ where \mathcal{I} is a σ -closed ideal on $\mathcal{P}(\omega)$. For many topological Ramsey spaces (\mathcal{R}, \leq, r) , there is a naturally related σ -closed partial order \leq^* which strongly coarsens \leq .

Left-Right Axiom - key properties of $([\omega]^{\omega}, \subseteq, \subseteq^*)$

A strongly coarsened poset $\mathbb{P} = \langle P, \leq, \leq^* \rangle$ satisfies the Left-Right Axiom (LRA) iff there are functions L : $P \to P$ and R : $P \to P$ such that the following are satisfied:

- 3 $\forall x \in P \quad \exists y, z \leq x \text{ such that } L(y) =^* R(z) \text{ and } R(y) =^* L(z).$
- Sor each *p*, *x*, *y* ∈ *P* with *x*, *y* ≤ *p*, there is *z* ≤ *p* such that
 a) L(*z*) ≤* *x*b) L(R(*z*)) ≤* *x*c) R(R(*z*)) ≤* *y*.

Remark. All of the partial orders mentioned on slides 5 and 6 contain dense subsets forming Ramsey spaces which satisfy the LRA.

Barren Extensions - general theorem

Thm. (D.-Hathaway) Let M be a transitive model of ZF. Suppose $\mathbb{P} = \langle P, \leq, \leq^* \rangle \in M$ is a strongly coarsened poset satisfying

- **●** the Left-Right Axiom, and
- ② for each $x \in P$ and every coloring $c : [x]^* \to 2$, there is some $y \leq^* x$ such that $c \upharpoonright [y]$ is constant.

Let N be a forcing extension of M via $\langle P, \leq^* \rangle$. Then M and N have the same sets of ordinals; moreover, every sequence in N of elements of M lies in M.

Remark. Condition (2) is like $\omega \to (\omega)^{\omega}$. It holds in $L(\mathbb{R})$ for several classes of topological Ramsey spaces which form dense subsets of σ -closed forcings adding ultrafilters, in the presence of a supercompact cardinal.

Part II: Preservation of Strong Partition Cardinals

Strong Partition Cardinals Preserved by $([\omega]^{\omega}, \subseteq^*)$

 $\kappa \to (\kappa)^{\lambda}_{\mu}$ means that for each $c : [\kappa]^{\lambda} \to \mu$, there is a $K \in [\kappa]^{\kappa}$ such that c is constant on $[K]^{\lambda}$.

Thm. (Henle-Mathias-Woodin) (ZF + EP + LU) Suppose
0 < λ = ω · λ ≤ κ and 2 ≤ μ < κ,
κ → (κ)^λ_μ, and
there is a surjection from [ω]^ω onto [κ]^κ.
Then κ → (κ)^λ_μ holds in the extension via ([ω]^ω, ⊆*).

EP and LU

A subset $A \subseteq [\omega]^{\omega}$ is invariant if $(p \in A \text{ and } p' =^* p) \longrightarrow p' \in A$. For $a \in [\omega]^{<\omega}$ and $p \in [\omega]^{\omega}$, let $[a, p] = \{q \in [\omega]^{\omega} : a \sqsubset q \land q \subseteq p\}$

 $X \subseteq [\omega]^{\omega}$ is Completey Ramsey (CR) if $\forall \emptyset \neq [a, x] \exists q \in [a, x]$ such that (a) $[a, q] \subseteq X$ or (b) $[a, q] \cap X = \emptyset$.

 $X \subseteq [\omega]^{\omega}$ is CR^+ if $\forall \emptyset \neq [a, x] \exists q \in [a, x]$ such that (a) holds; X is CR^- if $\forall \emptyset \neq [a, x] \exists q \in [a, x]$ such that (b) holds.

LU: For any relation $R \subseteq [\omega]^{\omega} \times \mathcal{P}(\omega)$ such that $\forall p \exists y \ R(p, y)$, the set $\{x : R \text{ is uniformized on } [x]^{\omega}\}$ is CR^+ .

EP: The intersection of any well-ordered collection of CR⁺ sets is CR⁺.

13 / 21

Preserving Strong Partition Cardinals over $L(\mathbb{R})$

Thm. (Henle-Mathias-Woodin) (AD + $V = L(\mathbb{R})$) If $0 < \lambda = \omega \cdot \lambda \le \kappa$, $2 \le \mu < \kappa$, and $\kappa \to (\kappa)^{\lambda}_{\mu}$, then

$$L(\mathbb{R})[\mathcal{U}] \models \kappa
ightarrow (\kappa)^{\lambda}_{\mu},$$

where \mathcal{U} is the Ramsey ultrafilter forced by $([\omega]^{\omega}, \subseteq^*)$ over $\mathcal{L}(\mathbb{R})$.

Remark. AD + $V = L(\mathbb{R})$ imply LU, EP, and (3) in the previous rendition of this theorem.

Extension to Topological Ramsey Spaces

Topological Ramsey spaces are triples $(\mathcal{R}, \leq, (r_n)_{n < \omega})$, where \leq is a partial order and r is a finite approximation map; basic open sets are of the form

$$[a,p] = \{q \in \mathcal{R} : \exists n < \omega \ (a = r_n(p)) \text{ and } q \leq p\}.$$

A subset $X \subseteq \mathcal{R}$ is (Completely) Ramsey if for each $\emptyset \neq [a, p]$ there is some $q \in [a, p]$ such that

(a)
$$[a,q] \subseteq X$$
 or else (b) $[a,q] \cap X = \emptyset$.

The defining property of a topological Ramsey space is that all subsets with the property of Baire are Ramsey.

The Ellentuck space $\mathcal{E} = ([\omega]^{\omega}, \subseteq, (r_n)_{n < \omega})$ has approximation maps $r_n(x) = \{x_i : i < n\}$, where $\{x_i : i < \omega\}$ is the strictly increasing enumeration of $x \in [\omega]^{\omega}$.

Abstractions of CR⁺, CR⁻, $\omega \rightarrow (\omega)^{\omega}$, EP, and LU

The structure of topological Ramsey spaces, as roughly ω -sequences of finite structures, often produces many of the same properties as the forcing $([\omega]^{\omega}, \subseteq^*)$.

 $R(\mathcal{R})$: For each $c : \mathcal{R} \to 2$, exists $p \in \mathcal{R}$ such that c is constant on [p].

 $X \subseteq \mathcal{R}$ is invariant R^+ if

1 invariant:
$$(p \in X \text{ and } p' =^* p) \longrightarrow p' \in X$$
, and

2 \mathbb{R}^+ : $\forall p \in \mathcal{R} \exists q \leq p \text{ such that } [q] \subseteq X$.

R⁺-Invariance Axiom: Suppose $\langle \mathcal{R}, \leq, \leq^*, r \rangle$ is a coarsened topological Ramsey space, where \leq^* is σ -closed. \mathcal{R} satisfies the R⁺-Invariance Axiom if for each invariant R^+ set $X \subseteq \mathcal{R}$ and each $p \in \mathcal{R}$ and $n < \omega$, there is a $q \in [r_n(p), p]$ such that $q \in S$.

Abstractions of CR⁺, CR⁻, $\omega \rightarrow (\omega)^{\omega}$, EP, and LU

For $\mathbb{P} = \langle \mathcal{R}, \leq, \leq^*, r \rangle$:

EP(\mathbb{P}): Given any well-ordered sequence $\langle C_{\alpha} \subseteq P : \alpha < \kappa \rangle$ of invariant R⁺ sets, the intersection of the sequence is again invariant R⁺.

LU*(\mathbb{P}): Uniformization relative to some invariant cube $[p]^*$ for relations $R \subseteq \mathcal{R} \times {}^{\omega}2$.

LCU(\mathbb{P}): Continuous uniformization for relations $R \subseteq \mathcal{R} \times {}^{\omega}2$ relative to some cube [*p*].

Similar to Todorcevic's Ramsey Uniformization Theorem for relations on $[\omega]^{\omega} \times X$ where X is a Polish space.

Preserving Strong Partition Cardinals - general theorem

Thm. (D.-Hathaway) Suppose $\mathbb{P} = \langle \mathcal{R}, \leq, \leq^* \rangle$ is a coarsened Ramsey space, where \leq^* is σ -closed, satisfying $R(\mathcal{R})$ and \mathbb{R}^+ -IA. Assume $\mathrm{EP}(\mathbb{P})$, $\mathrm{LU}^*(\mathbb{P})$, and

$$0 < \lambda = \omega \cdot \lambda \leq \kappa \text{ and } 2 \leq \mu < \kappa,$$

2
$$\kappa \to (\kappa)^{\lambda}_{\mu}$$

③ there is a surjection from ${}^{\omega}2$ onto $[\kappa]^{\kappa}$.

Then $\langle \mathcal{R}, \leq^* \rangle$ forces $\kappa \to (\kappa)^{\lambda}_{\mu}$ holds in the forcing extension.

Preserving Strong Partition Cardinals - simple version

Thm. (D.-Hathaway) Suppose that there is a supercompact cardinal in V. In $\mathcal{L}(\mathbb{R})$, suppose

(*R*, ≤, ≤*) is a coarsened topological Ramsey space satisfying the R⁺-Invariance Axiom,

$$0 < \lambda = \omega \cdot \lambda \leq \kappa \text{ and } 2 \leq \mu < \kappa,$$

If \mathcal{U} is the generic (ultra-)filter forced by $\langle \mathcal{R}, \leq^* \rangle$ over $\mathcal{L}(\mathbb{R})$, then $\mathcal{L}(\mathbb{R})[\mathcal{U}] \models \kappa \to (\kappa)^{\lambda}_{\mu}$.

Remark. The (Ramsey spaces dense in the) forcings on slides 5 and 6 all satisfy the R^+ -Invariance Axiom, as well as others.

References

Dobrinen-Hathaway, Barren extensions (working preprint).

Henle-Mathias-Woodin, *A barren extension*, Lecture Notes in Math., 1130, Springer (1985).

Related References

Di Prisco-Mijares-Nieto, *Local Ramsey theory: an abstract approach*, MLQ (2017).

Dobrinen, High dimensional Ellentuck spaces and initial chains in the Tukey structure of non-p-points, JSL (2016).

Dobrinen, Infinite dimensional Ellentuck spaces and Ramsey-classification theorems, JML (2016).

Dobrinen-Mijares-Trujillo, *Topological Ramsey spaces from Fraïssé classes and initial Tukey structures*, AFML (2017).

Dobrinen-Navarro Flores, *Ramsey degrees of ultrafilters, pseudointersection numbers, and the tools of topological Ramsey spaces* (preprint).

Dobrinen-Todorcevic, *Ramsey-Classification Theorems and their applications in the Tukey theory of ultrafilters, Part 1*, TAMS (2014).

Dobrinen-Todorcevic, *Ramsey-Classification Theorems and their applications in the Tukey theory of ultrafilters, Part 2*, TAMS (2015).

Mathias, Happy families, Ann. Math. Logic (1977).

Shelah-Woodin, Large cardinals imply that every reasonable definable set of reals is Lebesgue measurable, Israel J. Math. (1990).

Todorcevic, *Introduction to Ramsey spaces*, Princeton University Press, (2010).