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Subtitle

Forcing techniques are useful for solving problems on graphs, in ZFC.
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This talk will highlight some of the main concepts in my paper,
The universal triangle-free graph has finite big Ramsey degrees,
48 pp, submitted.

This work commenced during the Isaac Newton Institute HIF Programme
(2015) and continued at the Centre de Recerca Matemàtica (2016).

Many thanks to the organizers of those research semesters and to support
from NSF Grants DMS-1301665 and DMS-1600781.
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Ramsey Property, and Degrees Small and Big

Thm. (Nešetřil/Rödl 1977 and Abramson/Harrington 1978)
The class of finite ordered graphs has the Ramsey property:

Given finite ordered graphs A and B such that A embeds into B, and
given a number l ≥ 2, there is a finite ordered graph C containing a
copy of B such that for any coloring of the copies of A in C into l
colors, there is some copy B′ of B in C such that all copies of A in B′

have the same color.
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Finite Ordered Graphs

Example: Ordered graph A embeds into ordered graph B.

Figure: Ordered Graph A

· · ·

Figure: Ordered Graph B
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Some copies of A in B

· · ·

· · ·

· · ·

· · ·
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Finite Unordered Graphs have finite Small Ramsey Degrees

Thm. The class of all finite unordered graphs has finite small Ramsey
degrees:

For each finite graph A there is a number bound t(A) such that for
each finite graph B into which A embeds, and for each l ≥ 2, there is a
finite graph C such that for any coloring of the copies of A in C into l
colors, there is a copy B′ of B in C such that the copies of A in B′ take
on no more than t(A) colors.
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Infinite Ramsey Theory on Graphs and Big Ramsey Degrees

The random graph, also called the Rado graph and denoted R, is the
graph on infinitely many nodes such that for each pair of nodes, there is a
50-50 chance that there is an edge between them.

The random graph is equivalently

1 universal for countable graphs: Every countable graph embeds into R.

2 homogeneous: Every isomorphism between two finite subgraphs in R
is extendible to an automorphism of R.
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Vertex Colorings in the Rado graph R

Thm. (Folklore) Given any coloring of vertices in R into finitely many
colors, there is a subgraph R′, which is again a random graph, such
that the vertices in R′ all have the same color.

We say that the Rado graph is indivisible, or has big Ramsey degree 1.
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Edge Colorings in R

Thm. (Pouzet/Sauer) Given any coloring of the edges in R into
finitely many colors, there is a subgraph R′, again a random graph,
such that the edges in R′ take no more than two colors.

Can we get down to one color?

No! but...
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Colorings of Copies of Any Finite Graph in R

Thm. (Sauer) Given any finite graph A, there is a finite number T (A)
such that for any l ≥ 2 and any coloring of all the copies of A in R into
l colors, there is a subgraph R′, again a random graph, such that the
set of copies of A in R′ take on no more than T (A) colors.

In the jargon, we say that the big Ramsey degrees for R are finite.

T (edge) = 2.

T (triangle) = 16.

Lower bounds were structurally found by Sauer and computed by J.
Larson.
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More generally,
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Fräıssé classes of finite structures with the Ramsey property:
Boolean algebras, vector spaces over a finite field, ordered graphs,
ordered hypergraphs, ordered graphs omitting k-cliques, ordered metric
spaces, and many others.

Fräıssé classes of finite structures with finite small Ramsey degrees:
Graphs, hypergraphs, graphs omitting k-cliques, and many more.

Def. (Kechris, Pestov, Todorcevic 2005) An infinite relational
structure S has finite big Ramsey degrees if for each finite substructure
A of S, there is a finite number T (A) such that for any coloring of the
copies of A in S into finitely many colors, there is a substructure S ′ of
S, isomorphic to S, in which the copies of A take no more than T (A)
colors.

Dobrinen big Ramsey degrees University of Denver 13 / 71



Infinite Structures known to have finite big Ramsey degrees

• the natural numbers (Ramsey 1929)

• the rationals (Devlin 1979)

• the Rado graph (Sauer 2006)

• the countable ultrametric Urysohn space (Nguyen Van Thé 2008)

• the dense local order (Laflamme, NVT, Sauer 2010).

• A couple of others.

The crux of all but two of these proofs is a theorem of Milliken.

(The Urysohn space result uses Ramsey’s Theorem.)
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Connections with Topological Dynamics

Thm. (Kechris/Pestov/Todorcevic 2005) Aut(Flim K) is extremely
amenable (has the fixed point on compacta property) if and only if K
has the Ramsey property and consists of rigid elements.

Thm. (Nguyen Van Thé 2013) Extended this to connect Fräıssé
classes that have small Ramsey degrees with universal minimal flows.

Thm. (Zucker 2017) Characterized universal completion flows of
Aut(Flim K) in terms of big Ramsey degrees.
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Strong Trees and Milliken’s Theorem

A tree T ⊆ 2<ω is a strong tree iff it is either isomorphic to 2<ω or to 2≤k

for some finite k.
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Strong Subtree ∼= 2≤2, Ex. 1
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Strong Subtree ∼= 2≤2, Ex. 2
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Strong Subtree ∼= 2≤2, Ex. 3

〈〉
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A Ramsey Theorem for Strong Trees

Thm. (Milliken 1979) Let k ≥ 0, l ≥ 2, and a coloring of all the
subtrees of 2<ω which are isomorphic to 2≤k into l colors. Then there
is an infinite strong subtree S ⊆ 2<ω such that all copies of 2≤k in S
have the same color.

Milliken’s Theorem builds on the Halpern-Läuchli Theorem.

Thm. (Halpern-Läuchli 1966) Let d ≥ 1, l ≥ 2, and Ti = 2<ω for i < d .
Given a coloring of the product of level sets of the Ti into l colors,

f :
⋃
n<ω

∏
i<d

Ti (n)→ l ,

there are infinite strong trees Si ≤ Ti and an infinite sets of levels
M ⊆ ω where the splitting in Si occurs, such that f is constant on⋃

m∈M
∏

i<d Si (m).
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Nodes in Trees can Code Graphs

Let A be a graph. Enumerate the vertices of A as 〈vn : n < N〉.

A set of nodes {tn : n < N} in 2<ω codes A if and only if for each pair
m < n < N,

vn E vm ⇔ tn(|tm|) = 1.

The number tn(|tm|) is called the passing number of tn at tm.

t0

t1

t2

•

•

•

v0

v1

v2
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Diagonal Trees Code Graphs

A tree T is diagonal if there is at most one meet or terminal node per level.

T is strongly diagonal if passing numbers at splitting levels are all 0
(except for the right extension of the splitting node).

t0

t1

t2

•

•

•

v0

v1

v2

Every graph can be coded by the terminal nodes of a diagonal tree.
Moreover, there is a strongly diagonal tree which codes R.
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A Different Strongly Diagonal Tree Coding a Path

〈〉

•

•

•

v0

v1

v2
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Strongly diagonal trees can be enveloped into strong trees

〈〉
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Another strong tree envelope

〈〉
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Outline of Sauer’s Proof: R has finite big Ramsey degrees

1 The Rado graph is bi-embeddable with the graph coded by all nodes
in the tree 2<ω.

2 Each finite graph can be coded by finitely many strong similarity
types of strongly diagonal trees.

3 Each strongly diagonal tree can be enveloped into a finite strong tree.

4 Apply Milliken’s Theorem finitely many times to obtain one color for
each type.

5 Choose a strongly diagonal subtree coding the Rado graph, and show
that each type persists in each subgraph which is again random.
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The Universal Homogeneous Triangle-Free Graph H3

The universal triangle-free graph H3 is the triangle-free graph on infinitely
many vertices into which every countable triangle-free graph embeds.

Equivalently, H3 is homogeneous: Any isomorphism between two finite
subgraphs of H3 extends to an automorphism of H3.

H3 is the Fräıssé limit of the Fräıssé class of finite triangle-free graphs, K3.

H3 was constructed by Henson in 1971. Henson also constructed universal
k-clique-free graphs for each k ≥ 3.
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History of Results

Theorem. (Henson 1971) H3 is weakly indivisible.

Theorem. (Nešetřil-Rödl 1977/83) The Fräıssé class of finite ordered
triangle-free graphs K<

3 has the Ramsey property. This implies finite
small Ramsey degrees for K3.

Theorem. (Komjáth/Rödl 1986) H3 is indivisible: Vertex colorings of
H3 have big Ramsey degree 1.

Theorem. (Sauer 1998) H3 has big Ramsey degree 2 for edges.

What about big Ramsey degrees in H3 for other
finite triangle-free graphs?
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Main Obstacles

“A proof of the big Ramsey degrees for H3 would need new
Halpern-Läuchli and Milliken Theorems, and nobody knows what those
should be.” (Todorcevic, 2012)

Said the same thing, plus, “There is no simply representable triangle-free
graph which is bi-embeddable with H3.” (Sauer, 2013)

“So far, the lack of tools to represent ultrahomogeneous structures is the
major obstacle towards a better understanding of their infinite partition
properties.” (Nguyen Van Thé, 2013 Habilitation)
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Main Theorem: H3 has Finite Big Ramsey Degrees

Theorem. (D.) For each finite triangle-free graph A, there is a positive
integer T (A,K3) such that for any coloring of all copies of A in H3 into
finitely many colors, there is a subgraph H ≤ H3, again universal
triangle-free, such that all copies of A in H take no more than
T (A,K3) colors.

This is the first result on big Ramsey degrees of a homogeneous
structure omitting a non-trivial substructure.

Dobrinen big Ramsey degrees University of Denver 30 / 71



Structure of Proof: Three Main Parts

I Develop new notion of strong coding tree to represent H3.

II Prove a Ramsey Theorem for strictly similar finite antichains.

(a) Prove new Halpern-Läuchli Theorems for strong coding trees.
− Three new forcings are needed, but the proofs take place in ZFC.

(b) Prove a new Ramsey Theorem for finite trees satisfying Strict P1C.
− correct analogue of Milliken’s Theorem.

(c) New notion of envelope.
− Involves new notions of incremental strong coding tree and sets of

witnessing coding nodes.

III Construct a strongly diagonal subset of coding nodes coding H3 and
apply the Ramsey Theorem for strictly similar antichains.
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Part I: Strong Coding Trees
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Strong Triangle-Free Trees

Trees with a unary predicate for distinguishing certain nodes to code
vertices of a given graph, (called coding nodes), and which branch as
much as possible, subject to coding no triangles.

The only forbidden structures are sets of coding nodes ci , cj , ck , with
lengths |ci | < |cj | < |ck |, such that cj(|ci |) = ck(|ci |) = ck(|cj |) = 1 as this
codes a triangle.
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Strong triangle-free tree S

〈〉

c0

c1

c2

c3

c4

c5

•

•

•

•

•

•

v0

v1

v2

v3

v4

v5
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Almost sufficient

One can develop almost all the Ramsey theory one needs on strong
triangle-free trees

except for the base case, vertex colorings via colorings of coding nodes:
there is a bad coloring for these.

To get around this, we stretch and skew the trees so that at most one
coding or one splitting node occurs at each level.

These skewed trees densely coding H3 are called strong coding trees.
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Strong coding tree T

c0

c1

c2

c3

•

•

•

•

v0

v1

v2

v3

A subtree T ⊆ T is a strong coding tree if T is strongly similar to T.
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A Space of Strong Coding Trees

T (T) is the collection of all subtrees of T which are strongly similar to T.

A finite subtree A of a strong coding tree T ∈ T (T) can be extended to a
strong coding subtree of T if A satisfies the following:

Parallel 1’s Criterion: Ensures that no types are lost.
“All new sets of parallel 1’s are witnessed by a coding node.”

No pre-determined new parallel 1’s.

The space T (T) of strong coding trees is very near a topological Ramsey
space.

Dobrinen big Ramsey degrees University of Denver 37 / 71



A subtree of T which cannot be extended to a s.c.t.

It has parallel 1’s not witnessed by a coding node (P1C fails).
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A subtree of T extendible to a strong coding tree

This tree satisfies the Parallel 1’s Criterion: All its parallel 1’s are
witnessed by some coding node.

〈〉
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Part II: A Ramsey Theorem for Strictly Similar Finite Antichains.
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Ramsey Theorem for Strong Coding Trees

Theorem. (D.) Let A be a finite subtree of a strong coding tree T , and
let c be a coloring of all copies of A in T .

Then there is a strong coding tree S ≤ T in which all strictly similar
copies of A in S have the same color.

This is an analogue of Milliken’s Theorem for strong coding trees.

Strict similarity takes into account tree isomorphism, placement of
coding nodes, and placement of new sets of parallel 1’s. Strict
similarity is an equivalence relation.
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Let G be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding G .
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G a graph with three vertices and no edges

A tree A coding G

〈〉
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G a graph with three vertices and no edges

B codes G and is strictly similar to A.

〈〉
Dobrinen big Ramsey degrees University of Denver 44 / 71



The tree C codes G

C is not strictly similar to A.
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The tree D codes G

D is not strictly similar to either A or C .
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The tree E codes G and is not strictly similar to A - D
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The tree F codes G and is strictly similar to E
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Reducing the Upper Bounds

A strong tree U with coding nodes is incremental if whenever a new set of
parallel 1’s appears in U, all of its subsets appear as parallel 1’s at a lower
level.

The trees A, B, E , and F are incremental.

The trees C and D are not incremental.

The notion of incremental aids in the proof of the next theorem, while
simultaneously reducing the upper bounds on the big Ramsey degrees for
finite triangle-free graphs in H3.
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Part III: Apply the Ramsey Theorem for Strictly Similar Antichains to
obtain the Main Theorem.
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Bounds for T (G ,K3)

1 Let G be a finite triangle-free graph, and let f color the copies of G
in H3 into finitely many colors.

2 The strong coding tree T codes H3. For each antichain A of coding
nodes in T coding a copy GA of G , define f ′(A) = f (GA).

3 List the finitely many strict similarity types of antichains of coding
nodes in T coding G .

4 Apply the Ramsey Theorem for Strict Similarity Types once for each
type coding G to obtain a strong coding tree S ≤ T in which f ′ has
one color per type.

5 Take a strongly diagonal subtree D in S which codes H3, and let H′
be the subgraph of H3 coded by D.

6 Then f has no more colors on the copies of G in H′ than the number
of incremental strict similarity types of antichains coding G .
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Constructing a diagonal set D of coding nodes coding H3

cD0

cD1
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Remarks

1 Proving the actual lower bounds is in progress.

2 The methods are currently being generalized to the universal
k-clique-free graphs Hk , for all k ≥ 4.
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Part II Expanded:

Ideas behind the proof of
the Ramsey Theorem for Strictly Similar Subtrees
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(a) Halpern-Läuchli-style Theorem

Thm. (D.) Given a strong coding tree T and

1 B a finite valid strong coding subtree of T ;

2 A a finite subtree of B with max(A) ⊆ max(B); and

3 X a level set extending A into T with A ∪ X satisfying the P1C
and valid in T .

Color all end-extensions Y of A in T for which A ∪ Y is strictly similar
to A ∪ X into finitely many colors.

Then there is a strong coding tree S ≤ T end-extending B such that all
level sets Y in S with A ∪ Y strictly similar to A ∪ X have the same
color.

Remark. The proof uses three different forcings. The forcings are best
thought of as conducting unbounded searches for finite objects in ZFC.
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Case (i): X contains a splitting node

List the immediate successors of max(A) as s0, . . . , sd , where sd denotes
the node which the splitting node in X extends.

Let Ti = {t ∈ T : t ⊇ si}, for each i ≤ d .

Fix κ large enough so that κ→ (ℵ1)2dℵ0 holds.

Such a κ is guaranteed in ZFC by a theorem of Erdős and Rado.

Dobrinen big Ramsey degrees University of Denver 56 / 71



The forcing for Case (i)

P is the set of conditions p such that p is a function of the form

p : {d} ∪ (d × ~δp)→ T � lp,

where ~δp ∈ [κ]<ω and lp ∈ L, such that

(i) p(d) is the splitting node extending sd at level lp;

(ii) For each i < d , {p(i , δ) : δ ∈ ~δp} ⊆ Ti � lp.

q ≤ p if and only if ~δq ⊇ ~δp, lq ≥ lp, and

(i) q(d) ⊃ p(d), and q(i , δ) ⊃ p(i , δ) for each δ ∈ ~δp and i < d ; and

(ii) The set {q(i , δ) : (i , δ) ∈ d × ~δp} ∪ {q(d)} has no new sets of parallel

1’s above {p(i , δ) : (i , δ) ∈ d × ~δp} ∪ {p(d)}.
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Case (i): X contains a splitting node

The forcing is used to find a good set of starting nodes where it is possible
to extend them to homogeneous levels.

We alternate building the subtree by hand with using the forcing to find
the next level where homogeneity is guaranteed.

Remarks. (1) No generic extension is actually used.

(2) These forcings are not simply Cohen forcings; the partial orderings
are stronger in order to guarantee that the new levels we obtain by
forcing are extendible inside T to another strong coding tree.

(3) The assumption that A ∪ X satisfies the Parallel 1’s Criterion is
necessary.
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(b) Ramsey Theorem for Finite Trees satisfying the SP1C

Case (ii), when X contains a coding node requires a different forcing. A
third forcing and induction are required to obtain

Thm. (D.) Let T be a strong coding tree, and let A be a finite valid
subtree of T satisfying the Strict P1C. Suppose all the strictly similar
copies of A in T are colored in finitely many colors.

Then there is a strong coding subtree S ≤ T such that all strictly
similar copies of A in S have the same color.

A tree A satisfies the strict P1C if each new set of parallel 1’s is
witnessed by a coding node before anything else happens (other
occurrences of new parallel 1’s, splits, or coding nodes).
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(c) Envelopes and Witnessing Coding Nodes

Envelopes add some neutral coding nodes to a given finite tree to make it
satisfy the strict Parallel 1’s Criterion.

The additional coding nodes are to witness the places where new sets of
parallel 1’s occur.
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A codes a non-edge

s

t

This satisfies the Parallel 1’s Criterion, so A is its own envelope.
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B codes a non-edge

s

t

B does not satisfy the Parallel 1’s Criterion.
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An Envelope E(B)

〈〉

s

t

w

The envelope E (B) satisfies the Parallel 1’s Criterion.
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An incremental tree C coding three vertices with no edges
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An envelope of the incremental tree C
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The Ramsey Thm for Strictly Similar Antichains follows

1 Let A be a finite antichain A of coding nodes inducing an incremental
tree; let E (A) be an envelope.

2 A coloring f of all antichains in T strictly similar to A induces a
coloring f ′ on all strictly similar copies of E (A) in T.

3 Apply the Ramsey Theorem for Trees with the SP1C for f ′ on T to
obtain T ≤ T in which all copies of E (A) have the same color.

4 Build an incremental strong coding tree S ≤ T and a set of
witnessing coding nodes W ⊆ T having no parallel 1’s with any
coding node in S .

5 Then each copy of A in S has an envelop in T , by adding in some
nodes from W .

6 Thus, each copy of A in S has the same color.
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To finish: the big Ramsey degrees of edges and non-edges
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Edges have 2 Strict Similarity Types (Sauer 1998)
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Non-edges have 5 Strict Similarity Types (D.)

Dobrinen big Ramsey degrees University of Denver 69 / 71



References

Dobrinen, The universal triangle-free graph has finite big Ramsey degrees
(2017) 48 pages (Submitted).
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