Perfect tree forcings for singular cardinals

Natasha Dobrinen

University of Denver

Generalised Baire Spaces KNAW Academy, Amsterdam, August 22 - 24, 2018

Joint work with Daniel Hathaway and Karel Prikry

Motivation: Distributive Laws in Boolean Algebras, 1960's

A forcing \mathbb{P} is (λ, κ) -distributive if \mathbb{P} adds no new functions from λ into κ .

Motivating Question (Solovay 1960's): Which cardinals κ can be first failures of (ω, κ) -distributivity in some forcing?

Work on this and other distributivity problems appeared in

[Prikry 67] On models constructed using perfect sets. (unpublished)

[Namba 71] Independence proof of $(\omega, \omega_{\alpha})$ -distributive laws in complete Boolean algebras.

[Namba 72] (ω₁, 2)-distributive law and perfect sets in generalized Baire space.
 [Bukovský 76] Changing cofinality of ℵ₂. (69 unpublished)

[D-Hathaway-Prikry] includes [Prikry 67] and proves some further properties about his tree forcings.

Dobrinen

Perfect tree forcings

Related Question (Vopěnka 1966): Can one change the cofinality of \aleph_2 to \aleph_0 without collapsing \aleph_1 ?

Results on either of the two questions have implications for the other.

Other related work includes

[Prikry 68] Changing measurable into accessible cardinals.

[Bukovský-Copláková 90] Minimal collapsing extensions of models of ZFC.

Full Answer to Solovay's Question

Theorem. Assume $(\forall \mu < \kappa) \ \mu^{\omega} < \kappa$, and either κ is regular or $cf(\kappa) = \omega$. Then there is a forcing \mathbb{P} which adds a new ω sequence of ordinals in κ , but no new bounded ω -sequences in κ .

 $cf(\kappa) = \omega$ due to Prikry (1967), and κ regular due to Namba (1971). The cardinal arithmetic assumption is necessary.

My interest stemmed from co-stationarity of the ground model:

Thm. (D. 08) Forcing a new ω -sequence into κ over L makes $(\mathcal{P}_{\mu}(\lambda))^{L[G]} \setminus L$ stationary in $(\mathcal{P}_{\mu}(\lambda))^{L[G]}$, for all cardinals $\mu < \lambda$ in L[G] with $\lambda \geq \kappa$ and μ regular.

The perfect tree forcing of Prikry

Fix an increasing sequence $\langle \kappa_n : n < \omega \rangle$ of regular cardinals and define

$$\mathcal{X} = \prod_{n < \omega} \kappa_n$$

Give \mathcal{X} the product topology. (A space of Stone mentioned by Motto Ros yesterday.)

Let $\kappa = \sup_{n < \omega} \kappa_n$. A subset $P \subseteq \mathcal{X}$ is perfect if it is closed, and given any point $f \in P$, every neighborhood of f in P has size κ^{ω} .

A perfect tree is the tree induced by some perfect set.

 $\mathbb P$ is the set of all perfect subtrees of $\widehat{\mathcal X},$ partially ordered by inclusion.

Strong Splitting Normal Form

A perfect tree $T \in \mathbb{P}$ is in strong splitting normal form if there is a strictly increasing sequence $\langle I_n : n < \omega \rangle$ of levels such that all nodes in T of length I_n have κ_n immediate successors, and all nodes of other lengths do not split.

The set of all perfect trees in strong splitting normal form is dense in \mathbb{P} .

This and other results use singularity and a Ramsey-style lemma on Laver-like trees on

$$\widehat{\mathcal{X}} = \bigcup_{m < \omega} \prod_{n \le m} \kappa_n.$$

3-Parameter Distributivity - stratified covering properties

A forcing \mathbb{Q} is $(\lambda, \kappa, < \mu)$ -distributive if for each $g : \lambda \to \kappa$ in $V^{\mathbb{Q}}$, there is a function $f : \lambda \to [\kappa]^{<\mu}$ in V such that $(\forall \alpha < \lambda) g(\alpha) \in f(\alpha)$.

Thm. (DHP) In the perfect tree forcing of Prikry,
(1) (ω, κ, < μ)-distributivity fails for all μ < κ; but
(2) (ω, ∞, < κ)-distributivity holds; and
(3) (∂, ∞, < κ)-distributivity fails.

(1) is straightforward.

- (2) follows from a Sacks-like property of $\mathbb{P}.$
- (3) uses dominated-by families.

Connections with $\mathcal{P}(\omega)/fin$

The distributivity number \mathfrak{h} is the smallest cardinal ν for which $\mathcal{P}(\omega)/\text{fin}$ adds a new subset of ν ; equivalently, (ν, ∞) -distributivity fails.

 $\aleph_1 \leq \mathfrak{h} \leq \mathfrak{d} \leq \mathfrak{c}.$

Thm. (DHP)
(1) *P*(ω)/fin completely embeds into P. Hence,
(2) P is not (h, 2)-distributive.
(3) κ^ω to h.

(1) uses the base tree matrix method of Balcar-Pelant-Simon (1980), similarly to work of Bukovský-Copláková (1990) for regular cardinals κ .

(3) uses an antichain in \mathbb{P} of size κ^{ω} .

Minimal degrees of constructibility

A well-studied notion, going back to Sacks forcing.

Thm. (DHP) If all κ_n are measurable then \mathbb{P} adds a minimal degree of constructibility for new ω -sequences:

Given $T \in \mathbb{P}$ and \dot{A} such that

$$T \Vdash \dot{A} : \omega \to \check{V} \text{ and } \dot{A} \notin \check{V},$$

then $T \Vdash \dot{G} \in \check{V}[\dot{A}]$.

Some of the many Open Problems

Question 1. What is the optimal requirement on the κ_n for to have a minimal degree of constructibility for new ω -sequences? (see [Brown-Groszek 06])

Question 2. What about analogues for singular cardinals of uncountable cofinality?

Thank you for your kind attention!