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Abstract. This paper surveys some of the known theory for countable length games related
to distributive laws in Boolean algebras. The results can be naturally extended to uncountable
length games, and detailed proofs are given. In particular, we show the following for uncount-
able length games related to distributive laws in Boolean algebras. When |κ<κ| = κ, there is a
Boolean algebra in which Gκ

1 (2) is undetermined. Gκ
1 (∞) is equivalent to GII

κ , the strategically
closed forcing game. Under certain weak assumptions on cardinal arithmetic, Player II having
a winning strategy for GI

κ implies B has a dense subtree which is < κ+-closed.
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1 Introduction

Distributive laws are a useful tool for classifying and characterising Boolean
algebras as well as giving information about their forcing extensions. They pro-
vide a means of measuring how close to an algebra of sets a given Boolean al-
gebra is: Every κ+-algebra of sets is (κ, κ)-distributive, and a complete Boolean
algebra is completely distributive if and only if it is isomorphic to a power set
algebra [15]. Measure algebras (those Boolean algebras obtained by taking the
σ-algebra of measurable sets of some probability measure space and modding
out by the null sets) are weakly (ω, ω)-distributive but not (ω, 2)-distributive.
This provides one way of testing whether a Boolean algebra does not carry a
strictly positive countably additive measure. By their forcing-equivalent state-
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ments, distributive laws give information about which new functions on ordinals
a forcing extension by a Boolean algebra can have.

We are interested in the game analogues of general distributive laws in
Boolean algebras. This has a heritage in the Banach-Mazur game played on
the real numbers. Jech initiated the study of the analogue of the Banach-Mazur
game in the context of Boolean algebras. This game has close ties with the
(ω,∞)-distributive law. (See [7].) Later he expanded this study to countable
length cut-and-choose games related to more general distributive laws. (See [8].)
We built on Jech’s work in [4], [2], and [3].

In this paper we survey some results of Foreman, Veličković, and Zapletal
for countable length games and show how they easily generalise to uncountable
length games. As the results for uncountable length games require some extra
hypotheses, we provide proofs for the sake of availability in the literature. In
section 3 we give an example of a Boolean algebra in which many cut-and-
choose games are undetermined, using weaker hypothesis than in the previously
existing examples. Section 4 provides a proof that the well-known strategically-
closed forcing game is equivalent to a cut-and-choose game of the same length.
In section 5 we give conditions when II having a winning strategy for GI

κ in a
Boolean algebra B implies that B contains a < κ+-closed dense subset, extending
some work of Foreman and Veličković. The paper concludes in section 6 with a
generalisation of a theorem of Jech linking Axiom A with cut-and-choose games;
this along with other results yield game-theoretic analyses of two uncountable
height tree forcings.

2 Definitions, basic facts and notation

Throughout this paper, we restrict ourselves to the class of complete Boolean
algebras. Let B denote an arbitrary complete Boolean algebra, and let B+ denote
B \ {0 }. Basic set-theoretic notation is used. We let [λ]κ = {x ⊆ λ : |x| = κ },
[λ]<κ = {x ⊆ λ : |x| < κ } = Pκλ, and [λ]≤κ = {x ⊆ λ : |x| ≤ κ } = Pκ+λ. Both
X<κ and (X)<κ are used to denote the set (or tree ordered by end extension)
of sequences from ordinals α < κ into X. ‖ϕ‖ denotes the Boolean value of ϕ
in B. We assume a knowledge of forcing and Boolean valued models.

The definition of distributive laws is presented here in the most general form
encountered in this paper.

1 Definition ([15]). B satisfies the (κ, λ,< µ)-distributive law ((κ, λ,< µ)-
d.l.) if for all families { bα,β : α < κ, β < λ } ⊆ B,

∧

α<κ

∨

β<λ

bα,β =
∨

f :κ→[λ]<µ

∧

α<κ

∨

β∈f(α)

bα,β . (1)
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2 Notation. The (κ, λ,< 2)-d.l. is usually referred to as the (κ, λ)-d.l., and
the (κ, λ,< ω)-d.l. is usually referred to as the weak (κ, λ)-d.l. We say that the
(< κ, λ)-d.l. holds if the (ρ, λ)-d.l. holds for all ρ < κ. We say that the (κ,∞)-d.l.
holds if the (κ, λ)-d.l. holds for all cardinals λ.

3 Remark. For cardinals κ0 ≤ κ1 and 2 ≤ µ0 ≤ µ1 ≤ λ0 ≤ λ1, the
(κ1, λ1, < µ0)-d.l. implies the (κ0, λ0, < µ1)-d.l.

4 Definition ([15]). A partition of unity (of a) is a collection W ⊆ B+

such that
∨
W = 1 (

∨
W = a) and for all b, c ∈W with b 6= c, b ∧ c = 0.

The following fact is well-known. A proof of (1) ⇐⇒ (2) can be found in [15].
A proof of (1) ⇐⇒ (3) for µ = 2 can be found in [10], and a proof for the more
general case for any 2 ≤ µ ≤ λ follows easily.

5 Fact. The following are equivalent.

(1) B satisfies the (κ, λ,< µ)-d.l.

(2) For any family Wα, (α < κ), of partitions of unity of B with each |Wα| ≤ λ,
there exists a partition of unity W such that for each b ∈ W , for each
α < κ, b ∧ c 6= 0 for less than µ-many c ∈Wα.

(3) For each B-name ġ for a function from κ̌ into λ̌ and any generic filter
G ⊆ B+, there is a function f : κ→ [λ]<µ in V such that V [G] |=“∀α < κ̌,
ġ(α) ∈ f(α)”.

Recall the following game related to the (κ, λ,< µ)-d.l., which we introduced
in [4]. This generalises a game of Jech related to the weak (ω, λ)-d.l. in [8].

6 Definition ([4]). Let κ, λ be infinite cardinals and µ be a cardinal such
that 2 ≤ µ ≤ λ. The game Gκ

<µ(λ) is played between two players in a complete
Boolean algebra B as follows: At the beginning of the game, Player I fixes
some a ∈ B+. For α < κ, the α-th round is played as follows: Player I chooses a
partition Wα of a such that |Wα| ≤ λ; then Player II chooses some Eα ∈ [Wα]<µ.
In this manner, the two players construct a sequence of length κ

〈a,W0, E0,W1, E1, . . . ,Wα, Eα, . . . : α < κ〉 (2)

called a play of the game. Player I wins the play (2) if and only if

∧

α<κ

∨
Eα = 0. (3)

Gκ
<µ(∞) is the game played like Gκ

<µ(λ), except now Player I can choose
partitions of any size.
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7 Fact. If II has a winning strategy for Gκ
<µ(λ) in B, then B satisfies the

(κ, λ,< µ)-d.l.

8 Notation. If µ = ν+, we often write Gκ
ν (λ) instead of Gκ

<µ(λ). In partic-
ular, we write Gκ

1 (λ) for Gκ
<2(λ).

9 Remark. Gκ
<µ(∞) can be played on a partial ordering P. We say that II

wins the play iff there is a p ∈ P such that p ≤ a and ∀α < κ, Eα is pre-dense
below p. If P is a separative partial ordering, then Player I (II) has a winning
strategy for Gκ

<µ(∞) in P iff Player I (II) has a winning strategy for Gκ
<µ(∞) in

r. o.(P).

10 Remark. Let (X, τ) be a topological space. U ∈ τ is regular open if
int(cl(U)) = U . Let ro(τ) denote the set of regular open members of τ . (This con-
stitutes a complete Boolean algebra under the appropriate Boolean operations
(see [15]).) For b ∈ ro(τ) nonempty, let rOb = {U ⊆ ro(τ) : int(cl(

⋃
U)) = b }.

In the standard notation of SPM, the game Gω
1 (2) is the game G1(Ab,Bb, b ∈

ro(τ) \ { ∅ }): Player I fixes some nonempty b ∈ ro(τ) at the beginning of the
game. Then the game G1(Ab,Bb) is played, where Ab = {U ∈ rOb : |U| = 2 and
int(cl(U0 ∩ U1)) = ∅ }, and Bb = { S ∈ [ro(τ)]≤ω : int(cl(

⋂
S)) 6= ∅ }. Similarly

for the other games.

The following fact relates the various games.

11 Fact. Let B be a complete Boolean algebra, and let κ0 ≤ κ1 and 2 ≤
µ0 ≤ µ1 ≤ λ0 ≤ λ1. If Player II has a winning strategy for Gκ1

<µ0
(λ1), then II has

a winning strategy for Gκ0
<µ1

(λ0). If Player I has a winning strategy for Gκ0
<µ1

(λ0),
then I has a winning strategy for Gκ1

<µ0
(λ1).

The investigation of relationships between games and distributive laws be-
gan with Jech’s work in [7], where he characterised the (ω,∞)-d.l. in terms
of Player I not having a winning strategy in the descending sequence game of
length ω. Then he developed the theory of cut-and-choose games of length ω
and related distributive laws in [8]. One of these games yields a property strictly
intermediate between Axiom A and properness, and another of these games is
used in Gray’s Conjecture on Von Neumann’s Problem concerning measurable
Boolean algebras (see [8]). (Gray’s conjecture has recently been refuted by Ta-
lagrand’s solution to the von Neumann and Control Measure Problems.) In [4]
we extended some of Jech’s work to more general distributive laws.

12 Theorem (Dobrinen [4]). Let B be a complete Boolean algebra.

(1) If the (κ, λ)-d.l. fails in B, then I has a winning strategy for Gκ
1 (λ) in B.

This, in turn, implies that both the (|λ<κ|, λ)-d.l. and the (κ, |λ<κ|)-d.l.
fail in B. It follows that the (κ,∞)-d.l. holds iff I does not have a winning
strategy for Gκ

1 (∞).
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(2) If the (κ, λ,< µ)-d.l. fails in B, then I has a winning strategy for Gκ
<µ(λ)

in B. This, in turn, implies that the (|(λ<µ)<κ|, λ,< µ)-d.l. fails in B.

Under GCH, this gives a game-theoretic characterisation of the (κ, λ)-d.l.
whenever λ < κ or cf(λ) ≥ κ, and a characterisation of the (κ, λ,< µ)-d.l.
whenever λ < κ, or κ = λ and is regular. (See also [3] for further cases of triples
of cardinals.)

3 A Boolean algebra in which Gκ1 (2) is undetermined

When games are the subject of study, it is of interest whether or not there
are Boolean algebras in which neither player has a winning strategy. If that is
the case, we say that the game is undetermined in that Boolean algebra.

Jech inaugurated this investigation by showing that Gω
1 (∞) is undetermined

in the regular open algebra of the forcing which shoots a club through a stationa-
ry/co-stationary subset of ℵ1. To get the size of partitions for Player I smaller, he
used ♦ to construct a Suslin algebra in which Gω

1 (2) is undetermined [8]. Zapletal
improved on this to show that in ZFC, Gω

1 (2) is undetermined in the regular open
algebra of the forcing which shoots a club through a stationary/co-stationary
subset of ℵ1. He also gave another example in ZFC of a proper Boolean algebra
in which Gω

1 (2) is undetermined [18].

We are particularly interested in finding a Boolean algebra in which Gκ
1 (2)

is undetermined in ZFC. For κ ≥ ℵ1, we showed in [4] that for κ regular,
♦κ+({α < κ+ : cof(α) = κ }) + |κ<κ| = κ suffice to construct a κ+-Suslin
algebra in which Gκ

1 (2) is undetermined. By work of Cummings and Dobrinen,
it is consistent with ZFC that for all cardinals κ, λ, µ with λ ≥ µ ≥ 2, there is
a Boolean algebra in which Gκ

<µ(λ) is undetermined. In fact, this holds in L [2].
However, this work assumes lots of diamond and also square, and there are many
models of ZFC in which these do not hold. In [3], we showed if |κ<κ| = κ and
θ is the least cardinal > κ such that |θ<κ| = θ, then there is a Boolean algebra
in which the games Gκ

<µ(λ) for all 2 ≤ µ ≤ κ+ and λ ≥ θ are undetermined.
However, this did not address the case when λ < κ.

The main Theorem 23 of this section is that |κ<κ| = κ is sufficient to obtain
a Boolean algebra in which Gκ

1 (λ) is undetermined for all 2 ≤ λ ≤ |2κ|. To
do so, it will be useful to have Lemma 15, a straightforward generalisation of
Zapletal’s Lemma 1 for Gω

1 (2) in [18]. We begin with some basic facts about
perfect subsets of generalised trees. Given σ ∈ 2κ, let Bσ = {x ∈ 2κ : σ ⊆ x }.
We work in the topology generated by the basis {Bσ : σ ∈ 2<κ }.

13 Definition. X ⊆ 2κ is perfect if X is closed and every element of X is
not isolated.



70 N. Dobrinen

Every closed subset of 2κ can be coded by a subtree of 2<κ: For X ⊆ 2κ,
let X̃ = { s ∈ 2<κ : ∃x ∈ X(x ⊇ s) }. For T ⊆ 2<κ let [T ] = { y ∈ 2κ : ∀α <
κ, ∃s ∈ 2α ∩ T (s ⊆ y) }. Given a closed X ⊆ 2κ, X = [X̃]. Hence, there are
|2(2<κ)| many perfect subsets of 2κ.

14 Lemma. In 2κ there is a set of size |2κ| which contains no perfect set,
assuming |2κ| = |P(2<κ)|.

Proof. List all subtrees 〈Tγ : γ < |2κ|〉 of 2<κ. We use transfinite induction
to construct the desired set. Choose one x0 ∈ 2κ and one y0 ∈ [T0] \ {x0 }. Let
X1 = {x0 }, Y1 = { y0 }. At Stage α < |2κ|, let Xα = {xβ : β < α }, Yα = { yβ :
β < α }. Choose one xα ∈ 2κ \ (Xα ∪ Yα) and one yα ∈ [Tα] \ (Xα+1 ∪ Yα). Let
X = {xα : α < |2κ| }, Y = { yα : α < |2κ| }. Then |X| = |2κ| and X ∩ Y = ∅.
∀α < |2κ|, yα ∈ [Tα] and yα 6∈ X; so X 6⊇ [Tα]. Hence, X contains no perfect
set. QED

The following is basically Zapletal’s proof of Lemma 1 in [18].

15 Lemma. Assume |2κ| = |P(2<κ)| and Player II has a winning strategy
σ for Gκ

1 (2) in B. For each maximal antichain A ⊆ B with |A| ≤ |2κ|, each
p ∈ B+, and each t ∈ B<κ, there is an a ∈ A and an s ∈ B<κ such that t ⊆ s
and g(p, s) ≤ a, where

g(p, s) = p ∧




∧

i∈dom(s), σ(p,s↾(i+1))=1

s(i) −
∨

i∈dom(s), σ(p,s↾(i+1))=0

s(i)


 . (4)

Proof. Fix σ,A, p, t as in the hypotheses of the Lemma. Note: Since σ is a
winning strategy for II, g(p, s) > 0 for each p ∈ B+ and each s ∈ B<κ. |A| ≤ |2κ|
implies that we can fix a sequence 〈ra : a ∈ A〉 of distinct elements of 2κ such
that { ra : a ∈ A } does not contain a perfect subset of 2κ. Let u̇ : a→ ra. Then
u̇ is a B-name for an element of 2κ.

Claim. ∃s0 ∈ B<κ such that t ⊆ s0, and ∃r ∈ 2κ such that ∀s1 ∈ B<κ,
∀i < κ, if s0 ⊆ s1 and g(p, s1) decides ‖u̇(i) = 1‖, then g(p, s1)  u̇(i) = ř(i).

Proof. Assume not. Then for each s0 ∈ B<κ with s0 ⊇ t and for all r ∈ 2κ,
there is an s1 ∈ B<κ and an i < κ such that s0 ⊆ s1 and g(p, s1) decides
‖u̇(i) = 1‖, but g(p, s1) 6 u̇(i) = ř(i). By induction on lh(η) for η ∈ 2<κ, we
build sη ∈ B<κ such that

(1) s〈〉 = t, and η0 ⊆ η1 ↔ sη0 ⊆ sη1 ;

(2) ∀η ∈ 2<κ, ∃j with lh(η) < j < κ such that both g(p, sη⌢0) and g(p, sη⌢1)
decide all the u̇(i), i ≤ j, and they decide u̇(j) differently.
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Let s〈〉 = t. Suppose we have sη and cannot continue the induction. Then for
each j > lh(η), and all s′, s′′ ⊇ sη, if g(p, s′) and g(p, s′′) decide u̇(i) for all i ≤ j,
then they agree on u̇(j). For any s′ and any j, we can find an s′′ ⊇ s′ such that
g(p, s′′) decides u̇(i) for all i ≤ j. Since II wins Gκ

1 (2), the game keeps going
at lengths less than κ, so we can find such a g(p, s′′). This defines an r ∈ 2κ

in V , namely r(i) = 0 iff ∃s′′ ⊇ sη such that g(p, s′′)  u̇(i) = 0. But by our
assumption that the Claim is false, there is an s′ ⊇ sη and a j < κ such that
g(p, s′) decides ‖u̇(j) = 1‖ and g(p, s′) 6 u̇(j) = ř(j). We can extend s′ to an
s′′ such that g(p, s′′) decides u̇(i) for all i ≤ j. Then g(p, s′′)  u̇(j) = ř(j). But
then g(p, s′)  u̇(j) = ř(j), since g(p, s′′) ≤ g(p, s′) and g(p, s′) decides u̇(j).
Contradiction. Thus, the induction continues.

For α < κ a limit ordinal and η ∈ 2α, let sη =
⋃

β<α sη↾β . Then by the
induction, we get sη for η ∈ 2<κ satisfying (1) and (2). For all x ∈ 2κ, let
rx ∈ 2κ be the unique element of 2κ such that g(p,

⋃
i<κ sx↾i)  u̇ = řx. This

is well-defined by (2). Also by (2), { rx : x ∈ 2κ } is a perfect subset of 2κ.
Each rx = ra for some a ∈ A, since when u̇ is decided, the decision is in V .
But { ra : a ∈ A } contains no perfect set. Contradiction. Therefore, the Claim
holds. QED

Let s0, r be as in the Claim. Let s = s0
⌢‖u̇ = ř‖. We will show that

σ(p, s) = 1. Assume σ(p, s) = 0. Then g(p, s)  u̇ 6= ř. For each j < κ, let
sj = s⌢〈‖u̇(i) = 1‖ : i ≤ j〉. Then for each j < κ, g(p, sj) decides ‖u̇(j) = 1‖.
By choice of s0 and r, we have g(p, sj)  u̇(j) = ř(j). Contradiction. Thus,
g(p, s) ≤ ‖u̇ = ř‖. r ∈ V implies that there is an a ∈ A such that r = ra. So
g(p, s) ≤ ‖u̇ = řa‖. Therefore, g(p, s) ≤ a. QED

It is well-known that in a complete Boolean algebra, the (κ, 2)-d.l. holds iff
the (κ, |2κ|)-d.l. holds (see [15]). The analogous situation holds for the games
Gκ

1 (2) and Gκ
1 (|2κ|), at least when |2κ| = |P(2<κ)|. The equivalence for Player

I holds in ZFC: it follows from the just mentioned fact about distributive laws
along with Theorem 12(1).

16 Theorem. Suppose |2κ| = |P(2<κ)|. If II has a winning strategy for
Gκ

1 (2), then II has a winning strategy for Gκ
1 (|2κ|).

Proof. Let σ be a winning strategy for II for Gκ
1 (2) in B. Play Gκ

1 (|2κ|):
Let I fix p ∈ B+ and play A0, a maximal antichain below p with |A0| ≤ |2κ|.
By Lemma 15, there exist a0 ∈ A0 and s0 ∈ B<κ such that g(p, s0) ≤ a0.
Make II play a0. For α < κ suppose I plays Aα+1 and sα is already given.
By Lemma 15 there exist aα+1 ∈ Aα+1 and sα+1 ∈ B<κ such that sα+1 ⊇ sα

and g(p, sα+1) ≤ aα+1. For α < κ a limit ordinal, suppose I plays Aα, and let
s′α =

⋃
β<α sβ . Then by Lemma 15, there exist aα ∈ Aα and sα ∈ B<κ such that

sα ⊇ s′α and g(p, sα) ≤ aα. Make II play aα. Let s =
⋃

α<κ sα. g(p, s) > 0, since
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this is a play of Gκ
1 (2) according to σ. g(p, s) =

∧
α<κ g(p, sα) ≤

∧
α<κ aα, so II

wins Gκ
1 (|2κ|) according to our strategy. QED

17 Corollary. Suppose |2κ| = |P(2<κ)|. If II has a winning strategy for
Gκ

1 (2) and B is |2κ|+-c.c., then II has a winning strategy for Gκ
1 (∞).

To prepare for Theorem 23 we now review κ-club and κ-stationary subsets
of Pκ+(λ).

18 Definition ([3]). Let κ be regular and λ > κ. A set C ⊆ Pκ+(λ) is
κ-club if C is cofinal in Pκ+(λ) and is closed under ⊆-increasing sequences
of length exactly κ. S ⊆ Pκ+(λ) is κ-stationary if S ∩ C 6= ∅ for all κ-club
C ⊆ Pκ+(λ).

19 Remark. κ-club and κ-stationary sets enjoy the usual nice properties:
The intersection of κ many κ-club sets is again κ-club; κ-clubness is preserved
under diagonal intersections; and each κ-stationary set can be decomposed into
λ many disjoint κ-stationary sets. (See [3] for more on the general theory.)

The next theorem gives a functional representation of κ-club sets. For a
purely combinatorial proof (not using infinitary logic) see [3].

20 Theorem (Kueker [16]). Suppose |κ<κ| = κ ≤ λ and C ⊆ [λ]≤κ is
κ-club. Then there exists a function h : [λ]<κ → λ such that Ch ⊆ C, where
Ch = {x ∈ Pκ+(λ) : ∀y ∈ [x]<κ, h(y) ∈ x }.

The next argument is an adaptation of one from [9].

21 Proposition. Suppose |κ<κ| = κ < λ, B is (< κ, κ)-distributive, and II
wins Gκ

κ(λ) in B. Then B preserves all κ-stationary subsets of Pκ+(λ).

Proof. First, note that B preserves all cardinals ≤ λ: the (< κ, κ)-d.l.
implies preservation of all cardinals ≤ κ and II having a winning strategy for
Gκ

κ(λ) implies preservation of all cardinals ρ with κ < ρ ≤ λ. Let σ be a winning
strategy for II in Gκ

κ(λ). Let S be a κ-stationary subset of (Pκ+(λ))V . By
Theorem 20, it suffices to show that for each p ∈ B+ and each B-name ḟ for
which p  ḟ : [λ]<κ → λ, there is an x ∈ S and a q ≤ p such that q  x is closed
under ḟ . Without loss of generality, assume p = 1. For each y ∈ (Pκ(λ))V and
every β < λ, let a(y, β) = ‖ḟ(y) = β‖. Let W (y) = { a(y, β) : β < λ }. Then
W (y) is a partition of unity. Let A = {x ∈ (Pκ+(λ))V : ‖x is closed under
ḟ‖ > 0 }. We will show that A contains a κ-club in V .

Define g : ((Pκ+(λ))<κ)V → (Pκ+(λ))V in V as follows:
For s ∈ ((Pκ+(λ))<κ)V with lh(s) a successor cardinal, say s = 〈sβ : β ≤ α〉,
let g(s) = {β < λ : a(sα, β) ∈ σ(〈W (s0), . . . ,W (sα)〉) }. If lh(s) is a limit
ordinal, just let g(s) = ∅. Then g ∈ V . Let C = {x ∈ (Pκ+(λ))V : ∀s ∈
([x]<κ)<κ, g(s) ⊆ x }. Then C ∈ V and C is a κ-club set in V .

We will show C ⊆ A. Let x ∈ C and let 〈yα : α < κ〉 enumerate [x]<κ in V .
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For each α < κ, let Eα = σ(〈W (y0), . . . ,W (yα)〉). g(〈y0, . . . , yα〉) ⊆ x implies∨
Eα =

∨
{ a(yα, β) : β ∈ g(〈y0, . . . , yα〉) } ≤

∨
{ a(yα, β) : β ∈ x } = ‖ḟ(yα) ∈

x‖. Since σ is winning for II, we have
∧

α<κ

∨
Eα > 0. Hence,

∧
α<κ ‖ḟ(yα) ∈

x‖ > 0. By the (< κ, κ)-d.l., [x]<κ is the same in V as in V B; so
∧

α<κ ‖ḟ(yα) ∈

x‖ = ‖x is closed under ḟ‖. Hence, x ∈ A.

Let x ∈ C ∩S and let q = ‖x is closed under ḟ‖. Then q > 0 and q  “x ∈ S
and x is closed under ḟ”. Therefore, V B |= S is κ-stationary. QED

The next theorem shows that whenever |κ<κ| = κ, one can always shoot a κ-
club through a given κ-stationary set. This generalises an example of Kamburelis
in [11] for countable length games (since ω-stationary is the same as stationary).

22 Theorem (Dobrinen [3]). Suppose |κ<κ| = κ < λ and S ⊆ [λ]≤κ is κ-
stationary. Let PS denote the set of all one-to-one functions f such that dom(f)
is an ordinal less than κ+, ran(f) ⊆ λ, and for each ordinal ζ ≤ dom(f) with
cofinality κ, f [ζ] ∈ S. Let g ≤ f ↔ g ⊇ f . PS is a separative, atomless, (κ,∞)-
distributive, λ+-c.c. forcing which adds a new κ-club set through S.

We finally come to the main theorem of this section.

23 Theorem. If |κ<κ| = κ, then there is a (κ,∞)-distributive Boolean
algebra which has a dense < κ-closed subset, and in which for all λ ≥ 2, Gκ

1 (λ)
is undetermined, and for all λ ≥ κ+ and all µ ≤ κ+, Gκ

<µ(λ) is undetermined.

Proof. Let S ⊆ Pκ+(κ+) be a κ-stationary set such that Pκ+(κ+) \ S is
also κ-stationary. (For a proof that such sets exist, see [3].) Let B = r. o.(P). By
Theorem 22, B kills the κ-stationarity of Pκ+(κ+)\S. Hence, by Proposition 21,
II does not have a winning strategy for Gκ

κ(κ+). This implies that II cannot have
a winning strategy for Gκ

<µ(λ) for all λ ≥ κ+ and all µ ≤ κ+. In particular, this
implies that II cannot have a winning strategy for Gκ

1 (κ+). Then, by Theorem 16,
II cannot have a winning strategy for Gκ

1 (2). Thus, for all λ ≥ 2, II does not
have a winning strategy for Gκ

1 (λ) in B.

On the other hand, by Theorem 12(1), Player I does not have a winning
strategy for Gκ

1 (∞), since B is (κ,∞)-distributive. Hence, I does not have a
winning strategy for Gκ

<µ(λ) for any λ ≥ µ ≥ 2. QED

4 Gκ1 (∞) is equivalent to the strategically closed
forcing game

In this section, we show the full equivalence between Gκ
1 (∞) and the strategi-

cally closed forcing game GII
κ . By results of Jech [8] and Veličković [17], we know

that the ω-length versions of these games are equivalent. Foreman invented the
following uncountable length games, which generalise the descending sequence
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game G of Jech in [7] to sequences of uncountable length. At limit ordinals,
there is the question of which player gets to choose first, so Foreman defined
two games. We slightly change his notation to match that of this paper. Our
GI

κ denotes his GI
κ+ , and our GII

κ denotes his GII
κ+ .

24 Definition (Foreman [5]). The game GI
κ is played in a Boolean algebra

B as follows. On round 0, Player I chooses an a0 ∈ B+; then Player II chooses
some b0 ∈ B+ such that b0 ≤ a0. In general, on round α < κ, Player I chooses
an aα ∈ B+ such that aα ≤ bβ for all β < α (if possible). Then Player II chooses
some bα ∈ B+ such that bα ≤ aα. Player I wins the play iff either for some α < κ
I has no legal move at round α, or else the play is a sequence

a0 ≥ b0 ≥ a1 ≥ b1 ≥ · · · ≥ aα ≥ bα ≥ · · · (5)

of length κ and
∧

α<κ bα = 0. GII
κ is played similarly: I starts the game, but II

chooses first at limit ordinals α ≥ ω; so the sequence looks like this:

a0 ≥ b0 ≥ a1 ≥ b1 ≥ · · · ≥ bω ≥ aω ≥ · · · ≥ bα ≥ aα ≥ · · · (6)

25 Note. GI
ω = GII

ω = Jech’s G in [7].

The games GI
κ and GII

κ can be played on a partial ordering P.

26 Lemma (Foreman [5]). Let P be a dense subset of B. Then II (I) has a
winning strategy for GI

κ on B iff II (I) has a winning strategy for GI
κ on P. The

same holds for GII
κ .

P is said to be κ-strategically closed if II has a winning strategy for GII
κ . If

P is < κ+-closed, then II wins GI
κ. It is known that GII

κ is strictly easier for II
to win than GI

κ. (See [14] for a discussion.) The following example due to Gray
applies. (His example can also be found in [5].)

27 Example (Gray [6]). There is a complete Boolean algebra in which I
has a winning strategy for GI

ℵ1
but in which II has a winning strategy for GII

ℵ1
.

On the other hand, it has been shown that the games GII
κ and Gκ

1 (∞) are
equivalent with regard to winning strategies for Player I.

28 Theorem ([4, 5]). The following are equivalent.

(1) I has a winning strategy for GII
κ in B;

(2) I has a winning strategy for Gκ
1 (∞) in B;

(3) The (κ,∞)-d.l. fails in B.

Foreman proved (1) iff (3) and we proved (2) iff (3). This extends work of
Jech, showing that the games G and Gω

1 (∞) are equivalent for Player I [8].
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Veličković showed the equivalence of the games G and Gω
1 (∞) for Player

II [17]. This can be extended to GII
κ and Gκ

1 (∞). The proof is a straightforward
generalisation of the one given by Veličković, making the necessary cardinal
changes and dealing with limit stages. Nevertheless, it is included here, since
strategically closed forcings are quite useful in set theory and hence the equiv-
alence is of interest.

29 Theorem. Let κ be any infinite cardinal. II has a winning strategy for
GII

κ in B if and only if II has a winning strategy for Gκ
1 (∞) in B.

Proof. Let σ be a winning strategy for Player II for GII
κ in B. We construct

a winning strategy τ for II for Gκ
1 (∞) in B. In Gκ

1 (∞), suppose I fixes a > 0. In
GII

κ , let a0 = a and b0 = σ(〈a0〉). In Gκ
1 (∞), I plays some partition W0 of a. Have

II choose some u0 ∈W0 for which u0 ∧ b0 > 0 and define τ(〈W0〉) = u0. In GII
κ ,

let a1 = u0 ∧ b0 and b1 = σ(〈a0, a1〉). In Gκ
1 (∞), I plays some partition W1 of a.

Have II choose some u1 ∈W1 for which u1∧b1 > 0 and define τ(〈W0,W1〉) = u1.
Continue in this manner until round ω.

In GII
κ , II plays first at round ω and beyond. For ω ≤ α < κ, let bα =

σ(〈aβ : β < α〉). In Gκ
1 (∞), I plays some partition Wα of a. Have II choose some

uα ∈ Wα for which uα ∧ bα > 0 and define τ(〈W0, . . . ,Wα〉) = uα. In GII
κ , let

aα = uα ∧ bα.
In this manner, we obtain a play

a0 ≥ b0 ≥ a1 ≥ b1 ≥ · · · ≥ bω ≥ aω ≥ · · · ≥ bα ≥ aα, . . . (7)

of GII
κ in which II plays according to the winning strategy σ. So

∧
α<κ aα > 0.

Moreover, 〈Wα, uα : α < κ〉 is a play of Gκ
1 (∞) in which II plays according to τ ,

and ∧

α<κ

uα ≥
∧

α<κ

(uα ∧ bα) =
∧

α<κ

aα > 0. (8)

Therefore, τ is a winning strategy for II for Gκ
1 (∞).

Now suppose τ is a winning strategy for II for Gκ
1 (∞) in B. Note that the

game Gκ
1 (∞) is equivalent to the game where at each stage α < κ, I chooses a

partition of the infimum of II’s previous choices in Gκ
1 (∞) and II chooses one

piece of that partition.

Claim. Suppose that α < κ, 〈aβ : β < α〉 is a decreasing sequence, and for
each β < α, cβ =

∧
γ<β aγ and Wβ is a partition of cβ . Let cα =

∧
β<α aβ . If

cα > 0, then there exists some 0 < bα ≤ cα with the property that for each
0 < u ≤ bα, there exists a partition Wα of cα such that u = τ(〈Wβ : β ≤ α〉).

Suppose not. Then for each 0 < b ≤ cα, there exists some 0 < u ≤ b such
that for each partition Wα of cα, u 6= τ(〈Wβ : β ≤ α〉). So the set of such u’s is
dense below cα. Let Wα be a partition of cα consisting of such u’s. If I plays Wα
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on round α, then τ(〈Wβ : β ≤ α〉) must be an element of Wα. But each u ∈Wα

is not equal to τ(〈Wβ : β ≤ α〉). Contradiction. Thus, the Claim holds.
We now construct a winning strategy σ for II for GII

κ . In GII
κ , let I choose

a0 > 0. Let II choose some 0 < b0 ≤ a0 satisfying the Claim for c0 = a0. Define
σ(〈a0〉) = b0. Next, I chooses some 0 < a1 ≤ b0. In Gκ

1 (∞), let a = a0, and
let W0 be a partition of a0 such that a1 = τ(〈W0〉). Again, let II choose some
0 < b1 ≤ a1 satisfying the Claim for c1 = a1. Define σ(〈a0, a1〉) = b1. Let I
choose some 0 < a2 ≤ b1. In Gκ

1 (∞), let W1 be a partition of a1 such that
a2 = τ(〈W0,W1〉). Continue in this manner until round ω.

For ω ≤ α < κ, II chooses first at round α in GII
κ . Let cα =

∧
β<α aβ .

cα > 0 since each aβ is II’s choice according to the winning strategy τ on
〈W0, . . . ,Wβ〉. Since II gets to choose first at limit ordinals in GII

κ , II can choose
some 0 < bα ≤ cα such that for each 0 < u ≤ bα, there is a partition Wα of cα
such that u = τ(〈W0, . . . ,Wα〉). Define σ(〈aβ : β < α〉) = bα. Let I choose some
0 < aα ≤ bα. Let Wα be a partition of cα such that aα = τ(〈W0, . . . ,Wα〉).

∧

α<κ

aα =
∧

α<κ

τ(〈W0, . . . ,Wα〉) > 0, (9)

since τ is a winning strategy for II for Gκ
1 (∞). QED

5 < κ+-closed dense subsets of Boolean algebras
and GI

κ

Recall that if a partial ordering P has a < κ+-closed dense subset, then
Player II has a winning strategy for GI

κ in P. Conversely, Player II having a
winning strategy for GI

κ in P sometimes implies the existence of a < κ+-closed
dense subset. The main Theorem 38 of this section slightly improves on what
was meant by a vague comment of Foreman in [5]. As no proof is given in that
paper, we give one for sake of availability in the literature. The proof involves
straightforward adaptations of Veličković’s proofs of Theorem 30 and Lemma 36
for the countable length game G. The proof is basically Veličković’s. The analysis
goes through dense subtrees. For a characterisation of when a partial ordering
has a dense subtree, see [13].

30 Theorem (Veličković [17]). Let T be a tree. If Player II has a winning
strategy for G on T , then T has a < ω1-closed dense subset.

This can be extended to uncountable length games, using GI
κ in place of G

and making some cardinal arithmetic assumptions.

31 Theorem. Suppose T is a tree and Player II wins GI
κ on T . Let λ

be least such that T is nowhere (λ,∞)-distributive, and suppose ∀κ ≤ θ < λ,
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|θ<κ| < λ. Then T has a < κ+-closed dense subset.

Proof. Without loss of generality, we can assume T is a normal tree. Let
η = ht(T ). For ξ < η, let Tξ denote the ξ-th level of T . We first prove the theorem
assuming that T is (< η,∞)-distributive. Fix a winning strategy σ for II in GI

κ

on T . For t ∈ T and ~s ∈ (T )<κ a sequence of even or limit length, we say that ~s
is a partial play towards t if ~s is played according to σ and inf ~s ≥ t. Call t ∈ T
good if for every partial play ~s towards t and every t′ ∈ T with inf ~s ≥ t′ > t,
there exists a partial play ~s ′ towards t extending ~s with inf ~s ′ ≤ t′. (inf ~s is
well-defined if ~s has limit length, since T is normal.)

32 Claim. The set of good t’s is < κ+-closed.

Proof. Let γ ≤ κ be a limit ordinal and 〈ti : i < γ〉 be a strictly decreasing
sequence of good conditions. (Note: the set of t ∈ T for which there exists a
partial play towards t is dense in T .) Let ~s0 be a partial play towards t0. Then
~s0 is also a partial play towards t1. Given α < γ and a partial play ~sα towards
tα, inf ~sα ≥ tα > tα+1 implies there is a partial play ~sα+1 towards tα+1 such that
~sα+1 ⊇ ~sα and tα ≥ inf ~sα+1 ≥ tα+1. For a limit ordinal α < γ, let ~sα =

⋃
β<α ~sβ .

~sα is a partial play of GI
κ. Let uα = inf ~sα. Then uα ≥ tα, since T is normal, so

~sα is a partial play towards tα+1. Let ~s =
⋃

α<γ ~sα. Let u = inf ~s. (u exists in

T since ~s is a (possibly partial) play of GI
κ according to σ.) u is good: Let ~s ′

be a partial play towards u and t ∈ T such that inf ~s ′ ≥ t > u. Then there is
an α < γ such that t > tα > u. ~s ′ is also a partial play towards tα. Since tα is
good, there is a partial play ~s ′′ towards tα, hence towards u, such that ~s ′′ ⊇ ~s ′

and inf ~s ′′ ≤ t. QED

We will say that (t, t′) ∈ T × T is a good pair if t′ > t and for every partial
play ~s towards t′, there is a partial play ~s ′ towards t extending ~s such that
inf ~s ′ ≤ t′.

33 Claim. ∀p ∈ T , ∃t < p such that (t, p) is a good pair.

Proof. Let p ∈ T . For each partial play ~s towards p, letD~s = {q ∈ T : q < p
and ∃~s ′ a partial play towards q such that ~s ′ ⊇ ~s and inf ~s ′ ≤ p}. D~s is open
dense below p: Let t ≤ p. Then ~s is a partial play towards t. Let I choose some
s0 ≤ t. Let q = σ(~s⌢s0). Then q ∈ D~s. To see that D~s is open, suppose r ∈ D~s

and t ≤ r. Then any ~s ′ which guarantees that q ∈ D~s also guarantees that
r ∈ D~s.

Let θ = ht(p). If θ ≥ κ, then there are ≤ |θ<κ| many partial plays towards p.
If θ < κ, then there are ≤ |2θ| many partial plays towards p. By our hypothesis,
these are both < η. Let Dp =

⋂
{D~s : ~s is a partial play towards p }. Dp is dense

below p, since T is (< η,∞)-distributive. Let t ∈ Dp. Then (t, p) is a good pair:
Let ~s be a partial play towards p. t ∈ D~s implies ∃~s ′ ⊇ ~s such that t ≤ inf ~s ′

and inf ~s ′ ≤ p. So (t, p) is a good pair. QED
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34 Claim. The set of good t’s is dense.

Proof. Let p0 ∈ T be given. Let ~s0 be a partial play towards p0. Let p1 < p0

be such that (p1, p0) is a good pair. Then there is a partial play ~s1 towards p1

such that ~s1 ⊇ ~s0 and inf ~s1 ≤ p0. Given ~sα and pα, let pα+1 < pα be such that
(pα+1, pα) is a good pair. Since ~sα is a partial play towards pα, there is a partial
play ~sα+1 towards pα+1 such that ~sα+1 ⊇ ~sα and inf ~sα+1 ≤ pα. For limit α < κ,
let ~sα =

⋃
β<α ~sβ . Then ~sα is a partial play of GI

κ, so inf ~sα exists in T . Let
pα = inf ~sα. Then ~sα is a partial play towards pα. Let p = infα<κ pα. p is good:
Suppose ~s is a partial play towards p and t′ ∈ T satisfying inf ~s ≥ t′ > p. Then
there is an α < κ such that t′ > pα. (pα+1, pα) is a good pair and ~s is a partial
play towards pα, so there is a partial play ~s ′ towards pα+1 such that ~s ′ ⊇ ~s and
inf ~s ′ ≤ pα. Therefore, ~s ′ is a partial play towards p and inf ~s ′ ≤ t′. QED

Hence, by Claims 32 and 34, the set of good t ∈ T is dense and < κ+-closed.

Now consider the general situation when T is not (< η,∞)-distributive,
where η = ht(T ). To be precise, we can find a maximal antichain M ⊆ T such
that for each b ∈ M there is a λb such that T ↾ b is (< λb,∞)-distributive and
nowhere (λb,∞)-distributive. Then we can do the proof on each piece T ↾ b,
b ∈M .

Hence, without loss of generality, let λ be such that T is (< λ,∞)-distributive
and nowhere (λ,∞)-distributive. Then there is a decreasing sequence 〈Dξ : ξ <
λ〉 of open dense subsets of T such that

⋂
ξ<λDξ = ∅. For each ξ < λ, pick by

transfinite recursion a maximal antichain Aξ ⊆ Dξ such that ∀ξ′ < ξ, Aξ refines
Aξ′ . Let R =

⋃
ξ<λAξ. R with the induced ordering is a tree. ht(R) = λ, so R is

nowhere (λ,∞)-distributive. R is dense in T : Let t ∈ T . Then there is a ξ < λ
such that t 6∈ Dξ. If s ∈ Aξ and s and t are compatible, then actually s < t
(if s ≥ t, then s 6∈ Dξ, since Dξ is open and t 6∈ Dξ). Hence, R is (< λ,∞)-
distributive. Doing the first part of the proof on R yields a < κ+-closed dense
subset of R, and hence of T . QED

35 Corollary. Suppose |κ<κ| = κ, T is a tree with ht(T ) = κ+, and II wins
GI

κ on T . Then T has a < κ+-closed dense subset.

Now we give game-theoretic conditions under which a Boolean algebra has
a dense subset which is a tree. Veličković proved the following for the countable
length game G.

36 Lemma (Veličković [17]). Let B be a complete Boolean algebra which
has a dense set of size ≤ |2ℵ0 |. Assume II has a winning strategy for G. Then
B has a dense subset which is a tree under the induced ordering.

Veličković’s proof can be easily extended to uncountable length games, with
a bit of cardinal arithmetic.
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37 Lemma. Suppose B has a dense subset of size ≤ |2κ|, and II has a
winning strategy for GI

κ in B. Let λ be least such that B is not (λ,∞)-distributive,
and assume |2<κ| < λ. Then B has a dense subset which is a tree under the
induced ordering and on which II wins GI

κ.

Proof. First, note that if B has a dense subset of size < |2κ|, then B must
be atomic, since II has a winning strategy for GI

κ. In that case, the atoms form
a trivial tree on which II wins GI

κ. So without loss of generality, let us assume
B is atomless. Then B has a dense subset of size exactly |2κ|.

Let λ be least such that B is not (λ,∞)-distributive. There is a partition of
unity M ⊆ B such that for each b ∈M , there is a λb such that B ↾ b is nowhere
(λb,∞)-distributive but is (< λb,∞)-distributive. Note that each λb ≥ λ. We
can then do the remainder of the proof on each B ↾ b, b ∈M .

So, without loss of generality, assume B is nowhere (λ,∞)-distributive but
is (< λ,∞)-distributive. Note then that λ is regular. Let P be a dense subset
of B with |P| = |2κ|. As in the previous proof, there are maximal antichains
Aξ ⊆ P, ξ < λ, such that Aξ refines Aη for all η < ξ < λ, and

∧
ξ<λ f(ξ) = 0 for

all f ∈ Πξ<λAξ.

Claim. For each p ∈ P, there is a ξ < λ such that Aξ(p) := { q ∈ Aξ :
p ∧ q > 0 } has size |2κ|.

Proof. Let σ be a winning strategy for II for GI
κ on P. Construct by in-

duction two Cantor trees of elements of P, 〈ps : s ∈ 2<κ〉, 〈qs : s ∈ 2<κ〉. Set
q〈 〉 = p〈 〉 = p. Given ps, let qs⌢0, qs⌢1 be incompatible extensions of ps in P such
that there is a ξs < λ for which qs⌢0, qs⌢1 are below different elements of Aξs .
Let ps⌢i = σ(〈q〈 〉, p〈 〉, q〈s(0)〉, p〈s(0)〉, . . . , ps, qs⌢i〉) for i ≤ 1. If α < κ is a limit
ordinal and s ∈ 2α, let qs ∈ P such that qs ≤ qs↾i for all i < α. (Such a qs exists
since σ is a winning strategy for II for GI

κ.) Let ps = σ(〈qs↾i, ps↾i : i < α〉⌢qs).

Since σ is a winning strategy for II, for each f : κ→ 2 there is a pf such that
for each α < κ, pf ≤ pf↾α. Let ξ = sup{ ξs : s ∈ 2<κ }. ξ < λ, since |2<κ| < λ
and λ is regular. Let f 6= g and α < κ be least such that f(α) 6= g(α). There
are af 6= ag ∈ Aξf↾α

such that pf↾(α+1) ≤ af and pg↾(α+1) ≤ ag. Therefore,
|{ q ∈ Aξ : p ∧ q > 0 }| ≥ |2κ|. QED

Now for each ξ < λ, let Eξ = { p ∈ P : |Aξ(p)| = |2κ| }. By induction, there is
a 1-1 function ϕξ : Eξ → Aξ such that for each p ∈ Eξ, p∧ϕξ(p) > 0. Enumerate
Eξ as 〈pα : α < θ〉 for some θ ≤ |2κ|. For α < θ, let ϕξ(pα) ∈ Aξ(pα) \ {ϕξ(pβ) :
β < α }.

∀ξ < λ, ∀p ∈ Eξ, choose one qp ≤ p ∧ ϕξ(p). Extend { qp : p ∈ Eξ } to a
maximal antichain Cξ refining Aξ. Build maximal antichains Tξ for ξ < λ as
follows: Tξ+1 refines Cξ and Tη for all η ≤ ξ; for limit ξ < λ, Tξ = {

∧
η<ξ f(η) :

f ∈ Πη<ξTη and
∧

η<ξ f(η) 6= ∅ }: Let T0 = C0. (The Tξ’s are not required to be
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subsets of P.) Finally, let T =
⋃
{Tξ : ξ < λ }. T is a tree and is a dense subset

of B. By Lemma 26, II has a winning strategy for GI
κ on T . QED

38 Theorem. Suppose B has a dense subset of size ≤ |2κ|, and II has
a winning strategy for GI

κ on B. Let λ0 be least such that B is not (λ0,∞)-
distributive, and λ1 be least such that B is nowhere (λ1,∞)-distributive. Assume
|2<κ| < λ0 and ∀κ ≤ θ < λ1, |θ

<κ| < λ1. Then B has a dense subtree which is
< κ+-closed.

39 Corollary. Assume |κ<κ| = κ and |2κ| = κ+. Suppose II has a winning
strategy for GI

κ on B, and B has a dense subset of size κ+ and is nowhere
(κ+,∞)-distributive. Then B has a dense subtree which is < κ+-closed.

6 κ-length fusion and uncountable height tree
forcings

In this section, we present a generalisation of Baumgartner’s Axiom A to
fusion sequences of uncountable length. We then use this to extend a result
of Jech to uncountable length games. This in turn will help us analyse the
game-theoretic properties of the regular open algebras of uncountable height
tree forcings in Example 44.

40 Definition. Let (P,≤) be a partial ordering. We will say that P satisfies
Axiom A(κ) if there is a family of partial orderings 〈≤α : α < κ〉 on P such that

(1) ≤0 is ≤;

(2) ∀β < α < κ, q ≤α p→ q ≤β p;

(3) Whenever 〈pα : α < κ〉 is a sequence satisfying ∀β < α < κ, pβ ≥β pα,
then there is a p ∈ P such that p ≤α pα for all α < κ;

(4) If ξ̇ is a P-name for an ordinal, α < κ, and 〈pβ : β < α〉 satisfies ∀γ <
β < α, pγ ≥γ pβ , then there is a set B and a pα ∈ P such that |B| ≤ κ,
pα  ξ̇ ∈ B, and ∀β < α, pβ ≥β pα.

We say that a sequence 〈pα : α < κ〉 satisfying ∀β < α < κ, pβ ≥β pα is
a fusion sequence; for α < κ, a sequence 〈pβ : β < α〉 satisfying ∀γ < β < α,
pγ ≥γ pβ is a partial fusion sequence.

Note that < κ+-closed forcings and κ+-c.c. forcings satisfy Axiom A(κ). A
seemingly weaker property is the following.

41 Definition. We shall say that a partial order (P,≤) satisfies Axiom
A′(κ) if there is a family of partial orderings 〈≤α : α < κ〉 on P such that (1),
(2), and (4) of Axiom A(κ) hold and (3′) holds, where
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(3′) Whenever 〈pα : α < κ〉 is a fusion sequence, then there is a p ∈ P such
that p ≤ pα for all α < κ.

Suppose (P,≤) with 〈≤α : α < κ〉 satisfy (1), (2), and (3′). Let (4′) =
(4′a)+(4′b), where

(4′a) ∀p ∈ P, ∀α < κ, if W is predense below p, then ∃q ≤α p and ∃W ′ ⊆W
such that |W ′| ≤ κ and W ′ is predense below q.

(4′b) Given α < κ, if 〈pβ : β < α〉 is a partial fusion sequence, then ∃pα such
that pβ ≥β pα for all β < α (i.e. every partial fusion sequence is extendable).

42 Fact. If (P,≤) with 〈≤α : α < κ〉 satisfy (1) and (2), then property (4)
is equivalent to property (4′).

Proof. That (4) implies (4′b) is clear. To see that (4) implies (4′a), let
p ∈ P, α < κ, and W be a set which is predense below p. 〈p : β ≤ α〉 is a partial
fusion sequence, since p ≤β p for all β ≤ α. Enumerate W as { rδ : δ < λ } for
some cardinal λ and define ξ̇ = { 〈δ̌, rδ〉 : δ < λ }. (4) implies there is a set B
and a pα+1 ∈ P such that |B| ≤ κ, pα+1  ξ̇ ∈ B, and for all β ≤ α, pα+1 ≤β p.
Let W ′ = { rδ : δ ∈ B }. Then pα+1 ≤α p and W ′ is predense below pα+1.

Now assume (4′) and let ξ̇ be a P-name for an ordinal and 〈pβ : β < α〉 be
a partial fusion sequence. (4′b) implies there is a q such that pβ ≥β q for all
β < α. Let W be a maximal incompatible family below q such that ∀r ∈ W ,
r decides ξ̇. (4′a) implies ∃pα ≤α q and ∃W ′ ⊆ W such that |W ′| ≤ κ and W ′

is predense below pα. Let B = { γ : ∃r ∈ W ′(r  ξ̇ = γ) }. Then |B| ≤ κ and
pα  ξ̇ ∈ B. pα ≤α q ≤β pβ for all β < α, so pα ≤β pβ for all β < α. QED

Hence, Axiom A(κ) implies Axiom A′(κ). We have not checked whether the
converse holds.

Jech showed that whenever P satisfies Axiom A, then II has a winning strat-
egy for Gω

ω (∞) in r. o.(P) [8]. His proof easily extends to give the next proposi-
tion.

43 Proposition. If (P,≤) satisfies Axiom A′(κ), then II has a winning
strategy for Gκ

κ(∞) in r. o.(P).

Proof. Let B = r. o.(P). Let Player I fix some a ∈ B+. We describe a
winning strategy for Player II. On the 0-th round, suppose I plays W0 = { b0β :
β < λ0 }, a partition of a. Let ξ̇0 = { 〈β̌, b0β〉 : β < λ0 }, and let q ∈ P such that
q ≤ a. By (4), there is a set B0 and a p0 ∈ P such that |B0| ≤ κ, p0 ≤0 q, and
p0  ξ̇0 ∈ B0. p0 ≤

∨
β∈B0

b0β , since b0β = ‖ξ̇0 = β̌‖ ∧ a for each β < λ0.

In general, play the α-th round as follows. As we begin the α-th round, we
have already constructed a partial fusion sequence 〈pγ : γ < α〉. Let Wα =
{ bαβ : β < λα } be Player I’s move. Let ξ̇α = { 〈β̌, bαβ〉 : β < λα }. By (4), there
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is a Bα of size ≤ κ and a pα ∈ P such that pα  ξ̇α ∈ Bα and for each β < α,
pα ≤β pβ . pα ≤

∨
β∈Bα

bαβ , since bαβ = ‖ξ̇α = β̌‖ ∧ a for each β < λα.
By (3′), there is a p ∈ P such that for all α < κ, p ≤ pα. Therefore,

0 < p ≤
∧

α<κ pα ≤
∧

α<κ

∨
β∈Bα

bαβ . Hence, II wins Gκ
κ(∞). QED

44 Examples. Assume |2<κ| = κ. Let P(κ) denote perfect tree forcing
on 2κ. Kanamori investigated this forcing for κ > ω [12]. When κ = ω this is
just Sacks forcing. Let S(κ) denote superperfect tree forcing on κκ, as defined by
Brown in [1] for κ > ω. When κ = ω, this reduces to Miller forcing with splitting
sets in some filter. In r. o.(P(κ)) and r. o.(S(κ)), II has a winning strategy for
GI

ρ for all ρ < κ, since both forcings are < κ-closed. Since both S(κ) and P(κ)
satisfy Axiom A(κ), II has a winning strategy for Gκ

κ(∞), by Proposition 43.
Hence, if κ<κ = κ, they preserve all κ-stationary subsets of [λ]≤κ for all λ ≥ κ,
by Fact 21. In r. o.(P(κ)), I wins Gκ

1 (2), since a new function from κ into 2
is added, by Theorem 12 (1). If κ is strongly inaccessible, then II also has a
winning strategy for Gκ

<κ(∞) in r. o.(P(κ)). In r. o.(S(κ)), I wins Gκ
<κ(κ), since

the forcing adds a new unbounded function from κ into κ, by Theorem 12 (2).

References

[1] E. T. Brown: Superperfect forcing at uncountable cardinals, preprint.

[2] J. Cummings, N. Dobrinen: The hyper-weak distributive law and a related game in
Boolean algebras. To appear in the Annals of Pure and Applied Logic.

[3] N. Dobrinen: κ-stationary subsets of Pκ+λ, infinitary games, and distributive laws in
Boolean algebras. To appear in the Journal of Symbolic Logic.

[4] N. Dobrinen: Games and general distributive laws in Boolean algebras, Proceedings of
the American Mathematical Society, 131 (2003), 309–318.

[5] M. Foreman: Games played on Boolean algebras, The Journal of Symbolic Logic, 48, n.
3 (1983), 714–723.

[6] C. Gray: Iterated forcing from the strategic point of view, PhD thesis, University of
California, Berkeley 1983.

[7] T. Jech: A game theoretic property of Boolean algebras, In Stud. Logic Foundations
Math., 96, 135–144. Logic Colloquium ’77 (Proc. Conf., Wroclaw, 1977), North-Holland
1978.

[8] T. Jech: More game-theoretical properties of Boolean algebras, Annals of Pure Applied
Logic, 26, n. 1 (1984), 11–29.

[9] T. Jech: Multiple Forcing, Cambridge University Press, 1986.

[10] T. Jech: Set Theory, Springer, the 3rd millennium edition, 2003.

[11] A. Kamburelis: On the weak distributivity game, Annals of Pure Applied Logic, 66, n.
1 (1994), 19–26.

[12] A. Kanamori: Perfect-set forcing for uncountable cardinals, Ann. Math. Logic, 19 (1980),
n. 1–2, 97–114.



Uncountable length games 83

[13] B. König: Dense subtrees in complete Boolean algebras, Mathematical Logic Quarterly
52, n. 3 (2006), 283–287.

[14] B. König, Y. Yoshinobu: Fragments of Martin’s Maximum in generic extensions, Math-
ematical Logic Quarterly, 50, n. 3 (2004), 297–302.

[15] S. Koppelberg: Handbook of Boolean Algebra, volume 1, North-Holland 1989.

[16] D. W. Kueker: Countable approximations and Löwenheim-Skolem theorems, Annals of
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