#### Ramsey theory of homogeneous structures

Natasha Dobrinen

University of Denver

Notre Dame Logic Seminar

September 4, 2018

#### Ramsey's Theorem for Pairs of Natural Numbers

Given a coloring of pairs of natural numbers into red and blue:



#### Ramsey's Theorem for Pairs of Natural Numbers

There is an infinite subset M such that all pairs of numbers in M have the same color.



This can also be stated in terms of finding a complete infinite graph with all edges having the same color.

## Ramsey's Theorem and Logic

**Theorem.** (Ramsey, 1929) Given  $k, r \ge 1$  and a coloring

 $c: [\mathbb{N}]^k \to r,$ 

there is an infinite  $M \subseteq \mathbb{N}$  such that c takes only one color on  $[M]^k$ .

This theorem appears in Ramsey's paper, *On a problem of formal logic*, and is motivated by Hilbert's Entscheidungsproblem:

Find a procedure for determining whether any given formula is valid.

Ramsey applied his theorem to solve this problem for formulas with only universal quantifiers in front  $(\Pi_1)$ .

One direction of extending Ramsey's Theorem is to trees.

Several routes have been taken, and we will concentrate on the one on strong trees.

## Ramsey Theory for Strong Trees

A tree  $S \subseteq T = 2^{<\omega}$  is an infinite strong subtree of T iff it is (strongly) isomorphic to  $2^{<\omega}$ .

(This is a special case, but is sufficient for this talk.)

#### Example, An Infinite Strong Subtree $S \subseteq 2^{<\omega}$



#### The nodes in S are of lengths $0, 1, 3, 6, \ldots$

## Example, An Infinite Strong Subtree $T \subseteq 2^{<\omega}$



The nodes in T are of lengths  $1, 2, 4, 5, \ldots$ 

Dobrinen

#### Halpern-Läuchli Theorem - strong tree version for 2 trees

**Theorem.** (Halpern-Läuchli 1966) Let  $r \ge 2$ , and  $T_0 = T_1 = 2^{<\omega}$ . Given a coloring of the product of level sets of the  $T_i$  into r colors,

$$c: \bigcup_{n<\omega} T_0(n) \times T_1(n) \to r,$$

there are infinite strong trees  $S_i \leq T_i$  and an infinite sets of levels  $M \subseteq \omega$  where the splitting in  $S_i$  occurs, such that f is constant on  $\bigcup_{m \in M} S_0(m) \times S_1(m)$ .

This was found as a key lemma while proving that the Boolean Prime Ideal Theorem is strictly weaker than the Axiom of Choice over ZF. (See [Halpern-Lévy 1971].)























Etc.



Dobrinen



Dobrinen



Dobrinen



Dobrinen



Dobrinen



Dobrinen



Dobrinen



Dobrinen

Harrington devised a proof of the Halpern-Läuchli Theorem that uses the method of forcing, though without ever moving into a generic extension of the ground model. This will be important later.

The next theorem is proved by induction from the Halpern-Läuchli Theorem for any finite number of trees. A k-strong subtree is the truncation of an infinite strong tree to k many levels.

**Thm.** (Milliken 1979) Let  $k \ge 0$ ,  $l \ge 2$ , and a coloring of all k-strong subtrees of  $2^{<\omega}$  into l colors. Then there is an infinite strong subtree  $S \subseteq 2^{<\omega}$  such that all copies of  $2^{\le k}$  in S have the same color.

Milliken's theorem for 2-strong trees directly implies the Halpern-Läuchli Theorem.

#### Milliken's Theorem for 3-Strong Trees

takes a coloring all subtrees of  $2^{<\omega}$  like this:



#### Milliken's Theorem for 3-Strong Trees

#### and this:



### Milliken's Theorem for 3-Strong Trees

and this



and finds an infinite strong subtree in which all 3-strong subtrees have the same color.

Applications of this will be seen shortly.

Dobrinen

#### Extensions of Ramsey's Theorem to Structures

What happens if we try to extend Ramsey's Theorem to infinite structures S, where the subsets allowed must have induced structure isomorphic to S?

#### Example: The Rationals.

Any finite coloring of the singletons in  $\mathbb{Q}$  is monochromatic on a subset isomorphic to  $\mathbb{Q}$ . However,

**Theorem.** (Sierpinski) There is a coloring of pairs of rationals into two colors such that any subset  $\mathbb{Q}' \subseteq \mathbb{Q}$ , which is again a dense linear order without endpoints, takes both colors on its pairsets.

Decades later, Milliken's Theorem was seen to be the structural heart of this phenomenon.

Dobrinen

#### Milliken on Ramsey Theory of the Rationals

The rationals can be coded as the nodes in  $2^{<\omega}$ . Applying Milliken's Theorem one finds:

**Fact.** Given any  $n \ge 2$ , there is a number  $\mathcal{T}(n, \mathbb{Q}) \ge 2$  such that any coloring of  $[\mathbb{Q}]^n$  into finitely many colors can be reduced to no more than  $\mathcal{T}(n, \mathbb{Q})$  colors on a substructure  $\mathbb{Q}'$  isomorphic to  $\mathbb{Q}$ .

With more work, Devlin (building on Laver's work) found the exact numbers: these are tangent numbers! These numbers  $T(n, \mathbb{Q})$  are called big Ramsey degrees. They are deduced from the number of types of trees that can code an *n*-tuple of rationals in  $2^{<\omega}$ .

The Rado graph  $\mathcal{R}$  is the universal homogeneous graph on countably many vertices. It is  $\mathcal{R}$  the Fraïssé limit of the class of finite graphs.

**Fact.** (Folklore) Given a coloring of the vertices of the Rado graph into finitely many colors, there is a subgraph which is again Rado in which all vertices have the same color.

The big Ramsey degree for vertex colorings in the Rado graph is 1.
### Colorings of Finite Graphs

Example: Ordered graph A embeds into ordered graph B.



Figure: Ordered Graph A



Figure: Ordered Graph B

## Some copies of $\boldsymbol{A}$ in $\boldsymbol{B}$



## Ramsey Theory of the Rado Graph

- Edges have big Ramsey degree 2. (Pouzet/Sauer 1996).
- $\bullet$  All finite graphs have finite big Ramsey degree. (Sauer 2006) In this paper is also the set-up for
- Actual degrees were found structurally in (LSV 2006) and computed in (J. Larson 2008).

How was Milliken's Theorem used?

### Nodes in Trees can Code Graphs

Let A be a graph. Enumerate the vertices of A as  $\langle v_n : n < N \rangle$ .

A set of nodes  $\{t_n : n < N\}$  in  $2^{<\omega}$  codes A if and only if for each pair m < n < N,

$$v_n E v_m \Leftrightarrow t_n(|t_m|) = 1.$$

The number  $t_n(|t_m|)$  is called the passing number of  $t_n$  at  $t_m$ .



## A Strong Tree Envelope



## A Different Antichain Coding a Path of Length 2



## A Strong Tree Envelope



## A different strong tree envelope



### Outline of Sauer's Proof: $\mathcal{R}$ has finite big Ramsey degrees

- The Rado graph is bi-embeddable with the graph coded by all nodes in the tree 2<sup><ω</sup>.
- Each finite graph can be coded by finitely many strong similarity types of (diagonal) antichains.
- Each strongly diagonal antichain can be enveloped into finitely many strong trees.
- Apply Milliken's Theorem finitely many times to obtain one color for each (strong similarity) type.
- Schoose a strongly diagonal antichain coding the Rado graph.
- Show that each type persists in each subgraph which is random to obtain exact numbers.

Dobrinen

big Ramsey degrees

### Structures known to have big Ramsey degrees

- the natural numbers (Ramsey 1929) (all big Ramsey degrees are 1)
- the rationals (Galvin, Laver, Devlin 1979)
- the Rado graph and similar binary relational structures (Sauer 2006)
- the countable ultrametric Urysohn space (Nguyen Van Thé 2008)
- the dense local order, circular tournament,  $\mathbb{Q}_n$  (Laflamme, NVT, Sauer 2010).

The crux of all but two of these proofs is Milliken's Theorem (or variant).

(The Urysohn space result uses Ramsey's Theorem.)

## Missing Piece: Forbidden Configurations

No Fraïssé structure with forbidden configurations had a complete analysis of its Big Ramsey Degrees.

The Problem: Lack of tools for representing such Fraïssé structures and lack of a viable Ramsey theory for such (non-existent) representations.

This problem is addressed starting with my submitted paper, *The Ramsey theory of the universal homogeneous triangle-free graph*, 48 pp, and work-in-progress extending it to all Henson graphs.

The methods developed therein are flexible and should apply, after modifications, to a large collection of homogeneous structures with forbidden configurations.

## Why study Ramsey Theory of Homogeneous Structures?

- Natural extension of structural Ramsey theory on finite structures, and is in line with Ramsey's original theorem.
- Connections with topological dynamics universal completion flows.
- Possible connections with model theory.

## The Triangle-free Henson Graph $\mathcal{H}_3$ : History of Results

The universal homogeneous triangle-free graph  $\mathcal{H}_3$  is the Fraïssé limit of the class of finite triangle-free graphs.

- Henson constructed  $\mathcal{H}_3$  and proved it is weakly indivisible in 1971.
- The Fraïssé class of finite ordered triangle-free graphs has the Ramsey property. (Nešetřil-Rödl 1973)
- ${\cal H}_3$  is indivisible: Vertex colorings of  ${\cal H}_3$  have big Ramsey degree 1. (Komjáth/Rödl 1986)
- $\mathcal{H}_3$  has big Ramsey degree 2 for edges. (Sauer 1998)

There progress halted due to lack of broadscale techniques.

### Main Theorem: $\mathcal{H}_3$ has Finite Big Ramsey Degrees

**Theorem.** (D.) For each finite triangle-free graph A, there is a positive integer  $T_{\mathcal{K}_3}(A)$  such that for any coloring of all copies of A in  $\mathcal{H}_3$  into finitely many colors, there is a subgraph  $\mathcal{H} \leq \mathcal{H}_3$ , again universal triangle-free, such that all copies of A in  $\mathcal{H}$  take no more than  $T_{\mathcal{K}_3}(A)$  colors.

Thanks to the following:

2011 Laver outlined Harrington's 'forcing proof' of Halpern-Läuchli for me. 2012 and 2013 Todorcevic and Sauer both mention the lack of an appropriate Milliken Theorem as the main obstacle to the solution.

### Structure of Proof: Three Main Parts

- I Develop new notion of strong coding tree to represent  $\mathcal{H}_3$ .
- II Prove a Ramsey Theorem for strictly similar finite antichains. The proof uses ideas from Harrington's 'forcing proof' of the Halpern-Läuchli Theorem, and obtains a Milliken-style theorem.
- III Apply Ramsey Theorem for strictly similar antichains finitely many times. Then take an antichain of coding nodes coding  $H_3$ .

#### Part I: Strong Coding Trees

Idea: Want correct analogue of strong trees for setting of  $\mathcal{H}_3$ . Problem: How to make sure triangles are never encoded but branching is as thick as possible?

## First Approach: Strong Triangle-Free Trees

- Use a unary predicate for distinguishing certain nodes to code vertices of a given graph (called coding nodes).
- Make a Branching Criterion so that a node *s* splits iff all its extensions will never code a triangle with coding nodes at or below the level of *s*.

# Strong triangle-free tree ${\mathbb S}$



One can develop almost all the Ramsey theory one needs on strong triangle-free trees

except for vertex colorings: there is a bad coloring of coding nodes.

## Refined Approach: Strong coding tree ${\mathbb T}$



#### Skew the levels of interest.

## The Space of Strong Coding Trees: $\mathcal{T}_3$

 $\mathcal{T}_3$  is the collection of all subtrees of  $\mathbb T$  which are strongly similar to  $\mathbb T.$ 

Extension Criterion: A finite subtree A of a strong coding tree  $T \in T_3$  can be extended to a strong coding subtree of T whenever A is strongly similar to an initial segment of T and all entanglements of A are witnessed - no types are lost.

The criteria guaranteeing this are

- Pre-Triangle Criterion: All new sets of parallel 1's in A are witnessed by a coding node in A 'nearby'.
- **2** A if free in T: A has no pre-determined new parallel 1's in T.

### A subtree of ${\mathbb T}$ in which Pre-Triangle Criterion fails

It has parallel 1's not witnessed by a coding node (PTC fails).



## A subtree of $\ensuremath{\mathbb{T}}$ in which PTC holds

Its parallel 1's are witnessed by a coding node.



This gives the basic idea of PTC, though more subtleties are involved.

Part II: A Ramsey Theorem for Strictly Similar Finite Antichains.

Idea: Strict similarity takes into account tree isomorphism and placements of coding nodes and new sets of parallel 1's.

It persists upon taking subtrees in  $\mathcal{T}_3$ .

### Ramsey Theorem for Strong Coding Trees

**Theorem.** (D.) Let A be a finite subtree of a strong coding tree T, and let c be a coloring of all strictly similar copies of A in T. Then there is a strong coding tree  $S \leq T$  in which all strictly similar

Then there is a strong coding tree  $S \leq I$  in which all strictly similar copies of A in S have the same color.

This is an analogue of Milliken's Theorem for strong coding trees. Strict similarity is a strong version of isomorphism, and forms an equivalence relation.

## Some Examples of Strict Similarity Types

Let G be the graph with three vertices and no edges.

We show some distinct strict similarity types of trees coding G.

### G a graph with three vertices and no edges

A tree A coding G - not P1C but still a valid strict similarity type



## G a graph with three vertices and no edges

B codes G and is strictly similar to A.



### The tree C codes G

C is not strictly similar to A.





D is not strictly similar to either A or C.



## The tree E codes G and is not strictly similar to A - D



#### E is incremental. More on that later.

## The tree F codes G and is strictly similar to E



#### F is also incremental.

Dobrinen

Part III: Apply the Ramsey Theorem to Strictly Similarity Types of Antichains to obtain the Main Theorem.

# Bounds for $T_{\mathcal{K}_3}(G)$

- Let G be a finite triangle-free graph, and let f color the copies of G in  $\mathcal{H}_3$  into finitely many colors.
- ② Define f' on antichains in  $\mathbb{T}$ : For an antichain A of coding nodes in  $\mathbb{T}$  coding a copy,  $G_A$ , of G, define  $f'(A) = f(G_A)$ .
- List the strict similarity types of antichains of coding nodes in T coding G. There are finitely many.
- Apply the Ramsey Theorem from Part II, once for each strict similarity type, to obtain a strong coding tree S ≤ T in which f' has one color per type.
- Solution Take an antichain of coding nodes, A in S, which codes H<sub>3</sub>. Let H' be the subgraph of H<sub>3</sub> coded by A.
- Then f has no more colors on the copies of G in  $\mathcal{H}'$  than the number of (incremental) strict similarity types of antichains coding G.

Dobrinen

big Ramsey degrees

A strong tree U with coding nodes is incremental if whenever a new set of parallel 1's appears in U, all of its subsets appear as parallel 1's at a lower level.

The trees A, B, E, and F are incremental.

The trees C and D are not incremental.

We can take S in the previous slide to be an incremental strong coding tree.

### An antichain $\mathbb{A}$ of coding nodes of S coding $\mathcal{H}_3$



### The tree minus the antichain of $c_n^{\mathbb{A}}$ 's is isomorphic to $\mathbb{T}$ .
Part II Expanded: Ideas behind the proof of the Ramsey Theorem for Strictly Similar Finite Trees

- (a) Prove new Halpern-Läuchli style Theorems for strong coding trees. - Three new forcings are needed, but the proofs take place in ZFC.
- (b) Prove a new Ramsey Theorem for finite trees satisfying the Strict Pre-Triangle Criterion.
  - An analogue of Milliken's Theorem.
- (c) New notion of envelope.

 Turns an antichain into a tree satisfying Strict Pre-Triangle Criterion.

## (a) Halpern-Läuchli-style Theorem

**Thm.** (D.) Given a strong coding tree T and

- **1** *B* a finite, valid strong coding subtree of T;
- **2** A a finite subtree of B with  $max(A) \subseteq max(B)$ ; and
- X a level set extending A into T with  $A \cup X$  satisfying the PTC and valid in T.

Color all end-extensions Y of A in T for which  $A \cup Y$  is strictly similar to  $A \cup X$  into finitely many colors.

Then there is a strong coding tree  $S \leq T$  end-extending B such that all level sets Y in S with  $A \cup Y$  strictly similar to  $A \cup X$  have the same color.

**Remark.** The proof uses three different forcings and Harrington-style ideas. The forcings are best thought of as conducting unbounded searches for finite objects in ZFC.

Proving the lower bounds in general for big Ramsey degrees of  $\mathcal{H}_3$  is a work in progress.

Big Ramsey degrees for edges and non-edges have been computed.

### Edges have big Ramsey degree 2 in $\mathcal{H}_3$



 $T_{\mathcal{H}_3}(Edge) = 2$  was obtained in (Sauer 1998) by different methods.

# Non-edges have 5 Strict Similarity Types (D.)



### References

Dobrinen, *The Ramsey theory of the universal homogeneous triangle-free graph* (2017) 48 pages (Submitted).

Halpern/Läuchli, A partition theorem, TAMS (1966).

Henson, A family of countable homogeneous graphs, Pacific Jour. Math. (1971).

Laflamme/Nguyen Van Thé/Sauer, Partition properties of the dense local order and a colored version of Milliken's Theorem, Combinatorica (2010).

Laflamme/Sauer/Vuksanovic, *Canonical partitions of universal structures*, Combinatorica (2006).

Larson, J. *Counting canonical partitions in the Random graph*, Combinatorica (2008).

Komjáth/Rödl, Coloring of universal graphs, Graphs and Combinatorics (1986).

#### References

Milliken, A Ramsey theorem for trees, Jour. Combinatorial Th., Ser. A (1979).

Nešetřil/Rödl, *Partitions of finite relational and set systems*, Jour. Combinatorial Th., Ser. A (1977).

Nešetřil/Rödl, *Ramsey classes of set systems*, Jour. Combinatorial Th., Ser. A (1983).

Nguyen Van Thé, *Big Ramsey degrees and divisibility in classes of ultrametric spaces*, Canadian Math. Bull. (2008).

Pouzet/Sauer, Edge partitions of the Rado graph, Combinatorica (1996).

Sauer, *Edge partitions of the countable triangle free homogeneous graph*, Discrete Math. (1998).

Sauer, Coloring subgraphs of the Rado graph, Combinatorica (2006).

Zucker, *Big Ramsey degrees and topological dynamics*, Groups Geom. Dyn. (To appear).