Applications of High Dimensional Ellentuck spaces

Natasha Dobrinen

University of Denver

Spring Topology and Dynamics Conference, 2018

Research supported by NSF Grant DMS-1600781

BLAST Conference - 10 Year Anniversary

Boolean algebras Lattices Alegbraic logic, universal Algebra Set theory Topology - general, point-free, set-theoretic

> University of Denver August 6 - 10, 2018

http://www.cs.du.edu/~wesfussn/blast some travel/lodging support available

Ellentuck Space

The Ellentuck space is the space $[\omega]^{\omega}$ with topology generated by basic open sets

$$[s,A] = \{ X \in [\omega]^{\omega} : s \sqsubset X \subseteq A \},\$$

where $s \in [\omega]^{<\omega}$ and $A \in [\omega]^{\omega}$.

Thm. (Ellentuck) The Ellentuck space is a topological Ramsey space: Given $\mathcal{X} \subseteq [\omega]^{\omega}$ with the property of Baire, for any basic open set [s, A], there is a member $B \in [s, A]$ such that

either
$$[s, B] \subseteq \mathcal{X}$$
 or else $[s, B] \cap \mathcal{X} = \emptyset$.

Forcing with members of the Ellentuck space partially ordered by \subseteq^* adds a Ramsey ultrafilter.

Forcing Ultrafilters

 $([\omega]^{\omega},\subseteq^*)$ is forcing equivalent to $\mathcal{P}(\omega)/\mathsf{Fin}.$

A natural extension of this Boolean algebra: $\mathcal{P}(\omega \times \omega)/\text{Fin} \otimes \text{Fin}$.

 $X \in Fin \otimes Fin \text{ iff } X \subseteq \omega \times \omega \text{ and } \forall^{\infty} n \in \omega, \{i \in \omega : (n, i) \in X\} \in Fin.$

 $\mathcal{P}(\omega^2)/\text{Fin}^{\otimes 2}$ adds an ultrafilter \mathcal{U}_2 , the next best thing to a p-point:

$$\mathcal{U}_2
ightarrow (\mathcal{U}_2)^2_{r,4}$$

The projection to the first coordinates, $\pi_1(\mathcal{U}_2)$, is a Ramsey ultrafilter, generic for $\pi_1(\mathcal{P}(\omega^2)/\operatorname{Fin}^{\otimes 2}) \cong \mathcal{P}(\omega)/\operatorname{Fin}$.

Extending Fin⁸² to all uniform barriers

Recursively construct ideals on ω^{k+1} : Fin^{$\otimes k+1$} = Fin \otimes Fin^{$\otimes k$}.

 $\mathcal{P}(\omega^k)/\mathsf{Fin}^{\otimes k}$ forces an ultrafilter \mathcal{U}_k : for each j < k, $\pi_j(\mathcal{U}_k) \cong \mathcal{U}_j$.

Replace ω^k by $[\omega]^k$; Fin^{$\otimes k$} by the ideal I_k on $[\omega]^k$ determined by Fin^{$\otimes k$}.

 $\mathcal{P}([\omega]^k)/I_k \cong \mathcal{P}(\omega^k)/\mathsf{Fin}^{\otimes k}.$

 $[\omega]^k$ is a uniform barrier on ω of rank k.

This construction of I_k can be extended to all uniform barriers on ω .

Hierarchy of Boolean Algebras and forced ultrafilters

Example. Schreier barrier: $S = \{s \in [\omega]^{<\omega} : |s| = \min s + 1\}.$

For
$$X \subseteq S$$
, $X_n = \{s \in X : \min s = n\}$.

$$I_{\mathcal{S}} = \{ X \subseteq \mathcal{S} : \forall^{\infty} n \, (X_n \in I_{\mathcal{S}_n}) \}.$$

For any uniform barrier B on ω , $\mathcal{P}(B)/I_B$ forces an ultrafilter \mathcal{U}_B on countable base set B.

Fact. If *B* projects to *C*, then $\mathcal{P}(C)/I_C$ embeds as a complete subalgebra of $\mathcal{P}(B)/I_B$, and \mathcal{U}_C is isomorphic to a projection of \mathcal{U}_B .

Initial motivation for h.d. Ellentuck spaces: Cofinal Types

A function $f : U \to V$ between ultrafilters is cofinal if f maps each filter base for U to a filter base for V.

 \mathcal{U} is Tukey reducible to $\mathcal{U} \geq_{\mathcal{T}} \mathcal{V}$ iff there is a cofinal map from \mathcal{U} into \mathcal{V} .

The equivalence relation defined by $\mathcal{U} \equiv_{\mathcal{T}} \mathcal{V}$ iff $\mathcal{U} \leq_{\mathcal{T}} \mathcal{V}$ and $\mathcal{V} \leq_{\mathcal{T}} \mathcal{U}$ is a coarsening of the Rudin-Keisler equivalence relation of isomorphism.

Thm.

- (Folklore) The ultrafilter \mathcal{U}_2 forced by $\mathcal{P}(\omega^2)/\mathrm{Fin}^{\otimes 2}$ is Rudin-Keisler minimal above the Ramsey ultrafilter $\pi_1(\mathcal{U}_2)$.
- **2** (Blass, D., Raghavan) $\mathcal{U}_2 \geq_T \pi_1(\mathcal{U}_2)$ and \mathcal{U}_2 is not Tukey maximal.

Initial Tukey Structures

So what exactly is Tukey below U_2 ?

Thm. [D1]

- **1** \mathcal{U}_2 is Tukey minimal above its projected Ramsey ultrafilter $\pi_1(\mathcal{U}_2)$.
- For each k ≥ 2, The ultrafilter U_k forced by $\mathcal{P}(\omega^k)/\text{Fin}^{\otimes k}$ has initial Tukey structure exactly a chain of length k. Likewise for its initial Rudin-Keisler structure.
- ⁽³⁾ [D2 and unpublished] For each uniform barrier B of infinite rank, U_B has initial Tukey and RK structures which are chains of length 2^{ω} , and they form a hierarchy via projection to barriers of smaller rank.

Remark. These results rely on new topological Ramsey spaces and canonization theorems for equivalence relations.

The 2-dimensional Ellentuck space \mathcal{E}_2

Goal: Construct a topological Ramsey space dense in $(Fin \otimes Fin)^+$.

Q. Which subsets of $(Fin \otimes Fin)^+$ should we allow?

A. Fix a particular order \prec of the members of non-decreasing sequences of natural numbers of length 2 in order type ω so that each infinite set is the limit of its finite approximations.

Figure: ₩₂

 \mathcal{E}_2 consists of all subsets of \mathbb{W}_2 for which the \prec -preserving bijection is also a tree-isomorphism.

Dobrinen

High dimensional Ellentuck

A member of \mathcal{E}_2

A member of \mathcal{E}_2

Dobrinen

The collection of $X \subseteq \mathbb{W}_2$ for which the \prec -preserving bijection from \mathbb{W}_2 to X preserves the tree structure induces the finite approximations. The basic open sets of \mathcal{E}_2 are of the form

$$[s,A] = \{X \in \mathcal{E}_2 : s \sqsubset A \subseteq X\}.$$

Thm. [D1] \mathcal{E}_2 satisfies the 4 axioms of Todorcevic, and hence is a topological Ramsey space: Every subset with the property of Baire is Ramsey.

That \mathcal{E}_2 is a topological Ramsey space was heavily utilized when proving the canonization theorem for equivalence relations on barriers on \mathcal{E}_2 .

This was applied to show that the generic ultrafilter forced by $\mathcal{P}(\omega^2)/\mathrm{Fin}^{\otimes 2}$ has, up to cofinal equivalence, exactly one Tukey type below it, namely that of its projected Ramsey ultrafilter.

The 3-dimensional Ellentuck space \mathcal{E}_3

Figure: ₩₃

_	
1 10	brinen

High dimensional Ellentuck

\mathcal{E}_S for S the Schreier barrier

Figure: $\mathbb{W}_{\mathcal{S}}$

 $X \in \mathcal{E}_S$ only if $X \subseteq \mathbb{W}_S$, for each *n* for which *X* has non-empty intersection with the subtree above (*n*), that restriction of *X* is in \mathcal{E}_n , and more structural requirements which are defined recursively from the structural requirements for th \mathcal{E}_k .

Dobrinen

High dimensional Ellentuck

The Infinite Dimensional Ellentuck Spaces

Thm. [D2] For each uniform barrier B, there is a topological Ramsey space \mathcal{E}_B which is dense in I_B^+ .

Hence, $(\mathcal{E}_B, \subseteq^{I_B})$ is forcing equivalent to $\mathcal{P}(B)/I_B$.

Thus, the restriction of $\mathcal{P}(B)$ to \mathcal{E}_B produces infinitary Ramsey theory, for those partitions into sets satisfying the property of Baire in the Ellentuck topology.

This was a necessary, though not sufficient, step in proving the initial Tukey structures below the ultrafilters \mathcal{U}_B .

Other Applications of Extended Ellentuck Spaces

A hierarchy of new Banach spaces

In [Arias, D., Girón, Mijares], we constructed a new Banach spaces using the Tsirelson norm construction over fronts of finite rank on the \mathcal{E}_k spaces.

This forms a hierarchy of spaces over ℓ_p , with spaces formed from \mathcal{E}_k projecting (in many different ways) to spaces from \mathcal{E}_j , for j < k.

My motivation for this project was to shed new light on distortion problems. Much work still needs to be done in this direction.

Preservation of ultrafilters by Product Sacks Forcing

Thm. [Y.Y. Zheng] The ultrafilters forced by $\mathcal{P}(\omega^k)/\operatorname{Fin}^{\otimes k}$ are preserved by products of Sacks forcing with countable support.

She first proved a *Moderately-Abstract Parametrized Ellentuck* Theorem for $\mathcal{R} \times \mathbb{R}^{\omega}$, for a large class of topological Ramsey spaces.

She then showed that \mathcal{E}_k spaces satisfy the premises of this parametrization theorem, which is applied to obtain the theorem above.

Thm. [Henle, Mathias, Woodin] Let M be a transitive model of ZF + $\omega \rightarrow (\omega)^{\omega}$ and N its Hausdorff extension, that is the extension $M[\mathcal{U}]$ where \mathcal{U} is the Ramsey ultrafilter forced by $\mathcal{P}(\omega)/\text{Fin.}$ Then M and N have the same sets of ordinals; moreover, every sequence in N of elements of M lies in M.

In particular, this theorem holds when M is the Solovay model $L(\mathbb{R})$.

Thm. [D., Hathaway] Fix a uniform barrier *B*. Let *M* be a transitive model of ZF + every subset of \mathcal{E}_B is Ramsey, and let $N = M[\mathcal{U}_B]$ be the generic extension obtained by forcing with $(\mathcal{E}_B, \subseteq^{I_B})$. Then *M* and *N* have the same sets of ordinals; moreover, every sequence in *N* of elements of *M* lies in *M*.

Thus, there is a hierarchy of models $L(\mathbb{R})[\mathcal{U}_B]$ with stronger and stronger fragments of choice, in the form of containing an ultrafilter \mathcal{U}_B and all \mathcal{U}_C where C is a uniform barrier obtained by a projection of B, all of which are barren extenions of $L(\mathbb{R})$.

References

[Arias, D., Girón, Mijares] *Banach spaces from barriers in high dimensional Ellentuck spaces* (2017) (preprint) 25pp.

[Blass, D., Raghavan] The next best thing to a p-point, JSL (2015) 44pp.

[D1] High dimensional Ellentuck spaces and initial chains in the Tukey structure of non-p-points, JSL (2016) 26pp.

[D2] Infinite dimensional Ellentuck spaces and Ramsey-classification theorems JML (2016) 37pp.

[D., Hathaway] A family of barren extensions, In preparation.

[Henle, Mathias, Woodin] *A barren extension*, Lecture Notes in Math., 1130, Springer (1985) 12pp.

[Zheng] *Parametrizing topological Ramsey spaces*, 27 pp. Submitted. [Todorcevic] *Introduction to Ramsey Spaces* Princeton University Press (2010).

BLAST Conference - 10 Year Anniversary

Boolean algebras Lattices Alegbraic logic, universal Algebra Set theory Topology - general, point-free, set-theoretic

> University of Denver August 6 - 10, 2018

$http://www.cs.du.edu/{\sim}wesfussn/blast \\ some travel/lodging support available thanks to NSF funding \\$

Come have a BLAST!