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ABSTRACT

Von Neumann conjectured that every complete, c.c.c. Boolean algebra which
satisfies the weak (w,w)-distributive law carries a strictly positive, o-additive
measure. Although consistent counterexamples have been obtained, whether von
Neumann’s conjecture is consistent with ZFC remains an open problem. In view
of this, it is of interest to investigate distributive laws in complete, c.c.c. Boolean
algebras. We construct complete embeddings of the Cohen algebra into several
classic examples of complete, non-measurable, c.c.c. Boolean algebras, namely,
the Galvin-Hajnal, Argyros, and atomless Gaifman algebras. We give game-
theoretic characterizations of the (7, k)-d.1. (for k<" = &k or n), the weak (7, &)-d.1.
(for k<" = 7), the (5, < A, &)-d.l. (for (k<*)<" = 7), and the hyper-weak (7, &)-
d.l. (for k<7 = 7). For 7 regular, we use Q.+ to construct n*-Suslin algebras in

which the related games are undetermined.
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Chapter 1

INTRODUCTION

The present thesis concerns generalized distributive laws and connections with
the well-known problem of John von Neumann, whether the countable chain
condition and the weak (w, w)-distributive law characterize measurable algebras
among Boolean o-algebras [24]. Negative results using non-standard axioms in
addition to ZFC have been obtained by Gléwczyriski [10], Jensen [18], Kelley [20],
and Velickovic [28]. In addition to a consistent counterexample to von Neumann'’s
problem, Kelley [20] obtained a different characterization of measurable algebras
by strengthening the countable chain condition. These results point to the like-
lihood of the failure of von Neumann’s proposed characterization of measurable
algebras within ZFC. However, whether von Neumann'’s proposed characteriza-
tion of measurable algebras among Boolean o-algebras can be refuted within ZFC

remains an open problem.

Von Neumann’s problem has been widely investigated regarding chain con-
ditions, while an analysis from the viewpoint of distributive laws has remained
largely ignored. Because of their role in von Neumann’s problem, we are inter-
ested in generalized distributive laws. In particular, we are interested in stronger
and weaker forms of the weak (w,w)-distributive law and their connections with

von Neumann’s problem.

The first two sections of Chapter 2 provide basic definitions and the back-
ground of von Neumann’s problem, including consistent counter-examples ob-
tained by Gléwczynski, Jensen, Kelley, and Velickovic. §2.3 concerns one of the
primary constructions of Boolean algebras, namely, the construction of regular
open algebras from partial orderings. In §2.4 we give characterizations of the

(w,w)-d.l., the weak (w,w)-d.l., the countable chain condition, and related chain
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conditions in terms of order properties of dense subsets of Boolean algebras. This
yields characterizations of these Boolean algebraic properties in regular open al-
gebras (i.e. complete Boolean algebras) in terms of their underlying partial order-
ings. We conclude Chapter 2 with two topological characterizations of the weak
(w, w)-distributive law obtained by Kelley [20] and Balcar, Gléwczyiiski and Jech
(1] (see §2.5).

Chapter 3 concerns complete embeddings of the Cohen algebra into three dif-
ferent non-measurable Boolean algebras which satisfy the countable chain con-
dition, namely the Argyros, Galvin-Hajnal, and atomless Gaifman algebras [3].
This implies that forcing by any of these three Boolean algebras yields an exten-
sion of a Cohen extension. As these three algebras satisfy the c.c.c. (and thus,
half of von Neumann’s conditions), it is of interest to find just how badly they
fail to carry a strictly positive, s-additive measure. Since the Cohen algebra
does not satisfy any weak version of distributivity, it follows that these three
Boolean algebras also do not satisfy any weak form of distributivity. This shows
in a quantitative manner why these three Boolean algebras are not measurable
and, in addition, show just how miserably the weak (w,w)-d.l. fails in each of
them. These results point out that if one is to find a counter-example to von
Neumann'’s proposed characterization of measurable algebras within ZFC, one
must construct a Boolean algebra which has smaller elements than these three so
that the weak (w,w)-d.l. holds, yet large enough that the countable chain condi-
tion still holds. Moreover, since it seems odd that the Cohen algebra embeds as
a complete subalgebra into three of the classic examples of complete, atomless,
c.c.c., non-measurable Boolean algebras, our results bring to light the following
question: Does the Cohen algebra embed as a complete subalgebra into every
complete, atomless, c.c.c., non-measurable Boolean algebra? In addition to these
embeddings, we have found that there are non-atomless Gaifman algebras (see

§3.4), and that even in this case, the hyper-weak (w,w)-d.l. (which is strictly
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weaker than the weak (w,w)-d.l. (see §4.1)) still fails (see §3.6).

In Chapter 4 we obtain relationships between generalized distributive laws and
infinitary games played between two players in a Boolean algebra. As von Neu-
mann’s problem has been studied almost entirely from the point of view of chain
conditions (by strengthening the countable chain condition and leaving the weak
(w,w)-d.l., Kelley found a characterization of measurable o-algebras), it remains
unknown whether leaving the countable chain condition and strengthening the
weak (w,w)-d.l. could lead to a different characterization of measurable algebras.
In §4.6, we show that the existence of a winning strategy for Player 2 in the
game G% (w) is strictly stronger than the weak (w,w)-d.l., assuming ¢. This
opens an alternative approach to ven Neumann’s problem: investigate whether
the c.c.c. and the existence of a winning strategy for Player 2 in the game G§, (w)
characterize measurable algebras among Boolean o-algebras.

Another point of interest in the connections between games and distributive
laws is that each general distributive law is equivalent to a forcing property which
says that functions in the extension model are bounded, in a way related to the
particular distributive law, by functions in the ground model. Since it is often
easier to prove the existence or non-existence of a winning strategy for a game
than to show that a distributive law holds, it is of interest to find game-theoretic
characterizations of distributive laws.

Jech pioneered relationships between distributive laws and games when he
found a game-theoretic characterization of the (w, 00)-d.l. [14]. The background
of this subject is covered in more detail in §4.1. In that section, we also give def-
initions of generalized distributive laws and implications between their differing
strengths.

We classify the relative strengths of generalized distributive laws and the ex-
istence of a winning strategy for the first or second player in the related games.

The distributive laws and their corresponding games are dealt with in order of
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descending strength. §4.2 involves the (7, k)-d.l. and the game G](k); §4.3 in-
volves the weak (7, k)-d.l. and the game GJ_(x); §4.4 involves the (7, < A, k)-d.1.

and the game G2, (x); and §4.5 involves the hyper-weak (7,w)-d.l. and the game

n

7 _,- It turns out that for each generalized distributive law, there are certain

cardinals for which that distributive law holds if and only if Player 1 does not
have a winning strategy in the related game. Under GCH, these characterizations
hold for many pairs and triples of cardinals.

For regular cardinals 7, {,+ implies that the existence of a winning strategy
for Player 2 in a given game is strictly stronger than the distributive law related
to that game. Moreover, the existence of a winning strategy for Player 2 in the
game G._, (where k = |B|), which is the easiest game of length 7 for Player 2 to
win in B, does not follow from the (7, co)-distributive law. These results, given
in §4.6, point to the possible use of the existence of a winning strategy for Player
2 in one of these games to make more narrow the bounds on the possible area
where von Neumann'’s proposed characterization of measurable algebras could be
consistent with ZFC.

In §4.7 we show the relative strengths of the existence of a winning strategy
for Player 2 and the non-existence of a winning strategy for Player 1 between the
various games. This section concludes with diagrams summarizing the results of

Chapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2

PRELIMINARIES

2.1. DEFINITIONS

We begin with some basic definitions regarding Boolean algebras, distributive
laws, and chain conditions. For details beyond this, we refer the reader to the

Handbook of Boolean Algebras [21].

Definition 2.1.1. [21] A Boolean algebra is a structure (B,V, A, —,0, 1) satis-

fying the following axioms: for all z,y,z € B,

(1) zv(yvz) = (zVy)Vz (associativity)
(2 zvy=yvz (commutativity)
3) zv(zAy) =z (absorption)
(4) zA(yVz) = (zAy)V(zAZ) (distributivity)
5) zv(-z)=1 (complementation)

and the five dual axioms, where V and A are interchanged and (5) becomes
zA(-z) =0.

Following the standard abuse of notation, we shall write simply B when we
mean (B, v, A, —,0,1).

By the Stone Representation Theorem, every Boolean algebra B is isomorphic
to the set algebra of clopen subsets of a totally disconnected, compact Hausdorff
space, called the Stone space of B.

We use the Greek letters ¢, 7, &, A, v to denote cardinal numbers; a, 8,7,4 to
denote ordinal numbers; and u to denote measures. For an ordinal e, w, denotes
the (1+a)-th infinite cardinal number. In particular, wg denotes the least infinite
cardinal, the countable infinity, which we shall usually write as w instead of wyq.
For a set S, |S| denotes the cardinality of S. We shall not make a complete list
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of the standard set-theoretic notation with which we shall avail ourselves in this
thesis.

One defines the order < on B by z < y ¢ £ Ay = z. Infinite suprema and
infima are defined using the partial order < in the following manmner: for M C B,
\V M (A M) is the least upper bound (greatest lower bound) of M in the partial
order (B, <), if it exists. By de Morgan’s laws, V M exists for all M C B of
cardinality less than  if and only if A M exists for all M C B of cardinality less

than .

Definition 2.1.2. [21] B is s-complete if for all M C B such that |M| < K,
V M exists. We say that Bisa o-algebra if it is wy-complete. B is complete if it

is k-complete for all cardinals .

Definition 2.1.3. [21] B satisfies the (k, A)-distributive law ((x, A)-d.1) if for
each |I| < , |J| < A, and family (aij)ier,jes of elements of B,
(2.1.1) /\ V aij = \/ /\aif(i)a
i€l jeJ filJ i€l

provided that \/,c;ai; for each i € I, Nier Vjes aij» and Ager i) for each
f: I — J exist in B. We say that B is (k, 00)-distributive if it satisfies the (x, A)-
d.l for all cardinals )\ and is completely distributive if it is (k, co)-distributive for
all cardinals k. We say that the (x, A)-d.1. fails everywhere in B if there exists a
family (aij)ier,jes of elements of B (|I| < &, |J] € A) such that A;e; Vjesaij =
1and Vyr,y Aier@ir) =0
Definition 2.1.4. [21] B satisfies the weak (k, A)-distributive law (weak (&, A)-
d.l.) if for each |I| < , |J| < A, and family (aij)ier,jes of elements of B,
(2.1.2) AVa= V AV e

iel jeJ F:I[J)<v i€l FEf(5)

provided that /¢ ;ai; for each i € I, Ajer Vjes@ij» and Aser Vijes) aii for
each f : I — [J]<¥ exist in B, where [J]<¥ denotes the set of all finite subsets
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of J. B is weakly (k,cc)-distributive if it satisfies the weak (k,A)-d.l. for all
cardinals A. We say that the weak (x, A)-distributive law fails everywhere in B

if there exists a family (aij)iers,jes of elements of B (|I| < &, |J| < A) such that

Nier Vjesois =1and Vi ince MNier Vjepuy aii = 0.

It is immediate that for all cardinals ¢ < &, 7 < A, (k, A)-distributivity implies
(¢,n)-distributivity, weak (k,A)-distributivity implies weak (¢, 7n)-distributivity,
and (x, A)-distributivity implies weak (x, A)-distributivity. Every (x, 2)-distribu-
tive Boolean algebra is (x, x)-distributive; moreover, every (2*)*-complete, (k, 2)-
distributive Boolean algebra is (x, 2")-distributive. Note that every Boolean al-

gebra is (n, co)-distributive for all n < w. (See [21].)

Remark. For any set S the power set algebra (P(S),U,N, —,0, S) is completely
distributive. Moreover, a complete Boolean algebra is completely distributive if

and only if it is isomorphic to a power set algebra.

Definition 2.1.5. [21] B satisfies the x-chain condition (x-c.c.) if |X| < & for
each pairwise disjoint family X in B. We say that B satisfies the countable chain

condition (c.c.c.) if it satisfies the w;-chain condition.

Remark. Every Boolean algebra which is xk-complete and satisfies the k-c.c. is

complete. In particular, every o-algebra which satisfies the c.c.c. is complete.

Definition 2.1.6. [6] A finitely additive measure on B is a function x4 : B —
[0, 00) such that p(a Vv b) = u(a) + u(b) whenever a and b are disjoint elements of
B. A finitely additive measure x on a o-algebra B is o-additive if u (V;,, a:) =
Y i<w H(a;) whenever {a; : i < w} is a pairwise disjoint subset of B. A finitely
additive measure u on B is strictly positive if for all b€ B, (b)) =0+ b=0.

Remark. Note that the range of a finitely additive measure x has a maximum

element, namely p(1).
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Definition 2.1.7. [6] A o-algebra B is a measurable algebra if there exists a

strictly positive, o-additive measure p on B.

Definition 2.1.8. [21] a € B is an atom of B if 0 < a but there is no b € B
satisfying 0 < b < a. B is atomless if it has no atoms and atomic if for each

nonzero b € B there is some atom a such that a < b.

Theorem 2.1.9. [21] If B has a strictly positive, finitely additive measure,
then B satisfies the c.c.c. Moreover, every measurable algebra B satisfies the
weak (w,w)-d.l., and if B is non-atomic, then the (w,2)-d.l. fails in B; if B is

atomless, then the (w, 2)-d.l. fails everywhere in B.

Remark. Another example of a Boolean algebra which is weakly (w, w)-distribu-
tive and not (w, 2)-distributive but also not c.c.c. (hence, it cannot serve as a
counterexample to von Neumann'’s proposed characterization) is the regular open

algebra of the Sacks partial ordering S (see paragraph preceding Definition 2.2.7).

Measurable algebras arise from the following standard construction. Given
a probability measure space (X, A, 1), where A is a o-algebra of u-measurable
subsets of X, let Z = {S € A: u(S) = 0}. Then A/Z is a measurable algebra.
Moreover, every measurable algebra is isomorphic to one of the above form. This
fact is a corollary of the Loomis-Sikorski Theorem, which says that for each o-
algebra B there exists a g-algebra of sets A and a o-complete epimorphism from

A onto B (see [6] and [21]).

2.2. PARTIAL RESULTS ON VON NEUMANN’S PROBLEM

The question of von Neumann stated in the introduction (whether measurable
algebras can be characterized as those o-algebras which satisfy the countable
chain condition and the weak (w,w)-distributive law) was motivated by his de-

sire to obtain an algebraic characterization of measurable algebras; i.e. a charac-
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terization in terms of purely Boolean algebraic properties. A number of partial
results have been obtained, usually involving special set-theoretic assumptions;
however, whether von Neumann’s question can be solved within ZFC remains
an open problem. We shall now discuss some of the work on von Neumann’s
problem.

In 1959, Kelley [20] gave a negative answer to von Neumann’s question as-
suming that the Suslin Hypothesis is false and also obtained a different algebraic
characterization of measurable algebras within ZFC, where a much stronger chain
condition is substituted for the c.c.c. Moreover, he gave a topological char-
acterization of those c.c.c. o-algebras which satisfy the weak (w,w)-d.l. Balcar,
Gléwczynski and Jech [1] recently obtained a topological characterization of those
complete Boolean algebras which satisfy the weak (w,w)-d.l. and the b-c.c., where
b is the bounding number (see Definition 2.5.4). As a corollary of their result one
obtains a different topological characterization of those c.c.c. o-algebras which
satisfy the weak (w,w)-d.l.

We now define Suslin algebras, which, provided they exist, serve as a coun-

terexample to von Neumann’s proposed characterization of measurable algebras.

Definition 2.2.1. [21] A Suslin algebra is an atomless, c.c.c. o-algebra which
satisfies the (w, w)-d.l.

Suslin’s Hypothesis (SH) “There are no Suslin lines” is equivalent to the state-
ment: “There are no Suslin algebras”. Both SH and its negation are consistent
with ZFC. In particular, the negation of SH (i.e. the existence of Suslin algebras)
follows from the principle ¢ (see Definition 2.2.6), which in turn is a consequence
of the Axiom of Constructibility, proved consistent with ZFC by Gédel (see [22]).
Hence, the existence of Suslin algebras is consistent with ZFC. (Another appli-
cation of ¢ to von Neumann’s problem was given by Jensen [18] and will be
discussed below.)

Kelley pointed out that Suslin algebras give a counterexample to von Neu-
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mann’s proposed characterization of measurable algebras: by definition, Suslin
algebras are atomless, c.c.c., (w, w)-distributive o-algebras; hence they are weakly
(w,w)-distributive. Thus, it is immediate from Theorem 2.1.9 that Suslin alge-
bras cannot be measurable algebras. However, SH follows from MA(w;) (see
Definition 2.2.10), which is also consistent with ZFC. Thus, Kelley’s example
does not prove von Neumann'’s proposed characterization to be false in ZFC.

In order to introduce the principle ¢, we need the following definitions.

Definition 2.2.2. [22] Let x be an infinite cardinal. We call a set C C & closed

unbounded (c.u.b.) in & if

(1) For every sequence ag < a3 < -+ < ag < -+ (£ < 7) of elements of C,
of length v < &, we have lim¢_,,a¢ € C (closed);
(2) For every a < &, there is a 8 > a such that 8 € C (unbounded).

Proposition 2.2.3. [22] Let x be an uncountable regular cardinal. The inter-

section of less than k c.u.b. subsets of k is c.u.b. in k.

Definition 2.2.4. [22] Let x be an infinite cardinal. A set S C « is stationary
in k if S()C # 0 for every c.u.b. subset C of .

Remark. It immediately follows from Proposition 2.2.3 that for any uncountable
regular cardinal k, if S is stationary in x and C is c.u.b. in k, then S(C is
stationary in k. The property of being stationary is primarily of interest for

uncountable regular cardinals.

Theorem 2.2.5 (Fodor). [22] Let k be an uncountable regular cardinal, S a
stationary subset of k, and f : S — & such that for each nonzero v € S(f(v) <7);

then there is a stationary set T C S such that f is constant on T.

Remark. It is this property of stationary sets that explains the use of the term
“stationary”.

Now we shall introduce Jensen’s principle ¢.
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Definition 2.2.6. [22] ¢ is the statement: There are sets A, C a for a < w;
such that

(2.2.1) VACwi({a<w;:ANa= A,} is stationary).

The sequence (A, : @ < w,) is called a {-sequence.

As noted above, ¢ is consistent with ZFC.

Using O, Jensen [18] obtained a counterexample to von Neumann’s proposed
characterization of measurable algebras which differs from Kelley's counterexam-
ple of Suslin algebras. Jensen’s counterexample is the algebra of regular open
subsets (see §2.3) of a subset of the Sacks partial ordering of perfect trees which

we shall now describe.

Definition 2.2.7. [18] Let < denote inclusion on 2<%, where 2<“ is the collec-
tion of all finite sequences of 0’s and 1's. (T, <) C (2<¥,<) is a perfect tree if
T # @ and for every u € T there are v,v’ € T such that u < v,v’ but neither

v C v norv' C o

Let (S,S) = ({T € 2<% : (T, <) is a perfect tree}, C), the Sacks partial order-
ing [27). The regular open algebra of S, r.0.(S), is weakly (w, w)-distributive and
not (w, 2)-distributive, but is not c.c.c. (hence, as remarked earlier, it cannot serve
as a counterexample to von Neumann’s proposed characterization of measurable
algebras). To obtain a counterexample to von Neumann’s proposed characteri-

zation of measurable algebras, Jensen used the following Fusion Lemma.

Lemma 2.2.8 (Fusion). (18] If (T, : s € 2<¥) is a sequence of perfect trees
such that

(1) sC€Cs" - T, CT,;

(2) If f € 2%, then (), <., Tsin contains only one branch;

@) If £, f' €29 and f # f', then N,c, Tttn # Npcw T tns
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then
(2.2.2) =N U7
n<w se2n

is a perfect tree.

Using ¢ and the Fusion Lemma, Jensen constructed a partial order ($,8) ¢
(S, <) such that r.o.(8) is a c.c.c., weakly (w,w)-distributive o-algebra but is not
a measurable algebra; hence it is a counterexample to von Neumann’s proposed
characterization of measurable algebras. Moreover, the (w, 2)-d.l. fails everywhere
in r.0.(S); thus, it differs from a Suslin algebra.

Next we shall discuss a third consistent negative result on von Neumann'’s
problem obtained by Gléwczyniski [10]. As already pointed out, MA(w;) (and
thus MA + -CH, where ~CH denotes the negation of CH) implies SH, which
in turn implies ~Q, thus ruling out both Suslin algebras and Jensen’s construc-
tion as counterexamples to von Neumann'’s problem. In light of this, the work
of Gléwczyniski is of interest. He proved that the failure of von Neumann'’s pro-
posed characterization is consistent with ZFC + MA + -CH if the existence of
a measurable cardinal is consistent with ZFC. In order to state the main result

of [10] we shall now state MA and some relevant definitions.
Definition 2.2.9. [22] G C P is a filter in P if
(1) Vp,g € G 3r e Gsuch that r<pand r < q;
(2) VpeGVgeP(p<qg—q€Qq).
A subset D C P is called dense in P if for every p € P there is some d € D such
that d < p.

Definition 2.2.10. [22] MA(k) is the statement: Whenever P is a non-empty
c.c.c. partial order and D is a family of < x-many dense subsets of P, then
there is a filter G in P such that VD € D(G()D # 0). MA is the statement
Vi < 2¢(MA(k)).
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Remark. MA(w) is a theorem of ZFC and thus, CH implies MA; MA(w;), in
turn, implies ~CH (and MA + —~CH clearly implies MA(w;)). MA + -CH is
consistent with ZFC (see [22]).

Definition 2.2.11. {15] Let B* denote B\{0}. We say that a subset G C B+
is a filter in B if G is a filter in the partial order (B*, <). G C B+ is a principal
filter in B if there is some a € B* such that G = {b € B* : b > a}. A filter
G C BT is an ultrafilter if for every b € B, either b € G or —b € G. A filter
G C Bt is k-complete if A H € G for each H C G of size less than & such that
N\ H exists in B.

Definition 2.2.12. [15] An uncountable cardinal « is a measurable cardinal if

there exists a x-complete nonprincipal ultrafilter in the power set algebra P(k).

Definition 2.2.13. [10] A Maharam submeasure on a o-algebra B is a function

g : B — [0,00) such that

(1) u is strictly positive;

(2) Ifa < b, then pu(a) < u(b); (order-preserving)
(3) p(avb) < u(a)+u(b); (sub-additive)
(4) If Akew Vinok bn Db =0, then limp_yeo p(bn) = p(b); (continuous)

where b, Ab = (b, — b) V (b — b,), the symmetric difference of b, and b.

Theorem 2.2.14. (10] If Con(ZFC + there ezists a measurable cardinal), then
Con(ZFC + MA + —~CH + there ezists a weakly (w, 00)-distributive, c.c.c., atom-

less o-algebra without any Maharam submeasure).

Every measurable algebra has a Maharam submeasure, since every strictly
positive, o-additive measure on a o-algebra is a Maharam submeasure. Thus, if
ZFC and “there exists a measurable cardinal” are consistent, then it is consistent
with ZFC + MA + —CH that there exists a weakly (w,w)-distributive, c.c.c.,

atomless o-algebra which is not a measurable algebra.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Remark. Whether every o-algebra with a Maharam submeasure is a measurable

algebra remains an open problem (see [6]).

Velickovic [28] improved on Jensen’s and Gléwczynski’s results by using the
axiom CCC(S), where S is the Sacks partial ordering described above, which is
consistent with ZFC + MA + —-CH and is strictly weaker than ¢. To introduce
CCC(S) we need the following notion of a perfect poset.

Definition 2.2.15. [28] A collection P C S of perfect trees is called a perfect
poset provided that

(1) (2<¥), € P for all s € 2<%, where (2<¥), ={t€2<¥:sC tort C s};

(2) fT,S € Pthen TVS € P, and if in addition TAS # @ then TAS € P,
where TV S =T|JS and T A S is the largest perfect tree contained in
TS or @ if none exists.

Definition 2.2.16. [28] CCC(S) is the statement: For every family D of 2*-
many dense subsets of S, there is a c.c.c. perfect subposet P C S such that D P
is dense in P, for all D € D.

CCC(S) follows from ¢ and is consistent with ZFC + MA + —CH (and thus
with SH, which in turn implies consistency with =0); thus, CCC(S) is strictly
weaker than ¢. Velickovic showed that CCC(S) implies there is a weakly (w, 00)-
distributive, countably generated, c.c.c. complete Boolean algebra which is not a
measurable algebra. Thus, von Neumann'’s proposed characterization of measur-
able algebras among o-algebras fails in ZFC + CCC(S).

Motivated by von Neumann’s question, Kelley obtained a different algebraic
characterization of measurable algebras. He characterized measurable algebras
as those o-algebras which satisfy the weak (w,w)-d.1. and carry a strictly positive,
finitely additive measure (see Theorem 2.2.19). Kelley defined the intersection

number of a family of sets (or of a collection of elements of a Boolean algebra) and
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used this notion to show that the property of having a strictly positive, finitely

additive measure has an algebraic characterization.

Definition 2.2.17. [6] Let S C B be a non-empty set. For sg,...,s, € S, not

necessarily distinct, let

1
2. *(50,...,8p) = ——— IC A s :
(2.2.3) a*(so Sn) n+1ma.x{|I| ICn+1 ,-e/\;s # 0}

The intersection number of S is

(2.2.4) a(S) = inf{a*(sq,...,8s) : n € w, Sq,...,5, € S}.

Remark. Note that if 0 € S, then a(S) = 0. Consequently, one usually works

with collections of nonzero elements of a Boolean algebra.

Following the notation in [9], we write CUP(S) for: S is the countable union
of subsets of S each of which has positive intersection number. Gaifman showed
that CUP(B™) is strictly stronger than the c.c.c. (see §3.4 and [8]).

Kelley obtained the following algebraic characterization of the existence of a

strictly positive, finitely additive measure on a Boolean algebra.

Theorem 2.2.18 (Kelley). [20] For each Boolean algebra B, the following are

equivalent:

(1) There exists a strictly positive, finitely additive measure on B;

(2) CUP(B™) holds.

Theorem 2.2.19 (Kelley). [20] For each o-algebra B, the following are equiv-
alent:
(1) B is a measurable algebra;
(2) B carries a strictly positive, finitely additive measure and satisfies the
weak (w,w)-d.l.;
(3) CUP(B™*) holds and B satisfies the weak (w,w)-d.l.
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(3) of Theorem 2.2.19 gives a possible algebraic characterization of measurable
algebras among o-algebras.

Fremlin notes in [6] that in the definition of intersection number, the fact
that sq, ..., S, are not required to be distinct does matter. He gives the following
example: for S = {{0}, {1,2},{1,3},{2,3}}, a(S) = 2, not 1. Galvin and Prikry
[9] defined the weak intersection number of S, aw(S), exactly as a(S), except that
S0, - - -, 3n are required to be distinct. They investigated the relationship between
the two intersection numbers and proved an analogue of Kelley’s Theorem. In
order to state their results, let CUPW(S) stand for: S is the union of countably

many collections each of which has positive weak intersection number.

Theorem 2.2.20 (Galvin-Prikry). [9] Suppose that S is a collection of sets, or
elements of a Boolean algebra, such that for every X, and X, in S, if X,NX2 # 0,
then there is some X in S such that X C X,NX,. Then CUP(S) and CUPW(S)

are equivalent.

Recalling Stone’s Representation Theorem, one immediately sees that the hy-
pothesis of Theorem 2.2.20 is satisfied by B* for every Boolean algebra B. Thus,
combining Kelley’s Theorem 2.2.19 and Galvin-Prikry’s Theorem 2.2.20, one has

the following analogue of Kelley’s characterization of measurable algebras.
Corollary 2.2.21 (Kelley-Galvin-Prikry). For each o-algebra B, the fol-
lowing are equivalent:

(1) B is a measurable algebra;
(2) CUPW(BT*) holds and B satisfies the weak (w,w)-d.L.

We shall now state a chain condition which is intermediate between CUP(B¥)

and the c.c.c.

Definition 2.2.22. [6] B satisfies the o-bounded chain condition (o-bounded
cc)if Bt =J, .,

has at most n + 1 members.

X, where, for each n < w, any pairwise disjoint subset of X,
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Clearly CUP(B*) implies B satisfies the o-bounded c.c., which in turn im-
plies B satisfies the c.c.c. Gaifman [8] showed that CUP(B™) is strictly stronger
than the o-bounded c.c.; thus, by Kelley’s Theorem 2.2.18, the o-bounded c.c. is
strictly weaker than the existence of a strictly positive, finitely additive measure.
Gaifman also pointed out that if the c.c.c. implies the o-bounded c.c., then SH
holds (see [13]). Later, Galvin and Hajnal constructed a Boolean algebra satis-
fying the c.c.c., but not the g-bounded c.c. (see [3]). Hence, the o-bounded c.c.
is strictly stronger than the c.c.c. within ZFC. We will work with the Galvin-
Hajnal Boolean algebra in §3.2 and the atomless Gaifman algebra in §3.5 where
we will show that the Cohen algebra (the complete Boolean algebra in which the
countable atomless Boolean algebra is a complete, dense subalgebra) embeds as
a complete subalgebra into these algebras. It remains an open problem whether
every o-algebra which satisfies the o-bounded c.c. and the weak (w,w)-d.l is a

measurable algebra (see [6]).

2.3. REGULAR OPEN ALGEBRAS

Two important methods for constructing Boolean algebras are as follows.
First, for every Boolean algebra B and ideal I, there is the factor algebra B/I.
Second, for every topological space X one has the algebra r.0.(X) of regular open
subsets of X. This construction is described in Definition 2.3.1. An important
special case of this is when the topological space is a partial order (P, <) with
a certain topology which we shall call the partial order topology on (P, <) (see
Definition 2.3.3).

Definition 2.3.1. [21] Let X be a topological space. For u C X, let ¢l u and

int u denote the closure and the interior of u, respectively. u C X is regular open

if int cl v = u. Set r.o.(X) = {u C X : u is regular open}, the collection of all
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regular open subsets of X. r.0.(X) is called the regular open algebra of X.

Theorem 2.3.2. [21] r.0.(X), with the distinguished elements 0 =0, 1 = X
and the operations V,A, — given byu Vv = int cuUv), uAv=uNv, —u=
int(X\u), is a Boolean algebra. Moreover, r.0.(X) is a complete Boolean algebra.

Infinite suprema and infima are obtained as follows: for each M C B,

(2.3.1) VM=intc((JM) and AM=intel((\M).

Following the standard abuse of notation, we shall write simply r.o.(X) when
we mean (r.0.(X),V, A, —, 0, X). Clearly the order < on r.0.(X) is the ordinary
set-theoretic inclusion.

A partial order (P, <) can be given the following partial order topology.

Definition 2.3.3. [21] Let (P, <) be a partial order. Forp € P, let up = {g €
P : g < p}. The set {u, : p € P} is the base of the partial order topology on
(P, ).

For the remainder of this paper, each partial order shall be endowed with its
partial order topology. By abuse of notation, we shall usually write P when we
mean (P, <).

Definition 2.3.4. [22] Forp,q € P, p and q are compatible (p||q) if there exists
r € P such that r < pand r < q. p and g are incompatible (pLq) if they are not

compatible.
Note that for any given partial order P, Vp € P, cl u, = {g € P : q||p} and
int ¢l up = {g € P :Vr < gq(r|lp)}.
Definition 2.3.5. [21] A completion of a partial order P is a pair (e, B) such
that B is a complete Boolean algebra, e : P — B*, and
(1) p<ginP - e(p) < elq) in B;
(2) pLqgin P & e(p) Ae(g) =0 in B;
(3) e[P)] is a dense subset of B*.
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Theorem 2.3.6. [21] Every partial order P has (e, r.0.(P)) as a completion,
where the mapping e : P — r.0.(P)* is given by e(p) = int cl up, for eachp € P.
Moreover, every completion of P is isomorphic over P to r.0.(P); i.e. if (¢/,B’)
is a completion of P, then there is an isomorphism h : B’ — r.0.(P) such that

hoe =e.

Thus, we shall call (e,r.0.(P)) the completion of P, where e is the canonical
mapping from P into r.0.(P)* given in Theorem 2.3.6. By abuse of notation, we
shall often refer to r.o.(P) as the completion of P, where it is understood that
the mapping from P to r.o.(P)* is the canonical mapping e.

The following property is necessary and sufficient for P to embed into r.o.(P)

as a dense subset of r.o.(P)™* (see Proposition 2.3.9).

Definition 2.3.7. [21] P is separative if for all p,q € P, g £ p implies there is
some r € P such that » < ¢ and r.Lp.

Lemma 2.3.8. [21] If P is a dense subset of B* and p,q € P, then plq in
PopAg=0inB.

Remark. It follows from Lemma 2.3.8 that every dense subset of B is separa-

tive; in particular, B* is separative.

Proposition 2.3.9. [21] For each partial order P, the following are equivalent:

(1) P is separative;
(2) int cl up = up;
(3) e is an isomorphism from P onto e[P] C r.0.(P)*.

It follows from Proposition 2.3.9 and the preceding remark that P embeds
as a dense subset of r.o.(P)* if and only if P is separative. Thus, by abuse of
notation, we shall consider each separative partial order P to be a dense subset
of r.o.(P)*.
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For each Boolean algebra B, the completion of (B¥,<), r.o.(B%), is called
the completion of B. Note that B is a dense subalgebra of r.o.(B*); i.e. B
is a subalgebra of r.0.(B*) and B* is a dense subset of (r.0.(B*))*. In fact,
every complete Boolean algebra having B as a dense subalgebra is isomorphic
to r.o.(B*), and thus is also called the completion of B. Since every complete
Boolean algebra is its own completion, it follows that the regular open algebras
are (up to isomorphism) exactly the complete Boolean algebras. Furthermore, it
follows from Theorem 2.3.6, Lemma 2.3.8, and Proposition 2.3.9 that the com-
pletion of B is the regular open algebra of any dense subset of B*. Since every
dense subset of Bt is separative, it follows that every complete Boolean algebra

is isomorphic to the regular open algebra of some separative partial order.

Remark. We shall use the fact that every complete Boolean algebra B is isomor-
phic to the regular open algebra of some separative partial order P to characterize

algebraic properties of B in terms of order properties of P.

Next we shall introduce a class of regular open algebras which demonstrates
that for each infinite regular cardinal x, for all cardinals n < & (7, 00)-distributi-
vity does not imply (x,2)-distributivity. To do so, we shall need the following
Definition 2.3.10 and Proposition 2.3.11.

Definition 2.3.10. [21] Let x be an infinite cardinal. P is x-closed if for every
ordinal p < k, each decreasing sequence (Pa)a<, in P has a lower bound in P; i.e.
there exists ¢ € P satisfying ¢ < pa, for each a < p. We say that P is countably

closed if it is wq-closed.

Proposition 2.3.11. [21] If B* contains a dense x-closed subset, then B is

(n, oo)-distributive for all n < .

Example 2.3.12. [21] Let  be an infinite regular cardinal, I and J be arbitrary
sets such that |I| > « and |J| 2> 2, and

(2.3.2) Fn(I,J,k) = {p: p a function from a subset of I into J, |dom p| < x}.
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For p,q € Fn(I,J,k), let ¢ < p & p C q. Fn(l, J, k) is separative and k-closed;
thus, r.o.(Fn(Z, J, k)) is (n, 00)-distributive for every n < k, by Proposition 2.11.

However, r.o.(Fn(Z, J, k)) is not (x, 2)-distributive.

2.4. CHARACTERIZATIONS OF SOME BOOLEAN ALGEBRAIC
PROPERTIES OF R.O.(P)
IN TERMS OF ORDER PROPERTIES OF P

As discussed in §2.3, every complete Boolean algebra, and hence every measur-
able algebra, is isomorphic to the regular open algebra of some separative partial
order. In this section we characterize the chain conditions c.c.c., o-bounded c.c.,
and CUP(BT) in regular open algebras r.o.(P) in terms of the order properties
of P. Then we characterize (w, w)-distributivity and weak (w, w)-distributivity in
regular open algebras of separative partial orders in terms of order properties of
the underlying partial order. We then use Kelley’s Theorem 2.2.19 to obtain a
characterization of those separative partial orders which give rise to regular open
algebras that are measurable.

We start by giving definitions of some chain conditions in partial orderings and
showing their equivalences to the analogous chain condition in the regular open

algebra. Note that for the chain conditions, P does not need to be separative.

Definition 2.4.1. [22] A partial order P satisfies the x-chain condition (k-c.c.)

if each pairwise incompatible subset of P has cardinality < x.

Proposition 2.4.2. A partial order P satisfies the k-c.c. iff r.0.(P) satisfies the

K-c.c. as a Boolean algebra.

Proof: Let e : P — r.0.(P) be the canonical mapping of P into r.o.(P). Suppose
P satisfies the x-c.c. Let {b; : i < k} C B*. Since ¢[P] is a dense subset of
r.o.(P)*, for each b;, choose a p; € P such that e(p;) < b;. {p; : i < K} is
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not pairwise incompatible, since P satisfies the x-c.c. Thus, there are 7,7 < &
such that p;|[p;. By Theorem 2.3.5 (2), e(»;) A e(p;) # O in r.o.(P). Since
e(pi) N e(pj) < bi Abj, {b;i:i < Kk} is not pairwise disjoint.

Conversely, suppose that r.o.(P) satisfies the x-c.c. Let {p; : i < k} C P.
Then {e(p;) : ¢ < &} C r.o.(P), so 3,5 < & such that e(p;) A e(p;) # 0. By
Theorem 2.3.5 (2), pi||p;; hence P satisfies the x-c.c.

0

Definition 2.4.3. [6] A partial order P satisfies the o-bounded chain condition
(o-bounded c.c.) if there exist subsets S; C P, i < w such that
(2.4.1) P=Ss

i<w
and for each ¢ < w, if X C S; and X is pairwise incompatible, then [X| <+ 1.
Proposition 2.4.4. A partial order P satisfies the o-bounded c.c. iff r.0.(P)

satisfies the o-bounded c.c.

Proof: The proof is similar to that of Proposition 2.4.2 and follows directly from
Theorem 2.3.5 (2).
a

It follows from Proposition 2.3.5 (2) that for all p;,...,pn € P, e(p1) A ... A
e(pn) # 0 in r.0.(P) «— p1,...,pn are compatible in P; i.e. if thereisa g € P
such that ¢ < p;, for all i € {1,...,n}. Thus, one can define the intersection
number of a subset S C P directly within (P, <) in the obvious way so that it
agrees with the definition of intersection number a(e[S]) in r.o.(P). Continuing in
this manner, CUP(P) can be defined directly in P and is equivalent to CUP(e[P])
in r.o.(P).

Proposition 2.4.5. CUP(P) holds iff CUP(r.0.(P)*) holds.

Proof: Since CUP(P) holds if and only if CUP(e[P]) holds in r.o.(P), it suffices
to show that CUP(e[P]) is equivalent to CUP(r.o.(P)). Suppose CUP(e[P])
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holds. Let S; C e[P], i < w, be such that e[P] = |J,,, Si and Vi < w, a(S;) # 0.
For each i < w, let X; = {b € r.0.(P) : Je(p) € Si(e(p) < b)}. Since ¢[P)] is dense
in r.0.(P), U;<,, Xi = r.o.(P). Moreover, since every element of X; is greater
than or equal to an element of S;, a(X;) > a(S;) > 0. Hence, CUP(r.0.(P)*)
holds.

Conversely, if X;, ¢ < w, are sets which establish CUP(r.o.(P)*), then for
each i < w, let S; = {b € X; : b €e[P]}. S; C X; implies a(S;) > a(X;) > 0.
Moreover, since {J; ., Xi = r.0.(P) 2 ¢[P}, it follows that | J; ., S; = [P]. Hence,
CUP(e[P)) holds.

O

We now restrict our attention to separative partial orders. Recall that if P is
separative, then e[P] is isomorphic to P, by Proposition 2.3.9. Hence, we shall

abuse notation and refer to P as a dense subset of r.o.(P).

Definition 2.4.6. [21] D C B is a pairwise disjoint family in B if D is pairwise
disjoint. D is a partition of unity in B if it is a maximal pairwise disjoint family
in B.

Proposition 2.4.7. Let P be a dense subset of BY. For each D C P, the
following are equivalent:
(1) D 1is a partition of unity in B;

(2) D is a mazimal pairwise incompatible subset of P.

Proof: Let D C P be a partition of unity in B. By definition, D is pairwise
disjoint, which is equivalent to D being pairwise incompatible, by Definition 2.3.5
(2). Vp € P, 3d € D such that d Ab # 0, since D is a partition of unity in B*+.
Thus, d||p in P, so D is a maximal incompatible subset of P.

Converesly, if D is a maximal pairwise incompatible subset of P, then D is

pairwise disjoint in B*. For each b € B*, 3p € P such that p < b, since P is
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dense in B*. 3d € D such that d||p, since D is maximal pairwise incompatible
in P. Hence, 0 <dAp<dAbin Bt.
a

Definition 2.4.8. [15] For D, D’ partitions of unity in B, D’ is a refinement of
D if for each d' € D’ there exists a d € D such that d' < d.

Proposition 2.4.9. If P is a dense subset of B, then for each partition of
unity D in B there is a partition of unity D' in B consisting of members of P

which is a refinement of D.

Proof: Let D be a partition of unity in B. Using Zorn’s Lemma, for eachd € D
there is a maximal pairwise incompatible family of elements of P below d, call
this family P4. Then [J4ep P is a refinement of D.

a

Remark. If P is a separative partial order, then every maximal pairwise in-
compatible subset of P is a partition of unity in r.o.(P), by Proposition 2.4.7.
Conversely, if D is a partition of unity in r.0.(P), then there is a refinement of D

consisting of members of P, by Proposition 2.4.9.

We now give a characterization of the (w,w)-d.l. in c.c.c. o-algebras in terms

of dense subsets of Bt.

Theorem 2.4.10. For each c.c.c. o-algebra B, the following are equivalent:

(1) B satisfies the (w,w)-d.l.;

(2) The (w,w)-d.l. holds for all countable families of countable partitions of
unity in B;

(3) For each countable family of countable partitions of unity D; € Bt, (i<
w), there ezists a countable partition of unity D C B which refines D;,
foralli < w;

(4) For each dense P C B* and for every countable family of countable
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mazimal pairwise incompatible D; C P, (i < w), there erists a countable
mazimal pairwise incompatible D C P which refines D;, for all i < w;
(8) There exists a dense P C B* such that for every countable family of
countable mazimal pairwise incompatible D; C P, (i < w), there ezists a
countable mazimal pairwise incompatible D C P which refines D;, for all

i< w.

Proof: The proof of (1) <=> (2) can be found in [21]. We shall show (2) =
@) = (4) = (6) = (2).

(2) = (3): Let D; = {d;; : j < w}, ¢ < w, be partitions of unity in B. Since
the (w,w)-d.l. holds,
(2.4.2) 1= A Vadai= V A disa

i<w j<w fw—ow i<w
Let D = {A;., disu) : f € w?}\{0}. Since the D; are pairwise disjoint, D
must be pairwise disjoint. That is, if f # g are in w“, then for some i, < w,
f(is) # g(i.); hence
(2.4.3) /\ d;, f(i) A ./\ digty < di. f(ia) N Gin gy = O
i<w i<w
D is a partition of unity, since
(2.4.4) VD= \ A diswy = 1.
frw—w i<w

Moreover, D is countable, since B satisfies the c.c.c.

(3) = (4): Let P be a dense subset of B* and let D; = {d;; : j <w} C P,
¢ < w, be maximal pairwise incompatible. By Proposition 2.4.7, each D; is a
partition of unity in B, so (3) implies that there exists a countable partition of
unity D C B* which refines all the D;. By Proposition 2.4.9, there is a partition
of unity D’ C P which refines D. By Proposition 2.4.7, D’ is a maximal pairwise

incompatible subset of P. Moreover, D’ is countable, since B satisfies the c.c.c.
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(4) = (5): B is a dense subset of B*, so (4) implies that (5) holds for the
dense subset P = B*.

(5) => (2): Let P be a dense subset of B* for which (5) holds. Let D; =
{dij : ] < w} C BT, i < w, be partitions of unity. Vi < w, there exists a
refinement P, C P of D;, by Proposition 2.4.9. (5) implies that there exists
a countable maximal pairwise incompatible P C P which refines F;, Vi < w.
Since Vi < w P; refines D;, P also simultaneously refines all D;. Vp € P Vi <
w, 35(¢) < w such that p < d; ji;). Let f, € w* be given by f(i) = j(i). Then
P < Nicw i s, (i) Hence,

(2.4.5) 1=\VP< V Adipo £ V Adiser

pEP i<w fw—rw i<w

Thus, the (w,w)-d.l. holds for the partitions of unity D;, i < w.
0O

Theorem 2.4.10 yields the following characterization of the (w,w)-d.l. in a c.c.c.

regular open algebra r.o.(P) in terms of the order properties of P.

Corollary 2.4.11. For each separative, c.c.c. partial order P, the following are

equivalent:

(1) r.0.(P) satisfies the (w,w)-d.l.;
(2) For every countable family of countable mazimal pairwise incompatible
subsets D; C P, (i € w), there ezists an countable mazimal pairwise

incompatible D C P which refines D;, for alli € w.

We now give a characterization of the weak (w,w)-d.l. in c.c.c. o-algebras in

terms of dense subsets of Bt.

Theorem 2.4.12. For each c.c.c. o-algebra B, the following are equivalent:

(1) B satisfies the weak (w,w)-d.l.;
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(2) B satisfies the weak (w,w)-d.l. for all countable families of countable par-
tittons of unity;

(3) For every countable family of countable partitions of unity D; = {dij : j €
w} C B*, (i € w), there exists an countable partition of unity D C B+
such that Vd € D, Vi € w, 3k € w such that d < Vjsk dij;

(4) For each dense P C B, for every countable family of countable mazimal
pairwise incompatible D; = {p;j : j € w} C P, (i € w), there ezists a
countable mazimal pairwise incompatible D C P such thatVp € D,Vi € w,
p is compatible with only finitely many p;; € D;;

(5) There exists a dense P C B* such that for every countable family of
countable mazimal pairwise incompatible D; = {p;; : j € w} C P, (i € w),
there ezists a countable mazimal pairwise incompatible D C P such that

Vp € D,Vi € w, p is compatible with only finitely many p;; € D;.

The proof of Theorem 2.4.12 is similar to that of Theorem 2.4.10.
Theorem 2.4.12 yields the following characterization of the weak (w,w)-d.l. in

the regular open algebra of a separative, c.c.c. partial order.

Corollary 2.4.13. For each separative, c.c.c. partial order P, the following are
equivalent:
(1) r.0.(P) satisfies the weak (w,w)-d.l.;
(2) For every countable family of countable marimal incompatible D; = {p;; :
j € w} C P, (i €w), there exists a countable mazimal pairwise incom-
patible D C P such that Vp € D,Vi € w, p is compatible with only finitely
many p;; € D;.

As discussed in §2.2, Kelley characterized measurablé algebras as those o-
algebras B for which the weak (w,w)-d.l. and CUP(B*) hold. In order to state
our corollary of Kelley’s Theorem 2.2.19 for regular open algebras, we need the
following characterization of CUP(B).
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Lemma 2.4.14. For each Boolean algebra B, the following are equivalent:
(1) CUP(B) holds;
(2) For each subset A C B*, CUP(P) holds;
(3) There ezists a dense P C B* such that CUP(P) holds.

Proof: (2) = (1) == (3) is trivial, since B* is dense in itself.
(3) => (2): Suppose P is dense in BY and CUP(P) holds. Let A be any
subset of B*. Let S;, i < w, be sets for which CUP(P) holds. Let

(2.4.6) T; = {a€ A:3pe Si(p<La)}

Since P is dense in B+, Va € A, 3p € P for which p < a. Since (2.4.6) holds,
3i < w for which p € S;. Hence, a € 7;. Thus,

(2.4.7) U7 =4

i<w
Moreover, since each element of 7; is greater than or equal to some element of
S;, a(T;) = a(S;) > 0. Therefore, CUP(A) holds.
O

Note that for any partial order P, CUP(P) implies that P satisfies the c.c.c.
Thus, by Kelley’s Theorem 2.2.19, Corollary 2.4.13 and Lemma 2.4.14 we obtain
the following.

Corollary 2.4.15. For each separative partial order P, the following are equiv-

alent:

(1) r.0.(P) is a measurable algebra;

(2) CUP(P) holds, and for every countable family of countable mazimal pair-
wise incompatible D; = {p;j : j € w} C P, (i € w), there exists an count-
able mazimal pairwise incompatible D C P such thatVp € D,Vi€ w, p is
compatible with only finitely many p;; € D;.
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2.5. TorPoLOGICAL CHARACTERIZATIONS OF
THE WEAK (w,w)-DISTRIBUTIVE LAW
IN C.C.C. o-ALGEBRAS

Kelley obtained the following topological characterization of the weak (w,w)-

d.lL in a c.c.c. Boolean o-algebra in terms of the topology of its Stone space.

Theorem 2.5.1 (Kelley). [20] For each c.c.c. o-algebra B, the following are
equivalent:

(1) B satisfies the weak (w,w)-d.l.;

(2) Every subset of the Stone space X of B which is of the first category is

nowhere dense.

Balcar, Gléwczyniski and Jech [1] obtained a topological characterization of
those complete Boolean algebras which satisfy the weak (w,w)-d.l. and the b-
c.c. in terms of the sequential topology on a Boolean algebra. As an immediate
corollary of their Theorem 2.5.7, one obtains a topological characterization of the
weak (w,w)-d.l. in c.c.c. o-algebras. In order to state their results, we shall need

the following definitions.

Definition 2.5.2. [1] Let (X, 7) be a topological space. The space X is

(1) sequential if each A C X which contains all limit points of T-convergent
sequences of elements of A is closed;
(2) PFréchet if for every A € X, cl.(A) = {z € X : (3(zn : n < w) C

A) Tn — z},

where —> denotes convergence in the topology .
T

Remark. Every first countable space is Fréchet and every Fréchet space is se-

quential, but the reverse implications do not hold (see [4]).
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Definition 2.5.3. [1] Let B be a o-algebra. For a sequence (b, : n < w) of
elements of B, we denote

(2.5.1) Tmba= A\ \/ta and limba=\/ /\ bn.

k<wn2k k<wn2k

We say that a sequence (b,) algebraically converges to an element beB (b, — b)
if Tim b, = lim b, = b.
Remark. Note that b, — b if and only if Agc, Vipsi(bDbn) = 0.

The sequential topology, Ts, can be described by the following closure operation:
For A C B, let ¢(A) = {z € B : z is the algebraic limit of a sequence {zn} of
elements of A}. cly, (A) = Uacu, ¢® (4), where c(@+1)(4) = c(c(®)(A)) and for
a limit ordinal X, ¢ (4) = Ugc cP)(A). 7, is the largest topology on B, with
respect to inclusion among all topologies with the following property: if by — b
then b, — b. Note that (B, 7,) is Fréchet if and only if cl,, (A) = c(A) for each
A C B. (See [1].)

Definition 2.5.4. [1] The bounding number is the least cardinal b of a family
F of functions from w to w such that F is unbounded with respect to eventual
domination; i.e. for every g : w — w there is some f € F such that g(n) < f(n)

for infinitely many n.

Remark. w < b < 2¢, so the c.c.c. implies the b-c.c. MA implies b = 2%. It is

also consistent with ZFC that b = w; and 2% > w.

Definition 2.5.5. [1] Fréchet’s diagonal condition is the following: If b, — b
as n — oo and for each n < w, bpx — by as k — oo, then there exists a function

g : w = w such that bpgn) — b as n — oo.

Definition 2.5.6. [1] A matrix {@mn}m<wn<w IS increasing if each row {@mn :

n < w} is an increasing sequence with limit 1.

We now state a characterization of those complete Boolean algebras in which
the weak (w,w)-d.l. and the b-c.c. hold.
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Theorem 2.5.7. [1] For each complete Boolean algebra B, the following are
equivalent:

(1) B satisfies the weak (w,w)-d.l. and the b-chain condition;

(2) Fréchet’s diagonal condition holds for every increasing matriz;

(3) The sequential space (B, 7,) is Fréchet.

Recalling our remark in §2.1 that each c.c.c. o-algebra is complete, we extract
from Theorem 2.5.7 the following characterization of the weak (w,w)-d.l. in c.c.c.

o-algebras.

Corollary 2.5.8. For each c.c.c. o-algebra B, the following are equivalent:

(1) The weaek (w,w)-d.l. holds in B;
(2) Fréchet’s diagonal condition holds for every increasing matriz;

(3) The sequential space (B, 7,) is Fréchet.

(3) of Corollary 2.5.8 gives a topological characterization of the weak (w,w)-d.1.

in c.c.c. o-algebras.
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Chapter 3

COMPLETE EMBEDDINGS OF THE COHEN ALGEBRA
INTO THREE EXAMPLES OF
C.C.C., NON-MEASURABLE BOOLEAN ALGEBRAS

3.1. PRELIMINARIES

In order to gain more insight into von Neumann’s problem within ZFC, we
investigate some examples of complete, c.c.c. Boolean algebras which are non-
measurable. The goal is to find out whether these Boolean algebras sustain any
weak form of distributivity. In the next few sections, we work with three classic
examples of complete, c.c.c., non-measurable Boolean algebras constructed by
Galvin and Hajnal, Argyros, and Gaifman. In particular, we are interested in
whether or not the hyper-weak (w,w)-d.l. holds in these algebras, and if not,
whether the Cohen algebra, the completion of the countable, atomless Boolean
algebra, embeds as a complete subalgebra.

Galvin and Hajnal, Argyros, and Gaifman constructed Boolean algebras in
order to establish strict implications between various chain conditions, including

the countable chain condition, the o-bounded chain condition, and CUP(B*):

Definition 3.1.1. [21] B satisfies the countable chain condition (c.c.c.) if for

each pairwise disjoint subset X C B¥, | X| < w.

Definition 3.1.2. [6] B satisfies the o-bounded chain condition (s-bounded

c.c.) if there exist subsets X, C B*, n < w, such that

(3.1.1) Bt = |J Xa

n<w

where Vn < w, each pairwise disjoint subset of X,, has cardinality < n + 1.
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Definition 3.1.3. [9] CUP(B%) holds if there exist subsets X, C B*, n < w,
such that

(3.1.2) B* = |J Xa.

and Vn < w, a(X,) > 0, where « is Kelley’s intersection number (see Definition

2.2.17).

Horn and Tarski asked the following question: Does every c.c.c. Boolean al-
gebra satisfy the o-bounded c.c.? [13] While trying to answer this question,
Gaifman established that CUP(B™) is strictly stronger than the o-bounded c.c.,
since his example satisfies the o-bounded c.c., but not CUP(B*) [8]. Argyros
also established that fact and, in addition, showed that under CH, Knaster’s con-
dition K3 is strictly stronger than K,. Later, Galvin and Hajnal answered Horn
and Tarski’s question in the negative. They constructed a Boolean algebra which
satisfies the c.c.c. but not the o-bounded c.c. (See (3].)

In each of the Galvin-Hajnal, Argyros, and Gaifman algebras, CUP(B) fails;
thus, by Kelley’s Theorem 2.2.19, these Boolean algebras do not carry a strictly
positive, finitely additive measure, and thus, are not measurable algebras. How-
ever, this is not the only reason measurability fails. In addition, not only do
our results show that the weak (w,w)-d.l. fails in these algebras, but moreover,
that the more general hyper-weak (w,w)-d.l. fails. Furthermore, in the Galvin-
Hajnal, Argyros, and atomless Gaifman algebras, the Cohen algebra embeds as a
complete subalgebra. In every Gaifman algebra, the hyper-weak (w,w)-d.l. fails.

Recall the definition of the weak (w,w)-d.l.

Definition 3.1.4. [21] B satisfies the weak (w,w)-distributive law (weak (w,w)-

d.l) if for each |I| < w, |J| £ w, and family (aij)icr,jes of elements of B,

(3.1.3) /\ V aij = v /\ V{aij :J € f(H}

i€l jeJ f:I[J)<w i€l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

provided that V¢ ;ai; for each i € I, A;c; Ve aijy and Ajer Vd{aij 1 5 € f(i)}
for each f : I — [J]<“ exist in B.

The hyper-weak (w,w)-distributive law is the following generalization of the

weak (w,w)-distributive law.

Definition 3.1.5. [26] B satisfies the hyper-weak (w,w)-distributive law (hyper-
weak (w,w)-d.l.) if for each |I| < w, |J| = w, and family (ai;)ier,jes Of elements
of B,

(3.1.4) /\ \/aij = V /\ V{Gij 7 € IN{f()}}

i€l jeJ f:I=J el

provided that \/,c;ai; for each i € I, Aje;V esaij, and AjepV{aij 1 j €
J\{f(3)}} for each f: I — J exist in B.

The hyper-weak (w,w)-d.l. is an extremely weak form of distributivity. On the
right hand side of (3.1.4), for each i < w, instead of taking the supremum over
finitely many members of each set {a;; : j < w} as one does in the weak (w,w)-
d.l., we now omit one element of {a;; : j < w} and take the supremum of the rest.
The weak (w,w)-d.l. trivially implies the hyper-weak (w,w)-d.l. Moreover, the
hyper-weak (w,w)-d.l. is strictly weaker than the weak (w,w)-d.l.: Laver forcing
satisfies the hyper-weak (w,w)-d.l., but not the weak (w,w)-d.l.

Theorem 3.1.6. The hyper-weak (w,w)-d.l. fails everywhere in the Cohen alge-

bra.

Proof: Let B = r.0.(Clop(w¥)), the Cohen algebra. Let a;; = {f € w* : f(i) =
j} and let W; = {a;; : j < w}. Then

(3.1.5) /\ Vaij =1>0= V /\ V{Gijije“’\{f(i)}}-

t<w j<w fwow i<w

Thus, the hyper-weak (w,w)-d.l. fails everywhere in Clop(w*); hence also in B.
O
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By Theorem 3.1.6, if the Cohen algebra embeds into a complete Boolean al-
gebra B as a complete subalgebra, then the hyper-weak (w,w)-d.l. fails in B.
Moreover, since the Cohen algebra satisfies the o-bounded c.c., a complete em-
bedding of the Cohen algebra into a complete Boolean algebra B implies that
there is a complete subalgebra of B which satisfies the o-bounded c.c., but is still
non-measurable. This is especially intriguing in the case of the Galvin-Hajnal
algebra, since it does not satisfy the o-bounded c.c. The complete embedding
of the Cohen algebra is the strongest form of non-distributivity which a Boolean
algebra can possess.

Each of our embeddings of the Cohen algebra will use the following notions

and lemmas.

Definition 3.1.7. [21] A subalgebra A of a Boolean algebra B is a regular
subalgebra of B if for each M C A such that \/* M exists in A, \/B M exists in
Band VAM=VBM.

The following Lemma 3.1.8 is useful for showing that a subalgebra is regular.

Lemma 3.1.8. Let B be a Boolean algebra, P a dense subset of BT, and A a
subalgebra of B. A is a regular subalgebra of B iff Vp € P 3a, € At such that
whenevera € A andap Aa#0, thenpAa#0.

Proof: Suppose that Vp € P Ja, € A* such that whenever ¢ € A and apAa # 0,
then p A a # 0. To show that A is a regular subalgebra of B, it suffices to show
that whenever M C A and \/* M =1, then VB M = 1. Let M C A be such
that VA M = 1. Given p € P, a, € At implies there exists some a € M such
that a, Aa # 0. Thus, p A a # 0. Hence, VB M=1.

Conversely, suppose 3p € P such that Va € A* 3b, € A such that aA b, # 0
but pA b; = 0. Then V:e aba =1, but V?e A ba # 1, since p is disjoint with
every element of {b, : a € A}. Thus, A is not a regular subalgebra of B.

O
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Recall the following definitions.

Definition 3.1.9. [21] A subalgebra A of a Boolean algebra B is a complete
subalgebra of B if for each subset M C A such that VB M exists, VA M exists
and VP M = VA M.

Definition 3.1.10. [21] A monomorphism f : A — B is complete if for each
M C A for which \/* M exists, f(V* M) = \/P{f(b):be M}.

The following lemma is a natural consequence of the Sikorski Extension The-

orem [21].

Lemma 3.1.11. [21] If B is a complete Boolean algebra and A is a regular
subalgebra of B, then there is a complete monomorphism from r.0.(A) into B;

that is, 7.0.(A) embeds into B as a complete subalgebra of B.

Lemma 3.1.8 combined with Lemma 3.1.11 give useful conditions for embed-
ding the Cohen algebra as a complete subalgebra of a complete Boolean algebra
B. For the Galvin-Hajnal, Argyros, and atomless Gaifman algebras, the method
employed in this chapter for completely embedding the Cohen algebra is the
following: Choose countably many independent elements {c¢; : ¢ < w} € B in
such a way that the subalgebra C generated by {c; : i < w} satisfies the condi-
tions of Lemma 3.1.8. Then C is an atomless, regular subalgebra of B. Since
B is complete, it follows from Lemma 3.1.11 that the completion of C, namely
r.0.(C), embeds as a complete subalgebra of B. Since there is only one atomless,
countable Boolean algebra (see [21]), r.o0.(C) is isomorphic to the Cohen algebra.
Hence, the Cohen algebra embeds as a complete subalgebra of B.
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3.2. A CoMPLETE EMBEDDING OF THE COHEN ALGEBRA
INTO THE GALVIN-HAJNAL ALGEBRA

Galvin and Hajnal constructed a partial ordering P which satisfies the c.c.c.

but not the o-bounded c.c. To do this, they used the following family of sets.

Lemma 3.2.1. (3] There is a family of sets {S, : @ < 2*} with the following

four properties:

(S1) Va<2¥ S,Ca;

(82) Va<2¥ [Sa]? CU,co.{{B:7}:B€S,};

(S3) Va< 2¥ type(Sa) < w;

(84) IfS € 2% [S]? C U, cau{{B:7}: B €Sy}, and type(S) < w, then
Jda < 2¥ such that S = S,.

The following lemmas will be used extensively.

Lemma 3.2.2. Suppose 7,k < 2¥ and |Sy| = w. Then there ezist k <a < B <
2% such that S U Sg = S, and S, N Sg = 0.

Proof: Let 7,k < 2 be given. VS C Sy, [S]? C [Sp]? C Uscow{{B:a}: B €
Sa}, by (S2). Thus, (S4) implies Ja < 2% such that S, = S. Let I € 2¥ be such
that VS C S, 3 a unique a € I such that S = S,. |I| = 2“ since |Sy| = w.

Let J={a€l:a<k}andlet K={a €l:a>k}. Foreachy e Jlet
B € I be the unique ordinal in I such that S, USg, = S, and S, NSg, = 0.
Then for each a € K\{fB, : v € J}, which is uncouwn:.able, there is some 8 €
K\{By : v € J} such that S, USg =S, and S, N S = 0.

O

Lemma 3.2.3. If( € Sy, then 3k > n for which Sx = {{,n}. Given { < 2v,
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there is a sequence ( < ag < a; < az < ... such that

Sao = {¢}
Sm = {C,CYO}

Sag = {Cv o, al}
(3.2.1)

Sa,-.n = {41001 sy ai}

and VX C Uicy, Sa: = {¢ @0, a1,02,...}, 3 > sup(a; @ ¢ < w) such that
S\ =X.

Proof: The proof makes heavy use of properties (S1) and (S4). Suppose ¢ € Sy,.
Then [{¢,n}]? = {{¢,1}} € {{B,1} : B € Sq} € Uacaw{{Bi0} : B € Sa}. By
(S4), Ik < 2¢ for which S, = {¢,n}. By (S1), k> .

Given ¢ < 2¢, [{¢}]? = 0; so 3ap < 2% for which S,, = {¢}, by (S54). (S1)
implies a9 > ¢, since {¢} = Say C @0 [{¢a0})? = {{¢ 0}} = {{B, a0} :
B € Sas} € Uscaw{{Bia} : B € Sa}; so (S4) implies a1 < 2 such that
Sa, = {¢,x0}. (S1) implies a; > aq.

Given ( < ap < a1 <--- < ap where for each j < n S4,,, = {¢,a0,..., a5},
the set [{¢,a0,...,aa}]* = U< {{B,2j} : B € Sa;} C Uscou{{B,a} : B €
Sa}. Thus, (S1) and (S4) imply there is some an4+1 > an such that S, =
{¢,aq,...,an}. By induction, there is a sequence ap < a; < -+ < @j < @j41 <

- such that for each j < w, S,;,, = {{, a0, ...,j}.

Suppose X C U;,, Se;- Then [X]? C [{¢,@0,01,...}]* = U {{B, 25} : BE
Sa;} € Uacaw{{B,a} : B € Sa}. Thus, by (S1) and (S4), there is a A < 2 such
that Sy = X and A > a; for all j < w.

0O

Now we are ready to describe the Galvin-Hajnal partial ordering P.
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Construction of P: Well-order 2¢ and let Y denote 22, the set of all functions

from 2% into 2. Va < 2% let
(3.2.2) Va={f€Y :VB€ S,(f(B) =0), and f(a) =1}.

Take the collection of all non-empty intersections of finitely many V,'s. Well-

order these sets and let them be denoted by Ug, £ < 2*. Let
(3.2.3) (P,<) = ({Ug:€<2°},9).
For each ¢ < 2%, let F(£€) be the finite subset of 2 such that

(3.2.4) Ue = () Ve
a€F(§)
The following lemma gives a useful characterization of non-empty intersections

of finitely many V,’s and their complements in Y.

Lemma 3.2.4. Let VS denote Y\V,, the set-theoretic complement of V, in Y.
Ny Vo) N (ﬂ;.'=1 V§.) # 0 iff the following two conditions hold:

(1) (U::’;l Sa‘) ﬂ {al, . .,am} = 0;

(2) {(11,.. .,Qm} N {,31, ...,ﬂn} = 0.

Proof: Suppose (i1, Va,) N (M=, V5,) # 0. Then N2, Va, # 0, so (1) must
hold. If (2) fails, then 31 < k < n, 31 <! < n such that ax = F;. This implies

(3.2.5) (N Va) N ([ V5,) S Va, NVE =0.
i=1 j=1

Contradiction. Thus, (2) holds.
Now suppose (N2, Va,) N (ﬂ;‘=1 5;) = 0. Then (2, Va, € (ﬂ}‘=1 é:j)c =
\Uj=1 Vs;. Suppose (1) holds. Then (2, Va, # 0. If (2) also holds, then 3f €

=1
Niz, Va, such that f(B1) = --- = f(Bn) = 0. But such an f is clearly not in
\Uj=1 V,- Contradiction. Thus, either (1) or (2) fails.
O

We now use Lemmas 3.2.1, 3 and 4 to show that P is separative.
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Proposition 3.2.5. (P, C) is separative.

Proof: Suppose Ug, U, € P and Ug Z Uy. Then
c ¢ [
326) 0zUnUs= () Van( N %) = U (N Vo N VE).
n€F(§) CEF(x) CEF(x) mEF(E)

Thus, for at least one ¢ € F(x), (Nyer) Va) NV # 0. Fix such a (. By Lemma
3.2.4, (Unep(g) Sp))NF() =0and { € F(¢).

By Lemma 3.2.3, there is a sequence of ordinals ¢;; of type w - w such that

Vi, i”j’j, < w?

(3.2.7) a;; < Qg > (1. < 'i’) or (7. =1 and Jj< J')
(3.2.8) V0<j<w 8Sa, ={¢ax:k<j}

and

(3.2.9) SO.'+1.0 = {C, Qij 13 < w}.

V0 < i < w, let T; = Sa,\{¢}. Then the Ti’s are pairwise disjoint, and
Vi < w, type(Ti) = w. Let T = {0 < i < w: Ti € Uqer) S} By (S3),
type(Uaer(g) Sa) < w - |IF(€)| < w-w = type(Ug<cicw Ti)s 50 I is infinite. Let
T ={i € T: SapNF() =0} |F)| <w,and ¢ ¢ F(§); so I’ is infinite.
Choose some i € I’ and j < w for which aij € Uaer(e) Sa- Sai; NF(§) = @ and
aij € Uaer(e) Sa imply Vo, NU¢ # 0, by Lemma 3.2.4. Further, V,,, NV, =0,
since ¢ € Sa,,. Let ¢ = Va,; NUg. Then ¢ < Ug and ¢N Uy CgnV,=0. Thus
P is separative.

a

Galvin and Hajnal showed that P satisfies the c.c.c. but not the o-bounded

c.c. (see [3]). Thus, by Propositions 2.4.2 and 2.4.4, r.0.(P) is a complete, c.c.c.

Boolean algebra in which the o-bounded c.c. fails.
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Throughout this section, we use the following notation. Let e : P — r.o.(P)
denote the cancnical embedding of P into r.o.(P). We will frequently writeq < p
to denote g C p as subsets of Y.

The following fact will be used later in Proposition 3.2.10.

Fact 3.2.6. If {p; : i <w} C P is infinite, then A, e(p;) = 0 in r.0.(P).

Proof: Clearly A, e(@) C MNicoe®@i). Vi < w let §& < 2¢ be such that
pi =Ug,. If g =U; € N, e(pi), then Vi < w, ¢ < p;. Thus, F(¢) 2 U; ., F(&),
which is infinite since the p; are distinct. But F({) is finite. Contradiction. Thus,
Vg eP q¢& e, ei); s0 e, ep:i) = 0. Hence, A, e(pi) =0 =0 inr.0.(P).
0

We now construct a countable, atomless, regular subalgebra C of r.o.(P).

Construction of C: By Lemma 3.2.3, there is a sequence of type w - w,
a(0,0) < a(0,1) < --- < A(0) < «(1,0)
<a(l,1)<---< A1) <a(2,0) < x(2,1) < -
suchthat Vi< w, 0 < j<w
Sagij) = {a(i,k):k <j}

S,\(,') = {a(z,}) 10y < w}.

(3.2.10)

Note that the set {S,(;) : i < w} is pairwise disjoint. Recall that Vi < w, 0 <

J<w,

(3.2.11) Vo) ={f €Y : Vk < j f(a(i, k)) =0, and f(a(i,j)) =1},
and

(3.2.12) Vay = {f €Y : V0 < j <w f(a(i,5)) =0, and f(A(3)) = 1}.

We will use the set {V,(i;): % <w, 0 < j < w} to construct a subalgebra of
r.o.(P) which is countable and atomless. The elements V};), ¢ < w will be used

later to ensure that the generators of C, defined below, are independent.
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Vi <w, 0 <j < w, let u(i,j) denote e(Vy(; ) and let v(i) denote e(Vi()).

For each ¢ < w, let
(3.2.13) ai= \/ u(,j)
0<j<w

in r.0.(P). Let C be the subalgebra of r.o.(P) generated by {a; : ¢ <w}. Then C
is countable. We will show that C is an atomless, regular subalgebra of r.o.(P).

In order to do so, the following facts will be useful.

Fact 3.2.7. Vi < w, a; = Vggjcn (0, 5) = Uocjcu 25 5)-

Proof: First, note that

V uli,j)

0<j<w

(3.2.14) = int cl( U u(i,j))

0<j<w

a;

={reP:Vg<r30<j<w(gnVyauj #0)}

Since Up<jcuw u(i, 7) is an open set in the order topology on P, it is immediate
that a; = int cl (U<, u(2:7)) 2 Uo<j<w w(é:5). To show inclusion, it suffices
to show that Vp € P, whenever p ¢ U0<j <w u(i,7), then 3¢ < p such that
V0 < j < w, ¢NVy;,j5) =0, since this will imply p € Vocj<o u(z, 7).

Suppose Ug € P and Uy & Upcj<,, u(i,J)- Then V0 < j < w, Ug £ Vai,j); S0
{a(i,j): 0 < j < w}NF(£) = 0. Recall that Sxi) = {a(é,5) : 0 < j <w}. By
Lemma 3.2.2, 3a < 8 < 2“ such that a > sup(F(§) U {A\}) and Sq USg = Sags).

(3.2.15) {a, B} ﬂ(sa uSsu S,,) =0,
neF(§)
since a, 8 > sup(F (&) U {A(2)}), and
(3.2.16) F(€) ﬂ(s,, ussu s,,) = F(§) N Sxu) =0,
nEF(§)
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since we've already shown that F(€) NS = @, and F(§) N (Uper(e) Sn) must
be empty, since Ug # 0. Thus, Lemma 3.2.4 implies

(3.2.17) VaNVsNUe # 0.
Let ¢ = V,NV3NU;. Then g < Ug. Foreach 0 < j <w, Vf € Vu(ij), fla(i,j)) =
1; whereas Vf € q, f(a(z,j)) = 0. Thus, V0 < j < w, ¢ N V,(i5 = 0. Therefore,

Ue € Vocjcw u(i,3), by (3.2.14).
O

Fact 3.2.8. V€ < 2¢, if UaeF(s) Sa 2 Sxgi), then e(Ug) < —ai. In particular,

Vi < w, v(i) £ —a;.

Proof: If UaeF(g) Sa 2 Sx(i), then foreach 0 < j < w, Vf € U fla(i, 7)) =0,
whereas Vf € V,(ij), f(a(i,5)) = 1. Thus, Y0 < j < w, e(Ug) A u(t, j) = 0.
Hence, e(Ug) Aa; = 0.

O

Fact 3.2.9. For finite sets I,J Cw, Nigr @i A\jey—a; =0 FINT # @. That

is, the generators of C are independent.

Proof: Let I,J C w be finite sets. Clearly, if INJ # 0, then A\;c;ainA ey —a; =
0. On the other hand, if INJ = 0, then Fact 3.2.8 and Lemma 3.2.4 imply
(3.18) Nain N\ —a; = AuGi, 1) A A\ vi) #0.
iel jeJ i€l jeJ

This follows from the fact that, for 7 = ;¢ Vaq,1) ﬂﬂjeJ Vag), T # 0, since
(3.2.19) (U Sai,y Y U sm) n({a(i, 1):ieIJU{A(j):j€ J}) =0,

i€l i€
and e(r) < Ajeru(i, 1) A Ajes v()-
O

By Fact 3.2.9, C is atomless, since its generators are independent.
The next Proposition will aid us in constructing the elements a, in Lemma

3.1.8.
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Proposition 3.2.10. Given p € P, there are at most finitely many i < w for
which either e(p) Aa; =0 or e(p) A —a; =0.

Proof: Let Ug € P and let J C w be given by j € J ¢ e(Ug) Aa; = 0. For each
jelJ,

(3.2.20) 0=e(U€)/\a_,-=e(U5)/\< V u(j,k))= V (eWe) Au(h, k).

O<k<w 0<k<w
Thus, Vj € J, V0 < k < w, e(Ug) Nu(j, k) = 0, which in turn, implies Ug N

Vagik) = 0.

We claim that if e(Ug) A a; = 0, then either a(j,0) € F(§) or else {a(j, k) :
0 < k < w} € Uaer(e) Sa- Ug NUa(j,1) = 0 implies either a(5,0) € F(&) or else
a(j,1) € Uger(e) Sa- Suppose a(j,0) € F(§). Then a(j,1) € Usecp(e) Sa- Now
let 1 < k < w and assume {a(j,!) : 0 < | < k} € Uqere) Sa- Ue N Vaiik) =0
implies Vf € Ug f(a(j,0)) = 1or ... or f(a(j,k—1)) = 1or f(a(j,k)) = 0.
Since {a(j,1) : 0 <! < k} € Uqer(e) Sa and a(4,0) ¢ F(&),VYf € Ug, fla(j k))
must equal 0. Thus, {a(j,{) : 0 < | < k+ 1} C User(e) Sa- By induction,
{a(j, k) : 0 < k < w} € Uaer(e) Sa-

|F(€)] < w implies that a(j,0) € F(€) for at most finitely many j < w; by
(83), type(Uaer(e) Sa) < w-w, which implies {a(G, k) : 0 <k <w} C Uaer() Sa
for at most finitely many j < w. Thus, |J| < w.

Now let I be the subset of w defined by ¢ € I <> e(Ug) A —a; = 0. Vi €
I e(U¢) < aj, so using Fact 3.2.7, we have

- (3.2.21)

eWe) € Nas SN =N U wk) = U [uGG)

i€l i€l iel 0<k<w g:I-w\{0} i€l
If |I| = w, then it follows from Fact 3.2.6 that V g : I = w\{0}, (N;c; u(i,9(3)) =
0. Hence, e(Ug) = 0, contradicting Ug # 0. Thus, [I| < w.
a
Now we use Proposition 3.2.10 to show that C satisfies the conditions of

Lemma 3.1.8.
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Proposition 3.2.11. Vp € P 3¢, € C* such that Vc € C, if ¢, A c # 0, then
e(p) Ac#0.

Proof: Let p = Us € P. By Proposition 3.2.10, let I,J C w be the finite
disjoint sets given by i € I &> e(Ug) A —a; =0 and j € J & e(Ug) Aa; =0. If
IUuJ =0, thenlet cp =1. IfTUJ #0, then let cp = A;c;ai A \je; —aj. Let
¢ = Axex ok A Az —a1 € C be any element ~f C such that ¢, Ac # 0. By Fact
328, INL=JNnK =0.

Since JNK =0, Vk € K e(Ug) Aax # 0. This implies 30 < jx < w such that
e(Ue) Nu(k, jk) # 0, so Ug N Vox jiy # 9. Thus, by Lemma 3.2.4,
(3.2.22)

(F(g) U {a(k,ji): k € K})ﬂ( U Sau{e(kj):kekK, j< jk}>= 0.

a€F(§)

Since INL=0,Vl€ L e(Ug) £ a;. Thus, VI € L V0 < j < w, e(Ug) £ u(l,j); so
Vie LV0<j<w, Ug £ Voqu,j), which implies a(l, j) ¢ F(€). Therefore,

(3.2.23) Fé)n{a(l,j):leL, 0<j<w}=0.

Using Lemma 3.2.2, VIl € L choose §; > oy > sup(F(§) U {A(Z) : i < w}U{B; :
¢ < l}) such that S4, USg, = Sy(1). Note that e(V,, NVg ) Aa; = 0, by Fact 3.2.8.
Let

(3.2.24) r= () Va0 [ (Ve N Va,).
keEK leL

r # 0, by Lemma 3.2.4. e(r) < c, since Vk € K u(k,jx) < a) and VI €

L e(Va, NVp) < —a;. Furthermore, r N U, # @, by Lemma 3.2.4, since (3.2.22)
and (3.2.23) imply (F(g) U{alk,jx) : k € K}U{au, B : L€ L}) n(uaem) SaU
Urex{a(k,7) : 5 < 5k} U Uer S,\(g)) = (. Hence, 0 < e(r N U¢) < c. Thus,
e(Ue) Ac#0.

a
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It follows from Lemma 3.1.8 and Proposition 3.2.11 that C is a regular subalge-
bra of r.0.(P). Thus, by Lemma 3.1.11, r.o.(C) embeds into r.o.(P) as a complete
subalgebra. This concludes the proof of the complete embedding of r.o.(C) into
r.o.(P).

3.3. A CoMPLETE EMBEDDING OF THE COHEN ALGEBRA
INTO THE ARGYROS ALGEBRA

Argyros constructed the tree T C [w]? as follows [3]: Let {Spm :n <w, 1<
m < 3™} be a family of sets such that ¥n,m < w, Spm € [w]® and SpmNSnim =0
whenever (n,m) # (n’,m’). For each n < w, let
(3.3.1) Lev(n) = U [Snm]?.

1<m<3n

For each n < w, index the elements of Lev(n) so that Lev(n) = {snj : 1 < j <

3n+1}, The tree (T, <) is defined as follows:
(3.3.2) T = | J Lev(n)
n<w

with the partial ordering < on T given by

s <t <= 3n,j <w such that s = s,; € Lev(n), t € Lev(n + 1),
(3.3.3)
and t € [Sn.f.l’j]z.
The partial ordering P is constructed using three basic types of elements. For

X,Y € [w]<¥, let

(3.3.4) Bx={fe2¥:Vz e X f(z) =1}
and let
(3.3.5) By={fe2¥:VyeY f(y) =0}
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Let & be the set of all finite and infinite branches of T', where all branches are
assumed to start at Lev(0). There are 2 many branches in T, so index them:
£ ={Z():i<2¥}. Fors= {k,l} €T, let
K, = (B N Byy) U (Buy N Bixky)
={fe2¥:(f(k)=1and f(I)=0) or (f(k) =0and f(I) =1)}.
In other words, K, is the set of all functions in 2¢ which are non-constant on s.

For £(i) € £, let

(3.3.6)

(3.3.7) A= ) K.
s€X(i)

That is, A; is the set of all functions in 2* which are non-constant on every
element s € ().

The Argyros partial ordering (P, C) is the collection of all finite, non-empty
intersections of elements of the three forms Bx, By, and A;:
(338) P={BxnByn(\4:: X,Y € [w]< and I € [2]<}\ {0}.

iel

Definition 3.3.1. Let s,t € T. s and t are siblings if they have the same
immediate predecessor; that is, if 3u € T such that s and ¢t are both immediate
successors of u. s,t,u € T are triplets if they all have the same immediate

predecessor.

Remark. If s and ¢ are siblings, then there exist unique m,n € w such that
s,t € [Smn)? and K, N K, # 0. If s,t,u are triplets, then there exist unique
m,n € w such that {s,t,u} = [Smn]? s = tAu (the set-theoretic difference of ¢
and u in w), and K,N K, N K, = 0.

Note. The elements of P are not uniquely represented by the form Bx N By N
Mier Ai- For instance, if s = {k,l} € £(i), then

(3.3.9) B{k} NA; = B{k} n EU} NA; = E{l} N A;.
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We shall hold to the following convention: given § C T and X,Y € [w]<“, the
representation Bx N By N(,cs K of a subset of 2 is said to be in the normal
formifand only if XNY =0,and Vs € §, sN(XUY)=0.

It follows that if Bx N By N ﬂse s K is the normal form representation of
BunByN(;e; Ai #0,then X 2U, Y2V, XNY =0, S C Ui, Z(3), and §
contains no triplets. It is not hard to see that for each element p € P there is a

unique normal form representation of p.

We now give conditions for testing whether or not a given Bx NBy NN ses Ks C

2“ is empty.

Lemma 3.3.2. Let p = Bx N By N nses K, be a subset of 2“, not necessarily
in the normal form. Then p # 0 iff the following four conditions hold:

(L) XNnY =0;

(L2) Vs€S, s€XandsZY;

(L3) S does not contain any triplets.

(L4) Ifs,t € S are siblings, then either (sAt)N X =0 or (sAt)NY = 0

In particular, if Bx N By N ﬂ,es K, is in normal form, then Bx N By N
Nees Ks # 0.

Proof: Let p denote Bx N By N ﬂ,e s Ks, not necessarily in the normal form.
If (L1) fails, then p C Bx N By = 0. Suppose (L2) fails. Then 3s € S such
that either s C X or s C Y. IfsC X, then p C B;,NK, =0. If s C Y,
then p C B, N K, = 0. If (L3) fails, then there are triplets s,t,u € S; so
p C K,nK,nK, = 0. If (L4) fails, then 3s, ¢ siblings in S for which (sAt)NX # 0
and (sAt)NY # 0. Let r denote the mutual sibling of s and ¢. Note that
r = sAt. Let k,l € w for which {k,l} =r,kernX,andl € rNY. Then
p C K, N K, N By nF{,} C K,NK,N K, =0, since r, s,t are triplets. Hence,
if one of (L1)-(L4) fail, then p = 0.
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Now suppose p = BxNBy N[,es K. and (L1)-(L4) hold. By (L3), S contains
no triplets, so we can divide S into two disjoint subsets as follows: Let © = {s €

S : s has a sibling in S} and let " = {s € S : s has no sibling in S}.
We shall show that p # 0. Bx N By # 0, since (L1) implies X NY = 0. Let

s = {k,l} € T. Since s has no siblings in S, we only need to check how s interacts
with X and Y. By (L2), sZ X and s £ Y. We have 3 cases. If k € X then
I ¢ X,since s Z X;let hy = Bx NByyqy- If k€Y, then ! €Y, since s ZY;
let hy = Bxyupy N By. If k € X UY, then it does not matter where ! lies; for
I € X let hy = Bx N By, and for I € X let hy = Bxuk) 0 Byuq)- In each
of these three cases, h, # 0. Moreover, Bx N By N Neer hs # 0, since all s € T
are disjoint.

For each pair of siblings s = {k,(}, t = {k,m} € © we only need to check
how s Ut interacts with X UY. If k € X, then [,m & X, since s,t Z X by (L2);
so let hse = Bx N Byy(i,m)- Similarly, if k € Y, then ,m ¢ Y by (L2); so let
hst = Bxu(i,m} N By. Now suppose k € X UY. If l € X, then (sAt)N X # 0,
so (L4) implies (sAt) Y = 0. Hence, m € Y; so let kst = Bxy(m} N Byu(x)-
Similarly, if € Y, then m € X; so let h,; = Bxu(x} ﬁ-ﬁyu{m}. Iflg XUY,
then it does not matter where m lies; if m € X, let hy ¢ = Bxnyy N Fyu{k} and
if m g X, let hyy = Bxyuk} N Byu{m,}- In each of these cases, hs: # 0. Let
O = {(s,t): s,t € © & s,t are siblings}. V(s,t) # (u,v) € 8, (sut)N(uUv) = 0.
Thus, n(s,t)eé hse # 0.

The set of siblings of elements of I is disjoint from the set of siblings of elements
of ©. Hence, p 2 Bx N By N[,er hs NN(s,e6 hsit # 0

Note that if p= Bx N By N nses K, in the normal form, then (L1)-(L4) are
satisfied. Hence, p # 0.

a

Proposition 3.3.3. P is separative.
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Suppose p,q € P and q € p. Let Bx NBy N[, g Kr and BuNBy NM,¢s K
be the normal forms of p and gq, respectively. ¢ Cpifandonlyif X CU,Y CV,
and Vr € R either r € S or else r is split by U and V. Hence, ¢ € p implies either
(1) X 2U,or (2) Y € V, or (3) 3r € R such that r ¢ S and either rNU =0 or
rNV =0.

Case 1: Suppose U 2 X. Choose some k € X\U and let w = ¢gN :9-{,:} =
By N Byugk} NN,es Ks- Note that wNp C By N Bky = 0. We will show
that w # 0. If kK € V, then w = ¢ and we are done, so assume k ¢ V. Since
q # 0, Lemma 3.3.2 implies (L1)-(L4) hold for By N By N[ \,¢s K,. There are

four possible subcases.

subcase (i): Vs € S, k € s. Then By ﬂ-EVU{k} N nses K, is the normal form

for w.

subcase (ii): There exists exactly one ¢t € S such that k € ¢, and ¢ has no
siblings in S. Suppose t = {k,l}. tN (U UV) = 0, since g is given in the
normal form. Hence, Byy(; N FVU{k} N ﬂses\ B K, is the normal form for
w. This is because (UU {I{}) N (VU {k}) = 0@ (since k ¢ U and | ¢ V) and
(UuV Uk l})n(S\{t}) =0.

subcase (iii): There is exactly one ¢ € S containing k, and t has one sibling
t' € S which does not contain k. Suppose t = {k,l} and t' = {{,m}. Byyu N
Bvukm} NNyesy(e,ry Ko is the normal form for w: t,¢' € § = (tUt)N(UU
V) =0, and Vs € S\{t,t'}, sN (UUV U {k,l,m}) = 0, (since g = By N By N

N,es Ks is in normal form).

subcase (iv): There are two siblings in S which both contain k, say t = {k,(}
and t' = {k,m}. In this case, Byu(i,m} N Bvugk} N MNses\(e,ery Ks is the normal
form for w. This follows from the facts that ¢,t' € S = (UuV)n(tut) =0,
and (UUV)N(US)=0 = (UuVutut)nUS\{tt}) =0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

In each of these subcases, w has a normal form. Hence, by Lemma 3.3.2,

w#0.

Case2: V 2Y. Let k € Y\V and let w = ¢ N Byx}. Analogously to Case 1,
w#DandwnNp=0.

Case 3: 3r € R\S such that r is not split by U and V (i.e. either rNU =0 or
rNV =0). Suppose r = {k,!}. We have three possible subcases.

subcase (i): 3s,t € S such that r, s,t are triplets. Then pNq = 0 and we are

done.

subcase (ii): 7 = {k,l} and there is exactly one t = {k,n} a sibling of r in
S. k,mm & U UV, since ¢ in normal form implies tN(UUV) =0. If rnU =0,
let w = ¢N B,. Then Byyim} N Byugky N MNsesy ey Ks is the normal form
for w; moreover, wNp C B, NK, =0. f rnV = 0, let w = ¢gN B,. Then
Byugey N 'B.Vu{m} N naeS\{t} K, is the normal form for w; and wNp = 0.

subcase (iii): = has no siblings in S. Then Vs € S, sNr = 0. We know
that either rNU =QorrNV =0. If rNU =0, let w = gN B,. Then
By N Byur NN,es Ks is the normal form for w; and wNp=0. f rnV =0, let
w = ¢NB,. Then BUUrOEVnnses K, is the normal form for w; and wnp = 0.

Hence, in each case, we found the normal form for some w C ¢ for which

wNp=0. By Lemma 3.3.2, § # w € P. Therefore, P is separative.
O

Argyros showed that P satisfies the o-bounded chain condition, but CUP(P)
fails (see [3]). Hence, r.o.(P) satisfies the o-bounded c.c., but is not a measurable
algebra. We shall show that the Cohen algebra embeds into r.o.(P) as a complete
subalgebra. To do so, we first construct a countable, atomless subalgebra C of
r.o.(P) and show that C is a regular subalgebra of r.o.(P).
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Constiuction of C: Choose an infinite branch of T and call it 5. Vn < w, let ¢,

be the unique element of T such that {¢t,} = B8N Lev(n). Vn < w, choose one
Sn+1 € T such that spi1 # tny1 and spyy is an immediate successor of t,. Note
that s,41 € Lev(n + 1), sn4+1 € B, and sp 41 and tn4 are siblings. V0 < n < w,
let B, be an infinite branch in T which contains s,,. For 0 < m < n, Bm N Bn =
{to,.-.,tm}. Without loss of generality, we can re-index the elements of £ so

that Vn < w B, = Z(n), where 8o = 8 = £(0).

Let
(3.3.10) T={teT:3s€ U ¥(n) such that t and s are siblings},
and let )
(3.3.11) §=|JT ={k <w:3l <wsuch that {k,i} € T}.
Let
C={BxNByn[)Agy € P: X,Y € [S]<¥, I € [2*]%*,
(3.3.12) iel

and Vi € I(Z(2) € T)}\{0}.
Let e : P — r.0.(P) be the canonical embedding of P into its completion and let
(3.3.13) C = ({e(p) : p€C}),

the subalgebra of r.o.(P) generated by the set {e(p) : p € C}. Note that |C| = w,
since |S| = w and there are only countably many finite and infinite branches in
T.

We shall now give two easy, but useful facts.
Fact 3.3.4. Vz € w, —e(B(z}) = e(f{z}).
Proof: B(;}NB(;} =0, so e(B(z})Ae(B{)) = 0 in r.0.(P). Since B(;}UB{z} =
2¢, Vp € P either pNByz) # 0 or else pNB ) # 0, so e(p) A(e(B(z}) Ve(B(z})) #
0. Therefore, e(B{z}) V e(B{z}) = 1. Thus, —e(B{s}) = e(B{z})-
a
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Fact 3.3.5. Vp,q € P, e(p) Ae(q) =e(pNg).

Proof: Let p,q € P. Clearly, e(pNgq) < e(p) and e(pNgq) < e(q),soe(pnNg) <
e(p) A e(q). Suppose 7 € P and e(r) < e(p) Ae(g). Then e(r) < e(p) and
e(r) <e(g),sor C pandr C q. Thus, r C pNg, which implies that e(r) < e(pNg).
Since this holds for all r such that e(r) < e(p) A e(q), e(p) Ae(q) < e(pNg).

O

Let

D = {e(p) : p € C}

(3.3.14) = {e(BxNBy N[ A): X,Y € [8]<, I € [2¥]<¥,
iel

and Vi € I(Z(:) € T)}\{0}.
Proposition 3.3.6. D is dense in C*.

Proof: First of all, every element of C* is a finite disjunction of elements of the

form

(3.3.15) NeBx,nBy,n [ Am)A )\ —e(Bx;NBy,n [ An),
i€l meM; jeJ ﬂGNJ’

where I, J are finite, disjoint index sets, Vk € TUJ(Xk, Yi € [S]<¥),Vi € I(M; €
[2¥]<«), Vm € M;(Z(m) C T), Vj € J(N; € [2¥]<¥), and Vn € N;(E(n) C T).
By Fact 3.3.5,

(3.3.16) /\e(Bx.. ﬁﬁy‘ N n An) = e(Bx NBynN n Ax),
i€l meM; kEK

where X = J;c; Xi, Y = U Yiy and K = {J;¢; M;. For each j € J, Fact 3.3.5

implies

(3.3.17) e(Bx,NBy,N (] 4n) = e(Bx,)Ae(By,)A |\ e(An),
neN; neN;
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SO
(3.3.18)

—e(Bx, N By, N (| An) = —e(Bx,)V —e(By,)V(\/ —e(4n))
neN; neEN;

=-(\ eBe)V-(\ BV \ -e4n)

z€X; yeyY; neN;

=V -eBe)V V —eBy)v V —e(4,)

T€X; yeyY; neEN;

=V eB) Vv V eBpy)v V —e(4n),

z€EX; y€eY; neEN;
by Facts 3.3.4 and 3.3.5. Combining (3.3.15), (3.3.16) and (3.3.18), we see that
every element of C* is a finite disjunction of elements of the form
(3.3.19) e(Bx NBy N[ A) A )\ —e(4;),
i€l jeJ
where X,Y € [S]<¥; I,J € [2¥]<¥“;and Vk € U J, (k) C T.

Let ¢ = e(Bx N By N;ies Ai) A(Ajes —€(4A;)) € C*. e[P] is dense in r.o.(P),
so dp € P such that e(p) < c. Vj € J,e(p)Ae(Adj) =0=pNA; =0 =
P C A§ = U,exj)(Bs UB,). Let f € pC 2. Then f € Bx N By N();¢; Ai and
Vi € J, f € Useg(;)(Bs U Bs). For each j € J choose an s; € E(j) for which
fe(Bs;UBy,). Let je J'if f € B,, and let j € J" if f € B,,. Let
(3.3.20) g = BxuU(s;:ie'h N BruUge, s N Q Ai.

i€
fegsoqg#0D XUU{sj:75€eJHDUYUU{s; :j€J'}) CS and
Uier () €T = q € C; so e(g) € D. Clearly Vj € J', e(Bs,) < —e(4;) and
Vj € J", e(B,;) < —e(A;). Hence, e(g) < c. Therefore, D is dense in C*.
O

Proposition 3.3.7. C is atomless.

Proof: By Proposition 3.3.6, D is dense in C*, so it suffices to show that D is
atomless. Let ¢ = e(Bx N By N[,y Ai) € D, where p = Bx N By N(;¢; A
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is in the normal form. Choose some z € S with the properties that z ¢ X UY,
z is not in any element of (J;c; £(i), and z is not in any sibling of any element
of Uier (7). Let d = cA e(Byz})- d # 0 by the way z was chosen (by Lemma
3.3.2).

Now, —e(B{;})Ac = e(B{z}) Ac # 0, since z ¢ (XUY U, (UZ(i))) and p is
in the normal form. However, —e(By;}) A d = e(B(;}) Ad < e(B(z) N B(z)) = 0.
Thus, 0 # —e(B{;}) Ac < c\d. Hence, d <c. Therefore, D is atomless.
O

Proposition 3.3.8. Vp € P, 3¢, € C* such that Yc € C, if cp Ac # O, then
e(p) Ac# 0.

Proof: Let p = Bx N By N,cs Ks € P in normal form. Let X' = X NS,
Y’ =YNS, and let S’ = SNT. Let g = Bx'NBy N[\, s Ky and let ¢, = e(g).
¢p € C, since X',Y’' € [S]<¥, §' C T, and S’ is a finite union of branches in
7T since S is a finite union of branches in T'. Note that ¢, > e(p) # 0 and that
Bx:NBy: N[, esr Ko is the normal form of ¢. Since D is dense in C, it suffices
to show that Vd € D, c, Ad#0 = e(p) Ad #0.

Let d € D and let r € C be such that d = e(r). Let By N By N[\ ew Kuw be
the normal form for r. Suppose ¢, Ad # 0. Then

gNr=BxNBy:n (| KyNByNByN N Ku

s'es’ wew
(3.3.21) = BX'UU n —B-Y’UV ﬂ n Kt
teS'Uw
#0.
By Lemma 3.3.2,
(3.3.22) (X'uU)NnY'uv) =0;
(3.3.23) VseS'UW, s X'UU and sZY'UV;
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(3.3.24) S'UW has no triplets;

(3.3.25)
s, t are siblings in S'UW = ((sAt)N(X'UU)=0or (sAt)Nn(Y'UV)=0).

We will show that e(p) A d # 0.

pNr=BxNByn(|K.NnBunByn (] Ku

(3.3.26) o€s wew

= B x\x"uxwuv) N Br\yuyuv) N n K.
s€(S\S")US'UW

Note: (X\X)NnS=(Y\Y')NnS=0; X'UU, YUV CS; (S\S')NT =0;
and S'UW C T. Since T contains all siblings of all elements of itself, if a =
Bx\x' N By\y' NN,es\s' Ks # 0 and b = Bxuu N Byrov NNyesruw Ks # 0,
then a Nb # 0, since a N b satisfies the properties of Lemma 3.3.2.

We claim that (L1)-(L4) hold for the last expression of (3.3.26). (L1): XNY =
0 since p is in normal form; U NV = { since r is in normal form; U,V C S =
CuV)N((X\X)U(Y\Y"))=0;and X'NV =Y'NU = 0 by (3.3.22). Hence,
(Xu)n(Yuv)=0.

(L2): Let s € SUW. Either s € S'UW orelse s € S\S’. Fors € S'UW,
sZX'UU and s € YUV by (3.3.23). Moreover, sN ((X\X')U(Y\Y’)) =0,
since s C S. For s € S\S’, Lemma 3.3.2 implies s € X and s € Y, since
BxNBy Nses Ko is the normal form of p. Moreover, sN (X'uY'uUUuV) =0,
since sNS =0. Hence, Vse SUW,sZ XUUandsZ€Y UV.

(L3): S'UW contains no triplets, by (3.3.24). S\S’ contains no triplets, since
g is in normal form. S\S’' C T\7 and S'UW C T, so S\S’ and S’ UW have no
common siblings. Hence, S U W contains no triplets.

(L4): Suppose s, t are siblings in SUW . Either s,t € S\ S’ or else s,t € S'UW.
Suppose s,t € S\S’. Then (sUt)NS = @, so (sAt)N(X'VY'UUUV) = 0. Further,
BxNByN(),es Ks is the normal form of p, so (L4) of Lemma 3.3.2 implies either
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(sAt)N X = 0 or else (sAt)NY = @. Thus, either (sAt) N (X UU) = 0 or else
(sat)yNn(YuvVv)=0.

Otherwise, s,t € SUW C 7. Then (sut)N ((X\X')u (Y\Y’)) = 0. By
(3.3.25), either (sAt)N (X' UU) = 0 or else (sAt)N(Y'UV) = 0. Thus, either
(sAt)N(XUU)=0orelse (sAt)Nn(YuV) =0

Thus, p N r satisfies (L1)-(L4), so Lemma 3.3.2 implies pN 7 # 0. Thus,
e(p) Nhd=e(pnr) #0.

O

By Proposition 3.3.8, Lemma 3.1.8, and Lemma 3.1.11, r.0.(C) is a complete
subalgebra of B. This completes our construction of a complete embedding of

the Cohen algebra into the Argyros algebra.

3.4. INTRODUCTION TO THE GAIFMAN ALGEBRA

Gaifman constructed the following Boolean algebra in which the o-bounded
c.c. holds, but CUP(BY) fails. First, one starts with the clopen subsets of 2(0:1),
which we shall denote as Clop(2(®1)). For X,Y € [(0,1)]<¥, let

(3.4.1) Bx ={fe€20V: vze X f(z) =1}
and let
(3.4.2) By ={fe20Y: wyeY f(y) =0}.

Note that the set
(3.4.3) {BxNBy: X,Y €[(0,1)]<¥ and X NY = 0}

is dense in Clop(2(®1)).
Let {T; : 2 < 7 < w} be an enumeration of the open subintervals of (0,1)

with rational endpoints. For each 2 < i < w, choose i®-many disjoint, open
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subintervals of T;, and label them T;;, Tia, ..., ;2. Note that U1<J-<,-2 Ti; € T.
T:\Uicjcia Tij # 0; so let Tip = (0, 1)\Uigjciz Tij- Then {T;;:0< 5 < i’}isa
partition of (0,1). Define

I={BxNBy €Clop(2®V):32<i<w3J C{l,...,i%} such that

(3.4.4)
|J| >iand Vj € J X N Ty # 0}.

That is, I consists of those elements of Clop(2(®1)) of the form Bx N By such
that for some 2 < 7 < w, X intersects at least i-many of the open intervals
Ti1,...,Ty2. Let I be the ideal generated by I in Clop(2(®1)). The Gaifman

algebra is the quotient algebra
(3.4.5) B = Clop(2(®})/T.

We shall denote the elements of B by [b], where b € Clop(2(®'1)).

Theorem 3.4.1 (Gaifman). (8] B satisfies the o-bounded c.c., but does not
satisfy CUP(B*), and thus, is not a measurable algebra.

A Boolean algebra constructed in the manner of Gaifman is not necessar-
ily atomless. To show this, we need the following Corollary 3.4.3 and Lemma
3.4.4. Lemma 3.4.2 is a generalization obtained by Prikry of a lemma (Corollary
3.4.3) used by Gaifman in his proof that B satisfies the g-bounded c.c., but not
CUP(B™).

Lemma 3.4.2 (Prikry). [25] Let T be a family of finite subsets of (0,1)
closed under finite supersets. Let G = {Bx : X € T} and let I be the ideal
in Clop(2(®1)) generated by G. Then for X,Y € T with XNY =0, BxNBy €I
iff Bx €6.

Proof: Clearly if Bx € G, then Bx N By € Z, since By N By C By € Zand

is an ideal.
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Claim: For any non-empty Bx N By € Clop(2(®V)), X ¢ T= (Vn<wVj<
nVZ; € T (Bx NBy € U;<, Bz,))-

Suppose @ # Bx N By and X ¢ 7. Let Z; be some elements of T, for
j<n<w IfX D Zjforanyj <n,then X € T;soVj < n, Z;\X # 0. For each
j < n, choose a z; € Z;\X. Let Z = {z;: j < n}. Nowd # BxNByNBz C Bx,
since ZNX = 0. But Bz N (Uj<n Bz;) = 0,50 Bx N By N Bz € U<, Bz;-
Therefore, Bx N By € U,<n Bz;-

Now, suppose Bx N By € Z. Then there are finitely many elements of the
form Bz, € T such that Bx N By C UJ’Sn Bgz,, since 7 is the ideal generated by
Bz's with Z € T. By the Claim, X € 7 hence, Bx € G.

a

Corollary 3.4.3 (Gaifman). [8] For each BxNBy € Clop(2(®V) with XNY =
0, BxNBy eI iff Bx € I.

Proof: Let 7 denote the set of all finite subsets of (0, 1) which intersect at least
i-many T};’s for some i < w. T is closed under finite supersets, and Gaifman’s
ideal T is the ideal generated by {Bx : X € T}.

O

Let
(3.4.6) D = {Bx N By € Clop(2®1): X nY = 0}.
D is dense in Clop(2(®1))+. Thus, by Corollary 3.4.3, the set
(3.4.7) D = {[BxNBy|]: BxNBy € D and Bx ¢ I}

is dense in B+.
The following Lemma 3.4.4 is useful for testing whether a given element of B
is an atom. In Example 3.4.5, we will use this lemma to show that atoms exist

in some Gaifman algebras.
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Lemma 3.4.4. An element [Bx N By] € D is an atom in B iff for each z €
(0,)\(XUY), BxNB;) €I.

Proof: Suppose 3z € (0, 1)\(XUY) such that BxNB(;} ¢ Z. Then by Corollary
3.4.3, Bx N B{z) NBy ¢ I. Moreover, [Bxy(;} N By|] < [Bx NBy], since z ¢ X
implies [0] < [Bx N Byu{z}] < [Bx N By] A =[Bxuy(z) N By). Thus, [Bx N By]
is not an atom.

Now suppose Vz € (0,1)\(XUY), Bx N B(;} € I. Let [By N By] € D and
suppose that [By NBy]A[Bx NBy] # [0]. We will show that [By N By]A[Bx N
By] = [Bx N By].

[BunBy] A [Bx NBy] # [0] implies (U UX)N(VUY)=0and UUX ¢ T.
Vv € VNY, By} 2 By; so
(3.48) A\ Bl 2 [Byl.

veVNY
Vv € V\Y, Bx N By} € I, since v € X; so [Bx] A [B{y}] = [0], which implies
(Bx] £ —[B{v}]- Hence,
(3.49) A Bwl = A -[Bwl 2 [Bx]
veV\Y veEV\Y
Thus, by (3.4.8) and (3.4.9),

(3.4.10) [Fv] = /\ [-E{,,}] > [Bxﬂ?y].
vev

Furthermore, [By N By A[Bx N By] # (0] implies By N Bx ¢ Z, by Corollary
3.43. If v € U\X, then by our assumption, Bx N B(,} € Z, contradictory to
Bx N By € I. Thus, it follows that U C X. Hence,

(3.4.11) [Bu] > [Bx]-
By (3.4.10) and (3.4.11),

(3.4.12) (Bu N Bv] = [By] A [Bv] 2 [Bx N By].
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Hence, [BU N Fv] N [Bx N -Ey] = [Bx N Fy], SO [Bx N Ey] is an atom.
O

Depending on the intervals T;; used in the construction, there may be atoms

in a Gaifman algebra. For instance, we construct the following atom.

Example 3.4.5 (Construction of an atom). Let T> = (0,1), T3 = (0, 3}),

and Ty = (0, %) and choose the following T;;'s in these T;’s:
3 37 7 15 15
609 o = {02).(L0).(G5). (L)
(3.4.14)
1 3 5 5 7 7 9
{T3,17 "-aT3,9} - { ( "g (16 16) (Ea'ﬁ) ) (Té’ Té') ) (']37 E) y
9 1Y (11 13) (13 29) (290 31
16' 1 16°16/ '\ 16’32/’ \ 32" 32
1 1 3 3 5 5 7
{T4,11- . -aT4,16} = { 01 3_2) ’ (3_27 3_2) ) (551 3_2') ) <§'2'a 5'2') )

)

(

(5) (58) (wn) (25)
(&%)

(34.15) 5 17\ (17 19\ /19 21\ /21 23
32’ 32 (32'3—2')(3_23_2)(553_2)
23 25\ (25 27\ (27 57\ (57 59
(2=)(25) (7))}
Let
1 3 5 10 14 18
(3.4.16) X = {3—2 55553333 3 )

[Bx] is an atom in B: For any z € (0,1)\X, Bxu{s} € Z, since  must lie in
at least one of the T3 ;'s, T3 ;'s, or Ty ;’s which X does not intersect. Thus, by
Lemma 3.4.4, [Bx] is an atom. Note: [Bx] is an atom no matter how the rest of

the T;;'s are picked for 7 > 4.

a
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Remark. In order to produce an atom [Bx N By, the set X must consist of
elements which lie on the boundary of some T;; with 2 < ¢ < |X]|+ 1. For if
3z € XNint(Npcicix)+1 Tirsi) for some ji’s, then for all z € int(Nagic)x)41 Tij:)s
[0] < [Bxu(z} N By] < [Bx N By]. Hence, there are at most countably many

atoms in any Gaifman algebra.

3.5. THE COHEN ALGEBRA COMPLETELY EMBEDS
INTO EACH ATOMLESS GAIFMAN ALGEBRA

In this section, we work with atomless Gaifman algebras. Atomless Gaifman
algebras do exist. For instance, if the Tj;'s are nested so that (i < k, 0 < j <
2, 1<1<k? andT;; NTx #0) = Tw C Tij, then the resulting Gaifman
algebra is atomless.

Let the T;'s and T;;'s be chosen according to the Gaifman construction given

in §3.4 in such a way that the Gaifman algebra B is atomless. Let
(3.5.1) E = {r€(0,1):32<i<w (z € Tio\int(Tio))}.

E is the set of all endpoints of the intervals Tjj, 2 < i< w,1 < j < i2. The

following Lemma 3.5.1 is useful for constructing an atomless subalgebra of B.

Lemma 3.5.1. If[0] < [Bx N By) and F is a finite subset of (0,1), then 3z €
(0, 1)\F such that [0] < [BXu{z} ﬂﬁy] < [Bx ﬂ?y].

Proof: Since [0] < [Bx N By] and B is atomless, 3(By N By| € D, (the dense
subset of B+ defined in (3.4.7)), such that [By N By] < [Bx N By].

Claim: 3z € (0,1)\(XUY) for which [0] < [Bxy(:} NBy] < [Bx NBy]. Since
[0] < [BxNBy] and B is atomless, Lemma 3.4.4 implies that 3z € (0,1)\(XUY)
such that Bxu{z} €.z X = [BXU{::} ﬂ-Ey] < [Bx ﬂ?y]. BXU{::} A
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and (XU {z})NY =0 = [Bxu(z} N By| > (0], by Corollary 3.4.3. Hence,
the Claim holds.

Let F be a finite subset of (0,1). By the above Claim, thereis a 29 € (0,1)\(XU
Y) such that [0] < [Bxy(z}NBy] < [BxNBy]. In general, given 2z € (0,1)\(XU
Y),...,2n € (0,1)\(X UY U {20,...,2n-1}) such that [0] < [Bxuyu{z,...,za} N
By] < [Bxu(zo,...,za—1} N By], the Claim implies there is some zn41 € (0,1)\(XU
Y U {zo,...,2n}) for which [0] < [Bxu{za,...zns1} N BY] < [BxU{zo,...,2a} N By]-
So we have a strictly decreasing sequence of non-zero elements, each of which
is strictly below [Bx N By). Take N > |F|. Since the z,’s are distinct, there
is some n < N for which z, ¢ FUX UY. Then [0] < [Bxy(z.} N By], since
[0] < [Bxu(z-i<ny N By]; and [Bxu(z,} N By] < [Bx N By, since z, ¢ X.

a

We now construct a countable, atomless subalgebra C of B and show that C
is a regular subalgebra of B. Our construction uses two types of sets which will
ensure that C is a regular subalgebra of B: F;'s which take care of elements of
E, and X;'s which take care of elements which lie outside of E. We start by

constructing the F;’s by induction.

Let Ey = Tgo\int(Tzo). Let
(35.2) Fs = Ea.

Let E3 = T3o\(int(T30) U F3). VF C F, for which [Br] > [0], by Lemma 3.5.1
choose one zr € (0,1)\F; such that (Bpy(zr}] > [0]. Let

(3.5.3) F3=E3U{zr:F C F;, (Br] > [0]}.

Suppose that for all 3 < ¢ < n, we have constructed sets F; with the proper-
ties that F; N (Up<k<i Fx) = 0, and whenever F' C {,<x<; Fr and [Br] > [0],
then 3zr € F; such that [Bpy(zr)] > [0]. Let Enyq = Tng1,0\(int(Tnyr,0) U
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Uzcicn Fi)- VF C Uscicn Fi for which [Br] > (0], by Lemma 3.5.1 choose an
zr € (0,1)\(Us<i<n F3) such that [Bru{zr}] > [0]. Let

(3.5.4) Fap1=EnU{zr:FC |J F;, [BF]>[0]}.
2<ikn

Note. The sets F;, 2 < j < i < w, have the following properties:

(F1) Fi #0;

(F2) E € Uscicu Fis

(F3) ;nNF; =0

(F4) YF C Uj<<i Fi such that [Br] > [0], there is an zF € F; for which

[BFugzr}] > [0]-

Now we construct the X;’s. Let
(3.5.5)
Jo = {s=(s(2),5(3)) € {0,1,2,3,4} x {0, 1,...,9} : int(Ta,e(2) N Tae0)) # 0}
J2 # 0, since {Tz; : 0 < j < 4} and {T3; : 0 < j < 9} are finite parti-
tions of (0,1), where each piece of each partition is either an open interval,
or else a finite union of closed intervals. For each s € Js;, choose some z; €
int(T2,4(2) nTg,,(g))\(U2Si<w F). Such an z, exists, since int(T% 4(2) T3, 5(3)) # 1]

and U,<i<, Fi is countable. Let
(3.5.6) X, = {.’D, S € Jz}.

In general, for ¢ > 3, let
i+1 i+1
(3.5.7) Ji= {s =(s(2),...,s(i+1)) € [] (k*+ 1) : int(n Tea(r)) # 0}.
k=2 k=2

J; # 0, since foreach 2 < k <i+1, {T};:0< 5 < k2} is a partition of (0, 1) where
each T}; is either an open interval or else a finite union of closed intervals. For

each s € J;, choose some z, € int(ﬂzgks:’-i-l Tkn’(k))\(U25k<u Fie U Ua<k<i Xk)-
Let

(3.5.8) Xi={z,:s€ Ji}.
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Note. The sets X; U F; have the following properties:

(XFl) (U25i<w XT-) n (U2Sk<w Fk) = 0;
(XF?) V2 <1< <uw, (XiUF,-)n(X,-UFJ-) = 0.

For each 2 < i < w, let

(3.5.9) =\ BV V [Biyl:
zeX; fEF;

Let

(3.5.10) C = ({a:22i<w}),

the subalgebra of B generated by {c; : 2 < i < w}.

C is certainly countable, since C is generated by a countable subset of B. We
will show that C is an atomless, regular subalgebra of B. It will then follow by
Lemma 3.1.11 that r.o0.(C) is a complete subalgebra of r.o.(B).

Proposition 3.5.2. C is countable and atomless.

Proof: To show C is atomless, we shall show that its generators are independent.

Suppose K, L are finite, disjoint subsets of {2,3,4,...}. We claim that
(3.5.11) N\ ax A N\ —a #0].
keK leL
By definition,

(3.5.12) /\ aix A /\ —q; = /\ ( V (Bz}] V V [B{f}]) A [-EUIGL(X‘LJF‘)].

keK leL keEK zeXi fEF

By (XF2), (Urex Xk YU Fi) N (Ui (X1 U F1)) = 0. Hence, by Corollary 3.4.3, it
suffices to show that I(uy : k € K) € [, (Xk U Fy) for which By, .xcky € I

Let n = |K| + 1. Order the elements of K as k3 < k3 < -+ < k. Choose one
T3 € Xk, V2 <1< kn+1let s(3) € i +1 be such that £ € T} 4(;). 7 € E =
T2 € int(Nacick, +1 Tisi))- Hence, V2 < m < m, (s(2),5(3),...,s(km + 1)) €
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Jkm; 50 choose Ty, € Xy Nint(Magick, +1 Tivs(i))- Let X = {zm :2<m< n}.
V2<i<n-1,k >4 s0 {z2,Tiz1,-..,Zn} all lie in T} o). {z3,...,Ti-2}| =
i — 4. Therefore, X lies in at most (¢ — 3)-many Tj;'s. For i > n, X lies in less
than i-many T};’s, since |X| < |K| < n. Thus, Bx ¢ I.

a

Remark. By (F1), since each F; # 0, it is also possible to do the above argument

using a sequence (ug : k € K) € [Ticx Fi-

Next, we show that C satisfies the conditions of Lemma 3.1.8. It will then

follow that C is a regular subalgebra of B.

Proposition 3.5.3. For each d € D, there ezists a cq € C* such that whenever

c€ C and cAcq # [0}, then cAd # [0].

Proof: Let d = [Bx NBy] € D. Lei N 2 [X UY|+1 be such that (X U
Y) N(Uncicw (Xi UF;)) =0. Let

(3.5.13) I={2<i<N:XNn(X;UF)#0}
and
(3.5.14) J={2<i< N:XNn(X;UF)=10}
Let
(3.5.15) Cd = /\ ci A /\ —cj.

i€l jeJ

Suppose ¢ = Agex ¢k A Nier —¢1 € CT and ca Ac > [0], (where K,L €
[w\2]<¥). Then

(3.5.16) Ol <canc= /\ ci A /\ —¢j,
i€eIUK jeJUL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67

so(IJUK)N(JUL)=0.Let K=KNn(N+1)and K" =K\K'. K'nJ =0
and K'CIuJ = K'CII.
Note that
cAhd = AckAA—clA[Bxﬂﬁy]
keK leL

= A ( V [B{u}]) A [BX n-E.YU(U[eLX(UFO]'
k€K u€EX UFy

(3.5.17)

By Corollary 3.4.3, it suffices to find a sequence (uy : k € K) € [[;cx(XkUFy) for
which (a) [B{u,,:keK}UX] > [0] and (b) ({ux: k € K}UX)n(YUUleL(X[UFl)) =

0. There are two cases.

Case 1: X C E. (This includes the possibility that X = §.) By (F2), F C
U25i<u F;,s0 X C U2Si5~ F;. Vk € K' choose some fx € FixNX. Then XU{ fx :
k € K'} = X, so it suffices to show (a) and (b) for some sequence (fi : k € K") €
[Tiex (XeUFg). List the elements of K” in order: N+1 < ko < k1 <--- < kum.
By (F4), X C U,<icn Fi and [Bx]| > [0] = 3fk, € F, such that [Bxus,,}] >
[0]. By (F4), X U{fko} S Uacick, Fi and [Bxuife,}] > [0] = 3fi, € Fi,
such that [Bxyq fror _f,‘l}] > [0]. In general, given fx, € Fk,, 0 < i < m such
that [Bxu{fe,,...fam}) > [0] and X U {fxg,-- -+ fem} € Uz<i<k.. Fis (F4) implies
Ifkmsr € Frpyy Such that [Bxugfu,....fum famy, } > (0] By induction on m, we
get a sequence (fky,-- -, fen) € [lo<icar Fii for which [Bxuise,.....fu, 3] > [0)-
Thus, (a) holds for the sequence (fx : k € K").

{fr: ke K"} n(Y U (Uier Xt U F1)) = 0, since Y N (Uncico (Xi UF;)) =0
and KNL=0. XNY =0,sinced >[0]. X C Uy, Fiand INL =0 =
X N (Ujer X1 U Fy) = 0. Thus, (b) holds for the sequence (fi : k € K").

Case 2: X\E # 0. Vk € K’ choose some u;y € (Xx U Fi) N X. (This is
possible, since K’ C I.) XU {ukx : £k € K'} = X, so it suffices to show (a)
and (b) for some sequence (ux : k € K”) € [[iegn(Xk U Fi). Fix an element
z € X\E. Order the elements of K” as N+ 1 < kg < --- < kp. Let s €
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[Macicky +1(8% + 1) be such that z € int(Mocick, +1 Tism)- VO < m < M,
choose an z,, € Xk, Nint(Nocick,, +1 Tisti))-

For 2 <i < N+ 2, XU {zx : k € K"} intersects exactly the same Tj;'s
as X, since {zx : k € K"} C int(ﬂ25n5ko+l Th s(n)). For N +3 < i < ku,
{zk : k€ K", k 21— 1} all lie in T; 4(;), as does z. Hence, X U {zx: k € K"}
intersects at most | X|+|{zx: k€ K", N <k <i-2}| <i—2—-N+N < i-many
T;j’s. For i > kpr, | XU{zx 1 k € K"} < km < i,50 XU{z : k € K"} intersects
less than i-many T;;'s. Thus, X U {zx : z € K} intersects less than i-many T};’s,
for all 2 < i < w. Hence, (a) holds. (b) follows from the same reasoning as in
Case 1. Thus, cAd # [0].

a

Proposition 3.5.3 states that C satisfies the conditions of Lemma 3.1.8. Hence,
C is a regular subalgebra of B. It follows from Lemma 3.1.11 that r.o.(C) embeds
as a complete subalgebra of r.o.(B). That is, the Cohen algebra embeds as a

complete subalgebra into the completion of each atomless Gaifman algebra.

3.6. THE HYPER-WEAK (w,w)-DISTRIBUTIVE LAW
FAILS IN EACH GAIFMAN ALGEBRA

We now return to general Gaifman algebras. As we saw in §3.4, a Gaifman
algebra may be constructed so that it has atoms. Since the Cohen algebra is
atomless, it cannot embed as a complete subalgebra of a non-atomless Gaifman
algebra. However, even if there are atoms, the hyper-weak (w,w)-d.l. still fails

for every Gaifman algebra.
Theorem 3.6.1. The hyper-weak (w,w)-d.l. fails in B.

Proof: We will construct a relative subalgebra of B in which the hyper-weak
(w,w)-d.l. fails everywhere. This will give the failure of the hyper-weak (w, w)-d.l.
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in B.
The set

(3.6.1)
E={z€(0,1): 32 <i<w 31 <j<i®such that z is an endpoint of T};}

is countable; so choose an 7 € (0,1)\E. For each 2 < ¢ < w, let j(z) €
{0,1,...,i%} be the integer such that r € T; j(i)- Define the following sets:

(3.6.2) Clop(2©®V) [ B,y = {b € Clop(2®V) : b C B3 };
(3.6.3) ' =IN(Clop(2®V) [ Byry) = {b€ T :bC By}
(3.6.4) A = (Clop(2®V) [ B(,3)/T'.

We will show that the hyper-weak (w,w)-d.l. fails everywhere in A. Later, we
will show that A is isomorphic to a relative subalgebra of B.
To prove the failure of hyper-weak (w,w)-d.l., the following dense subset DA

will be useful. First, note that the set

(3.6.5) D, ={BxNBy:X,Y €[(0,1)]<¥ re X, and XNY =0}
is dense in (Clop(2(®1) [ By,})*. Thus, the set

(3.6.6) Da = {[Bx N By]a : Bx N By € D:}\{[0]a}

is dense in A, where [b]a denotes the equivalence class of b under the equivalence
relation @ ~a b ¢— a,b € Clop(2(®V) | By} and alAb € I'. By [b]s, we
will denote the equivalence class of b under the equivalence relation a ~g b +—
a,b € Clop(2(®1)) and aAb e T.

Although not necessary for the proof of the failure of the hyper-weak (w, w)-d.l.
in B, it is interesting, and necessary for the proof that the hyper-weak (w,w)-d.1.
fails everywhere in A, that A is atomless.
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Proposition 3.6.2. A is atomless.

Proof: Suppose [BxNBy|a € Da. Then [BxNBy]a > [0]a, so Bx NBy ¢T'.
Let m = | X|. 7 € int(Macicm+1 T; j(s)) implies int((Mo<i<mt1 T; j(i)) contains an
open interval; choose some z € int((Voc;cm+1 T; i) (X UY). We claim that
[0]a < [Bxu(z} N Br]a < [Bx N By]a.

For all 2 < i < m + 1, the set X U {z} intersects exactly the same T;;’s as
X. |Xu{z}j=m+1,so0foralli>m+1, XU{z} does not intersect i-many
T;;'s. Hence Bxy(;} € I'. Since z € Y, [Bxu(s} N By]a > [0]a. Moreover,
z¢ X = [Bxu(:}NBrla < [Bx NBy]a. Hence, [Bx NBy]a is not an atom.
O

Next we show that the hyper-weak (w,w)-d.l. fails everywhere in A.
Proposition 3.6.3. The hyper-weak (w,w)-d.i. fails everywhere in A.

Proof: Recall that for each 2 < i < w, j() is the integer in {0, 1, .. .,42} such that
r € int(T; j;)). Hence, int(ﬂ,s,csﬂ},j(i)) # 0. Choose a 22 € int(T2  (2))\{r}
Choose a z3 € int(T3 j2) N T3,53))\{r 22}. In general, for 1 > 3, choose a z; €

int(Np<r<i) \{7 22, . . -, 2i-1}. Thus, we have a sequence 22,23, ... such that
(367) V2<i<w 2 € int( n Tk,j(k))\{r, 2y ee ey Zi_]_}.
2<k<i

Construction of the partitions: Let

ago = (B{,.} ﬂﬁ{z,}) U B{",32133}
agr = B{r,zn,zq} n—g{z:’}

a'02 = B{r132t25} n?{zs,z“}
(3.6.8)

aon = B{r.zz,zn-f»a} n F{“"Z"""z““}
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and let
(3.6.9) Wo = {[aon]a : n <w}.
Let
a = (B{r} N P.{zs}) U B{rvza,n}
an = B{r,zs,zs} nE{Zq}
a12 = B{r,zs,zs} n-‘g{zuzs}
(3.6.10)
Qin = B{r,zs,zn.H} n E(Zq,Zg,....Zg-}-S}
and let
(3.6.11) W1 = {[a1n]a : n <w}.

In general, for m < w, let
amo = (Bir} N Bzn12}) U Birzmiz zmea)
Am1 = B{",Zm+2,2m+4} n §{2m+3}

am2 = B{",zm+2,2m+s} N B{Zm+3.2m+4}

(3.6.12)

Amn = B{r,zm-l-?:zm-f-n-{-a} n -B.{zm+3,zm+4|~--'zm+n+2}
and let
(3.6.13) W = {[amn]a : n < w}.

Claim 1: Vm < w, Wy, is a partition of unity in A.
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Let m < w be given and suppose n < n’ < w. If n =0, then

(3.6.14)

Amn N\ Gmn' = Qmo N\ Qmn’
= (Br} N Biamya} Y Birzmanizmss}) N (Birzmisizmenrsal
O B zmss zmesrmzmentsz})
€ (Blzmss} N Bizmsa}) U (Bzmia} N Bizmas})
= 0.

If n # 0, then

@mn A Gmnt © B{r,zm+g,zm+n+3} N B{zm+3,zm+4,...,zm+,,:+,}

(3.6.15) C Bzminss} n§{3m+n+3}
=0

since n < n’ impliesm +3 < m +n+3 < m+n' + 2. In either case, [@mn]a A
[@mn']a = [0]a. Hence, Wy, is pairwise disjoint in A.

Next, we will show that \/,, ., [@mn]a = [1]a. Let [Bx N By]a € Da and let
b= Bx NBy. (Note that r € X and Bx € I'.) If zm+2 € X, then

(3.6.16) b amo 2 Bx N Byu(zmsa} € L'

by Corollary 3.4.3, since Bx & I’. Thus, [b]a A [amo]a # [0]a-
If zZm42 € X, then we have two cases. If 3n < w such that zm4ni3 € X, then
let n be the least element of w such that z,4n+3 € X.

(3.6.17) bNamn 2 Bx N By N B{Zm+2.zm+n+a} n §{3m+31-..,2m+n+2}

= BX N EYU{ZM+3,...,Z"‘+"+2} g I’

by Corollary 3.4.3, since Bx ¢ I’'. Thus, [b]a A [amn]a # [0]a. Otherwise,
Zm+2 € X and Vn < w, Zmin+3 € X. In this case, let n < w be such that
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m+n+32>|X|+1and 24043 € Y. (This is possible since Y is finite.) Then,

(3.6.18) b0 amn = Bx N EY N B{zm+2,2m+n+3} n F{zm+:;,...,4-.,,,4_,‘4,,}

= BXU(zmsns3} N BYU(zmss,rtmensa) BT
by Corollary 3.4.3, since zm4n+3 and 7 are both contained in T; j(; for all 2 <
i < |X| + 1. Thus, [la A [amala # [0]a.
Thus, for each [b]a € Da, 3n < w such that [bJa A [amn]a # [0]a. Hence,

Vn<wl@mn]a = [1]a. This concludes the proof of Claim 1.

To show that the hyper-weak (w,w)-d.l. fails in A, we will use the following
Lemma 3.6.4.

Lemma 3.6.4. Let B be a Boolean algebra and D a dense subset of B*. If there
ezist partitions of unity Wy, = {amn : n < w} € B*, m < w, such that for each
d €D, Im < w such that V/n < w d A amn # 0, then the hyper-weak (w,w)-d.l.

fails everywhere in B.

Proof: Suppose Wy, = {amn : n <w} C B*, m < w, are a family of partitions of
unity with the property that for each d € D, 3m < w such that Vn < w, dAan, #
0. Since each W,, is a partition of unity,
(3.6.19) AV am = 1

mlw n<w
We will show that for each f:w - w
(3.6.20) A V am =0

m<w n#f(m)

Let f : w = w be given. Let d € D and let ™ be an element of w such
that Vn < w, d Aamn # 0. Then in particular, d A as g(m) # 0. Thus, d £

Vﬂ;é f(ii) Binns since Wy, is a partition of unity in B. Hence,

(3.6.21) d 2 AV amn

m<w n#f(m)
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Since this is true for all d in the dense set D,
(3.6.22) AV amm =0
m<w  n#f(m)
Since f : w — w was arbitrary, we have
(3.6.23) V. N V am =0
fwow m<w n#f(m)

(3.6.19) and (3.6.23) show that the hyper-weak (w,w)-d.l. fails everywhere in B.
O

Claim 2: The hyper-weak (w,w)-d.l. fails everywhere in A.

By Lemma 3.6.4, it suffices to show that for each [d]a € Da, thereisanm <w
such that Vn < w, [d]a A [@mn]a # [0]a.

Let [d]a = [Bx NBy]a € Da be given. Choose m < w large enough so that
m+2>|X|+2and

(3624) (X U Y) N {Zm+2, Zm+3; Zm44y - .- } = 0
For n =0,
(3.6.25) dNamo 2 Bxu{zmizzmss} By.

V2<i<m+2, 7 2Zn+2,2m+3 € Tijg); so XU {2m+2, #Zm+3} intersects less
than i-many Tj;’s. For i =m + 3, 7,2Zm+3 € Tm+3,j(m+3); SO X U {zm+2, Zm+3}
intersects the same Ti;'s as X U {zm+3}, which is less than |X | + 2-many T;j;’s,
where | X|+2 < m+3. Vi > m+3, X U{zm+2, Zm+3} intersects at most | X| +2-
many T;;’s, where | X|+2 < m+3 < i. Thus, Bxu{zms2,2m43} ¢ I'. By Corollary
3.4.3, BXU(zms2,2msa} N By €' 50 dNamo € I'. Thus, [d]a A [amola # [0]a-

In general, for 1 < n < w,

(3.6.26) dNamn = BXU{zm+22men+3} FYU{zm+a,---,=m+n+z}'
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As before, for each 2 < i < |X| + 2, 7, 2m+2, Zm4n+3 € T ji); and 7, 2myns3 €
Trm+3,j(m+3)- ThuS, BXU{zmis.zminss} & TI'; so Corollary 3.4.3 implies that
BxU{zms2:zmental O FYU{:,,..H;} € I'. Thus, d N amn ¢ Z', from which it fol-
lows that [d]a A [@amn]A # [0]A.

Therefore, by Lemma 3.6.4, the hyper-weak (w,w)-d.l. fails everywhere in A.
This concludes the proof of Proposition 3.6.3.
a

Proposition 3.6.5. A is isomorphic to B [ [B(}]B-

Proof: Let C denote B | [B(,}]B. Define a ~c b +— [a]B,[b] < [B(r}]B
and a A b € I. Note that for b C By}, [blc = [b]s-
Let ¢ : A — C be defined by

(3.6.27) ¢([b]a) = [blc,

for each [b]a € A. We shall show that ¢ is an isomorphism.
First, ¢ is well-defined: Suppose [a]a,[b]a € Aanda ~a b. ThenaAbeI' C
Z, so a ~p b. Since a,b C By,}, [a] = [a]c and [b]p = [b]c. Thus, [a]c = [b]c-

(3.6.28) ¢([a]laV[b]a) = ¢([aubla) = [aUb]c = [a]c V [b]c = é([a]a) V&([b]a);
so ¢ preserves V. Let b¢ denote the complement of b in Clop(2(°:!)). Then

¢(—[b]a) = #([Bir} N6]a) = [Byry N6°]c = [Byr} N 6B
= [Biry]B A [6°]B = [B{r}]B A —[b]B = ~[blc = ~¢([b]c)-

(3.6.29)

Thus, ¢ preserves —. Thus, ¢ is a homomorphism.

Suppose [a]s # [b]a. Thena A b ¢ I’. Since a,b C By}, a Ab & I’ implies
aAb¢gZ Thus, [a]g # [b]s. Since a,b C By}, we have [a]c = [a|B # [b]B =
[blc. Thus, ¢([a]a) # #([b]a), so ¢ is 1 —1.

Suppose [bjlc € C. Then [blc < [By(r}]c, so there is a d € I such that
bC By} Vd. Let a = bNBy,}. a ~p b, since a Ab C d\By,) € I. Moreover, [a]a
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is a well-defined element of A, since a C By,}. Thus, ¢([a]a) = [a]lc = [a]B =
[b]s = [blc. Hence, ¢ is onto. Thus, ¢ is an isomorphism.
O

Since the hyper-weak (w,w)-d.l. fails completely in A and A is isomorphic to
the relative subalgebra C of B, the hyper-weak (w, w)-d.l. fails in B. Furthermore,
the hyper-weak (w, w)-d.l. fails everywhere on the relative subalgebra B | [B{r}|B-

3.7. OPEN PROBLEMS

We conclude this chapter with some open problems. In §§3.2, 3.3, and 3.5, we
showed that the Cohen algebra embeds as a complete subalgebra into the Galvin-
Hajnal, Argyros, and atomless Gaifman algebras. The first natural question is

the following.

(1) Is there a complete, atomless, c.c.c., non-measurable Boolean algebra in which

the Cohen algebra does not embed as a complete subalgebra?

We have already pointed out that the Laver forcing L satisfies the hyper-weak
(w,w)-d.l. but not the weak (w,w)-d.l.; so r.o.(L) is a complete, atomless, non-
measurable algebra in which the Cohen algebra does not embed. However, r.o.(L)
does not satisfy the c.c.c. We conjecture that the answer to (1) is “yes”. If so,
we ask whether there is a complete, atomless, c.c.c. Boolean algebra in which the
hyper-weak (w,w)-d.l. fails, but the Cohen algebra does not embed as a complete

subalgebra. Precisely, show that

(2) The failure of the hyper-weak (w, w)-d.l. in a complete, atomless, c.c.c. Boolean
algebra does not imply that the Cohen algebra can be embedded as a complete

subalgebra.

or the stronger version,
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(3) There is a complete, atomless, c.c.c. Boolean algebra in which the hyper-
weak (w,w)-d.l. fails everywhere, but the Cohen algebra does not embed as a

complete subalgebra.
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Chapter 4

GENERAL DISTRIBUTIVE LAWS
AND RELATED GAMES

4.1. INTRODUCTION TO
GENERAL DISTRIBUTIVE LAWS AND RELATED GAMES

Infinite games between two players arise naturally in the study of Boolean
algebras. Foreman, Gray, Jech, Kamburelis, Shelah, and Vojtas, among others,
have investigated relationships between games and Boolean algebraic notions such
as o-closed dense subsets, proper forcing, and distributive laws. We focus on this

latter property and its connections to games.

Each general distributive law is equivalent to a forcing property which says that
functions in the extension model are bounded, in a way related to the particular
distributive law, by functions in the ground model. Since it is often easier to prove
the existence or non-existence of a winning strategy for a game than to show that
a distributive law holds, it is of interest to find game-theoretic characterizations

of distributive laws.

Games have a particularly desirable connection with von Neumann’s problem.
As von Neumann's problem has been studied almost entirely from the point of
view of chain conditions, it remains unknown whether the countable chain con-
dition along with some stronger form of the weak (w,w)-d.l. characterizes mea-
surable algebras among Boolean o-algebras. In §4.6, we show that the existence
of a winning strategy for Player 2 in the game G (w) (see Definition 4.3.3) is
strictly stronger than the weak (w,w)-d.l., assuming ¢. This opens an alternative
approach to von Neumann’s problem: investigate whether or not the c.c.c. and

the existence of a winning strategy for Player 2 in the game G§ (w) characterize
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measurable algebras among Boolean o-algebras.

Jech pioneered the field of games related to distributive laws in 1979 with
his paper, A game theoretic property of Boolean algebras [14]. In it, he gave
a game-theoretic characterization of (w,o0o)-distributivity in complete Boolean
algebras (see Theorem 4.1.11). A few years later, he obtained a game-theoretic
characterization of (w, k)-distributivity in complete Boolean algebras [16] (see
Theorem 4.1.14). This spurred related research in the early 1980’s by Foreman,
Gray, Vojtas, and others. In particular, Foreman [5] obtained a game-theoretic
characterization of the (7, co)-distributive law in complete Boolean algebras for

all successor cardinals 7.

In regard to weak distributivity, Jech found a relationship between the weak
(w,k)-d.l. and a game he invented called Gg,(k). Namely, he showed that, in
a complete Boolean algebra, if the weak (w,x)-d.l. fails, then Player 1 has a
winning strategy in Gan(x) [16] (see Definition 4.3.3 and Theorem 4.3.4). Jech
asked whether the converse holds. This remained unanswered for a decade until
Kamburelis showed that the converse does not hold; in fact, he showed that
Player 1 does not have a winning strategy in the game Gg, (%) played in a Boolean
algebra B if and only if the weak (w, x)-distributive law holds in B and VB =
([]“ N Vis stationary) [19] (see Theorem 4.3.6).

Except for Kamburelis’ result, research in the area of games and distributive
laws was sparse between 1984 and 1998. Then, in 1999, using a game similar to
Foreman’s game, Fuchino, Mildenberger, Shelah, and Vojtas obtained a game-
theoretic characterization of the (7, 00)-distributive law in complete Boolean al-

gebras for all cardinals 7 (7].

In view of these results, it is natural to ask: For which generalized distributive
laws and for which cardinals, if any, can one obtain game-theoretic characteriza-
tions? For each generalized version of distributivity which we have investigated,

there are certain pairs and triples of cardinals for which we have obtained game-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

theoretic characterizations. These are given in §§4.2 - 4.5.

Now let us turn to the definitions and implications between various distributive
laws. The following distributive laws are given in order of decreasing strength.
For instance, the (7, k)-d.l. implies the weak (7, k)-d.l., which in turn implies the
(m, < A, k)-d.l., and so on.

Definition 4.1.1. [21] B satisfies the (7, &)-distributive law ((n, k)-d.l.) if for
each |I| < 7, |J| < &, and family (b;;)ier, jes of elements of B,
(4.1.1) A Vb=V Abiw

i€l jeJ fiIJ el
provided that \/ ;. ,bi; for each i € I, A;crV,esbijs and A biggiy for each
f I — J exist in B. We say that B is (n,00)-distributive if it satisfies the

(n, k)-d.1. for all cardinals .

Definition 4.1.2. [21] B satisfies the weak (k, A)-distributive law (weak (x, A)-
d.l.) if for each |I| < &, |J| £ A, and family (aij)ier jes of elements of B,
(4.1.2) /\ v a;; = V /\ V Qaij,

i€l jeJ FIa[J)<v i€l jef(i)
provided that V,c ;ai; for each i € I, Aje; Vjesai, and Ajer Vs aij for
each f : I — [J]<“ exist in B. We say that B is weakly (x, 0o)-distributive if it

satisfies the weak (x, A)-d.l. for all cardinals A.

Definition 4.1.3. [17] For 2 < A < &, B satisfies the (7, < A, &) -distributive law
((n, < A, w)-d.L) if for each |I| < 70, |J| < &, and family (b;;)ier,jes of elements
of B,
(4.1.3) AVei= V AV b

i€l jeJ FIo[J)<A €l jef()
provided that \/;¢ ; bi; for each i € I, A;c; Ve bijy and Aser Ve g bis for each
f: I = [J]<* exist in B. We say that B is (5, < A, 00)-distributive if it satisfies
the (7, < A, k)-d.1. for all cardinals «.
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Definition 4.1.4. [26] For xk > w, B satisfies the super-weak (7, x)-distributive
law (super-weak (7,k)-d.l.) if for each |I| < 7, w < |J[ £ &, and family
(aij)ier,jes of elements of B,

(4.1.4) /\ Vaij = \/ /\ V aij,

iel jeJ f:I-PWJ) i€l jef(i)
viel, |J\f(i)|=|J|

provided that V;¢;ai; for each i € I, Ajer Vjesaijy and Nier Vjesu aij for
each f : I — P(J) such that Vi € I(|J\f(i)| = |J|) exist in B. We say that B
is super-weakly (n, 00)-distributive if it satisfies the super-weak (7, x)-d.1. for all

cardinals kK > w.

Definition 4.1.5. [26] For x > w, B satisfies the hyper-weak (n, k)-distributive
law (hyper-weak (n,k)-d.l.) if for each |[I| < 7, w < |J| < &, and family
(aij)ie 1,jes of elements of B,
(4.1.5) AVai=V A V a

iel jeJ f:I=J i€l jeI\{f(i)}

provided that \/ ;¢ ; ai; for each i € I, Nier Vjes @i and Aier Ve (fa)y %is for
each f: I — J exist in B. We say that B is hyper-weakly (n, co)-distributive if it
satisfies the hyper-weak (7, £)-d.l. for all cardinals k > w.

Remark. The (7, k)-d.l. is the same as the (7, < 2, k)-d.l., and the weak (9, k)-
d.l. is the same as the (7, < w, k)-d.l.

Theorem 4.1.6. Let n,k, A, v be cardinals.
(1) Vn, K, the (0, k)-d.l. implies the weak (1, k)-d.l.
(2) Vn,k and w < A, the weak (n, k)-d.l. implies the (n, < A, k)-d.l
(3) Vn, Yw < A < K, the (1, < A, k)-d.l. implies the super-weak (n,k)-d.l
(4) Vn and V& > w, the super-weak (7, £)-d.l. implies the hyper-weak (1, k)-d.l.

The proofs of (1) and (2) are found in [21]. The proofs of (3) and (4) follow
naturally from the definitions.
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Theorem 4.1.7. For all cardinals ng < m1, ko < K1, 2 < Ao £ A1, and cardinals

71, K, in a complete Boolean algebra, the following implications hold:

(1) (m,K1)-distributivity = (1o, Ko)-distributivity.

(2) weak (n1, k1)-distributivity = weak (1q, Ko)-distributivity.

(3) For Ao < K1, (m,< Ao, K1)-distributivity => (0, < A1, Ko)-distributi-
vity.

(4) For k > w, super-weak (7, K)-distributivity <=> hyper-weak (n, k)-distri-
butivity.

(5) For ko > w, hyper-weak (1, ko)-distributivity == hyper-weak (o, k1)-
distributivity.

(6) hyper-weak (n,w)-distributivity <=> hyper-weak (n, 00)-distributivity.

(1)-(3) follow naturally from the definitions and can be found in [21]. (4)-(6)
seem odd at first glance. It is easy to see that super-weak (7, k)-distributivity
implies hyper-weak (7, k)-distributivity, but it does not seem obvious that the
converse should hold. Likewise, it follows naturally from the definition that the
hyper-weak (m1, 51)-d.l. implies the hyper-weak (79, 50)-d.1., but the fact that the
hyper-weak (7, ko)-d.l. implies the hyper-weak (7, 1)-d.l. is an anomaly of hyper-
weak distributivity. In fact (5) and (6) are properties of hyper-weak distributivity
which do not hold for other forms of distributivity. After some thought, though,
(5) and (6) are not so surprising: roughly speaking, since partitions of larger
cardinality are generally composed of smaller pieces, leaving out one piece of a
partition of large cardinality should generally yield a larger supremum than the
supremum of all but one piece of a partition of smaller cardinality. This will be
made precise in the proof of Theorem 4.1.7, below. First, we need the following

definition and lemma.

Definition 4.1.8. [21] For any cardinal &, a collection {b; : i <k} CBisa
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quasi-partition of B if {b; : i < k} is pairwise disjoint, and
(4.1.6) Vb =1

Every partition of unity is a quasi-partition, but not the reverse: a quasi-

partition may include the O element repeatedly.

Lemma 4.1.9. For a k-complete Boolean algebra B and for cardinals n, x with
Kk > w, the super-weak (0, k)-d.l. holds in B iff it holds for all collections of quasi-
partitions {b;; : j < k}, (i <n), of B. Similarly, the hyper-weak (n, k)-d.l. holds
in B iff it holds for all collections of quasi-partitions {bi; : j < k}, (i <), of B.

Proof: Certainly if the super-weak (7, x)-d.l. holds, then it holds for all col-
lections of quasi-partitions. Conversely, suppose that the super-weak (7, x)-d.l.
fails for some collection {b;; : j < k}, (i < 7). Then there are b,c € B such
that Vf : n = T, where T = {T C & : |[k\T| = &}, A, Vjcubiz =b>c 2
Nicn Viesq bis-
For each i < 7, construct a quasi-partition from {b;; : j < K} as follows: Let
aijo = bio A b
ai1 = (bi1\aio) A b

ai2 = (bi2\(aio Vai)) A b
(4.1.7)

aij = (bi;\(\/ aix)) A

k<j

for each j < &, and let a;, = 1\b. Then {a;; : j < &} is a quasi-partition, since

{aij : 7 < K} is certainly pairwise disjoint, and

(4.1.8) Va,,-j = (l\b)VVa,-j = (l\b)Vb = 1.

jsk i<w
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We will show that the super-weak (7, k)-d.l. fails for the quasi-partitions {a;; :
j<k}l(t<n). Let S={SCr+1:|c+1\S|=«}andlet f:n — S be given.
(4.1.9) /\ V aij < /\ V (bij V aix),

i<n jEf() i<n jEf()
since Vi < K, a;; < b;j. Recall T = {T C k: |k\T| = k}. Define g : n — T by
g(z) = f(@) Nk, Vi < n. Then,

/\ V aij < /\ \/ (bij V aix)
i<n  jEf(i) i<n  jEg(i)
(4.1.10) = A V Gi;v(@w)
i<n  j€g(i)
< cV(1\b)

Since for each f :n — S there is a g : n = 7 such that (4.1.10) holds,
V.- AN Vai = V A V (@vaw)
fm—=S i<n jFEf(i) gn—=T i<n jeg(i)
(4.1.11) < ev(\b)

< 1,

since ¢ < b. However, A;., V,<x@ij = 1 Thus, the super-weak (7, x)-d.. fails
for the collection of quasi-partitions {a;; : j < k}, (2 < 7).

The proof for the hyper-weak (7, x)-d.l. is analogous.
O

Now we are ready to prove (4)-(6) of Theorem 4.1.7.

Proof of Theorem 4.1.7: (4). It follows naturally from the definitions that
the super-weak (7, k)-d.l. implies the hyper-weak (7, x)-d.l. To show the converse,
suppose that the hyper-weak (7, x)-d.l. holds. Let {aix : j,k < &}, (i < n), be
quasi-partitions of B. (We use triple subscripts for ease of notation later.) Let

{bij : 5 < &}, (i < ), be quasi-partitions of B given by b;; = V/, ., aijk, Vi < k.
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Let S={S Crxr:|(kxk)\S|=x}. Let f:n — k begiven. Defineg:n— S

by

(4.1.12) 9(i) = {(J,k) € nx K5 # f(i)}.

Then

(4.1.13) ANV e = A Vi< i#f@)

i<n  (j,k)€g(i) i<n

Since for each f : 7 = k we can find a g : 7 = S such that (4.1.13) holds,

(4.1.14)
V. ANV e 2 V A Viii<ni#f@) =1,
gn—=S i<n  (j,k)€g(i) =k i<y

since the hyper-weak (7, k)-d.l. holds in B. Thus, the super-weak (7, x)-d.l.holds
in B.

(5). Suppose 79 < 71 and Ko < k1. It follows immediately from the definition
that the hyper-weak (71, k)-d.l. implies the hyper-weak (7o, £)-d.1. We will show
that the hyper-weak (7, ko)-d.l. implies the hyper-weak (7, x1)-d.1.

Suppose the hyper-weak (7, k9)-d.l. holds. By Lemma 4.1.9, it suffices to show
that the hyper-weak (7, £1)-d.1. holds for all families of quasi-partitions of B. Let
{bij : § < K1}, (i < n), be a family of quasi-partitions. For each i < 7, for each

0 < 7 < Ko, let aij = bij. Let a;o = by V V bij. Then {a,-j 1 j < I‘io},

Ko<Ji<ny
(¢ < n), are quasi-partitions of B.

Given f : 7 — kg, let g : 7 — K1 be given by

(4.1.15) 9(%) = f().

Then

(4.1.16) A V o w2 A V ey
i<n  j<wi, j#£9(i) i<n  j<Ko, JESL()

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

Since for each f : n — kg we can construct a g such that (4.1.16) holds,

(4.1.17) v /\ V bij > \/ /\ V aij 2 1,

gn—=r1 i<n  j<xy, j#g9(3) fm—re i<n  j<ro, jF#S(i)

since the hyper-weak (7, ko)-d.l. holds. Thus, the hyper-weak (7, x1)-d.l. holds.

(6). This follows from (5). Let B be a Boolean algebra and let £ > w. If
the hyper-weak (7,w)-d.l. holds in B, then by (5), the hyper-weak (7,x)-d.l.
holds. Letting s range over all cardinals greater than or equal to w, we find that
the hyper-weak (7, 00)-d.l. holds. By Definition 4.1.5, the hyper-weak (n, c0)-d.l.
implies the hyper-weak (7, w)-d.l.

O

Games between two players arise naturally in the study of distributive laws in
Boolean algebras. Jech obtained a game-theoretic characterization of the (w, 00)-

distributive law using the following game G.

Definition 4.1.10. [14] The game G is played by two players in a complete
Boolean algebra B as follows: Player 1 begins the game by choosing some ag € B*
(where Bt = B\{0}); then Player 2 chooses some by € B* such that by < ao.
The two players take turns choosing elements an, b, € B* to form a descending

sequence
(4.1.18) ag2by2ar>2b1>2---2an2by 2. .

Player 1 wins the play (4.1.18) iff the sequence (4.1.18) has no lower bound in
B+.

Theorem 4.1.11 (Jech). [14] For B complete, the (w,c0)-distributive law holds

in B iff Player 1 does not have a winning strategy in G.

Foreman obtained a game-theoretic characterization of the (7, oo)-distributive

law for successor cardinals n [5]. His game is played like Jech’s G, but played in
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n-many rounds, where P2 chooses first at limit ordinals. Vojt4S made an improve-
ment on Foreman'’s result, but still did not obtain a complete characterization of
(m, oo)-distributivity [30]. Over a decade later, for a partial ordering P, Fuchino,
Mildenberger, Shelah, and Vojt4s defined the game G(P, n), played in P just like
Foreman’s game, except that Player 1 plays first at each limit ordinal. Using
G(F,n), they obtained a game-theoretic characterization of the (7, c0)-d.l. for all

cardinals 7.

Theorem 4.1.12 (Fuchino, Mildenberger, Shelah, and Vojtas). {7] For
P separative, for all cardinals n, the (n,00)-distributive law holds in r.0.(P) iff

Player 1 does not have a winning strategy in G(P,n).

Interested in the second parameter of the (w, x)-distributive law, Jech defined

the following game.

Definition 4.1.13. [16] The game G, (k) is played by two players in a complete
Boolean algebra as follows. At the beginning of the game, Player 1 chooses some
a € Bt which is then fixed throughout the w-many rounds. On the n-th round,
Player 1 chooses W,, C B, a partition of a such that |W,| < «; then Player 2

chooses some b, € W,,. Player 1 wins the play

(4.1.19) (a, Wg,bo,wl,bl,...,Wn,bn,...)
iff
(4.1.20) N\ b =0.

n<w

Jech obtained the following game-theoretic characterization of the (w, k)-d.l.

Theorem 4.1.14. [16] For B complete, for all cardinals &, the (w,k)-d.l. holds

in B iff Player 1 does not have a winning strategy in G,(x).

In the proceeding sections, we will work with variations of Jech’s game G; (k).
In §4.2, we present the game G](x) which generalizes G, () to plays of uncount-

able length. We show that, for cardinals 7, x such that k<" = or k<" = k, the
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(n, k)-distributive law is characterized by the non-existence of a winning strategy
for Player 1 in G](x). It immediately follows that the (7, co)-distributive law
holds in B iff Player 1 does not have a winning strategy in Gy (oo). This yields
a characterization of (7, co)-distributivity different than the characterization ob-
tained by Fuchino, Mildenberger, Shelah and Vojtds [7]. Moreover, it implies
that the existence of a winning strategy for Player 1 in the games G(B*,n) and

G7(oc0) are equivalent.

In §4.3, we present the game Gg (x), a generalization of Jech’s game Ggn (%)
to plays of uncountable length. This game is played similarly to G7(x), except
that now Player 2 chooses finitely-many pieces from each of Player 1’s partitions.
We show that, for cardinals 7, k such that k<7 = 5, the weak (7, k)-distributive
law holds iff Player 1 does not have a winning strategy in G¢ (x). §4.4 and
8§4.5 consider generalizations of §4.3 to the (7, < A,k)-d.l. and the hyper-weak
(n, k)-d.l., respectively.

In §4.6, for regular cardinals n > w, we generalize a result of Jech [16] and
use Op+ to construct an n*- Suslin algebra in which the games Gy (k) (for k),
Gg (k) (for £ > w), and G2, (x) (for 2 < A < min(n, k)) are undetermined, and
an nt- Suslin algebra in which the game G7_, (for w < & < 7) is undetermined.
This result is surprising, as it implies the the existence of a winning strategy for
Player 2 in each of the games does not follow from any of the distributive laws.
§4.7 summarizes relationships between winning strategies for the two players in

the various games and their corresponding distributive laws.

4.2. THE (5, x)-DISTRIBUTIVE LAW AND THE GAME G](k)

Recall the (5, k)-distributive law.

Definition 4.2.1. [21] B satisfies the (5, k)-distributive law ((n, )-d.l.) if for
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each |I| < 7, |J| < &, and family (bij)ier jes of elements of B,

(4.2.1) /\ Vbij = \/ /\bif(i)v

i€l jeJ f:IJ i€l
provided that \/,c;bi; for each i € I, A;jg; Vjes bij» and Aier big) for each
f: I — J exist in B. We say that B is (n,00)-distributive if it satisfies the
(n, k)-d.1. for all cardinals .

Jech showed that the (n, k)-d.l. is equivalent to the following forcing property.

Proposition 4.2.2. [17] If B is complete, then B is (7, k)-distributive iff every
function from 7 to K in the generic extension V[G] belongs to the ground model

V. B is (n, oo)-distributive iff every function f:n —V in V[G] isin V.
The following generalizes Jech’s game G; (k) to plays of uncountable length .

Definition 4.2.3. Let x be any cardinal and 7 be any infinite cardinal. The
game GJ(k) is played between two players in an n*-complete Boolean algebra B
as follows: At the beginning of the game, Player 1 (P1) chooses some a € B*
which is fixed throughout the 7-many rounds. For a < 7, the a-th round is played
as follows: P1 chooses a partition W, of a such that |W,| < &; then Player 2 (P2)

chooses some b, € W,. In this manner, the two players construct a sequence of

length 7
(4.2.2) (a, Wo,bo,Wl,bl,...,Wa,ba,... : a<n)
called a play of the game. P1 wins the play (4.2.2) if and only if

(4.2.3) N b =0.

a<n

A strategy for P1 is a function o : {0} U (B¥)<" — [B*]S" such that ¢(0) =
{a} and for each (b, : a < B) € (B+)<", o((ba : @ < B)) is a partition of a. o is

a winning strategy if P1 wins every time P1 follows o.
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A strategy for P2 is a function 7 : ([B*]S%)<7 — B* such that for each
(Wy :a < B) € ([BH]E")<", 7((Wqa : a < B)) € Wg. T is a winning strategy if
whenever P2 plays by 7, P2 wins.

7 = G7(o0) is the game played as above, except now P1 can choose partitions

of any size. We note that Jech’s game G, (k) is the same as G{' (k) in our notation.

Remark. G7 can be played in a partial ordering P in the natural way: At the
beginning of the game, P1 chooses some fixed p € P. On the a-th round, P1
chooses a maximal incompatible subset M, C P below p; then P2 chooses one

element p, € M,. This constructs the sequence

(424) <p1M01p07M11p1,'-'3Ma7pcn'" :0‘<77)'

P1 wins the play (4.2.4) if and only if V¢ € P, Ja < 7 such that ¢ £ po. If P
is separative, then the existence of a winning strategy for P1 or P2 is invariant

between P and r.o.(P).

Note. One can easily show that if P2 has a winning strategy in G7(x), then the
(n, k)-d.l. holds. It then follows that if P2 has a winning strategy in G7, then the
(1, 00)-d.1. holds.

Jech obtained the following characterization of the (w, x)-d.l.

Theorem 4.2.4 (Jech). [16] If B is complete, then the (w,k)-d.l. holds in B

iff P1 does not have a winning strategy in Gy (k).
The “if” direction easily generalizes to all pairs of cardinals 7, .

Theorem 4.2.5. If B is n*-complete and the (n, k)-d.l. fails in B, then P1 has

a winning strategy in G (k).

Proof: Follows from Theorem 4.4.4 with A = 2.
a

We have obtained the following partial converse to Theorem 4.2.5.
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Theorem 4.2.6. If B is nt-complete and P1 has a winning strategy in G{(k),
then

(1) the (k<" k)-d.l fails;

(2) the (1, k<")-d.L fails.

Proof: (1) follows from Theorem 4.4.5 with A = 2. The proof of (2) uses ideas
from Jech’s proof of Theorem 4.2.4, the main difference being that here, limit
ordinals must be treated with care, as in Case 1, below. Let o be a winning
strategy for P1 in G] (k). Let {a} = ¢(0) and Py = o({ )). For each zo € Py,
let Wi({zo)) = {zo A z: 2z € o({z0))}. Let P, = U{W1({z0)) : zo € o(( )}
For each z; € a({zo)), let Wa({zq,z1)) = {Zo AT1 A 2: 2z € o({Z0,T1))}. Let
P = J{Wa((zo,z1)) : zo € 0(( )),Z1 € 0((T0))}. In general, given a <7 and a
sequence (zg: B < a) € (B*)<? such that V3 < a zg € o ((zy : 7 < B)), let

(4.2.5) Wa((z: B < ) = {(ﬂ/<\azﬁ) Nz:iz€a((zg: B <a)},
and let

(4.2.6) Po=|J{Wal(zp:8<)):VB<a, zg €a((zy:7 < B))}
Note that

(a) Va <0, P, C Bt is pairwise disjoint and |P,| < 2+ < k<7;
(b) If B < @ <1, then Vx € P, 3y € Pg such that y > z;
(c) fa<nand VB < a, zg € o({z+:v < B)), then VWo((zg: B < a)) =
Ns<a T8

(d) Va<n, VPar1=V Fo;
() If (i) B<v<m

(ii) (z¢:¢ < B), (y¢ : ¢ < 7) are sequences such that V{ < 3

zc €0((ze:0<()) and yc € o({ys : 6 < ()); and
(iii) 34 < B such that z5 # ys;
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(a)-(d) are clear. For (e), if § < « is least such that z5 # ys, then zs5,ys €
o({z : v < 0)), a partition of a, so z5 A ys = 0.

Claim: The (n, k<")-d.l. fails for the collection P,, (@ < n). By (a), we can
index the elements of P, using the index set £<" so that Py = {by : v < £<"},
allowing repetitions.

Case 1: Ja < 7 for which \/ P, < a. Let a be least such that \/ P, < a.
(d) implies & is a limit ordinal. We will show that the (a, k<")-d.l. fails for the
partitions Fg, (8 < @), of a. Since Ag., V Ps = a, it suffices to show that

(4.2.7) V A bsse £V P

fra=x<" B<a

Let f : a = k<" be given. VB < a, bg 53 € Pps; so there is a sequence
(:cg : { < B) such that V¢ < 3, :z:‘c3 € a((zg 1y <)), and bg 8y = A¢c<p z’g.

Suppose V{ < 8 < v < ¢, z‘g = IIZ. VB < a, let g denote :cg Then V6 < a,
zg € o({z¢ : ¢ < B)), so (c) implies Ag., T =V Wa((zg : B < a)). Therefore,

(4.2.8)
N bsrey = AN Nz = Nz =\ Wallzp:8<0) <\ P
B<a B<a ¢<B B<a

Otherwise, 36 < B < v < « such that z§ # z]. In this case, (e) implies
(4.2.9) N beso < bssey Abrgm = N\ L AN s =0
(<a ¢<8 ¢<v
Since (4.2.8) and (4.2.9) hold for all f : @« — x<7, (4.2.7) holds. Therefore,

the (a, x<7)-d.l. fails.

Case 2: For each a < 7, \/ P, = a. Then (b) implies VB < a < 1, P, is a
refinement of Pg. Let f : n = k<" be given. We will show that A, _, ba,f(a) = 0.
If 3a < 1 such that b, ¢q) = 0, then we are done; so assume Va < 7 by (o) # 0.
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Suppose 38 < a < n such that bg s(g) Z ba, f(a)- Then, bg g A ba,f(a) = 0,
since P, is a refinement of Pg. Hence, A, <n ba,f(a) = 0.

Otherwise, V8 < @ < 1, bg,f(8) 2 ba,f(a) > 0. Again, V8 < a let (:z:‘g : (< B)
be the sequence such that V¢ < 8, :z:? € o((zf : v <)), and bg,r(8) = N¢<p zf.

We claim that

(4.2.10) V(<B<a<n, 1zf=zd
If (4.2.10) fails, then 36,8, with 6§ < 8 < a < 7 such that z§ # z§. Then
bg'f(ﬂ) A ba,f(a) = (0, by (e) But this implies ba.f(a) = 0, since ba"f(a) < bﬁ,f(ﬁ).

Contradiction. Thus, (4.2.10) holds.
Va < 7 let z, denote £§. Then

(4.2.11) (a,0(()), z0,0({z0)),T1,...,0({Tg: B < @), Za),... 1< 7)

is a play in G7(x) in which P1 follows o. So,

(4.2.12) A bosay= N N =& = Nza=0
a<n a<n ¢(<a a<n

Since f : 7 — k<" was arbitrary,

(4.2.13) V A bas@ =0 <ea

fm—r<n a<n
Thus, the (1, x<")-d.l. fails for the partitions P,, (a < 7), of a.
O

Whether the full converse of Theorem 4.2.6 holds is unknown. However, for

certain pairs of cardinals 7, x we have the following:

Corollary 4.2.7. IfB is nt-complete and k<" = 7 or k<" = K, then the (,K)-
d.l. holds in B iff P1 does not have a winning strategy in Gy (k).

From Corollary 4.2.7, we obtain a characterization of the (7, c0)-d.l. which dif-
fers from the that of Theorem 4.1.12 obtained by Fuchino, Mildenberger, Shelah,
and Vojtas [7].
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Corollary 4.2.8. If B is nt-complete, then the (n,00)-d.l. holds iff P1 does not

have a winning strategy in G7.

Corollary 4.2.8 implies that the existence of a winning strategy for P1 in g/
is equivalent to the existence of a winning strategy for P1 in the game G(B*, 7).

Assuming GCH, Corollary 4.2.7 gives a characterization of the (7, k)-d.l. for
all k < n and for all & > n with cf(k) > 7.

Corollary 4.2.9. (GCH) If B is n*-complete, then Yk < n and Vk with cf(k) >
n, the (n, k)-d.l. holds iff P1 does not have a winning strategy in Gy (k).

4.3. THE WEAK (n,x)-DISTRIBUTIVE LAW
AND THE GAME g7, (x)

In this section we present connections between the weak (7, x)-distributive law

and the game Gf (k). Recall the following definition.

Definition 4.3.1. [21] B satisfies the weak (7, K)-distributive law if for each
|I| <7, |J| € K, and family (b;j)icr,jes of elements of B,

(4.3.1) /\ Vbij = V /\ V bij,

i€l jeJ f:Io[J]<w i€l jef(i)

provided that \/ ¢, bij for each i € I, Aie; Vjes bij» and Aser Ve s bis for each
f: I — [J]<¥ exist in B. We say that B is weakly (7, 00)-distributive if it satisfies
the weak (7, k)-d.l. for all cardinals «.

The weak (7, x)-d.1. has the following forcing property.

Proposition 4.3.2. If B is complete, then B is weakly (n, k)-distributive iff for
every function g : 1 = & in V[G] there is some function f:n — [k]<“ in V such

that Va < 7, g(a) € f(a). B is weakly (n, 0o)-distributive iff for each function
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g:n — V in V[G], there is a function f : n = [V]|<¥ in V such that Yo < 7,
g9(a) € f(a).

Proof: Follows from Proposition 4.4.2 with A = w.

O

We now introduce the game G{ (k), which generalizes Jech’s game Ggn (k) (in
[16]) to plays of uncountable length. G¢, (k) is played just like GY (k) except now

P2 can choose finitely many pieces from each of P1’s partitions.

Definition 4.3.3. Let 7 and k > w be cardinals. The game G¢ (x) is played
between two players in an 77-complete Boolean algebra B as follows: At the
beginning of the game, P1 chooses some a € B* to be fixed throughout the
n-many rounds. For a < 7, the a-th round is played as follows: P1 chooses a
partition W, of a such that |[W,| < &; then P2 chooses a finite subset F, €

[Wo]<“. In this manner, the two players construct a sequence of length
(4.3.2) (a, Wo, Fo, W1, F1,...,Wa,Fq,... 1 <T])

called a play of the game. P1 wins the play (4.3.2) if and only if
(4.3.3) A VF. =0
a<n

A strategy for P1 is a function ¢ : {0} J([B¥]<¥)<" — [B*]|S* such that
o(0) = a € B* and for each (F, : @ < B) € ([BY]|<¥)<", o((Fa : @ < B)) isa
partition of a. o is a winning strategy if P1 wins every time P1 follows o.

A strategy for P2 is a function 7 : ((B*]$*)<7 — [B*+]<¥ such that for each
(Wq : @ < B) € ([B¥]S®)<, 1((Wq : a < B)) € [Wp]<V. T is a winning strategy
if whenever P2 follows 7, P2 wins.

ga = Gg (o) is the game played as above, except now P1 can choose parti-

tions of any size.

Jech’s game Ggn(k) is the same as our game Gg (x).
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Remark. GZ can be played in a partial ordering in the natural way. If P is a
separative partial ordering, then the existence of a winning strategy for P1 or P2

in G is invariant between P and r.o.(P).

Note. In an n-complete Boolean algebra, the following hold: If P2 has a win-
ning strategy in G (x) (G¢,), then the weak (7, k)-d.l. (weak (7, 00)-d.1.) holds.
A winning strategy for P1 in G} () (GF,) is a winning strategy in GJ(x) (G7).
Conversely, a winning strategy for P2 in G7(x) (G7) is a winning strategy in
Gain(k) (Ggn)-

Jech showed the following.

Theorem 4.3.4 (Jech). [16] If B is complete and the weak (w, k)-d.l. fails in
B, then P1 has a winning strategy in Ggn(K).

Jech’s Theorem 4.3.4 naturally generalizes to games of uncountable length,

where we only require B to be n*-complete.

Theorem 4.3.5. If B is nt-complete and the weak (7, k)-d.l. fails in B, then

P1 has a winning strategy in G¢_(x).

Proof: Follows from Theorem 4.4.4 with A = w.
a

Having obtained Theorem 4.3.4, Jech asked whether the converse holds. Kam-

burelis showed that, in general, it does not, by obtaining the following.

Theorem 4.3.6 (KXamburelis). [19] P1I does not have a winning strategy in
Gen(k) played in a complete Boolean algebra B iff the weak (w, k)-d.l. holds in B
and VB = [k]* NV is stationary.

Remark. For the special case when x = w, Kamburelis also showed that weak

(w,w)-distributivy is equivalent to the non-existence of a winning strategy for P1

in Ggin(w).
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It seems likely that one should find a similar characterization of the non-
existence of a winning strategy for Player 1 in G (x) in terms of stationary
sets. Currently, we do not know whether that is the case. However, for certain

combinations of cardinals, we do have the following partial converse to Theorem

4.3.5.

Theorem 4.3.7. If B is n*-complete and P1 has a winning strategy in G (),
then the weak (k<",k)-d.l. fails.

Proof: Follows from Theorem 4.4.5 with A = w.

O

Observe that in Theorem 4.3.7, the first coordinate in the weak distributive
law is k<7, not necessarily 7. However, in certain cases, we obtain a purely

game-theoretic characterization of the weak (7, k)-d.L.

Corollary 4.3.8. Let B be nt-complete. Vk,n such that k<" = 7, the weak
(n, K)-d.1. holds in B iff P1 does not have a winning strategy in G, (k).

Corollary 4.3.9. (GCH) Let B be nt-complete. If (a) k < 7, or (b) k =17
and n is regular, then the weak (n,k)-d.l. holds iff P1 does not have a winning

strategy in G (k).

Proof: GCH and (a) imply k<7 = n; GCH and (b) imply k<" = #<" = 7. The
result follows from Corollary 4.3.8. O

4.4. THE (n,< M )-DISTRIBUTIVE LAW AND THE GAME G2, (k)

Three-parameter distributivity is the natural generalization of weak distribu-

tivity and is defined as follows.

Definition 4.4.1. [17] B satisfies the (7, < A, k)-distributive law ((n, < A, k)-
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d.L.) if for each |I| <7, |J| < &, and family (b;;)ier,jes of elements of B,

(4.4.1) /\ Vb,-,- = v /\ V bij,

i€l jeJ FI=[J]<> €I jEf(i)

provided that \/ ;¢ ; bi; for each i € I, A;er Vjes bij» and Aser Vje () bis for each
f: I > [J]<* exist in B. We say that B is (1, < A, 00)-distributive if it satisfies
the (n, < A, k)-d.1. for all cardinals «.

Recall that the (,k)-d.l. is the same as the (7, < 2,x)-d.l,, and the weak
(n, &)-d.1. is the same as the (7, < w, k)-d.L.
(n, < A, k)-distributivity is equivalent to the following forcing property.

Proposition 4.4.2. If B is complete, then B is (n, < A, k)-distributive iff for
every function g : 1 — & in V[G] there is a function f : n — [k]<* in V such
that Va < 71, g(a) € f(a). B is (n,< A, o00)-distributive iff for every function
g:n — V in V[G] there is some function f : 7 — [V]<* such that Va < 7,
g(a) € f(a).

Proof: Let G be a generic filter in B* and let g be a Boolean-valued name. Let
(44.2) b= ||g is a function from 7 to x|,

and Va < 7,8 < k, let bag = |lg(a) = Bl Ab. Va <, let Wo = {bag : B <
x}. Note that each W, is a partition of b. For each h : n — [k]<?*, let by =
Na<n Vgeh(a) bap- For each h such that by # 0, we will show 3f : 9 — [k] <A
in V such that by, I+ Va < n(g(a) € f(a)).

Fix h : 7 = [k]<* such that b, # 0. For @ < 7, define f(a) = {8 < K :
br Abag # 0}. fis in V, since f is defined using b, and bag which are all in B.
VB < K, by Abag # O implies B € h(c); so f(a) C h(a) € [s]<*. Thus, fisa
function in V and f : g — [k]<*. Let by = A <, Vges(a) bap- Note that

(4.4.3) bs IF (g : n — & is a function and Va < 7, g(a) € f(a)).
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Va <1,
bh = baA \/ bag
BEh(a)
= V (bh/\baﬁ)
BEh(a)
(4.4.4)

\/ {bn Abag : B € h(a) and by A bag # 0}
V {8a Abag : B € f(e)}
V bas.

BEf(a)

IN

I

Since (4.4.4) holds for all a < 7,

(4.4.5) bh < AV bap = by

a<n PEf(a)

By (4.4.3) and (4.4.5), Vh : n — [k]<* such that by # 0, by IF (g : 7 —
x is a function and Va < 71, g(a) € f(a)). (n, < A, k)-distributivity implies

(4.4.6) b

V btn = V{ba: h:n-[x]<*and by # 0}.
hin—[x]<>
Thus, b I+ (g : 7 = & is a function and Va < 7, g(a) € f(a)). Hence, if g is a
function from 7 to & in V[G], then 3f : n = [s]<* in V such that Va < 7, g(a) €
f(a) in V[G].

To prove the converse, suppose that the (7, < A, k)-d.l. fails in B. We will
show that there exist a generic G C B™* and a function f : = & in G such that
forall h:n — [k]<* in V, 3a < n(f(a) € h(a)).

The failure of the (1, < A, k)-d.l. implies that there exist b € B* and {bap :
B < k}, (a < 1), quasi-partitions of b for which

(4.4.7) A Vbs=bt>0= \ A V bos.

a<n f<x g:n—[x]<> a<n Beg(a)
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Let f be a B-valued name for a function such that ||f(&) = B|| = b A bag = bagp.
Note that for each o <7, b = V4, bag I (f is a function from 7 to K).

Claim: bIF Vh : 5 — [&]<* in V(3& < 7(f(&) € h(a))).

Let h: n — [k]<* be a function in V. Let p < b. Since the (7, < A, k)-d.l. fails,
Ja < g for which p £ Vgep(a)bap- Hence, 3y € k\h(a) for which p A boy # O.
It follows that p A baq IF £f(&) € h(&). Thus, p I f(&) € h(&). Since this holds
for all p < b, b IF f(&) € h(a).

0O

The following generalization of the game G{ (k) corresponds naturally to the

(n, < A\, K)-d.L.

Definition 4.4.3. Let 7, x be infinite cardinals and A be a cardinal such that
2 < A < k. The game G2, (k) is played between two players in a max(nt, Aj-
complete Boolean algebra B as follows: At the beginning of the game, P1 chooses
some a € B*. For a < 7, the a-th round is played as follows: P1 chooses a
partition W, of a such that |W,| < ; then P2 chooses some F, € [W,]<*. In

this manner, the two players construct a sequence of length 7
(4.4.8) (a,Wo,Fo, Wi, Fi, ..., Wa, Fq,... :a<17)

called a play of the game. Pl wins the play (4.4.8) iff

(4.4.9) A VF. =0

a<n

A strategy for P1 is a function o : {0} J([B*]<*)<" — [B*]|S* such that
o(0) = {a} and for each (F, : @ < B) € ([B*]<*)<", o((Fa : a < B)) is a
partition of a. o is a winning strategy if P1 wins every time P1 follows o.

A strategy for P2 is a function 7 : ([B¥]S%)<" — [B*]<* such that for each
(Wy : a < B) € ([BY]S5)<n, 1({Wa : a < B)) € [Wg]<*. T is a winning strategy

if whenever P2 follows 7, P2 wins.
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G7, = G2,(c0) is the game played just as G2, (x), except now P1 can choose

partitions of any size.

Note that GZ (k) is the same as G2, (k), Jech’s game Ggn (k) (in [16]) is the

same as G (k), and G2,(x) is the same as G (k).

Remark. 92 , can be played in a partial ordering in the natural way. As before,
if P is separative, the existence of a winning strategy for P1 or P2 in G, is

invariant between P and r.o.(P).

Note. In a max(n*, A)-complete Boolean algebra, the following hold: For 7 <
M, ko < K1, and 2 < Ap < A3, a winning strategy for P1 in gg‘;l (ko) is a winning
strategy for P1 in GZ', (k1); conversely, a winning strategy for P2 in QZ‘AO (k1) is
a winning strategy for P2 in g7, (ko). If P2 has a winning strategy in G2, (x)

(G7,), then the (1, < A,k)-d.L ((n, < A, 00)-d.L.) holds.

Theorems 4.2.5, 4.2.6 (1), 4.3.5, and 4.3.7 are consequences of the following

two theorems.

Theorem 4.4.4. If B is maz(n*, A)-complete, A < k, and the (n,< A, &)-d.l

fails, then P1 has o winning strategy in G2, (K).

Proof: If the (7, < A, &)-d.L. fails, then there is a family W, = {bag : B < Kk} C
B*, (a < ), such that

(4.4.10) V. A V basg=0< A V tas

fin=[x]<r a<n gef(a) a<n B<x

Let a = /\a<,, Vﬁ<~ bag. A winning strategy for P1 is given as follows: P1
chooses a at the beginning of the game, and Va < 7, P1 plays W,.
O

Theorem 4.4.5. If B is maz(n*,\)-complete, A\ < &, and P1 has a winning
strategy in G2, (k), then the ((k<*)<", < A, k)-d.L fails in B.
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Proof: Suppose o is a winning strategy for P1. Let {a} = ¢(0) and W) =
o({ )). Index the elements of [W,]<* using s(0) € x<* so that [W,]<* =
{Fisqy : 5(0) € k<*}. Let Ws0)) = 0({F(s(0y))) be the partition of a which P1
chooses according to o if P2 has just chosen Fis(q)) € [W()]<*. In general, given

a <1, s € (k<M)2, and W,, index the elements of [W,]<* using s(a) € k<* so

that

(4.4.11) [Wo]<* = {Fymy(a) : 8(a) € £}
Let

(4.4.12) Ws~s(a) = 0({Fst1, Fat2y -+ 1 Fsy Fymg(a)))

be the partition of a which P1 chooses according to o if P2 has just chosen

Fy~s(a) € [W,]<*. For limit ordinals v < 7, let

(4'4'13) W(s(a):a('y) = a((Fs(a-i-l) ra< '7))

Note that {W, : s € (k<*)<"} is a listing of all the possible choices for P1
under o, and {F; : s € (k<*)<" and dom/s) is a successor ordinal} is a listing of
all the possible choices for P2 when P1 follows o.

Claim: The ((£<*)<", < A, k)-d.L fails for the partitions Wy, (s € (x<*)<7),
of a. For each s € (k<*)<", use s to index the elements of W, so that W, =

{bs,j : 7 < k}. It suffices to show that for every f : (k<*)<7 — [k]<?,

(4.4.14) A \/ b.; = 0.

s€(r<r)<n  jEf(s)

Let f: (k<*)<7 — [k]<* be given. To show (4.4.14), we construct a sequence

t € (k<*)" with the following two properties:

(a) Va <, Featr) = {betaj:J € ft T )}
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(b) (@)™ (Wita, Fii(a+1) : @ < 1) is a play of GZ, () in which P1 follows o.

Let t(0) be the unique element of k<* for which Fiyoyy = {b(),; : 4 € f({ ))}-
In general, for a < n and given (t(8) : B < a), let t(a) be the unique element of

k<* for which

(4.4.15) Fe(g):8<a)~t(a) = {b(e(8):B<ayi : J € F((E(B) : B < a))}-
Let
(4.4.16) t=(t(a):a<n)€ (kM.

t satisfies (a), by (4.4.15); and t satisfies (b) by (4.4.11), (4.4.12), (4.4.13), and
(4.4.15). (a) implies that Yo < 1, Vjcf(e1a) b5 = V Fira+1)- Since Va < 7,

t [ a € (k<*)<T, it follows that
(4.4.17) /\ V bsj < /\ VFcr(a+1)-
s€(r<r)<n j€f(s) a<n
Since (b) holds and ¢ is a winning strategy for P1,
(4.4.18) AV Firasyy = 0.
Q<T]

Thus, (4.4.14) holds. Since f was arbitrary, the ((k<*)<"7,< A, k)-d.l fails for
the partitions Wy, (s € (k<*)<7), of a.
a

Corollary 4.4.6. If B is maz(n*, \)-complete and (k<*)<" =), then the (9, <
A, k)-d.l. holds in B iff P1 does not have a winning strategy in gg A(K).

Corollary 4.4.7. (GCH) Suppose B is maz(n*, A)-complete, A < k, and etther
(a) k* < n, or (b) k = n and n is regular. Then the (n,< A, k)-d.l. holds in B

iff P1 does not have a winning strategy in G, (k).
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4.5. THE HYPER-WEAK (1, «)-DISTRIBUTIVE LAW
AND THE GAME G]_,

The hyper-weak (7, x)-distributive is a generalization of the (7, < A, K)-distri-
butive law, for any w < A < k. Recall the definition of the hyper-weak (n, k)-

distributive law.

Definition 4.5.1. [26] For x > w, B satisfies the hyper-weak (7, x)-distributive
law (hyper-weak (n,k)-d.l.) if for each [I| < 7, w < |J| < K, and family
(aij)ie 1,jes of elements of B,
(4.5.1) AVeai=VN A V e

i€l jeJ fiIoJ i€l jeI\{f(i)}
provided that \/ ;¢ ;ai; for each i € I, Ay Ve aij» and Nier Viensuyy @i for
each f : I — J exist in B. We say that B is hyper-weakly (n, 0o)-distributive if it
satisfies the hyper-weak (7, k)-d.l. for all cardinals k¥ > w.

As was shown in Theorem 4.1.7 (5) and (6), in a complete Boolean algebra,
for no < m and w < ko < K1, hyper-weak (m1, ko)-distributivity implies hyper-
weak (1o, k1)-distributivity. Moreover, the hyper-weak (7, w)-d.l. holds iff the
hyper-weak (7, k)-d.L. holds (with x > w) iff the hyper-weak (7, 00)-d.l. holds.

Hyper-weak (7, k)-distributivity has the following forcing property.

Proposition 4.5.2. For B complete and k > w, B satisfies the hyper-weak
(9, k)-d.L, iff for every function g : 7 — K in V[G] there is a function f: 1 — K
in V such that Va < 1, g(a) # f(a).

Proof: Suppose the hyper-weak (7, £)-d.1. holds. Let G be a generic filter in B*

and let g be a Boolean-valued name. Let
(4.5.2) b=||g is a function from 7 to ||,
and Va < 1, VB < k&, let

(4.5.3) bag = |lg(a) = BI| A b.
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Va < 1, let W, = {bag : B < k}. Note that each W, is a partition of b. For each
h:n—k,let
(4.5.4) by = /\ \/ bap-
a<n pex\{h(a)}
For each h such that by, # 0, we will show there is an f : n = « in V such that

bp Ik Va < 7, g(a) # f(a).
Fix h: n — & such that by, # 0. For a < 7, define

(4.5.5) fla) = {B < K : by Abag = 0}
and let
(4.5.6) f(a) = the least 8 € f(a).

f is a well-defined function from 7 to x, since by A bg n(a) = 0. Moreover, f is in

V, since by, and all bag are in B. Thus, b IF (f is a function in V and f:n — k).

Let b = Aacn Vpen\(f(a)} bas- Note that

(4.5.7)
bg Ik (9 : n — & is a function, f:n — K is a function in V|

and Va < 7, g(a) # f(a)).

Va < 1,

Ber\{h(a)}

= \V  (br Abap)
per\{h(a)}

V {bn Abag : B < &, and by Abag # 0}
V {61 Abag : B < &, and B # f(a)}
V  bas

Ber\{f(a)}

(4.5.8)

INIA

IA
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So,

(4.5.9) b < A V  bap = by

a<n Bex\{f(a)}

Thus, by IF (g : 7 = & is a function, and 3f : 7 — & (f is a function in V and
Va < 7, g(a) # f(a))). This holds for each h : n — & such that b, # 0. Hyper-

weak (7, k)-distributivity implies

(4.5.10) b = V by, = \/{b;1 : h:n — k and by # 0},
h:np—x
soblF3f :n = k(f € VandVa <7 (9(a) # f(a))). b € G implies 3f : n —
k in V such that Ya < 7, g(a) # f(a) in V[G].
The proof of the converse is similar to that of Proposition 4.4.2.

O

We now introduce a game which generalizes G2, () and corresponds closely

to the hyper-weak (7, k)-d.1.

Definition 4.5.3. Let 7, x be cardinals, with x > w. The game Gl_, is played
by two players in a max(n¥, k*)-complete Boolean algebra as follows: First, P1
chooses some a € Bt. For a < 7, the a-th round is played as follows: P1 chooses
a partition W, = {aq; : j < &} of a of cardinality x. Then P2 chooses all but
one of the members of Wy; i.e. P2 chooses E, = {aqj : j < £ and j # kqa} C Wa,
for some ko < k. Let by = \/ Eo. P1 wins the play

(4.5.11) (a, Wo,Eo,Wl,Eh...,Wa,Ea,"' rQa <7))
if and only if

(4.5.12) N\ ba =0.

a<n
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A strategy for P1 is a function o : {0} J([B*]*)<" — [B*]* such that ¢(0) =
{a} and for each (Eg : B < ) € ((B*]*)<", o((Ep : B < )) is a partition of a
of size k. o is a winning strategy if P1 wins every time P1 follows o.

A strategy for P2 is a function 7 : ([B*]*)<" — B* such that for each (Wg :
B < a) € ([BH]*)<", 7((Wp : B < a)) C W, such that |[Wo\T((Wp: B8 < a))| =
1. 7 is a winning strategy if whenever P2 follows 7, P2 wins.

G2 _, is the game played just as gg »(K), except now P1 can choose infinite

partitions of any size.

Note that we restrict partitions to being exactly size x in the game y;_;. If
we do not, then P1 will always choose partitions of size w, since this maximizes

P1’s chances for winning.

Remark. G _, can be played in a partial ordering in the natural way. As
before, if P is separative, the existence of a winning strategy for P1 or P2 in Q’Z A

is invariant between P and r.o.(P).
The following implications are similar to those for G7, (k).

Note. In a max(nt*, k*)-complete Boolean algebra, the following hold for 7 <

m and ko < ;. If P1 has a winning strategy in G _,, then P1 has a winning

m
Ko-1?

strategy in G _,. If P2 has a winning strategy in G then P2 has a winning
strategy in G°_,. If P2 has a winning strategy in G}_; (G5,_,), then the hyper-

weak (7, k)-d.l. (hyper-weak (7, 00)-d.1.) holds.

Theorem 4.5.4. For B maz(n™*, k*)-complete, if the hyper-weak (n, )-d.L fails,

then P1 has a winning strategy in G)_,.

Proof: If the hyper-weak (7, x)-d.l. fails, then there is a family W, = {bag : B <
k} € B*, (a < 7), such that

(4.5.13) V A V btas=0< A V bags

fm—or a<n gex\{f(a)} a<n B<x
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Let ¢ = A,c, Vpcxbas- A winning strategy for P1 is given as follows: P1
chooses a at the beginning of the game, and Va < 7, P1 plays W,.
ad

Theorem 4.5.5. For B maz(nt, kt)-complete, if P1 has a winning strategy in

G?_,, then the hyper-weak (k<", k)-d.l. fails.

Proof: The proof is similar to the proof of Theorem 4.4.5. Suppose o is a winning
strategy for P1. Let {a} = 0(0) and Wy = o(()). Index the elements of the set
of subsets of W consisting of all but one element of Wy using s(0) € & so that
{SC Wiy : |WH\S| =1} = {Es0) : 8(0) € k}. Let Wis0y = a((E(s(0)))) be
the partition of @ which P1 chooses according to o if P2 has just chosen E(4(0))- In
general, given a < 7, s € k%, and Wy, index the subsets E4~4(q) © W consisting

of all but one element of W, using s(a) € s so that

(4.5.14) {SC W, : |W,\S| =1} = {E;~y(a) : 5(@) € K}
Let
(4.515) W,A,(a) = U(<Ea|‘11 E3[21 ceey Es: Es"s(a)))

be the partition of a which P1 chooses according to o if P2 has just chosen

Ey~4(a)- For limit ordinals A < 7, let
(4'5'16) W(a(a):a<4\) = a((Es[(a+1) ra< A))

Note that {W, : s € k<"} is a listing of all the possible choices for P1 under
o, and {E, : s € £<" and dom(s) is a successor ordinal} is a listing of all the

possible choices for P2 when P1 follows o.

Claim: The hyper-weak (k<7, k)-d.l. fails for the partitions W, (s € k<M), of
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For each s € k<", use k to index the elements of W, so that W, = {b, ; : j <

k}. It suffices to show that for every f : k<" = &,

(4.5.17) AV b;=o0

SERST  j#f(s)
Let f: k<" — K be given. To show (4.5.17), we construct a sequence t € k"

with the following two properties:

(a) V a <1, Eypatr) = {beta,j : 7 # f(t [ @)}
(b) (@)™ (Wita, Etpa+1) : @ < 1) is a play of GJ_, in which P1 follows o.

Let t(0) be the unique element of « for which
(4.5.18) Eqoy = {by;:3# F{N}

In general, for a < 1 and given (t(B) : B < a), let () be the unique element of

x for which

(4.5.19) E((g):8<a)~t(a) = {bie(g):B<a),i : 5 # F({t(B) : B < a))}.
Let

(4.5.20) t=(t(a):a<n) €k

It follows from (4.5.14), (4.5.15), (4.4.16), (4.5.19), and (4.5.20) that ¢ satisfies
properties (a) and (b). Thus,
(4.5.21) AV b £ AVEi@ =0,
s€R<T j#f(s) a<n

since property (a) implies the inequality and property (b) implies the equality in
(4.5.21). Thus, (4.5.17) holds. Since f was arbitrary,
(4.5.22) V. N Vbi=0<a= A Vb,

fim—n  sEx<T j#£f(s) SER<T j<K
Hence, the hyper-weak (k<7, k)-d.l. fails for the partitions Wy, (s € k<7), of a.
a
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Corollary 4.5.6. If B is maz(n*,s™)-complete and k<" = 7, then the hyper-
weak (1, k)-d.l. holds in B iff P1 does not have a winning strategy in gl_,.

Corollary 4.5.7. (GCH) Suppose B is maz(n*, x*)-complete and either (a)
kt <, or (b) Kk = n and n is reqular. Then the hyper-weak (7, k)-d.l. holds in

B iff P1 does not have a winning strategy in G]_,.

4.6. UNDETERMINED GAMES

In each of the games G7(k), Gg.(x), G%,(k), and G]_,, it is not immediately
clear whether or not the existence of a winning strategy for P2 is equivalent
to the non-existence of a winning strategy for P1. Jech showed that they are
not equivalent for G¥ (k) by constructing a Suslin algebra in which this game is
undetermined [16]. The following examples generalize Jech’s result. Assuming 7
is regular and Q,+ holds, we will show that the existence of a winning strategy
for P2 and the non-existence of a winning strategy for P1 are not equivalent for
G1(k), Ga.(k), G2, (k) when A < min(n, &), and for G!_; when w < & < 7.

We will construct a Suslin algebra in which the first three games are unde-
termined. Then, using similar ideas, we will construct a Suslin algebra in which
G"_, (for w < k < n) is undetermined. Note that by Theorem 4.7.1 in the pro-
ceeding section, the results of Example 4.6.1 for x < 7 follow from Example 4.6.2.
However, Example 4.6.1 is necessary for the case when x > 7. Moreover, the two
examples differ in construction and make clear exactly how we ensure that P2

does not have a winning strategy in each related game.

Example 4.6.1. If n is regular, 2 < A < min(k,n), and O,+ holds, then there

ezists an n*-Suslin algebra in which the game gg A (k) is undetermined.

We construct a Suslin tree (T, <) = (7%, <) such that neither player has a

winning strategy in G2, (x) played in r.o.(T*), where (T"*, <*) = (T, ). In light
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of the natural correspondence between partitions of r.o.(T"*) and partitions of
levels of T', we need only work with partitions of levels of T. Since T will satisfy
the n*-c.c. and P1 must choose partitions of levels of T of cardinality < k, we need
only consider partitions of levels of T of size < p = min(n, k). Every partition of
some level of T into < p-many pieces will be an element of the set ([n*]S7)SK.

On+ implies |([nT]<7)S¥| = n*, so we can index the elements of ([n*]<7)S# by

(4.6.1) ((n*)S")SH = (Wt < 0},
where each
(4.6.2) Wa = (Fap: 8 < p),

and each F, g € [n*]S". It will be useful later that Va < n*, the elements of W,
are ordered.

Once T is constructed, the collection {W, : & < n*} will include all partitions
of levels of T'. Thus, every strategy for P2 will be coded as one of the functions
f:(n1)<" = u<>*: If P2 is playing by a strategy f and P1 has played the sequence
(Wy) @ ¢ < 6), then P2 chooses {Fog)5 : B8 € f((7(5) : © < 9))} C Wy
72> p 2 Aand O+ imply [(nF)<7 x p<* =n*, so let ¢: (n*)<" x p<* = 9t
be a bijection. For each a < n*, we will construct Lev(a) =7 - (a+1)\n-a and
a partition P, of Lev(a). The set {P, : & < 7} will be used later to show that

P2 does not have a winning strategy.

Construction of (T. <) and {P, :a <n*}: Let (Aa : @ < 7*) be a Op+-

sequence. Let Lev(0) = . Let Py = (Pyg : f < ) be a partition of Lev(0)
into u-many non-empty subsets.

Let a < 17 and suppose Lev(a) and P, have been constructed. Let s: px u —
n- (@ +2)\n- (a+ 1) be a bijection. Vy < nlet S, = {s(,8) : B8 < u}. For
each v < 7, let the immediate successors of - a + v € Lev(a) be the elements of

S.,. Note that each element of Lev(a) has exactly u-many immediate successors.
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This constructs Lev(a + 1). For 8 < u, let Pay1,8 = {s(7,8) : 7 < 1}, and let
Pot+1 = (Pat1,8: B < ). Pat1 is a partition of Lev(a + 1) into p-many disjoint
subsets, each of size 7.

Now consider a limit ordinal & < n* and suppose that V8 < «, Lev(8) and
Ps have been constructed. Let To = (Jg., Lev(B). Let (a) be the statement,
“Ty =a, {Pg:B <a} C{Ws:B<a}, and ¢"(a<" x p<*) = a.” If (a) does
not hold, then for each t € T,, pick one a-branch B, C T, which contains ¢t and
put one element of - (@ + 1)\7- « on top of B, at level a. Do this in such a way
that Lev(a) =7 (a+1)\n-a.

Suppose (a) holds. Let (b) be the statement, “A, is a maximal antichain in
T,”, and let (c) be the statement, “A, = ¢[f] N« for some f : (n*)<" = p<t.”
Let t € T,. If (b) holds, then Ju € A, such that ¢t S u or ¢t > u; let r € Ty
such that r 3= ¢, u. If (b) does not hold, then let r = ¢. If (c) does not hold, then
pick B; C T, an a-branch containing r and put one element of - (a+1)\n-a
above B, at level a. Otherwise, (c) holds. Let § = ht(r) and let g : § +2 = ¢+
be the function such that Vy < § + 1, Wy(,) = P,. If P1 plays the sequence
(P, :y <&+ 1) and P2 follows f, then on the § + 1-st round, P2 chooses
(4.6.3)

{Foe1)8:BE€Fg(r) 7S+ 1)} = {Porrp: B € f({g(7) : 7y <511}

Let ¢ < u be such that ¢ ¢ f((g(y) : v+ < § +1)). By construction, there exists
exactly one successor of r in Ps4, ¢, say s. Choose an a-branch B C T, which
contains s and put one element of 7- (a + 1)\n - a above B, at level a.

Do this for each t € T}, in such a manner that Lev(a) = 7 (a+1)\n-a. Now
that Lev(a) has been constructed, choose a partition Po = (Pag : 8 < u) of

Lev(a) into u-many non-empty, disjoint subsets.

Let

(4.6.4) T= U Lev(a).

a<nt
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This concludes the construction of (T, ).

Let

Q
=
I

{a < 7% : a is a limit ordinal}

Cr = {a<n?: Ty =a}
(4.6.5)

Cp = {a<nt: {(P,:y<a} C{W,:v<a}}

Co = {a<nt:¢"(@" x p<*) =a}.
By the usual arguments, Cr, Cr,Cp, and Cy are c.u.b. subsets of n*. (Regularity
of 7 is necessary to ensure that Cy is c.u.b.)

T is an n*-Suslin tree, since the ¢,+-chain kills all maximal antichains at some
level below nt. r.o.(T*) satisfies the (1, 00)-d.l., so P1 does not have a winning
strategy in G7(x), by Theorem 4.2.6 (2). Since G7 () is easier for P1 to win than

21(x), P1 does not have a winning strategy in G2, (k) (see Theorem 4.7.1 in

the next section).
Claim: P2 does not have a winning strategy in G2, (x) played in r.o.(T*).
Let f: (n7)<" = u<* be a strategy for P2. The set

(4.6.6) S=C,nNCrNCpNCyn{B <nt:¢(f)NB = Ag}.

is stationary, since (A, : @ <nt) is a O,+-sequence. Let a € S. Let p € Lev(a),
t € T, such that p is placed above B, in the construction of Lev(a), d = ht(t),
and s € ByNLev(d+1). Let g : §+2 — n* be the function such that V8 < d+1,
Wy(s) = Pg. Statements (a) and (c) hold for a, so the construction of Lev(a)
ensures that s € Psy1,¢ for some ¢ € f({g(7): v < d+1)). Thus, s does not get
chosen by f when P1 plays the sequence (Pg : 8 < 7); that is,

(46.7) s ¢ UtPsrs 10 € F(lg) s 7 <6+ 1)},

p > s implies there is no a-branch in (g, U{Ps,6 : 0 € f({9(7) : ¥ < B))} below
p. Since this holds for all p € Lev(a), f is not a winning strategy for P2.
O
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Remark. Since G7(k) = G2,(x) and 2 < min(n, ), and since G (k) = G2, (k)
and it only makes sense to play Gg (k) when w < min(n, k), Example 4.6.1 also

serves as an example where these games are undetermined.

We now construct a Suslin algebra in which the game G)_, is undetermined
for w < & < n. The non-existence of a winning strategy for P2 in G7_, played
on the Suslin algebra will imply the non-existence of a winning strategy for P2

in all of the other games, when A < 7 < k, (see Theorem 4.7.1).

Example 4.6.2. Ifn is reqular, w < kK <7, and Oy+ holds, then there ezrists an

nt-Suslin algebra in which the game GJ_, is undetermined.

We construct a Suslin tree (T, <) = (n, <) such that neither player has a
winning strategy in G7_, played in r.o.(T*), where (T, <*) = (T,%). Every
partition of some level of T into x-many pieces will be an element of the set
([n*]sm)="~. O,+ implies |([n*]$7)$%| = n*, so we can index the elements of
([n*]S7)=" by
(4.6.8) ] = {Wa:a<nt}={(Fap:B<rK):a<n’},

where each F, g € [n*]S". Note that the elements of the W, are ordered.

The collection {W,, : @ < 7t} will include all partitions of levels of T. Every
strategy for P2 is encoded in one of the functions f : (p*)<" — x: When P2
plays by f and P1 has played the sequence (Wa@) 1 < v), then P2 chooses
{Fagp : B <5 B# f{afi) : 4 < v))}. That is, P2 chooses every element
of Wy except for Fa(y),f((a(i)i<m): On+ implies |(n7)<" x | = 0T, so let
¢ : (n*)<" x k = nt be a bijection. For each a < nt, we will construct
Lev(a) = - (@ + 1)\n - a and a partition Pq of Lev(a). {Pa:a < n*} wil be

used later to show that P2 does not have a winning strategy.

Construction of (T, <) and {P.:a<nt}: Let (Adq : @ < 77) be a Qn+-

sequence. Let Lev(0) = 7. Let Py = (Pog : B < k) be a partition of Lev(0)

into x-many non-empty subsets.
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Let @ < n and suppose that Lev(a) and P, have been constructed. Let
s:nxk —=n-(a+2)\n-(a+1) be a bijection. Vy < nlet S, = {s(v,8) : B < &}.
For each v < 7, let the immediate successors of 7-a+7 € Lev(a) be the elements
of S,. For B < k,let Poy15 = {5(7,8):7< n}, and let Poy1 = (Pat1,8: B < K).
Pas1 is a partition of Lev(a + 1) into xk-many disjoint subsets, each of size 7.

Now consider a limit ordinal @ < n* and suppose that V8 < a, Lev(8) and
Ps have been constructed. Let T = g, Lev(B). Let (a) be the statement,
“Ty =a, {Pg: B < a} C{Ws:B <a}, and ¢"(a<" x k) = a.” If (a) does
not hold, then for each ¢ € T,, pick one a-branch B, C T, which contains ¢ and
put one element of 7 - (& + 1)\7 - @ on top of B, at level @, in such a way that
Lev(a) =7 (a+1)\n a.

Suppose (a) holds. Let (b) be the statement, “A, is a maximal antichain in
T,”, and let (c) be the statement, “A, = @[f] N a for some f : (p*)<" — &.”
Let t € T,. If (b) holds, then 3 u € A, such that t S uwort > u; let r € T,
such that r > t, u. If (b) does not hold, then let r = ¢. If (c) does not hold, then
pick B; C T, an a-branch containing r and put one element of n- (a +1)\n- a
above B; at level a. Otherwise, (c) holds. Let § = ht(r) and let g : § + 2 — ™+
be the function such that Vy < 6 + 1, Wy(,) = P,. If P1 plays the sequenc:
(Py:v <d+1) and P2 follows f, then on the § + 1-st round, P2 chooses

(4.6.9) {Fys41),8: 8 <k, B# f({g(v):7v<6+1))}

Let ¢ < k be such that ¢ # f({g(7) : ¥ < § +1)). By construction, there exists
exactly one successor of 7 in Ps; ¢, say s. Choose an a-branch B, C T, which
contains s and put one element of n - (& + 1)\ - @ above B, at level a.

Do this for each t € T, in such a manner that Lev(a) =7-(a+1)\n-a. Now
that Lev(a) has been constructed, choose a partition P, = (Pag : 8 < k) of

Lev(a) into x-many non-empty, disjoint subsets.
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Let
(4.6.10) T= | Lev(a)
a<nt
Let
Cr = {a<n':ais a limit ordinal}
Cr = {a<nt :Ta=a}
(4.6.11)
Cp = {a<nt:{Py:y<a} C{W,:7v<ca}}

Cy = {a<nt:¢"(a<" x k) =a}.

By the usual arguments, T is an n*-Suslin tree and Cr, Cr, Cp, and Cy are c.u.b.
subsets of n*. r.0.(T*) satisfies the (7, oc)-d.l., so P1 does not have a winning

strategy in Gy (k). By Theorem 4.7.1, P1 does not have a winning strategy in
Gn1-
Claim: P2 does not have a winning strategy in G7_, played in r.o.(T*).

Let f: (n*)<" — & be a strategy for P2, and let
(4.6.12) S=CLﬂCTnCPnC¢n{ﬂ<T[+:¢(f)nﬂ=Aﬂ}.

By On+, S is stationary, so choose some a € S. Let p € Lev(a), t € T such
that p is placed above B, in the construction of Lev(a), § = ht(t), and let s be
the unique element of B, N Lev(d + 1) chosen in the construction of Lev(c). Let
g:8+2 — 7t be the function such that V8 < §+1, Wy(g) = Pg. Statements (a)
and (c) hold for a, so the construction of Lev(a) ensures that s € Ps41,¢, where
¢ = f({g(y) : ¥ < 6 +1)). Thus, s does not get chosen by f when P1 plays the
sequence (Pg : B < 1); i.e.,

(4.6.13) s¢ U(Psrio:0€nm 0#F(9(n):y<s+1))}
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p > s implies there is no a-branch in Mg, U{Pse : 0 < &, 6 # f((g(7) : 7 <
B))} below p. Since this holds for all p € Lev(a), f is not a winning strategy for
P2 in r.o.(T™).

O

4.7. RELATIONSHIPS BETWEEN THE VARIOUS GAMES
AND DISTRIBUTIVE LAWS

In this section, we provide implications for the existences of winning strategies
for P1 and P2 between the various games. Moreover, we tie together the material
in the previous six sections with diagrams relating the various distributive laws

and the existences of winning strategies for the two players.

Theorem 4.7.1. Let the following statements be given, assuming that w < A <

K.

(A1) PI has a winning strategy in G (k).
(B1) P1 has a winning strategy in G (k).
(C1) P1 has a winning strategy in G2, (k).
(D1) P1 has a winning strategy in G _,.
(A2) P2 has a winning strategy in Gy (k).
(B2) P2 has a winning strategy in G (k).
(C2) P2 has a winning strategy in G2, (k).
(D2) P2 has e winning strategy in G _;.

Whenever the games are defined in B, the following implications hold: (D1)
= (C1) = (B1) = (Al); and (A2) = (B2) = (C2) == (D2).

Proof: (D1) => (C1): Let o be a winning strategy for P1 in G]_,.
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Using o, define a strategy = for P1 in G2, (k) as follows. Let

(4.7.1) 7(0) = 0(0) = {a}
and let
(4.7.2) 7(()) = o(()) = Wo,

a partition of a of cardinality x. Given that P2 plays Fo € [Wo]<?*, choose one

element by € Wo\Fp and let

(4.7.3) Eo = Wo\{bo}-
Let
(4.7.4) 7((Fo)) = o ({Eq))-

In general, given a sequence (a, Wo, Fo, W1, F1, ..., Wa, Fa) in which, so far,

P1 has played by 7, and where F, € [Wa]<*, choose one element by € Wa\Fa

and let

(4.7.5) Eq = Wo\{ba}

Then let

(4.7.6) 7({Fo, F1,...,Fa)) = 0({Eo, E1,. .., Ea))-

Note that for each a < 7, \V Fo <V Eq. Thus,

(4.7.7) A VF. < A VE =0,

a<ln a<ln

since o is a winning strategy for P1 in G!_,. Hence, 7 is a winning strategy for

Pl in G2, (k).
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(C1) = (B1): A winning strategy for P1 in G2, () is also a winning strat-
egy for P1 in G (x), because when P2 chooses finitely many pieces from each

partition, it qualifies as choosing 'ess than A many pieces.

(Bl) = (Al): A winning strategy for P1in G (x) is also a winning strategy
on G7(x), since P2 choosing one piece from each partition is a special case of P2

choosing finitely many pieces from each partition.

(A2) = (B2): A winning strategy 7 for P2 in G](k) is also a winning strategy
for P2 in G/ (k): when P2 plays by 7, P2 chooses one element from each partition,

which qualifies as choosing finitely many elements from each partition.

(B2) = (C2): A winning strategy 7 for P2 in G{ (k) is also a winning
strategy for P2 in QZ »(k): by following 7, P2 can win by choosing finitely many

pieces, which qualifies as choosing less than A many pieces.

(C2) = (D2): Suppose P2 has a winning strategy o in G7%,(x). Then a
winning strategy 7 for P2 in G_, can be obtained as follows. Given a and Wy,
a partition of a, let Fo = o({(Wp)). Choose a by € Wo\Fy and let 7((Wp)) =
Eo = Wo\{bo}. In general, given a sequence (a, Wy, Eg, W1, E; ..., W,) and sets
Fg = o({(Wy,...,Wp)) for 8 < a, choose some b, € Wo\F,. Then let

(4.7.8) ((Wo, ..., Wp)) = Eq = Wa\{ba}-

Since for each a < 7, E4 D F,, and since ¢ is a winning strategy for P2 in

gz,\(n)v

(4.7.9) A VE = A\ VF >0
a<7 a<n

Thus, 7 is a winning strategy for P2 in g"_l.

a

We sum up the implications from §§4.1 - 4.6 and Theorem 4.7.1 between the

various games and distributive laws for varying cardinals.
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For cardinals 7o < 7 < m, ko < k< k1, w< A <A< A, and A < Ko, the

following diagrams commute (whenever the properties on both sides of the arrow

are defined).

4.7.2. Implications between distributive laws.

(n,K) — d.l.
4

weak (n, k) — d.L.
¢

(n,< A\ k) —d.L
¢

hyper-weak (n,x) —d.L

= (mo, ko) —d.l.
4
= weak (7, ko) —d.l.
Y
= (no, < A1,K0) —d.L
4
= hyper-weak (1, k1) — d.L
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4.7.3. Implications for the existence of a winning strategy for P1.

G1(x) <= Gi"(ro)
fr fr
Gan(r) <= Ggn(ro)
ft ft
(k) = 92’&, (ko)
ft ft

n 70
gn—l — gnl—l

4.7.4. Implications for the existence of a winning strategy for P2.

Gl (k) = G1°(o)

Y 4
G (k) = Ggn(so)
4 4
Gir(rk) == G2 (ko)
4 4

n 7o
grc—l = gnl—l
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4.7.5. Implications between distributive laws and games.

Jws. P2inG](k) = 3Iws. P2ing]_,

4 % ¥
(k<",k) —d.l. = Aws. PlingGl(k) = (n,k)—dl

ft

(n,k<") —d.l

Jws. P2in Gl (k) => 3ws. P2ing] |

) #

weak (k<",k) —d.l. = Aws.Pling{ (k) = weak (n,x)—-d.l

Jws. P2 ing2,(kx) = 3Iws. P2inG],

4 % %
(k<M< < A\ k) —d). = Aws PlinGl,(s) = (n.<Ak)-dlL

Jws. P2in G},

4K

hyper-weak (k<",k) — d.l. => B w.s. P1 in G_, = hyper-weak (n,x) — d.l.
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4.8. OPEN PROBLEMS

Examples 4.6.1 and 4.6.2 reveal a curious fact: For 7 regular and x < 7,
(m, 0o)-distributivity does not imply P2 has a winning strategy in the game Gl_,,
(as is seen in the diagram 4.7.5), even though it is much easier for P2 to win
G?_, than G7, which is the game most closely related to (n, oo)-distributivity.
This result and the partial characterizations from Sections 4.2-4.6 lead to the

following problems.

(1) Show within ZFC that the existence of a winning strategy for P2 in G]_;
is stronger than the hyper-weak (7, k)-d.1.; or else find a model of ZFC in

which they are equivalent.
(2) Show (1) for the other three games and their related distributive laws.

(3) Find a characterization of the (7, < A, )-d.1. for all cardinals 7 and A < k
in terms of G2, (x) (possibly using additional properties).

(4) Do (3) for the hyper-weak (7, k)-d.1. for all cardinals 7, k in terms of G7_,.

(5) Find a complete, c.c.c. Boolean algebra in which P2 has a winning strategy
in G¥_, but the weak (w,w)-d.l. fails.

(6) Construct a Suslin algebra in which P2 has a winning strategy in G _,.

(7) Construct a consistent counterexample to von Neumann’s problem in

which P2 has a winning strategy in G, (w).
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