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Abstract

We discuss the relationship between various weak distributive laws and games in Boolean algebras. In the first part we give
some game characterizations for certain forms of Prikry’s “hyper-weak distributive laws”, and in the second part we construct Suslin
algebras in which neither player wins a certain hyper-weak distributivity game. We conclude that in the constructible universe L ,
all the distributivity games considered in this paper may be undetermined.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We recall that if B is a Boolean algebra then it satisfies the weak (κ, λ)-distributive law if for each family
(bαβ)α<κ,β<λ such that

∧
α<κ

∨
β<λ bαβ exists, and

∧
α<κ

∨
β∈ f (α) bαβ exists for all f : κ → [λ]

<ω, then∨
f :κ→[λ]<ω

∧
α<κ

∨
β∈ f (α)

bαβ

also exists and∧
α<κ

∨
β<λ

bαβ =

∨
f :κ→[λ]<ω

∧
α<κ

∨
β∈ f (α)

bαβ .

Notice that

(1) We are not insisting that B be complete.
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(2) In general this law can hold in a Boolean algebra without holding in its completion.
(3) When B is complete this distributive law has a natural statement in terms of forcing. Namely it asserts that for every

B-name ġ for a function from κ to λ,  “there is a function f ∈ V from κ to [λ]
<ω such that ∀α ġ(α) ∈ f̌ (α)”.

(4) We are following the conventions of Koppelberg’s handbook [1]. Other definitions of the term “weak (κ, λ)-
distributive law” appear in the literature, for example Namba [2] uses this term for a version where λ appears in
place of ω.

The hyper-weak (ω, ω)-distributive law (defined in the next section) was formulated by Prikry as a generalization
of the weak (ω, ω)-distributive law. His motivation was a problem of von Neumann, whether it is consistent with ZFC
that the countable chain condition and the weak (ω, ω)-distributive law completely characterize measurable Boolean
algebras among Boolean σ -algebras [3]. Consistent counter-examples to von Neumann’s proposed characterization of
measurable algebras were obtained by Maharam [4], Jensen [5], Glówczyński [6], and Veličković [7]. For example a
Suslin algebra is c.c.c. and (ω, ∞)-distributive, whereas a measurable algebra adds new reals.

Maharam [4] identified a class of Boolean algebras (the Maharam algebras) such that every measurable algebra is
a Maharam algebra and every Maharam algebra is c.c.c. and weakly (ω, ω)-distributive. The notable Control Measure
Problem asked whether every Maharam algebra is measurable; Talagrand [8] recently showed that this is false in ZFC.
It is also known that consistently every c.c.c. and weakly (ω, ω)-distributive algebra is Maharam [9,10].

Prikry’s idea was to try to find in ZFC a complete, non-measurable Boolean algebra satisfying the countable chain
condition (c.c.c.) in which some weaker form of the weak (ω, ω)-distributive law holds. This would give a type of
lower bound on von Neumann’s problem within ZFC. Specifically, Prikry asked the following question.

Open Problem 1 (Prikry). Can one find in ZFC a complete c.c.c. Boolean algebra in which the hyper-weak (ω, ω)-
distributive law holds, but the weak (ω, ω)-distributive law fails everywhere?

We shall call such a Boolean algebra a P-algebra. Finding a P-algebra in ZFC turns out to be harder than it might
seem at first glance. A forcing poset P whose conditions can be coded as reals is said to be Suslin if P and the ordering
and incompatibility relations on P are all Σ1

1 (in the codes); most of the well known forcing posets for adding new
reals are of this type. No Boolean algebra in which a c.c.c. Suslin forcing embeds as a dense subset can be a P-algebra,
for Shelah has shown that for each c.c.c. Suslin forcing P, the weak (ω, ω)-distributive law holds in r.o.(P) iff P does
not add a Cohen real [11].

Since the hyper-weak (ω, ω)-distributive law is weaker than the weak (ω, ω)-distributive law and implies that no
Cohen reals are added, Shelah’s result implies every c.c.c. Suslin forcing which is hyper-weakly (ω, ω)-distributive
is also weakly (ω, ω)-distributive. In [12], Dobrinen investigated two families of Suslin c.c.c. and one family of non-
Suslin c.c.c. forcings which give rise to non-measurable Boolean algebras, and found that each of these algebras
adds a Cohen real. Further, Błaszczyk and Shelah have shown that the Cohen algebra embeds into each σ -centered
complete Boolean algebra if and only if there are no nowhere dense ultrafilters over ω [13]. Since Shelah has shown
that the existence of nowhere dense ultrafilters is independent of ZFC [14], such Boolean algebras cannot be shown
to be P-algebras in ZFC. At least the existence of a P-algebra is consistent with ZFC. Recall the version of Mathias
forcing where the conditions are pairs (s, A) with s ∈ [ω]

<ω and A ∈ U for a fixed Ramsey ultrafilter U . Simpson
[15] pointed out that the regular open algebra of this forcing poset is a c.c.c., hyper-weakly (ω, ω)-distributive algebra
in which the weak (ω, ω)-distributive law fails everywhere.

Although the problem of finding a P-algebra in ZFC remains open, the hyper-weak (ω, ω)-distributive law and its
generalizations for larger cardinals have proved useful in the realm of games. Let us give a bit of background into the
connections between distributive laws and games in Boolean algebras.

Jech investigated various distributive laws and related games [16]. Among other things, he gave a game-theoretic
characterization of the (ω, λ)-distributive law. Dobrinen extended this to more general distributive laws in [17].
Kamburelis solved an open problem from [16] giving a best possible result connecting the weak (ω, λ)-distributive
law and its related game [18]. This was more recently generalized by Dobrinen in [19]. In Section 3 of this paper,
we give connections between the hyper-weak (κ, λ)-distributive law and a related game, obtaining a game-theoretic
characterization of the hyper-weak (κ, λ)-distributive law for many pairs of cardinals κ, λ, under GCH.

When we associate games with distributive laws, the property “II has a winning strategy” implies that the related
distributive law holds. In [16], Jech used ♦ to construct a Suslin algebra in which the game related to the (ω, 2)-
distributive law is undetermined. Dobrinen generalized that result to κ+-Suslin algebras for κ regular uncountable
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[17,20]. In Section 4, we improve on this result in several ways. For every infinite cardinal κ and each infinite regular
cardinal ν ≤ cf(κ), we use �κ , ♦κ+(S) for all stationary subsets S ⊆ cof(ν), and κ<ν

= κ to construct a κ+-Suslin
algebra which contains a < ν-closed dense subset and in which II does not have a winning strategy for the game related
to the hyper-weak (ν, κ)-distributive law. As we shall show, it follows that in L , for any distributive law mentioned in
this paper, there is a cardinal κ and a κ+-Suslin algebra on which the related game is undetermined.

Notation 1. We use the following notation from [1]: Given cardinals κ, λ, µ, Fn(κ, λ, µ) denotes the set of partial
functions from κ to λ of cardinality < µ. Given a separative partial ordering P, let r.o.(P) denote the Boolean
completion of P; that is, the complete Boolean algebra containing P as a dense subset. e : P → r.o.(P) denotes the
canonical embedding of P into r.o.(P), the “regular open algebra” on P.

2. Generalized distributive laws: Definitions and basic facts

We start by reviewing the three-parameter distributive law, which subsumes all the conventional generalized
distributive laws. Throughout this paper, we let B denote a Boolean algebra and B+ denote B \ {0}. The following is
a generalization of the standard definition of the (κ, λ)-distributive law in [1] to three parameters.

Definition 2. If κ, λ, µ are cardinals with 2 ≤ µ ≤ λ, a Boolean algebra B satisfies the (κ, λ,< µ)-distributive law if
for each family (bαβ)α<κ,β<λ such that

∧
α<κ

∨
β<λ bαβ exists, and

∧
α<κ

∨
β∈ f (α) bαβ exists for all f : κ → [λ]

<µ,
then

∨
f :κ→[λ]<µ

∧
α<κ

∨
β∈ f (α) bαβ exists and∧

α<κ

∨
β<λ

bαβ =

∨
f :κ→[λ]<µ

∧
α<κ

∨
β∈ f (α)

bαβ . (1)

B satisfies the (κ, ∞, < µ)-distributive law if the (κ, λ,< µ)-distributive law holds in B for all λ. We say
that the (κ, λ,< µ)-distributive law fails everywhere in B if there exists a family (bαβ)α<κ,β<λ ⊆ B such that∧

α<κ

∨
β<λ bαβ = 1 and

∧
α<κ

∨
β∈ f (α) bαβ = 0 for all f : κ → [λ]

<µ.

Remark 3. The (κ, λ,< 2)-distributive law is the familiar (κ, λ)-distributive law, and the (κ, λ,< ω)-distributive
law is the weak (κ, λ)-distributive law discussed in Section 1. Saying that “the (κ, λ,< µ)-distributive law fails
everywhere in B” is equivalent to saying that “B is (κ, λ,< µ)-nowhere distributive” in Koppelberg’s terminology [1].

Prikry formulated the following weakening of the (κ, λ,< µ)-distributive law.

Definition 4 (Prikry [21]). For κ, λ cardinals with λ ≥ ω, a Boolean algebra B satisfies the hyper-weak (κ, λ)-
distributive law if for each family (bαβ)α<κ,β<λ of elements of B, if

∧
α<κ

∨
β<λ bαβ exists and

∧
α<κ

∨
β∈λ\{ f (α)} bαβ

exists for all f : κ → λ, then
∨

f :κ→λ

∧
α<κ

∨
β∈λ\{ f (α)} bαβ exists and∧

α<κ

∨
β<λ

bαβ =

∨
f :κ→λ

∧
α<κ

∨
β∈λ\{ f (α)}

bαβ . (2)

B satisfies the hyper-weak (κ, ∞)-distributive law if the hyper-weak (κ, λ)-distributive law holds in B for all λ ≥ ω.
We say that the hyper-weak (κ, λ)-distributive law fails everywhere in B if there exists (bαβ)α<κ,β<λ ⊆ B such that∧

α<κ

∨
β<λ bαβ = 1 and

∧
α<κ

∨
β∈λ\{ f (α)} bαβ = 0 for all f : κ → λ.

The next fact follows naturally from the definitions.

Fact 5. For each Boolean algebra B, the following hold.

(1) For all cardinals κ0 ≤ κ1, 2 ≤ µ0 ≤ µ1, and λ0 ≤ λ1, if B satisfies the (κ1, λ1, < µ0)-distributive law, then B
satisfies the (κ0, λ0, < µ1)-distributive law.

(2) For all cardinals κ0 ≤ κ1 and ω ≤ λ0 ≤ λ1, if B satisfies the hyper-weak (κ1, λ0)-distributive law, then B
satisfies the hyper-weak (κ0, λ1)-distributive law. Hence, the hyper-weak (κ, ∞)-distributive law is equivalent to
the hyper-weak (κ, ω)-distributive law.

(3) For all cardinals κ, λ, µ, ν with 2 ≤ µ ≤ λ and ν ≥ max(ω, µ), if B satisfies the (κ, λ,< µ)-distributive law,
then B satisfies the hyper-weak (κ, ν)-distributive law.



J. Cummings, N. Dobrinen / Annals of Pure and Applied Logic 149 (2007) 14–24 17

Examples 6. (1) If κ, λ are cardinals with λ ≥ ω, the hyper-weak (κ, λ)-distributive law holds in each Boolean
algebra satisfying the λ-chain condition.

(2) Let κ, λ, µ be cardinals with κ, µ regular and ω ≤ µ ≤ κ , and let ν = max(λ, µ). R.o.(Fn(κ, λ, µ)) satisfies the
(ρ, ∞)-distributive law for each ρ < µ, but the hyper-weak (µ, ν)-distributive law fails everywhere. In particular,
when µ = κ , for each ρ < κ , the (ρ, ∞)-distributive law holds in r.o.(Fn(κ, λ, κ)), but the hyper-weak (κ, ν)-
distributive law fails everywhere in r.o.(Fn(κ, λ, κ)).

(3) In each free Boolean algebra on infinitely many generators, for each cardinal κ ≥ ω, the hyper-weak (κ, ω)-
distributive law fails everywhere, but the hyper-weak (κ, ω1)-distributive law holds.

(4) In Laver, Mathias, and Miller forcings, the hyper-weak (ω, ω)-distributive law holds, but the weak (ω, ω)-
distributive law fails everywhere.

Definition 7 ([1]). For any cardinal κ and b ∈ B+, a collection {bα : α < κ} ⊆ B is a quasi-partition of b if each
bα ≤ b, {bα : α < κ} is pairwise disjoint, and

∨
α<κ bα = b. {bα : α < κ} ⊆ B is a partition of b if it is a

quasi-partition of b where each bα > 0.

In a λ-complete Boolean algebra B, whether the hyper-weak (κ, λ)-distributive law holds in B can be determined
by looking only at quasi-partitions or partitions of unity.

Fact 8. For all cardinals κ, λ with λ ≥ ω, for each λ-complete Boolean algebra B, the following are equivalent.

(1) The hyper-weak (κ, λ)-distributive law holds in B.
(2) For all b ∈ B+, Eq. (2) of Definition 4 holds for all families {bαβ : β < λ}, α < κ , of (quasi-)partitions of b in B.
(3) Eq. (2) of Definition 4 holds for all families {bαβ : β < λ}, α < κ , of (quasi-)partitions of unity in B.

Remark 9. It is well known that if the hyper-weak (κ, λ)-distributive law fails then there is b ∈ B+ such that it fails
everywhere in B � b.

To see this suppose that there is a family {bαβ : β < λ}, α < κ , of quasi-partitions of unity for which the hyper-
weak (κ, λ)-distributive law fails. Then there is a c < 1 such that for each f : κ → λ, c ≥

∧
α<κ

∨
β∈λ\{ f (α)} bαβ .

Let a = 1 \ c and let aαβ = a ∧ bαβ . Then each {aαβ : β < λ}, α < κ , is a quasi-partition of a, and∨
f :κ→λ

∧
α<κ

∨
β∈λ\{ f (α)} aαβ = 0. We can make these into partitions of a as follows: Given α < κ , let

Bα = {β < λ : aαβ > 0}. If |Bα| < λ, then {aαβ : β < λ} does not contribute to the failure of the hyper-
weak(κ, λ)-distributive law. Let K = {α < κ : |Bα| = λ}. For each α ∈ K , {aαβ : β ∈ Bα} is a partition of a, and∨

f :K→λ

∧
α∈K

∨
β∈λ\{ f (α)} aαβ = 0.

The following is a characterization of the hyper-weak (κ, λ)-distributive law for a partial ordering (P, ≤) via its
Boolean completion r.o.(P). It holds whether or not P is separative.

Fact 10. Given a partial ordering (P, ≤), the following are equivalent.

(1) The hyper-weak (κ, λ)-distributive law holds in r.o.(P).
(2) If Wα = {Pαβ : β < λ}, α < κ , is a family such that for each α < κ ,

(a) β 6= β ′
−→ Pαβ ∩ Pαβ ′ = ∅,

(b)
⋃

β<λ Pαβ is a maximal antichain in P,
then there exists a maximal antichain Q ⊆ P such that ∀q ∈ Q, ∀α < κ , ∃β < λ such that ∀p ∈ Pαβ , p and q
are incompatible.

Remark 11. Prikry observed that taking suprema over all but one element of λ on the right hand side of (2) in
Definition 4 of the hyper-weak (κ, λ)-distributive law is equivalent to taking suprema over subsets of λ whose
complements have cardinality λ; that is, replacing the right hand side of (2) with

∨
f :κ→S

∧
α<κ

∨
β∈ f (α) bαβ , where

S = {X ⊆ λ : |λ \ X | = λ}. (See [22].)

Let B be complete. We let α, β denote ordinals in V and κ, λ denote cardinals in V . For x ∈ V x̌ denotes the
canonical B-name for x . We use ẋ to denote general B-names. The following is an easy forcing equivalent of general
distributive laws.

Fact 12 (Folklore). Let B be complete. The (κ, λ,< µ)-distributive law holds in B iff for each B-name ġ for a function
from κ̌ to λ̌,  “there is f ∈ V such that f : κ → [λ]

<µ and ∀α < κ̌ ġ(α) ∈ f̌ (α)”.
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In particular, a complete Boolean algebra B satisfies the (κ, λ)-distributive law iff forcing with B+ adds no new
functions from κ̌ to λ̌. The following is the analog for the hyper-weak (κ, λ)-distributive law, and is proved in the
same way.

Fact 13. Let B be complete. The hyper-weak (κ, λ)-distributive law holds in B iff for each B-name ġ for a function
from κ̌ to λ̌,  “there is f ∈ V such that f : κ → λ and ∀α < κ̌ ġ(α) 6= f̌ (α)”.

3. A game related to the hyper-weak distributive law

We begin by reviewing the following game investigated in [17], which generalizes a game of Jech in [16]. This
game is related to the (κ, λ,< µ)-distributive law. (See Theorem 16(1) below.)

Definition 14 ([17]). Given cardinals κ, λ, µ with 2 ≤ µ ≤ λ, the game Gκ
<µ(λ) is played between two players in a

max(κ+, µ)-complete Boolean algebra B as follows: At the beginning of the game, player I fixes some a ∈ B+. For
α < κ , the α-th round is played as follows: player I chooses a partition Wα of a such that |Wα| ≤ λ; then player II
chooses some Eα ∈ [Wα]

<µ. In this manner, the two players construct a sequence of length κ

〈a, W0, E0, W1, E1, . . . , Wα, Eα, . . . : α < κ〉 (3)

called a play of the game. I wins the play (3) if∧
α<κ

∨
Eα = 0, (4)

and II wins otherwise.
Gκ

<2(λ) is usually denoted as Gκ
1 (λ). Gκ

<µ(∞) is the game played just as Gκ
<µ(λ), except now player I can choose

partitions of any size.

Remark 15. If B has a < ν-closed dense subset, then for each ρ < ν, player II has a winning strategy for Gρ
1 (∞);

moreover, II even has a winning strategy for the harder game GI
ρ+ invented by Foreman (see [23]).

The following was proved by Dobrinen [17,20].

Theorem 16 (Dobrinen [17,20]). (1) For a max(κ+, µ)-complete Boolean algebra B, the (κ, λ,< µ)-distributive
law fails in B H⇒ I has a winning strategy for Gκ

<µ(λ) in B H⇒ the ((λ<µ)<κ , λ,< µ)-distributive law fails in B.
(2) κ<κ

= κ and ♦κ+(cof(κ)) H⇒ there is a κ+-Suslin algebra which has a < κ-closed dense subset and in which
neither player has a winning strategy for Gκ

<µ(λ) for all λ, µ with 2 ≤ µ ≤ min(λ, κ).

The following game corresponds in a natural way to the hyper-weak (κ, λ)-distributive law. (See Fact 18 and
Theorems 28 and 29 below.)

Definition 17 (Dobrinen–Prikry [22]). Given cardinals κ, λ with λ ≥ ω, the game Gκ
λ−1 is played between two

players in a κ+-complete Boolean algebra B as follows: At the beginning of the game, player I fixes some a ∈ B+.
For α < κ , the α-th round is played as follows: player I chooses a quasi-partition Wα of a such that |Wα| = λ; then
player II chooses one bα ∈ Wα to “leave out” and “plays”

∨
(Wα \ {bα}), equivalently a \ bα . In this manner, the two

players construct a sequence of length κ

〈a, W0, b0, W1, b1, . . . , Wα, bα, . . . : α < κ〉 (5)

called a play of the game. I wins the play (5) if∧
α<κ

a \ bα = 0, (6)

which happens if and only if
∨

α<κ bα = a, otherwise II wins. This game is named Gκ
λ−1, because II plays “all but

one” piece, or “λ minus 1-many” pieces, from each quasi-partition.

Fact 18. For each max(κ+, λ)-complete Boolean algebra B, if II has a winning strategy for Gκ
λ−1 in B, then B satisfies

the hyper-weak (κ, λ)-distributive law.
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Remark 19. Note that in the game Gκ
λ−1, player I is required to choose quasi-partitions of size exactly λ. If not, then

I would always choose partitions of size ω, since this maximizes I’s chances of winning.

The following fact relates the various games.

Fact 20. For all κ0 ≤ κ1, 2 ≤ µ0 ≤ µ1 ≤ λ0 ≤ λ1 ≤ λ2, and ω ≤ λ1, the following diagram shows the implications
for the existence of a winning strategy for the two players.

Gκ1
<µ0(λ1)

II
��

II // Gκ1
λ1−1

II
��

I
oo

Gκ0
<µ1(λ0)

I

OO

II // Gκ0
λ2−1

I
oo

I

OO
(7)

For example, Gκ1
<µ0(λ1)

II // Gκ1
λ1−1 means that for each Boolean algebra B in which both games are defined, if II

has a winning strategy for Gκ1
<µ0(λ1) in B, then II also has a winning strategy for Gκ1

λ1−1 in B.

Examples 21. (1) For cardinals κ, λ with λ ≥ ω, if B satisfies the λ-chain condition, then II wins Gκ
λ−1 in B.

(2) Let κ, λ, µ be cardinals with κ, µ regular and ω ≤ µ ≤ κ , and let ν = max(λ, µ). Fn(κ, λ, µ) is < µ-closed;
so for every ρ < µ, II has a winning strategy for Gρ

1 (∞) in r.o.(Fn(κ, λ, µ)). However, I has a winning strategy
for Gκ

ν−1 in r.o.(Fn(κ, λ, µ)). In particular, when µ = κ , for every ρ < κ , II wins Gρ
1 (∞), but I wins Gκ

ν−1 in
r.o.(Fn(κ, λ, κ)).

(3) In each free Boolean algebra on infinitely many generators, for every cardinal κ ≥ ω, I wins Gκ
ω−1 but II wins

Gκ
ω1−1.

(4) In Laver, Mathias, and Miller forcings, II wins Gω
ω−1, but I wins Gω

fin(ω).

Laver, Mathias, and Miller forcings are specific cases of a more general class of forcings P in which II has a
winning strategy for Gω

ω−1 in r.o.(P). We review the following definitions.

Definition 22 ([24]). A partial ordering (P, ≤) satisfies Axiom A if there exists a sequence of partial orderings ≤n ,
n < ω, on P satisfying the following:

(1) ≤0 is ≤, and for all n < ω, q ≤n+1 p −→ q ≤n p;
(2) For each sequence (pn)n<ω in P satisfying pn+1 ≤n pn for all n < ω, there is some q ∈ P such that q ≤n pn for

all n < ω;
(3) For each p ∈ P, for each pairwise incompatible set A ⊆ P, for each n < ω there is some q ≤n p such that q is

compatible with at most countably many elements of A.

The following property P f generalizes the Axiom A version of the Laver property, called L f in [24]. Bartoszyński
and Judah proved that the property P f implies that no Cohen reals are added, and moreover, that the countable support
iteration of partial orderings satisfying P f does not add Cohen reals. (See [24].)

Definition 23 ([24]). Let (P, ≤) be a partial ordering satisfying Axiom A and let f : ω → ω. P satisfies Property
P f if ∀p ∈ P, ∀n, k < ω, ∀A ∈ [ω]

<ω, if p  (Ḃ ⊆ A and |Ḃ| ≤ k), then ∃C ⊆ A such that |C | ≤ k · f (n) and
∀c 6∈ C , ∃q ≤n p such that q  c 6∈ Ḃ.

The following fact can be proved by an argument analogous to an argument given by Prikry [21] giving a Boolean
algebraic equivalent of the property L f . Recall from that for a given separative partial ordering P, we let e : P →

r.o.(P) denote the canonical embedding of P as a dense subset into its Boolean completion.

Fact 24. Let P be a separative partial ordering satisfying Axiom A, and let f : ω → ω. Then Property P f holds in
P ⇐⇒ ∀p ∈ P, ∀n, k < ω, ∀A ∈ [ω]

<ω, if Ḃ is an r.o.(P)-name of the form 〈{ḋ1, . . . , ḋk}, e(p)〉, where the ḋi are
r.o.(P)-names for integers, and e(p) ≤ ‖Ḃ ⊆ A‖, then ∃C ⊆ A such that |C | ≤ k · f (n) and ∀c 6∈ C, ∃q ≤n p such
that e(q) ≤

∧
1≤i≤k ‖c 6= ḋi‖.
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Note: if P f holds, then f must actually have its range in ω \ {0}.
The following proof is similar to one given by Prikry [21] that L f implies the hyper-weak (ω, ω)-distributive law

Proposition 25. For each separative partial ordering (P, ≤) which satisfies P f for some f : ω → ω \ {0}, player II
has a winning strategy for Gω

ω−1 in r.o.(P).

Proof. Suppose P f holds in P for some function f : ω → ω \ {0}. Suppose I fixes a ∈ r.o.(P)+. Let p0 ∈ P be such
that e(p0) ≤ a. We show how II can choose at each round of the game to ensure a win.

Suppose we have I and II’s choices up to stage n: For each round i < n, I has played {bi j : j < ω}, a quasi-partition
of a, and we have chosen pi+1 ∈ P and g(i) ∈ ω such that e(pi+1) ≤

∨
j∈ω\{g(i)} bi j and p0 ≥0 p1 ≥1 · · · ≥n−1 pn .

Round n: Suppose I plays {bnj : j < ω}, a quasi-partition of a. Let An = {0, . . . , f (n)}. For j < f (n), let
cnj = e(pn)∧bnj , and let cn, f (n) = e(pn)∧(

∨
f (n)≤ j<ω bnj ). Let ȧn = {〈 ǰ, cnj 〉 : j ≤ f (n)} and Ḃn = 〈{ȧn}, e(pn)〉.

(k = 1 here.) Then
∨

j≤ f (n) cnj = e(pn) ≤ ‖Ḃn ⊆ An‖, so by P f and Fact 24, ∃Cn ⊆ An such that |Cn| ≤ 1 · f (n)

and ∀c 6∈ Cn , ∃q ≤n pn such that e(q) ≤ ‖c 6= ȧn‖. Let g(n) be the least element of An \Cn and choose a pn+1 ≤n pn
such that e(pn+1) ≤ ‖g(n) 6= ȧn‖. Then

e(pn+1) ≤ ‖g(n) 6= ȧn‖ ≤

∨
j∈ω\{g(n)}

bnj = a \ bn,g(n). (8)

Let II choose to leave out bn,g(n).
In this manner, we obtain a sequence (pn)n<ω and a function g : ω → ω such that ∀n < ω, pn+1 ≤n pn and

e(pn+1) ≤ a \ bn,g(n). By (2) of Axiom A, ∃q ∈ P such that ∀n < ω, q ≤n pn . By (1) of Axiom A, ∀n < ω, q ≤ pn .
Therefore, 0 < e(q) ≤

∧
n<ω a \ bn,g(n), by (8). Hence, II has a winning strategy for Gω

ω−1 in r.o.(P). �

Remark 26. In the above proof, property (3) of Axiom A was never used.

Examples 27. The following partial orderings satisfy Axiom A and P f for some function f : ω → ω \ {0}: Laver,
Mathias, Miller, and Random real forcings. (See [24].) Hence, by Proposition 25, II has a winning strategy for Gω

ω−1
in the Boolean completions of these forcings.

Next, we relate the hyper-weak (κ, λ)-distributive law to the existence of a winning strategy for each of the two
players.

Theorem 28. For each max(κ+, λ)-complete Boolean algebra, if the hyper-weak (κ, λ)-distributive law fails, then I
has a winning strategy for Gκ

λ−1.

Proof. Suppose the hyper-weak (κ, λ)-distributive law fails in B. Then by Remark 9 there is a b > 0 and a family
{bαβ : β < λ}, α < κ , of quasi-partitions of b such that

∨
f :κ→λ

∧
α<κ

∨
β∈λ\{ f (α)} bαβ = 0. I’s winning strategy is

to play {bαβ : β < λ} on round α. �

It is not known whether the full converse of Theorem 28 holds in ZFC. Indeed, we conjecture that it does not.
However, we do have the following partial converse.

Theorem 29. For B a κ+-complete Boolean algebra, if I has a winning strategy in Gκ
λ−1, then the hyper-weak

(λ<κ , λ)-distributive law fails.

Proof. Suppose σ is a winning strategy for I. Let a be the non-zero element which I fixes according to σ , and let
W〈 〉 = σ(〈 〉), the quasi-partition of a of size λ which I plays on round 0 according to σ . Index the elements of W〈 〉 as
{b〈s(0)〉 : s(0) < λ}. For each s(0) < λ, let W〈s(0)〉 = σ(〈b〈s(0)〉〉), the quasi-partition of a which I chooses according
to σ if II has just chosen to leave out b〈s(0)〉. In general, given α < κ , s ∈ (λ)α , and Ws a quasi-partition of a of size
λ, index the elements of Ws as {bs_s(α) : s(α) < λ}. For each s(α) < λ, let

Ws_s(α) = σ(〈bs�(β+1) : β ≤ α〉), (9)

the quasi-partition of a which I chooses according to σ if II has just chosen to leave out bs_s(α). For limit ordinals
µ < κ and s ∈ (λ)µ, let

Ws = σ(〈bs�(α+1) : α < µ〉). (10)



J. Cummings, N. Dobrinen / Annals of Pure and Applied Logic 149 (2007) 14–24 21

Note that {Ws : s ∈ (λ)<κ
} lists all the possible choices for I under σ .

Claim 30. The hyper-weak (λ<κ , λ)-distributive law fails for Ws , s ∈ (λ)<κ .

Let f : (λ)<κ
→ λ be given. Recursively define a sequence t ∈ (λ)κ by t � (α + 1) = t � α_ f (t � α) for each

α < κ . Then 〈Wt�α, bt�(α+1) : α < κ〉 is a play of Gκ
λ−1 in which I follows the winning strategy σ . Thus,∧

s∈(λ)<κ

a \ bs_ f (s) ≤

∧
α<κ

a \ bt�(α+1) = 0. (11)

Since f was arbitrary,∨
f :(λ)<κ→λ

∧
s∈(λ)<κ

a \ bs_ f (s) = 0 < a =

∧
s∈(λ)<κ

∨
j<λ

bs_ j . � (12)

For some pairs of cardinals, Theorems 28 and 29 combine to yield a game-theoretic characterization of the hyper-
weak (κ, λ)-distributive law.

Corollary 31. If B is κ+-complete and λ<κ
= κ , then the hyper-weak (κ, λ)-distributive law holds in B iff I does not

have a winning strategy for Gκ
λ−1 played in B.

In particular, this yields a game-theoretic characterization of the hyper-weak (ω, ω)-distributive law for Boolean
σ -algebras.

Corollary 32 (GCH). Suppose B is κ+-complete and either (a) λ < κ , or (b) λ = κ and κ is regular. Then the
hyper-weak (κ, λ)-distributive law holds in B iff I does not have a winning strategy for Gκ

λ−1 played in B.

4. Constructions of κ+-Suslin algebras in which many games are undetermined

In this section, we show that it is consistent with ZFC that every game of the sort considered in this paper can
be undetermined (see Corollary 36). For each infinite cardinal κ and each infinite regular cardinal ν ≤ cf(κ), we
will construct a κ+-Suslin tree T such that for all ρ with ν ≤ ρ ≤ κ , all games of length ρ are undetermined.
We start by recalling some basic notation. For t ∈ T , ht(t) denotes o.t.({s ∈ T : s <T t}). For α < κ+, let
Lev(α) = {t ∈ T : ht(t) = α}, the α-th level of T , and Tα = {t ∈ T : ht(t) < α}. Let T ∗ denote T under the reverse
partial ordering ≥T , and let e : T ∗

→ r.o.(T ∗) denote the canonical embedding of T ∗ into its Boolean completion.
We will construct T so that each strategy for II for the game Gν

κ−1 in r.o.(T ∗) will fail to be winning when I plays
some particular sequence of partitions of unity in r.o.(T ∗).

Theorem 33. Let κ be any infinite cardinal, and let ν be any regular cardinal such that ω ≤ ν ≤ cf(κ) and κ<ν
= κ .

Suppose that �κ holds, and for every stationary S ⊆ κ+
∩ cof(ν), ♦κ+(S) holds. Then there is a κ+-Suslin algebra

which contains a < ν-closed dense subset and in which II does not have a winning strategy for Gν
κ−1.

Proof. Let cof(ν) denote {α < κ+
: cf(α) = ν}. For any set of ordinals X , let lim(X) denote the set of ordinals

α ∈ X such that α is the limit of an infinite, strictly increasing sequence of elements of X . Using a �κ -sequence, we
construct in the usual manner (see for example Devlin’s book on L [25]) another �κ -sequence 〈Dα : α ∈ lim(κ+)〉

and a non-reflecting stationary set S ⊆ cof(ν) such that for all α ∈ lim(κ+)

(1) Dα ⊆ α is club in α;
(2) cf(α) < κ −→ o.t.(Dα) < κ;
(3) γ ∈ lim(Dα) −→ Dγ = Dα ∩ γ ;
(4) lim(Dα) ∩ S = ∅.

We fix some definitions and notation. Fix a ♦κ+(S)-sequence 〈Aα : α ∈ S〉; that is, a sequence such that Aα ⊆ α,
and {α ∈ S : Aα = A ∩ α} is stationary for all A ⊆ κ+. We say that 〈P(α, γ ) : γ < κ〉 is a partition of
Lev(α) into κ-many pieces if ∀γ < γ ′ < κ , P(α, γ ) ⊆ Lev(α), P(α, γ ) 6= ∅, P(α, γ ) ∩ P(α, γ ′) = ∅, and⋃

γ<κ P(α, γ ) = Lev(α).
As we build the tree, for each successor α < κ+ we will construct a partition Pα = 〈P(α, γ ) : γ < κ〉 of Lev(α)

into κ-many pieces. To each such partition Pα we may associate a partition of unity {
∨

{e(t) : t ∈ P(α, γ )} : γ < κ}



22 J. Cummings, N. Dobrinen / Annals of Pure and Applied Logic 149 (2007) 14–24

in r.o.(T ∗). In the discussion that follows we abuse notation and say “I plays Pα” when formally we mean that I plays
the corresponding partition of unity in r.o.(T ∗).

After we have built the tree T , we will show that player II has no winning strategy in for Gν
κ−1 in the following way.

Given a strategy for player II we will show how player I can play some sequence 〈Pαi : i < ν〉 for 〈αi : i < ν〉 a strictly
increasing sequence of successor ordinals in κ+, and win against II’s strategy. Fix a bijection ϕ : (κ+)<ν

× κ → κ+.
ϕ will code all the possible partial strategies for II when I is restricted to playing partitions from among the collection
{Pα+1 : α < κ+

} as subsets of κ+.

Construction of (T, ≤T ) and {Pα+1 : α < κ+
}.

We will construct the tree T to be normal: that is to say

(1) T has a unique point on level 0.
(2) T has unique limits, that is for every limit α and every t ∈ Lev(α), t is determined by {s ∈ T : s <T t}.
(3) For all α, β with α < β < κ+, for every s ∈ Lev(α) there is at least one t ∈ Lev(β) with s <T t .

Let Lev(0) = {0}. Let Lev(1) = (κ ·2)\ {0}, and let P1 = 〈P(1, γ ) : γ < κ〉 be some partition of Lev(1) into κ-many
pieces. Suppose α ≥ 1 and Lev(α) has been constructed. Put κ-many immediate successors above each element of
Lev(α) in such a way that Lev(α+1) = {β < κ+

: κ ·(α+1) ≤ β < κ ·(α+2)}. LetPα+1 = 〈P(α+1, γ ) : γ < κ〉 be a
partition of Lev(α+1) into κ-many pieces such that for each node t in Lev(α) and each γ < κ , Lev(α+1)∩P(α+1, γ )

contains exactly one immediate successor of t .
Now suppose α < κ+ is a limit ordinal and Tα has been constructed. Important to the construction of Lev(α) is the

following notion:
Before building level α we will associate to each t ∈ Tα the canonical α-branch for t in Tα , this is a branch of Tα

passing through t which we denote by Bα,t . To do this we will define for each γ ∈ Dα \ (ht (t) + 1) an element βα,t
γ

on level γ so that

{t} ∪ {βα,t
γ : γ ∈ Dα \ (ht (t) + 1)}

is linearly ordered in T .
The construction is simple: we just choose βα,t

γ to be the least (in the ordering of the ordinals) element on level γ

which is above all elements of

t ∪ {β
α,t
ζ : ζ ∈ (Dα ∩ γ ) \ (ht (t) + 1)}.

There is no problem when γ is successor in Dα because the tree is normal. The construction will be able to proceed
at limits because at every limit η /∈ S we will make sure that a point on level η is put over Bt,η; now if γ is limit in
Dα we know that Dγ = Dα ∩ γ , the uniform construction of the canonical branches ensures that Bγ,t is an initial
segment of Bα,t , so the point which was over Bγ,t at stage γ gives us the unique choice for βα,t

γ . The key point is that
limit points of Dα are not in S, and it is only at stages in S where we take steps to kill antichains and are obliged not
to complete certain branches.

Case 1. cf(α) < ν. Then extend every α-branch of Tα to level α with exactly one extension in such a way that
Lev(α) = {β < κ+

: κ · α ≤ β < κ · (α + 1)}. In particular, for each t ∈ Tα , the canonical branch Bα
t is extended

to Lev(α). By our cardinal arithmetic assumption κc f (α)
= κ , so there are only at most κ branches and we are not

obliged to create too many points on level α.

Case 2. cf(α) ≥ ν and α 6∈ S. For each t ∈ Tα , extend the canonical α-branch Bα
t to Lev(α) with exactly one extension

so that Lev(α) = {β < κ+
: κ · α ≤ β < κ · (α + 1)}.

Case 3. α ∈ S. Let (C) be the statement, “Tα = α and ϕ′′((α)<ν
× κ) = α.” Let (M) be the statement, “Aα is a

maximal antichain in Tα .” Let (F) be the statement, “ϕ−1(Aα) is a function, and dom(ϕ−1(Aα)) = (α)<ν .” If either
(C) fails, or both (M) and (F) fail, then extend all the canonical α-branches of Tα to Lev(α). If (C) and (M) hold and
(F) fails, then for each t ∈ Tα , choose one r in Tα such that r ≥T t and r ≥T u for some u ∈ Aα . Extend the canonical
α-branch Bα

r to Lev(α).
Now suppose (C) and (F) both hold. Let f = ϕ−1(Aα). Then f : (α)<ν

→ κ can be interpreted as a partial
strategy which tells II what to do whenever I plays a sequence of partitions from among {Pβ+1 : β < α}. Fix a strictly
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increasing sequence 〈αi : i < ν〉 such that each αi is a successor ordinal and supi<ν αi = α. This is possible since
α ∈ S implies cf(α) = ν. We let I play 〈Pαi : i < ν〉 and II play according to f . For each i < ν, let

γi = f (〈α j : j ≤ i〉). (13)

Then when I plays the sequence 〈Pαi : i < ν〉 and II plays by f , II chooses to leave out P(αi , γi ) on round i .
Let t ∈ Tα . If (M) holds, let r ∈ Tα be such that r ≥T t and r ≥T u for some u ∈ Aα . Otherwise, let r = t .

Let i(t) < ν be the least ordinal such that αi(t) > ht(r). We will construct a chain 〈xi : i(t) ≤ i < ν〉 in Tα such
that xi(t) ≥T r ; for each i(t) ≤ i < j < ν, xi <T x j ; and for each i(t) ≤ i < ν, xi ∈ P(αi , γi ). Let pi(t) be the
least ordinal in Lev(αi(t) − 1) such that pi(t) >T r . Let xi(t) be the immediate successor of pi(t) in P(αi(t), γi(t)).
For i(t) < i = j + 1 < ν, let pi be the least ordinal in Lev(αi − 1) such that pi ≥T x j . Let xi be the immediate
successor of pi in P(αi , γi ). For i a limit ordinal with i(t) < i < ν, let λi = sup j<i α j . Then λi is a limit ordinal
with cf(λi ) < ν, so every branch in Tλi has an extension in Lev(λi ), by Case 1. Let p′

i be the least ordinal in Lev(λi )

such that p′

i > x j for all i(t) ≤ j < i . αi is a successor ordinal greater than λi , so let pi be the least ordinal in
Lev(αi − 1) such that pi ≥T p′

i . Let xi be the immediate successor of pi in P(αi , γi ). Let bα
t = {s ∈ Tα : for some

i with i(t) ≤ i < ν, s <T xi }. bα
t is an α-branch in Tα which passes through the pieces of the partitions which II

chooses to leave out on each level αi according to f . For each t ∈ Tα , extend bα
t to Lev(α).

For each of the subcases of Case 3, for each t ∈ Tα we have chosen one α-branch containing t to extend to Lev(α).
Extend each of these branches uniquely to Lev(α) in such a way that Lev(α) = {β < κ+

: κ · α ≤ β < κ · (α + 1)}.
Let T =

⋃
α<κ Lev(α). This concludes the construction of (T, ≤T ). By the usual argument, (T, ≤T ) is a κ+-Suslin

tree. Let CT = {α < κ+
: Tα = α} and Cϕ = {α < κ+

: ϕ′′((α)<ν
× κ) = α}. CT is a club subset of κ+. Cϕ is

unbounded in κ+ and closed under increasing sequences of length ν.

Claim 34. II does not have a winning strategy for Gν
κ−1 played on r.o.(T ∗).

Let h : (κ+)<ν
→ κ represent a strategy for II in Gν

κ−1 when I plays partitions from among {Pα+1 : α < κ+
}. {β ∈

S : Aβ = ϕ′′(h)∩β} is a stationary subset of cof(ν). Hence, there exists an α ∈ {β ∈ S : Aβ = ϕ′′(h)∩β}∩Cϕ ∩CT .
Let f = ϕ−1(Aα). Then f = h � (α)<ν . α ∈ {β ∈ S : Aβ = ϕ′′(h) ∩ β} ∩ Cϕ ∩ CT implies Lev(α) was constructed
according to Case 3 with statements (C) and (F) holding for f . Let 〈αi : i < ν〉 be the strictly increasing sequence
we picked such that each αi is a successor ordinal and supi<ν αi = α. Let I play the sequence 〈Pαi : i < ν〉. Let
q ∈ Lev(α). Then there is some t ∈ Tα such that q is the unique extension of the α-branch bα

t . By our construction,
the unique element xi(t) ∈ Lev(αi(t)) ∩ bα

t is in P(αi(t), γi(t)), the piece of the partition Pαi(t) which f chooses to
leave out on round i(t) when I has played the sequence 〈Pα j : j ≤ i(t)〉. Since q was an arbitrary member of Lev(α),
there is no (α + 1)-branch in T which misses all of the pieces of the partitions 〈Pαi : i < ν〉 which f chose to leave
out. Hence, if II plays according to the strategy h, II loses when I plays the sequence 〈Pαi : i < ν〉. Thus, h is not a
winning strategy for II. Since h was arbitrary, II does not have a winning strategy for Gν

κ−1 in r.o.(T ∗). �

Remark 35. (1) In Case 3 when (C) and (F) hold for α, for each t ∈ Tα we only needed to extend some α-branch
containing the element xi ∈ P(αi(t), γi(t)) to ensure that II does not have a winning strategy for Gν

κ−1 in r.o.(T ∗).
Our construction shows that II does not have a winning strategy in r.o.(T ∗) in the following game, which is even
weaker than Gν

κ−1: Players I and II play the game Gν
κ−1 constructing a sequence 〈a, Wα, bα : α < ν〉. After the

play is over, II gets to choose some set X ⊆ ν of cardinality ν. I wins the play iff
∧

α∈X
∨

(Wα \ {bα}) = 0.
(2) In the case when κ<κ

= κ , the previous construction can be slightly modified so that using only ♦κ+(cof(κ))

we can construct a κ+-Suslin algebra B which contains a < κ-closed dense subset, and in which the game Gκ
λ−1

is undetermined for each ω ≤ λ ≤ κ . Hence, also for each λ, µ with 2 ≤ µ ≤ min(κ, λ), the game Gκ
<µ(λ) is

undetermined in B.
(3) The referee has pointed out that the principle �∗

κ could be used in place of �κ .

Corollary 36. Let κ be any infinite cardinal, and let ν be any regular cardinal such that ω ≤ ν ≤ cf(κ) and κ<ν
= κ .

Suppose that �κ holds and ♦κ+(S) holds for every stationary set S ⊆ {α < κ+
: cf(α) = ν}. Then there is a

κ+-Suslin algebra which contains a < ν-closed dense subset, and in which for each ρ, λ with ν ≤ ρ ≤ cf(κ) and
ω ≤ λ ≤ κ the game Gρ

λ−1 is undetermined. Hence, for every ρ, λ, µ with ν ≤ ρ ≤ cf(κ) and 2 ≤ µ ≤ min(κ, λ), the
game Gρ

<µ(λ) is undetermined.
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Proof. Let B denote r.o.(T ∗), where T is the κ+-Suslin tree constructed in Theorem 33. Since the (κ, ∞)-distributive
law holds in every κ+-Suslin algebra, I does not have a winning strategy for Gκ

1 (∞) in B, by Corollary 1.6 of [17].
Hence, by Fact 20, for each infinite cardinal ρ ≤ κ , for every λ, µ with 2 ≤ µ ≤ λ, I does not have a winning strategy
for Gρ

<µ(λ) in B; and for every λ ≥ ω, I does not have a winning strategy for Gρ
λ−1 in B. Since II does not have a

winning strategy for Gν
κ−1, Fact 20 implies that for each ν ≤ ρ ≤ κ , for every ω ≤ λ ≤ κ , II does not have a winning

strategy for Gρ
λ−1 in B. Hence, for every λ, µ with 2 ≤ µ ≤ min(λ, κ), II also does not have a winning strategy for

Gρ
<µ(λ) in B. Moreover, since B contains a dense < ν-closed subset, II wins Gθ

1 (∞) for all θ < ν, and II even wins
Foreman’s game GI

θ+ for all θ < ν (see [23]). �

Acknowledgements

Much gratitude goes to K. Prikry for developing the notion of hyper-weak distributivity and posing his still open
problem regarding P-algebras. The second author wishes also to thank him for introducing her to Jech’s work on
games and distributive laws and suggesting the idea of generalizing Jech’s Suslin algebra example to more general
distributive laws and related games.

References

[1] S. Koppelberg, Handbook of Boolean Algebra, vol. 1, North-Holland, 1989.
[2] K. Namba, Independence proof of (ω, ω1)-WDL from (ω, ω)-WDL, Comment. Math. Univ. St. Paul. 21 (2) (1972–1973) 47–53.
[3] R.D. Mauldin, The Scottish Book, Birkhäuser, 1981.
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[24] S.T. Bartoszyński, H. Judah, Set Theory on the Structure of the Real Line, A. K. Peters, Ltd., 1995.
[25] K.J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1984.


	The hyper-weak distributive law and a related game in  Boolean algebras
	Introduction
	Generalized distributive laws: Definitions and basic facts
	A game related to the hyper-weak distributive law
	Constructions of kappa +-Suslin algebras in which many games are undetermined
	Acknowledgements
	References


