ERRATA TO "GAMES AND GENERAL DISTRIBUTIVE LAWS IN BOOLEAN ALGEBRAS" ## NATASHA DOBRINEN (Communicated by Carl G. Jockusch, Jr.) We are grateful to B. Balcar for pointing out the following error in [1]: In Example 2 (and hence Example 1), if $\eta > \omega$, then η regular and \Diamond_{η^+} do not suffice to construct an η^+ -Suslin algebra. The original construction breaks down at the point where we "choose" the appropriate branches B_t , since \Diamond_{η^+} is not strong enough to guarantee their existence. Balcar suggested the following modified construction, assuming $\eta^{<\eta} = \eta$ and $\Diamond_{\eta^+}(E(\eta))$. Replacement for Example 2. If $\eta^{<\eta} = \eta$, $\lambda \leq \min(\kappa, \eta)$, and $\Diamond_{\eta^+}(E(\eta))$, then there is an η^+ -Suslin algebra in which $\mathcal{G}^{\eta}_{<\lambda}(\kappa)$ is undetermined. Recall that $E(\eta)$ denotes $\{\alpha < \eta^+ : \operatorname{cf}(\alpha) = \eta\}$. Fix a $\Diamond_{\eta^+}(E(\eta))$ -sequence; i.e. a sequence $\langle A_\alpha : \alpha \in E(\eta) \rangle$ such that $\forall \alpha \in E(\eta)$, $A_\alpha \subseteq \alpha$ and $\forall A \subseteq \eta^+$, $\{\alpha \in E(\eta) : A \cap \alpha = A_\alpha\}$ is stationary. Let (d) be the statement: " $\forall \beta < \alpha$, if $\operatorname{cf}(\beta) < \eta$, then all β -branches of T_β extend to $\operatorname{Lev}(\beta)$; if $\operatorname{cf}(\beta) = \eta$, then for each $t \in T_\beta$ there is a $(\beta + 1)$ -branch in $T_{\beta+1}$ containing t." We construct T so that (d) holds for each $\alpha < \eta^+$. Suppose T_{α} has been constructed and (d) holds for α . If α is not a limit ordinal, proceed as before. If $\omega \leq \operatorname{cf}(\alpha) < \eta$, then there are at most η -many α -branches through T_{α} , since $\eta^{<\eta} = \eta$. Extend each of them to $\operatorname{Lev}(\alpha)$. If $\operatorname{cf}(\alpha) = \eta$, consider statements (a)-(c) in the combinations as before. Since (d) holds for α , the appropriate α -branches B_t now exist in T_{α} . Extend the branches B_t to $\operatorname{Lev}(\alpha)$. In the argument that $\mathcal{G}^{\eta}_{<\lambda}(\kappa)$ is undetermined in r.o. (T^*) we should have bijected α with η so that P1 will play the partitions \mathcal{P}_{β} $(\beta < \alpha)$ in a game of length η . The proofs that T is an η^+ -Suslin tree and $\mathcal{G}^{\eta}_{<\lambda}(\kappa)$ is undetermined in r.o. (T^*) proceed as before, using $\langle A_{\alpha} : \alpha \in E(\eta) \rangle$ in place of the former \Diamond_{η^+} -sequence. The " η " in the first sentence of the paragraph on the construction of $\text{Lev}(\alpha+1)$ should be an " η^+ ", so that it reads "Let $\alpha<\eta^+$ and suppose $\text{Lev}(\alpha)$ and \mathcal{P}_{α} have been contructed." In the first paragraph of the Introduction in [1], a result of Foreman was not stated in its full strength. Foreman showed that (in our notation) for each cardinal η (not just successor cardinals), the (η, ∞) -d.l. is equivalent to P1 not having a winning strategy in the game played like $G(\mathbf{P}, \eta)$ except that P2 chooses first at limit ordinals [2]. Received by the editors October 7, 2002. 2000 Mathematics Subject Classification. Primary 03G05, 06E25; Secondary 03E40. ## References - N. Dobrinen, Games and general distributive laws in Boolean algebras, Proc. Amer. Math. Soc. 131 (2003), 309-318. - 2. M. Foreman, $Games\ played\ on\ Boolean\ algebras,$ J. Symbolic Logic $\bf 48\ (3)\ (1983),\ 714-723.$ MR $\bf 85h:03064$ Department of Mathematics, The Pennsylvania State University, 218 McAllister Building, University Park, Pennsylvania 16802 $E\text{-}mail\ address{:}\ \texttt{dobrinen@math.psu.edu}$