ERRATA TO "GAMES AND GENERAL DISTRIBUTIVE LAWS IN BOOLEAN ALGEBRAS"

NATASHA DOBRINEN

(Communicated by Carl G. Jockusch, Jr.)

We are grateful to B. Balcar for pointing out the following error in [1]: In Example 2 (and hence Example 1), if $\eta > \omega$, then η regular and \Diamond_{η^+} do not suffice to construct an η^+ -Suslin algebra. The original construction breaks down at the point where we "choose" the appropriate branches B_t , since \Diamond_{η^+} is not strong enough to guarantee their existence. Balcar suggested the following modified construction, assuming $\eta^{<\eta} = \eta$ and $\Diamond_{\eta^+}(E(\eta))$.

Replacement for Example 2. If $\eta^{<\eta} = \eta$, $\lambda \leq \min(\kappa, \eta)$, and $\Diamond_{\eta^+}(E(\eta))$, then there is an η^+ -Suslin algebra in which $\mathcal{G}^{\eta}_{<\lambda}(\kappa)$ is undetermined.

Recall that $E(\eta)$ denotes $\{\alpha < \eta^+ : \operatorname{cf}(\alpha) = \eta\}$. Fix a $\Diamond_{\eta^+}(E(\eta))$ -sequence; i.e. a sequence $\langle A_\alpha : \alpha \in E(\eta) \rangle$ such that $\forall \alpha \in E(\eta)$, $A_\alpha \subseteq \alpha$ and $\forall A \subseteq \eta^+$, $\{\alpha \in E(\eta) : A \cap \alpha = A_\alpha\}$ is stationary. Let (d) be the statement: " $\forall \beta < \alpha$, if $\operatorname{cf}(\beta) < \eta$, then all β -branches of T_β extend to $\operatorname{Lev}(\beta)$; if $\operatorname{cf}(\beta) = \eta$, then for each $t \in T_\beta$ there is a $(\beta + 1)$ -branch in $T_{\beta+1}$ containing t." We construct T so that (d) holds for each $\alpha < \eta^+$.

Suppose T_{α} has been constructed and (d) holds for α . If α is not a limit ordinal, proceed as before. If $\omega \leq \operatorname{cf}(\alpha) < \eta$, then there are at most η -many α -branches through T_{α} , since $\eta^{<\eta} = \eta$. Extend each of them to $\operatorname{Lev}(\alpha)$. If $\operatorname{cf}(\alpha) = \eta$, consider statements (a)-(c) in the combinations as before. Since (d) holds for α , the appropriate α -branches B_t now exist in T_{α} . Extend the branches B_t to $\operatorname{Lev}(\alpha)$.

In the argument that $\mathcal{G}^{\eta}_{<\lambda}(\kappa)$ is undetermined in r.o. (T^*) we should have bijected α with η so that P1 will play the partitions \mathcal{P}_{β} $(\beta < \alpha)$ in a game of length η . The proofs that T is an η^+ -Suslin tree and $\mathcal{G}^{\eta}_{<\lambda}(\kappa)$ is undetermined in r.o. (T^*) proceed as before, using $\langle A_{\alpha} : \alpha \in E(\eta) \rangle$ in place of the former \Diamond_{η^+} -sequence.

The " η " in the first sentence of the paragraph on the construction of $\text{Lev}(\alpha+1)$ should be an " η^+ ", so that it reads "Let $\alpha<\eta^+$ and suppose $\text{Lev}(\alpha)$ and \mathcal{P}_{α} have been contructed."

In the first paragraph of the Introduction in [1], a result of Foreman was not stated in its full strength. Foreman showed that (in our notation) for each cardinal η (not just successor cardinals), the (η, ∞) -d.l. is equivalent to P1 not having a winning strategy in the game played like $G(\mathbf{P}, \eta)$ except that P2 chooses first at limit ordinals [2].

Received by the editors October 7, 2002. 2000 Mathematics Subject Classification. Primary 03G05, 06E25; Secondary 03E40.

References

- N. Dobrinen, Games and general distributive laws in Boolean algebras, Proc. Amer. Math. Soc. 131 (2003), 309-318.
- 2. M. Foreman, $Games\ played\ on\ Boolean\ algebras,$ J. Symbolic Logic $\bf 48\ (3)\ (1983),\ 714-723.$ MR $\bf 85h:03064$

Department of Mathematics, The Pennsylvania State University, 218 McAllister Building, University Park, Pennsylvania 16802

 $E\text{-}mail\ address{:}\ \texttt{dobrinen@math.psu.edu}$