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ABSTRACT. Suppose V C W are models of ZFC with the same ordinals, and
that for all regular cardinals x in W, V satisfies O.. If W \ V contains a
sequence 1 : w — -y for some ordinal v, then for all cardinals kK < A in W with
& regular in W and X > v, (2.(\)" \ V is stationary in (2.(\))". That
is, a new w-sequence achieves global co-stationarity of the ground model.

1. INTRODUCTION

Suppose V' C W are models of ZFC with the same ordinals, & is regular and
uncountable in W, and A > (k)W'. We say that the ground model is co-stationary
in W if (Z.(A\)W \ (Z.(N\)V is stationary in (£2,()\))". Note that (2,.(\)Y =
(2. ()Y N V; hence, (2, (M)W \ (Z.\)V = (Z.(\)" \ V. We shall sub-
sequently drop the superscript for the larger model W with the convention that
2,..(\) denotes (2. (\)W.

Abraham in [I] showed that if P is a c.c.c. forcing which adds a new real, then
Py, (M) \ V is stationary in V¥ for all A > Ry. Answering a question of Abraham,
Gitik showed in [0] that a new real in the larger model is enough to obtain co-
stationarity of the ground model. In fact, he showed more.

Theorem 1.1 (Gitik [5]). Let V.C W be models of ZFC with the same ordinals, Kk
a reqular uncountable cardinal in W, and X > (k)W'. Suppose that there is a real
in W\ V. Then P,(A\)\V is stationary in W.

We shall say that the ground model is globally co-stationary if for some ko,
P (AN)\ 'V is stationary for all cardinals A > k > ko in W, with s regular in
W. Theorem [II] shows that any new real in the larger model achieves global
co-stationarity of the ground model.

In this paper, we are interested in how the ground model is affected when the
larger model contains a new sequence of countable length.

Question 1.2. Is a new sequence of length w enough to ensure global co-stationarity
of the ground model?

An upper bound for this was obtained by Dobrinen and Friedman in [4].
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Theorem 1.3 (Dobrinen:Friedman [4]). Suppose v > wy and there is a proper
class of v-Erdds cardinals in V'. Then there is a class generic extension V of V'
in which the following holds: Suppose k' > v is reqular, and P adds a new function
r:wy — v and is K -c.c. (or just satisfies the (pT, pT, < p)-distributive law for all
successor cardinals p > k', and is 0-c.c. for the least regular limit cardinal 0 > K').

Then 2,.(\)\V is stationary in VF for each regular k > k' and all X > kT in VF.

As shown in [4], when v = wy, the proper class of v-Erdés cardinals is necessary,
as in that case, a covering theorem of Magidor from [8] applies. In fact, it was
proved in [4] that global co-stationarity of the ground model in a forcing extension
obtained by an Ns-c.c. forcing which adds a new subset of ¥; is equiconsistent with
a proper class of wq-Erdés cardinals. However, Theorem [[.3]left open the following
questions.

Question 1.4. Suppose P adds no new reals but does add a new w-sequence. Let
v be the least cardinal such that P adds a new function r : w — v. Does it follow
that (2,()\))V is co-stationary in V¥ for all cardinals Xy < x < X in V¥ with &
regular in V¥ and A > v? (This is Question 1.3 from [4].)

Question 1.5. If v > wy, is a proper class of v-Erdés cardinals necessary to achieve
global co-stationarity of the ground model from a new sequence r : w; — v?

Question 1.6. Are v-Erd6s cardinals necessary to achieve global co-stationarity
of the ground model if there is a new sequence 7 : w — v7

The Main Theorem gives a negative answer to Question[[.6land a positive answer
to Question [[.4 in L. Moreover, the larger model need not be a forcing extension
of the ground model.

Main Theorem. Let V.C W be models of ZFC with the same ordinals. Suppose
v is reqular in V and is the least cardinal in V' such that there is a new sequence
r:w — vin W\ V. Suppose that for each reqular k > v in W there is a non-
reflecting stationary subset of {a < kT : ¢f(a) = v} in V. Then for all cardinals
Ny < Kk <X in W with k reqgular in W and A > v, Z.(A\)\'V is stationary in W.

The reader is referred to [4] and [3] for more results on co-stationarity of the
ground model for forcings which add new subsets of uncountable cardinals. Ques-
tion is still open.

2. DEFINITIONS AND BASIC FACTS

Throughout this paper, standard set-theoretic notation is used. «, 3,7, ¢ are
used to denote ordinals, while &, A, i, v, p, 0 are used to denote cardinals. &, (X) =
{z C X : |z| < k}. Usually we use [X]<% instead of &, (X) to denote the collection
of finite subsets of X. (X)<“ denotes the tree of finite sequences of elements of X
ordered by end-extension. Given an ordinal § and some X C 4, lim(X) denotes the
set of limit points of X.

Scott and Solovay asked for which cardinals ¥ > w is there a complete Boolean
algebra which adds a new sequence r : w — v without adding any sequences
g:w — 6 for any 6 < v. Namba showed in [10] that for such a v, the following two
conditions must hold.

(1) Either cf(rv) = w or v is regular.
(2) For all 0 < v, |6¥] < v.
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These properties apply to all extension universes with the same ordinals, not
just those obtained by forcing.

Fact 2.1. Suppose V. C W are models of ZFC with the same ordinals, v is the
least ordinal such that there is a new sequence 7 : w — v in W\ V.

(1) If (cf(v))V > w, then v is a regular cardinal in V.
(2) Forall < v, 0| <vin V.

Proof. (1) Since v is the least ordinal such that there is a new sequence 7 : w — v
in W\ V, v must be a cardinal in V' and r must be cofinal in v. Suppose w <
(cf(v))V < v. Let (vs : a < cf(v)) be a cofinal sequence in v. Define g : w — cf(v)
by g(n) = the least a such that v, > r(n). g is unbounded in cf(v), since r is
cofinal in v. But this implies g € W \ V, since (cf(v))V > w, which contradicts v
being the least range of a new w-sequence.

(2) Suppose not. Then there is some ¢ < v such that || > v in V. Let
h:v — 0¥ be a 1-1 function in V. Define g : w x w — 0 by ¢(i,5) = (h(r(2)))(j)-
Then g € V. For each i < w, define f; : w — 0 by f;(j) = g(i,7). Then the
sequence (f; : 4 < w) is in V. But r(i) = h=1(h(r(i))) = h=1(f;), a contradiction
tor V. (]

Remark 2.2. (2) implies that if v is the least cardinal such that there is a new
sequence r : w — v in W\ V| then either v > Ny or v = 2.

Next, we review some facts about co-stationarity of the ground model. Co-
stationarity of the ground model in &2, ()\) implies co-stationarity of the ground
model for certain other cardinals.

Theorem 2.3 (Menas [9]). Let A C B with |A| > k. For' Y C Z.(B), let
YTA={ynA:yeY} IfC C P.(B) is club, then C | A contains a club set in
P (A).

The next fact follows easily from Theorem 2.3

Fact 2.4 ([4]). Let V. C W be models of ZFC with the same ordinals and & be
regular and A > & in W. If &,(A\)\V is stationary in W, then for all u > A,
P (1) \ 'V is also stationary in W.

Fact 2.5 ([]). Let V. C W be models of ZFC with the same ordinals. If x is a
cardinal in W and v > & is the least cardinal in V such that W\ V has a new
function from & into v, then VA > v, Z,.+(A)\ V contains a cone. Moreover, for all
cardinals p, A in W with p regular in W, k < p < v < X, and cf(v) > p in V, then
Z,(A)\'V contains a cone.

Note, however, that this tells us nothing about whether &2,(A) \ V is stationary
in Wfor A>p>v.

Finally, we give the necessary definitions concerning non-reflecting stationary
sets.

Definition 2.6 ([6]). A stationary set S C & is non-reflecting if for all limit ordinals
a < Kk, SN a is not stationary in a.

Definition 2.7 ([2]). Let s be a cardinal and S C k. 0,(S) holds if there is a
sequence (Cy, : « € lim(k™)) such that for each a € lim(x™),

(1) Cy C avis club in oy
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(2) cf(a) < kK — 0.t.(Cy) < k; and
(3) if B <aand § € lim(C,), then Cg =CoNBand B & S.
Oy denotes O, (0).

It is well known that the existence of non-reflecting stationary subsets of xT
follows from [, and hence holds in L. In fact, more is true.

Fact 2.8. Let w < v < k with v regular and assume [J,; holds. Then there exists
a non-reflecting stationary S C {a < k™ : ¢f(a) = v} for which O, (S) holds.

3. MAIN THEOREM

Let V. C W be models of ZFC with the same ordinals. When r : w — v is in
W\ V, we say that r achieves global co-stationarity of the ground model if for all
cardinals w < k < A in W with s regular in W and A > v, 22,(A\) \ V is stationary
in W. In this section we show, assuming certain combinatorial principals, that if v
is regular and is the least ordinal such that there exists a new sequence r : w — v,
then r achieves global co-stationarity of the ground model.

Our proof of the Main Theorem will use certain trees constructed by Gitik to
prove Theorem [Tl For each regular x > w, Gitik constructs a certain subtree
T C (k*)<% and constructs three branches through 7' to code the new real. In
Theorem B3] given an r : w — v in W\ V', we will construct two branches through
Gitik’s tree which, along with a particular function f, suffice to code a new cofinal
sequence from w into v, which thus cannot be in V. The next lemma gives conditions
under which the function we use exists and can be naturally extracted from work
of Todorcevi¢ in [12]. We thank Justin Moore for pointing it out and include his
proof. Given a pairset a, we let a° = min(a) and a' = max(a).

Lemma 3.1. Suppose Wy < v < k are regular cardinals and that there exists a
non-reflecting stationary subset of {a < k : c¢fla) = v}. Then there is a function
[ [k]? — v satisfying the following:

Suppose A, B C [r]?, |A| = |B| = &,
(*f) Vag, ay eAagNay :m, and Ybg,b1 € B bg N by = 0.

Then Ve <v Ja € A3be BVi,j <2 f(a(i),b(j)) > e.

Proof. Let S be a non-reflecting stationary subset of {a < & : c¢f(a) = v}. For each
limit ordinal o < &, let C, C « be a club in « such that C, NS = (. Let Cy = 0,
and for each ordinal 0 < a < &, let Cy11 = {a}. For a < 8 < k, the trace from «
to B is

(3.1) tr(a, B) = {Bi : Bo = B, Bi+1 = min(Cp, \ «) if 3; > a}.
Define f : [k]? — v by
(3.2) fla, B) =max{o.t.(CeNa) : € € tr(a, B) NS}

Let A, B be as in (xf), and let ¢ < v. Choose a sequence {a, : o < k) of
elements of A such that o < 3 <k — a}, < a3. Let Ay = {a}, : a < x}. Lim(4,)
is club in &, so let 6 € lim(A;) NS. There is a subsequence (aq, : ¢ < v) such that
sup, ., ag,, = 0, and for each i < v, 0.t.(Cs Nal)) > e.

Fix b € B such that b° > §. Fix k < 2 and let 3 = b*. Note that for ¢ € tr(J, ),
0 €Ceiff ( =060+1. Let 6o = sup{sup(Cc N ) : ¢ € tr(d,5) and ¢ > 6}. Then
dp < 9, since for all ¢ € tr(4, §) such that { > 6, C; N6 is bounded in 4.
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Claim: For each £ such that g < € < 4§, 0 € tr(&,5). Let 8 =09 > 1 > -+ >
Bn = 0 enumerate tr(d, 3). Let £ be such that 6y < £ < 4. Calculate tr(£, 3): Let
o = = fo. Assume [ < n and ¢ = §;. Let (41 = min(C¢, \ §). G € tr(6, 5)
and §; > 9§, so sup(C¢, N J) = sup(Cp, N J) < 6y. Hence, C¢, N6 = C¢, N, which
implies C¢, \ § = C¢, \ 0. Therefore, (;41 = min(Cy, \ §) = min(Cp, \ §) = Bi41. By
induction, ¢, = 3, = 9.

Now choose i < v for which 6y < al . ¢ € tr(al’, ) for each m < 2, so

(o7

flagt,B) > o0t.(CsNay) > e. O

Remark 3.2. J. Moore has pointed out that the “2” in Lemma [B.] can be replaced
by “finite”.

The next theorem contains most of the work towards proving the Main Theorem.

Theorem 3.3. Let V. C W be models of ZFC with the same ordinals. Suppose
v > Ny s regular in 'V and is the least cardinal in V' such that there is a new
sequence v :w — v in W\ V. Suppose k > v and k is reqular in W. If in V there
is a non-reflecting stationary subset of {a < k™ : cfla) = v}, then P (kT)\V is
stationary in W.

Proof. Let v > Ry be a regular cardinal in W, and assume that v is least such
that there is a sequence r : w — v in W\ V. In W, let k > v be a regular
cardinal, and let C C 2, (k") be club. By a theorem due to Kueker in [7], there
is a function g : [T]<¥ — P, (kT) such that C, is a club subset of C, where
Cy = {z € Z(xT) : (Vy € [2]<¥) g(y) C a}. Define cl’(z) = z, cl'(z) = U{g(y) :
y € [z]<“} Uz, and c" T (z) = cl' (c1”(z)). Define cly(x) =, _, cI"(x). Note: For
each x € P, (k1), cly(z) € Cy.

The following paragraph is extracted from Gitik’s proof of Theorem [[.1] in [5].
We take the liberty of revising a bit of the notation.

Let (Tp, <) be the tree of all finite increasing sequences from {a < k™ : cf(a) =
k}. For every () from Levy, (1), the first level of Ty, and for every 77 > (v) in
To, define the ordinal «(7) to be the supremum of v N cly(7). Then a(f) < v

since cf(y) = k. By XI Lemma 3.7 of Shelah in [I1], we can shrink the tree above

(7) to a tree TOM such that every splitting in TOW> is still a stationary subset of

n<w

kT, and there exists a v, < v such that for every 7 € T0<7>, () < 7« Let

T, = U{Téw : (7) € Levy, (1)}. Repeat the process for each node in Levr, (2), and
so forth. In this manner, we obtain a tree 7" such that Vij = {(«aq, ..., an—1) € T,

(i) Succy(7) is a stationary subset of {a < k™ : cf(a) = K}; B
(ii) Ja(f) < ap—1 such that Y¢ > 7in T7, ap—o < J(an—1 Ncly(C)) < ().
Using (i), shrink 7" level by level to obtain a 7" which satisfies, in addition to (i)
and (ii), also
(iii) 3B(7) such that ¥y € Sucer (), B(7) = a(i™ (7)) <7
Note: If 7 = (o, ..., @n—1), then Va,, € Sucer (7)),
(

(3-3) an—1 < (J(an Nely (7™ (an))) < alii™ (an)) = B(0) < an.

We point out the following useful property of the tree T' and the chosen 5(7)’s.

Fact 3.4. If b is a branch through T and x = cl;(b), then for each k < w, b(k) =
min(z \ 45 | k).
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Firstly, b(k) € b C x. Secondly, for each k +1 < n < w, J(b(k) Ncly(b | n)) <
B(b 1 k) < b(k), by (ii) and (iii). Therefore, [3(b | k),b(k)) Nx = 0.

By Lemma B let f : [s7]? — v satisfy (xf) in V. We construct two branches
b, ¢ through T which we will close under g. The resulting two elements of C' will
code an w-sequence unbounded in v, hence not in V.

Construct a strictly increasing sequence (b°(0),c®(0) : § < xk¥) such that

(a) V6 < kT, b2(0),c(0) € Sucer(());

(b) V8 < e < k™, b%(0) < ®(0) < b°(0) < c=(0) < K5

() ¥6 < i, 13(0) < BB (0))) < (0).
Let A(0) = {{b°(0),c’(0)} : 6 < w*}. Break up A(0) into two disjoint sets
each of cardinality xT. Since (xf) holds, there exist dy < g9 < kT such that
F(%(0),c%(0)) > r(0). Let b(0) = b%(0) and ¢(0) = c=°(0). For 0 < n < w, choose
b(n) and c(n) as follows: Given b | n and ¢ | n, construct a strictly increasing
sequence (b°(n),c?(n) : § < kT) such that

(a) Blen) <b(n);

(b) V8§ < Kk, b°(n) € Sucer(b [ n), ?(n) € Sucer(c | n);

(c) V6 <e < wt, b0(n) < ?(n) <b(n) < cf(n) < kT;

(d) V8 < i+, b3(n) < B((b | n)~ (B () < ().
Let A(n) = {{b°(n),c’(n)} : 6 < k*}. Split A(n) into two disjoint pieces each of
cardinality x* and apply (*f) to obtain d,, < &, < k¥ such that f(b°(n),c"(n)) >
r(n). Let b(n) = b (n) and c(n) = ¢ (n).

Now we have branches b, ¢ through T such that for each n < w, f(b(n),c(n)) >
r(n). Therefore, b, c code an unbounded function from w into v. Since (cf(v))V > w,
this function must be in W\ V. Since f € V, at least one of b, ¢ must be in W\ V.
Let z = cly(b) and y = cly(c).

Claim. b and ¢ can be recovered from V', using = and y as oracles.

Proof. b(0) = min(z \ 6({))) and ¢(0) = min(y \ 5(())), by Fact B4l Suppose we
have b(n) and ¢(n). b(n+1) = min(z \ (b | (n+1))), by Fact B4l The § function
is not necessarily in V, since it is constructed using g. However, we know that
Bb I (n+1)) = B((b | n)~ () < ™ (n) < c™(n) =c(n) <(n+1) <
b(n + 1). Therefore, b(n + 1) = min(x \ ¢(n)). ¢(n + 1) = min(y \ B(c | (n + 1)),
by Fact B4 Bc | (n+ 1)) < ¥’(n+1) < b(n+1) < ¢(n + 1). Therefore,
c¢(n+1) =min(y \ b(n + 1)). O

Hence, at least one of z,y is not in V. Therefore, C N (2, (xT)\ V) # 0. O

Remark 3.5. In the proof of Theorem [3.3] it is not necessary for the function f to
satisfy (*f), but rather the following weak version: f : [xT]?> — v is such that for
each A C [kT)? satisfying (JA| = T and Va,b € A anb=0), for each € < v there
are a,b € A such that f(a® b') > e. It is open whether this is strictly weaker.

Main Theorem. Let V.C W be models of ZFC with the same ordinals. Suppose
v is reqular in 'V and is the least cardinal in V' such that there is a new w-sequence
r:w — vin W\ V. Suppose that for each reqular k > v in W there is a non-
reflecting stationary subset of {a < k¥ : ¢f(a) = v} in V. Then for all cardinals
Ny <k <X in W with k reqgular in W and A > v, Z.(A\)\ 'V is stationary in W.

Proof. If v < Ny, then v = 2 by Remark Gitik’s Theorem [Tl then gives the
result. So assume v > Ny. By Theorem B3] and Fact 2.4] for each v < k < A in W
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with k regular in W, &, (\)\ V is stationary in W. For X} < k <v <\, Z,(A)\V
is stationary in W, by Fact along with the fact that v is regular in V. O

Corollary 3.6. Suppose V = ZFC and satisfies O,, whenever & is a reqular cardinal
in'V. Let W 2OV be any model of ZFC with the same ordinals as V. Suppose v is
regular in V' and is the least cardinal in V' such that there is a sequence r : w — v
in W\ V. Then r achieves global co-stationarity of V in W.

Example 3.7 (Namba forcing over L). Let v > Ry be regular, and let P, denote
Namba forcing on v. P, is the collection of subtrees p C (v)<“ such that for each
node t € p above the stem of p, ¢t has v-many immediate successors. ¢ < p iff ¢ 2O p.
Namba proved that if v = v, then P, adds a new sequence 7 : w — v, but for all
6 < v, P, adds no new sequences from w into 6 [10].

In L, O, holds for all cardinals k. Moreover, v* = v, since v > N is regular and
L satisfies GCH. Hence, by the Main Theorem, for all cardinals X; < x < X in LF»
with & regular in LF» and A > v, Z,(\) \ L is stationary in LF».
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