
Theoretical Computer Science 928 (2022) 183–196
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Optimal placement of base stations in border surveillance

using limited capacity drones

S. Bereg a,1, J.M. Díaz-Báñez b,2,3, M. Haghpanah a, P. Horn c,4, M.A. Lopez d,5,
N. Marín e,∗,6, A. Ramírez-Vigueras f,7, F. Rodríguez b,3, O. Solé-Pi g, A. Stevens c,
J. Urrutia f,8

a Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, United States of America
b Departamento de Matemática Aplicada II, Universidad de Sevilla, Spain
c Department of Mathematics, University of Denver, United States of America
d Department of Computer Science, University of Denver, United States of America
e Posgrado en Ciencia e Ingeniería de la Computación, Universidad Nacional Autónoma de Mexico, Mexico
f Instituto de Matemáticas, Universidad Nacional Autónoma de Mexico, Mexico
g Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 September 2021
Received in revised form 29 April 2022
Accepted 10 June 2022
Available online 16 June 2022
Communicated by T. Calamoneri

Keywords:
Border protection
Optimal location
Unmanned aerial vehicles
Algorithms
Polygons

Imagine an island modeled as a simple polygon P with n vertices whose coastline we
wish to monitor. We consider the problem of building the minimum number of refueling
stations along the boundary of P in such a way that a drone can follow a polygonal route
enclosing the island without running out of fuel. A drone can fly a maximum distance d
between consecutive stations and is restricted to move either along the boundary of P or
its exterior (i.e., over water). We present an algorithm that, given P , finds the locations
for a set of refueling stations whose cardinality is at most the optimal plus one. The time
complexity of this algorithm is O (n2 + L

d n), where L is the length of P . We also present an
algorithm that returns an additive ε-approximation for the problem of minimizing the fuel
capacity required for the drones when we are allowed to place k base stations around the
boundary of the island; this algorithm also finds the locations of these refueling stations.
Finally, we propose a practical discretization heuristic which, under certain conditions, can
be used to certify optimality of the results.

© 2022 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: besp@utdallas.edu (S. Bereg), dbanez@us.es (J.M. Díaz-Báñez), Mohammadreza.Haghpanah@utdallas.edu (M. Haghpanah),

paul.horn@du.edu (P. Horn), mario.lopez@du.edu (M.A. Lopez), nestaly@ciencias.unam.mx (N. Marín), adriana.rv@im.unam.mx (A. Ramírez-Vigueras),
frodriguex@us.es (F. Rodríguez), oriolandreu@ciencias.unam.mx (O. Solé-Pi), alex.stevens@du.edu (A. Stevens), urrutia@matem.unam.mx (J. Urrutia).

1 Supported in part by NSF award CCF-1718994.
2 Partially supported by European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement

#734922.
3 Partially supported Ministerio de Ciencia e Innovación CIN/AEI/10.13039/501100011033/(PID2020-114154RB-I00).
4 Supported in part by Simons Collaboration Grant #525039.
5 Supported in part by a University of Denver John Evans Research Award.
6 Supported by SEP-CONACyT of Mexico.
7 Partially supported by PAPIIT IN105221, Programa de Apoyo a la Investigación e Innovación Tecnologíca UNAM.
8 Supported in part by PAPIIT IN102117 Programa de Apoyo a la Investigación e Innovación Tecnológica, UNAM.
https://doi.org/10.1016/j.tcs.2022.06.024
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.06.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2022.06.024&domain=pdf
mailto:besp@utdallas.edu
mailto:dbanez@us.es
mailto:Mohammadreza.Haghpanah@utdallas.edu
mailto:paul.horn@du.edu
mailto:mario.lopez@du.edu
mailto:nestaly@ciencias.unam.mx
mailto:adriana.rv@im.unam.mx
mailto:frodriguex@us.es
mailto:oriolandreu@ciencias.unam.mx
mailto:alex.stevens@du.edu
mailto:urrutia@matem.unam.mx
https://doi.org/10.1016/j.tcs.2022.06.024

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
Fig. 1. Example. A polygon P and d-hull C (black dashed line) that uses an optimal set of base stations (solid circles) for the MinStation problem.

1. Introduction

The rapid development and use of Unmanned Aerial Vehicles (UAVs), commonly called drones, in many activities of our
daily life has created a need for the development of new algorithms to optimize their use. A factor that is common to most
types of drones is their relatively short flying range due mostly to their restricted energy capacity [23].

Border patrolling is one typical application of air surveillance systems where the deployment of drones has become a
natural choice for providing monitoring, surveillance, and search and rescue services for the protection of human lives or
natural resources [2,17,21,26,30]. In this context, a team of UAVs can be deployed along the boundaries of a region to collect
useful information, such as images or videos, and send it to the nearest control center. The energy limitation of small UAVs
prevents them from remaining in flight for long periods of time. Thus, recharging stations, platforms where the drone can
autonomously land to recharge its battery before continuing its mission, have been recently introduced. However, the cost
of those platforms remains a significant obstacle and, consequently, it is important to reduce their number.

Inspired by this type of applications, we study in this paper the following geometric optimization problems:
The MinStation Problem: Suppose that we want to guard the border of an island I whose boundary is modeled by a

simple polygon P using a set of drones that can fly a distance d before they need refueling. Our drones can fly over the
boundary of I or over small sectors of the sea surrounding it, but not over the interior of I . Our objective is to place a
set S = {s0, . . . , sk−1} of k refueling base stations with minimum cardinality k and located on the boundary of I , such that
when a drone visits all the refueling stations it travels a closed curve that encloses P ; the flying distance between si and
si+1 is at most d, with addition taken mod k. See Fig. 1 for an example. We will refer to S as an optimal solution. A set
S ′ = {s′

0, . . . , s
′
k} with k + 1 refueling stations will be called a quasi-optimal solution.

The MinDistance Problem: Suppose that we have a budget that allows us to build k refueling stations. Find the smallest d
such that we can build k refueling stations that allow a drone with flight capacity d to guard the border of the given island.

Solutions to these problems can be implemented using fleets of small drones with limited capacity, resulting in cheaper
systems that use less resources and increase the frequency with which the drones patrol the border. We consider that a
drone can replace the used battery with a fresh one, rather than charging the battery on site. The used batteries can be
recharged when a charging station is not servicing drones. Thus, a drone will not occupy a charging station for a long time
and there is at most one drone at each station at the same time. Our main contributions are as follows:

• We give an algorithm, OptSol, with complexity O (n2 + L
d n), such that if s0 is a fixed point on the convex hull of P ,

CH(P), finds an optimal solution S to the MinStation Problem under the restriction that s0 ∈ S; here, L is the perimeter
of P . This yields either an optimal or quasi-optimal solution to the unconstrained MinStation Problem (without requir-
ing s0 ∈ S). The problem of finding an optimal unconstrained solution is equivalent to that of finding the location of a
single station in an optimal solution. We leave as an open problem that of designing a polynomial time algorithm for
the general unconstrained case.

• For the MinDistance Problem, we show how to approximate an optimal solution up to an additive constant. The approach
is based on an algorithm, AppSol, which solves a discretized version of the MinStation Problem.

• We implemented AppSol and ran experiments on a polygon corresponding to an island (using GIS data); in many cases,
the algorithm returns a certifiably optimal solution on this real data.

1.1. Related work

Drones have become the natural choice for the deployment of air surveillance systems [2,21,24]. We mention three areas
where problems close to ours can be found: facility location, wireless networks, and computational geometry.

In facility location problems we are interested in finding the best places to locate a set of resources (e.g. airports,
pharmacies, gas stations, markets, etc.) to better serve a community, as well as creating optimal routes to visit them. The
facilities can be isolated points in space [19] or 2-dimensional structures such as straight lines, line-segments, polygonal
184

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
curves, or circles [10]. The location-routing problem is a research area within locational analysis, with the distinguishing
property of paying special attention to vehicle routing aspects [27]. Recently, applications in the aerial robotics community,
such as finding the best places to locate drone base stations and creating flying routes for the drones, have arisen in
areas such as border patrolling [31]. Cities on the borders of countries are modeled as demand points, and airports are
considered as base stations or hubs. In [39] the authors studied a base location and path planning problem in maritime
target reconnaissance problems. Their problem is formulated as an integer linear program where the total score obtained
from visiting points of interest by flight routes of drones is maximized; a novel ant colony optimization metaheuristic
approach is proposed. In a more recent paper [22], both capacity constraints on base stations and endurance limitations
on drones are taken into account and two heuristic algorithms are designed to solve the problem. A similar problem is
considered in [8]. They investigate the 3D location problem of multiple drone base stations as well as the allocation of
their dynamic capacities to the users. The service provided by the stations is also dynamic in terms of the data rate level
provided to the users. In addition to border patrolling, the problem of deploying a number of charging stations to cover a
demand region has been considered in several areas. For example, [15] proposes a coverage model to figure out the optimal
positions of a given number of charging stations from a discretized candidate set, with the objective of maximizing the
coverage of customers. More recently, a connectivity requirement on the stations is required in [16] in order to guarantee
the delivery to customers located far from a depot. They argue that any two neighbor charging stations should be within
a certain range such that a drone with a fully charged battery can reach one from the other. In other words, it is required
that the deployed charging stations should be connected to the depot. Then, a drone that departs from the depot can arrive
at any charging station via a subset of other charging stations, and it can then service customers near this charging station.

Another field of research close to our work can be found in wireless sensor networks. In [18], the authors study the
k-barrier problem: how to deploy a set of sensors in a belt region surrounding a castle in such a way that any intruder is
detected by at least k sensors. In [4] the following problem is studied: Given that an intruder has been detected by a set of
sensors, how can they be moved in an optimal way to prevent further intrusions? An interesting survey of problems similar
to ours can be found in [1], where they study the problem of protecting several types of holes that can occur in a wireless
sensor network, where a hole is a region not covered by the sensing disks of a set of sensors. In the same paper, other
problems related to ours are considered, including routing in static and mobile sensor networks. See also [5,11,37].

Finally, in computational geometry, there is a whole area of research devoted to problems, collectively known as Art
Gallery problems, which are related to ours. The oldest problem in this area requires finding a minimum set of points S
within an art gallery, usually modeled by a polygon P , such that every point in the polygon is visible from at least one
point in S . Many variations of this first problem have since been studied and the interested reader is referred to the book
by O’Rourke [29] or the surveys by Shermer [32] and Urrutia [36]. Some variations of the art gallery problem, more closely
related to our problem, consider the use of mobile guards. The Watchman Route problem, introduced in [7], is that of finding
a path of minimum length that a guard can follow in order to guarantee that every point within P is visible from some
point in the path. There are two main variations of this problem, one in which the starting point of the route is given [35],
as well as the unrestricted case [33]. Even more closely related to our problem is that of finding the minimum watchman
route in the exterior of P [28]. Some variations of the watchman route problem require the path to visit a set of k sites
represented as polygons in P . In the Safari Route problem [34] we are allowed to enter the sites, while in the Zoo Keeper
Route problem [38,3] the guard has to visit their boundary but is not allowed to go inside (as when feeding an animal
without entering its cage). Both problems are NP-hard in the general case, but can be solved in polynomial time if the sites
are adjacent to the boundary of P . The Aquarium Keeper’s problem, studied in [9], deals with the problem of computing the
shortest closed path inside P which visits each of its edges at least once.

2. Terminology and problem formulation

In what follows a polygon P is represented by a sequence 〈p0, . . . , pn−1〉 of its vertices given in clockwise order around
its boundary. Thus, the edges of P are the line segments pi pi+1, with addition taken mod n. We assume that our polygons
are always simple, i.e. that no two non-consecutive edges intersect. We use Int(P) and Ext(P) to denote, respectively, the
interior and exterior of the region enclosed by P , and use P itself to refer to the boundary of this region (often referred to
by ∂P in the literature). Accordingly, the length of P is the sum of the lengths of its edges. A (polygonal) path is a sequence
of points 〈q0, . . . , qk〉 together with the set of edges qiqi+1, i = 0, . . . , k − 1; the length of a path is the sum of the lengths
of its edges.

Given two distinct points a, b ∈ P the interval [a, b] is the set of points of P traversed while moving from a to b in the
clockwise direction along the boundary of P . The distance δP (a, b) between a and b in P is the length of the interval [a, b].
Observe that since a �= b, [a, b] �= [b, a], [a, b] ∪ [b, a] =P , and that δP (a, b) + δP (b, a) is the length of P .

The following definitions of what we will call d-paths and d-hulls arise from the restriction that the flight range of a
drone is a fixed number d.

An open line segment contained in Ext(P) joining two points a, b ∈P will be called a bridge; if its length is at most d it
is called a d-bridge of P . Note that a drone cannot fly along a bridge of P with length greater than d; the base stations are
restricted to be on P , thus if a drone chooses to fly over a bridge with length greater than d it would run out of fuel and
fall to the sea.
185

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
dp j

pi

a

b

x

y

Fig. 2. The interval [a,b] and a d-path πx,y joining x and y are shown in black dashed lines. The segment pi p j is a d-bridge contained in πx,y .

A polygonal path joining two points a, b ∈ P is called a d-path if all of its edges are d-bridges of P , or segments of edges
of P . We say that a polygon C is a d-hull of P if it encloses P , and all of its edges are contained in edges of P or are
d-bridges of P . Observe that a polygon has many (in fact an infinite number) of d-hulls, indeed P is a d-hull of itself.

The drone distance δ(a, b) from a to b is the length of a shortest clockwise d-path joining a to b. As an example, Fig. 2
shows the shortest d-path from x to y. For simplicity, we will refer to the drone distance as the distance from a to b.
Observe that δ(a, b) is in general different from δ(b, a). Further observe that the drone distance and the geodesic distance
from a to b (understood as the length of the shortest clockwise path from a to b disjoint from Int(P)) coincide whenever
one of them is at most d. Finally, note that if a drone with flight range d can fly between two points a, b ∈ P without
recharging, then there is a d-path joining them of length at most d.

Our island guarding problem can now be restated as follows:

Problem 1 (MinStation). Given a polygon P find a set of base stations S = {s0, . . . , sk−1} with minimum cardinality such that for
every 0 ≤ i ≤ k − 1 there is a d-path πi of length at most d joining si to si+1 , and such that C = π0 ∪ . . . ∪ πk−1 is a d-hull of P ;
si ∈P , i = 0, . . . , k − 1, addition taken mod k.

By a solution to the MinStation problem we refer simply to a set S of base stations together with the collection of d-
paths πi whose union is a polygon that encloses P . Recall that a solution is optimal if it contains the least possible number
of base stations, and quasi-optimal if it contains one more base station than an optimal solution.

We also study the next problem, a kind of dual problem to the MinStation problem. Suppose that we have a budget that
allows us to build k base stations, and want to find the locations along P where to build them such that the flight range of
the drones used to patrol P is minimized, formally:

Problem 2 (MinDistance). Given a simple polygon P and an integer k ≥ 2, find the smallest d and a set S = {s0, s2, . . . , sk−1} of k
stations on P such that, for i = 0, . . . , k − 1, there is a d-path πi of length at most d joining si to si+1 , addition taken mod k, and
C = π0 ∪ . . . ∪ πk−1 is a d-hull of P .

Computing a d-hull that minimizes the number of base stations needed to solve the MinStation problem is more subtle
than it may at first look. There are polygons P for which, given d, the smallest number of base stations needed to solve
the MinStation problem, lie on the shortest d-hull enclosing P . An example is shown in Fig. 1. However, there are examples
for which the stations of an optimal solution do not lie on the shortest d-hull enclosing P . An example is given in Fig. 3.
It is easy to see that placing a base station at any point other than the black points shown there, increases the number of
base stations needed to solve the MinStation problem. In fact, it is not hard to construct polygons such that the number
of stations required for the shortest d-hull is almost twice the number of stations given by the MinStation problem. This is
the case, for example, for a star shaped polygon such that the distance between adjacent vertices on the boundary of the
convex hull is d

2 + ε , for some arbitrarily small ε , as shown in Fig. 4.
We remark that in the optimal solutions of the MinStation and the MinDistance problems, the base stations lie on P but

not necessarily on vertices of P or C .

3. Preliminary results

Given a fixed point s ∈P we define a total order O s(P, �) on the points in P as follows:

1. for any point a ∈P , s � a
2. for any a, b ∈P , both different from s, a � b if [s, a] ⊆ [s, b]. (Note that possibly a = b.)
186

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
d d

d − ε d − ε

ε ε

d d

Fig. 3. Example. The optimal d-hull requires 6 base stations. Replacing it with one with smaller perimeter increases the number of base stations to 7.

d
2 + ε

Fig. 4. Example. The shortest d-hull (dotted) requires almost twice as many stations as the optimal d-hull that solves the MinStation problem (dashed). This
example can be extended to polygons with arbitrarily many vertices.

For convenience we will add an extra element s′ to our order such that for any a ∈ P , a � s′; that is, s and s′ are,
respectively, the minimum and the maximum elements of O s(P, �). We can think of s′ as a copy of s, and refer to O s(P, �)

simply as �.
Consider a point s ∈ P and the order � it defines on the points on P . We define a distance δd on the points on P as

follows:

1. δd(a, a) = 0.
2. If a � b ∈P , δd(a, b) = 1 if there is a d-path of length at most d from a to b.
3. δd(a, b) = k if k is the smallest integer such that there is a sequence of points p0 = a, · · · , pk = b such that δd(pi, pi+1) =

1, i = 0, . . . , k − 1.

The following technical Lemma will be crucial in the proposed approach to solve the MinStation problem.

Lemma 1 (The Sandwich Lemma). Let w, x, y, z ∈ P such that w � x � y � z on P , such that δd(w, y) ≤ 1, and δd(x, z) ≤ 1. Then
δd(w, z) ≤ 2, δd(w, x) ≤ 2 and δd(y, z) ≤ 2.

Proof. Suppose that δd(w, z) > 1, for otherwise we are finished. Since w � x � y � z the shortest d-paths πw,y and πx,z
joining w to y, and x to z intersect, see Fig. 5 for an example. Let p be a point in the intersection of πw,y and πx,z . If
the distance δ(x, p) along πx,z between p and x is smaller than the distance δ(p, y) between p and y along πw,y , then
δ(w, p) + δ(p, x) ≤ 1 and therefore δd(w, z) ≤ 2. The case when δ(p, x) ≥ δ(p, y) follows the same way. The inequalities
δd(w, x) ≤ 2 and δd(y, z) ≤ 2 are proved in a similar way. �

The Sandwich Lemma suggests that in an optimal solution to the MinStation problem, a drone flies around in a non-
crossing curve C that encloses P . We formalize this observation in the lemma that follows:
187

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
w

x

y

zp

Fig. 5. Illustration of Lemma 1.

Lemma 2. Suppose that s0 ∈ P ∩ CH(P) and let S = {s0, s1, ..., sk−1} be a solution to the MinStation problem that goes around P in
the clockwise direction and which has the least number of stations among all solutions starting from s0. Then s0 � s1 � s2 � · · · � sk−1 .

Proof. Assume that all of the πi paths joining si to si+1 are of minimum length. Since C = π0 ∪ · · · ∪ πk−1 encloses P , any
point p in CH(P) lies on C . It is now easy to see that C covers p exactly once. It follows now that s0 is not in the interior
of π0, and that π0 is a simple curve that always advances in the clockwise direction along C .

Now, suppose that si � si−1 for some i > 1, and let j be the maximum value such that s j � si ; that is, s j � si � s j+1.
Using Lemma 1 it follows that s j � si � s j+1 � si−1. Thus, by Lemma 1, δd(s j, si) ≤ 2, and since S is an optimal solution, it
follows that s j+1 = si−1.

Let r be the minimum value such that si−1 � sr . Then, we have that si � sr−1 � si−1 � sr . It follows that si = sr−1.
Now, since s j+1 = si−1 and si = sr−1 we have that s j � si � si−1 � sr , where δd(s j, si−1) = δd(si, sr) = 1. Therefore, by

Lemma 1, δd(s j, sr) ≤ 2. This is a contradiction, and thus si � si+1 for all i. Hence, {s0, s1, ..., sr} continues to make forward
progress and the result follows. �

A similar argument shows that for any optimal solution S = {s0, s1, ..., sk−1} of the MinStation Problem (no longer subject
to the condition that s0 is fixed) C is a simple closed curve.

4. The algorithm

We consider the following algorithm, which constructs a solution to the MinStation problem starting at a point v ∈
P ∩ CH(P).

Algorithm 1: OptSol.
Input: Polygon P , s0 ∈ P ∩ CH(P), d > 0
Output: The stations in an optimal or quasi-optimal d-hull for P

1 Let s0 = s′
0 = y−1 = v and y0 = max{y : δd(s0, y) = 1}

2 Set S0 = {s0} and i = 0
3 repeat
4 i = i + 1
5 yi = max{y : δd(si−1, y) = 2}
6 si = any s ∈ {w : δd(si−1, w) = 1 and δd(w, yi) = 1}
7 Set Si = Si−1 ∪ {si}

until yi = s′
0

return the last generated set S = Si

We claim that if we further require that v ∈ S , then the set S returned is, indeed, an optimal solution to MinStation. On
the other hand, we observe that this algorithm always gives a solution that is globally optimal or quasi-optimal (no longer
subject to the restriction that v ∈ S).

Theorem 3. Given a starting point s0 ∈ P ∩ CH(P), if k is the least value such that sk = s′
0 , then the set of points S = {s0, · · · , sk−1}

returned by the OptSol algorithm is an optimal solution to the MinStation problem with the additional requirement that a base station
be located at s0 .

Proof. Suppose that S has more than one element, for otherwise our result is obvious. Suppose that Z = {z0, . . . , zn−1} is
an optimal solution for the MinStation problem such that there is a base station located at s0 = z0. We prove now that
n = k
188

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
p j

e

yi+1

si+1

si

(a) .

fd

e

yi+1

si+1

si

(b) .

Fig. 6. The 2-hop problem. (a) si+1 is a projection of the vertex p j on the edge e. (b) si+1 is a d-projection of the edge f on the edge e.

By Lemma 2, we may assume that v = z0 � z1 � · · · � zn−1, that for all i, δd(zi, zi+1) = 1, and that δd(zn−1, s′
0) = 1.

Consider now the set S = {s0 = v, · · · , sk−1} returned by the OptSol algorithm. Recall that yk−1 = s′
0. While the relationship

between S and Z is unclear, the relationship between Z and Yk−1 = {y−1, y0, . . . , yk−1} is more straightforward; indeed we
prove by induction that, for all i, zi+1 � yi .

This clearly holds for i = 0, as z1 � y0 by definition. Now, suppose zi � yi−1. Let j be minimal so that zi � y j−1.
Then j ≤ i, and as v = y−1 ≺ zi we have that j ≥ 1. Now, by the minimality of j, we know that y j−2 � zi � y j−1 and
by definition of y j−2, we have that s j−1 � y j−2. Combining, s j−1 � zi � y j−1. Then as δd(s j−1, y j−1) = 1 by construction,
Lemma 1 implies that zi+1 � y j � yi . This completes the inductive step, and hence the proof.

Therefore, the minimal k such that δd(sk, s′
0) = 1 and the minimal n such that δd(yn, s′

0) = 1 are the same, and thus
S = {s0 = v, · · · sk−1} is an optimal solution to the MinStation problem, with the additional requirement that there is a base
station at s0 = v . �
Theorem 4. Let s0 = v ∈ P ∩ CH(P). The set S = {s0, . . . , sk−1} returned by the OptSol algorithm is an optimal solution or a quasi-
optimal solution to MinStation problem.

Proof. Suppose that Z = {z0, . . . , zn−1} is an optimal solution to the MinStation problem, and that S = {s0, . . . , sk−1} is the
solution returned by the MinStation algorithm. We prove now that k = n or k = n + 1.

Since s0 is on the convex hull of P there is a shortest d-path between some zi and zi+1 that contains s0. Hence, adding
s0 to Z = {z0, . . . , zn−1} yields an optimal or quasi-optimal solution to the MinStation problem including s0. �
Remark 1. The OptSol algorithm can be easily adapted to solve the MinStation problem for a polygonal line Q with end-
points q0 and qk , contained in P . This may be useful to patrol a section of the coastline instead of a complete island. If both
endpoints of Q are contained in an interval [a, b] such that ab is a d-bridge of P , then we need at most two base stations
depending on the length of ab. Otherwise, if q0 is not contained in such an interval [a, b], we run OptSol clockwise starting
from q0 and stop when we reach a point s such that qk ∈ [q0, s]. In the remaining case we run OptSol counterclockwise
starting from qk . As the solution returned by OptSol for P is optimal or quasi-optimal, the solution obtained for Q is also
optimal or quasi-optimal.

Remark 2. Although there are polygons such that the optimal solution contains no points in CH(P) (a simple modification of Fig. 1
yields one such example), from a practical point of view, it is convenient to assume that at least one station v lies in P ∩ CH(P), as
otherwise any solution that includes v could have an arbitrarily large number of stations (imagine that it is located in a large pocket
where bridges cannot be established).

4.1. Time complexity

We prove now that we can implement the OptSol algorithm to run in O (n2) time.
Given a point si we want to find a point yi+1 = max{y : δd(si, y) = 2} with respect to � and a point si+1 ∈ {w :

δd(si, w) = 1 ∧ δd(w, yi+1) = 1}. We refer to the problem of finding si+1 and yi+1 as the 2-hop problem, see Fig. 6.
We will show that by applying a quadratic time pre-processing on P the 2-hop problem can be solved in linear time for

each si .
A point x of an edge e is a projection of a vertex pi on e if x � pi and the line segment joining them is a d-bridge of P

perpendicular to e. See Fig. 6a.
In a similar way, we say that a point x of an edge e of P is called a d-projection of an edge f on e if there is a point

y ∈ f such that the line segment joining them is a bridge of P of length d perpendicular to e. See Fig. 6b.
189

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
Lemma 5. Given si , si+1 is either a vertex of P , the projection of a vertex on an edge, the d-projection of an edge or a point with
δ(si, si+1) = d.

Proof. Suppose that si+1 is not a vertex of P and δ(si, si+1) < d. Let e be the edge of P containing si+1, see Fig. 6. Note
that δ(si+1, yi+1) = d by the choice of yi+1. If si+1 is neither the projection of a vertex on e nor the d-projection of an edge
on e, then it can be moved slightly along edge e and advance yi+1. This contradicts the definition of yi+1. �

There might be O (n) points at distance d from a previously placed station si . However, we only need to consider the
maximum with respect to � among them as a candidate for placing si+1, as we prove next.

Lemma 6. Let w, x, y, z be points in P such that w � x � y � z. Suppose that δ(w, x) = δ(w, y) = d, δ(w, z) > d, and δ(x, z) = �.
Then, δ(y, z) ≤ �.

Proof. Let r be an intersection point of the shortest d-path πw,y from w to y and the shortest d-path πx,z from x to z.
Note that r always exists by the choice of the four points on P . Let δ(w, r) and δ(r, y) be the distance along πw,y between
w and r, and between r and y, respectively. Let δ(x, r) and δ(r, z) be the distance along πx,z between x and r, and between
r and z, respectively. Since δ(w, z) > d, we have δ(r, y) < δ(r, z). Now suppose that δ(r, y) > δ(x, r). Then we have that
δ(w, r) + δ(r, x) < d, which is as contradiction to our assumption that δ(w, x) = d. Thus, δ(r, y) ≤ δ(x, r) and δ(y, z) ≤ �. �

We claim that, even though there might be O (n2) projections of vertices and d-projections of edges, O (n) candidate
points are sufficient to compute si+1.

Let e and f be edges of P . We say that e � f if for any point x in the interior of e and any point y in the interior of f ,
x � y.

Lemma 7. For each edge e of P we need to store at most three points:

1. The minimum d-projection (with respect to �) of an edge e′ on e such that e � e′ .
2. The endpoint not in e of the bridge generating the maximum d-projection (with respect to �) on e of an edge e′ such that e′

� e.
In this case the stored point lies on e′.

3. The minimum projection (with respect to �) of a vertex on e.

Proof. Case 1. Let x and x′ be d-projections of two distinct edges f and f ′ , respectively, on e such that e � f and e � f ′ .
Let xy be the d-bridge perpendicular to e having x as an endpoint, i.e., y ∈ f and xy has length d. Define x′ y′ analogously.
Because of the length of xy (respectively, x′ y′), if we place a station at x (respectively, x′) then we also need to place a
station at y (respectively, y′). Suppose w.l.o.g. that x � x′ , see Fig. 7a. Since all the bridges defining d-projections of edges
on e are parallel, this implies that f ′

� f and y′ � y. Moreover, as the interval [x, y] contains the interval [x′, y′], placing a
station at x guarantees that both intervals of P are guarded. Hence, we maximize yi+1 with respect to � by choosing the
minimum d-projection of an edge on e as si+1.
Case 2. This case is analogous to the first one, see Fig. 7b.
Case 3. Let x and x′ be the projections of two distinct vertices pi and p j , respectively, on an edge e. Let xpi and x′ p j be their
corresponding d-bridges. Suppose w.l.o.g. that x � x′ . This implies that p j � pi and that placing a station at x guarantees
that both intervals [x, pi] and [x′, p j] are guarded, see Fig. 8a. It remains to be proven that by placing a station at x we can
advance further on P with respect to �. Let w ∈ P be a point such that pi � w , and let px,w and px′,w be the shortest
d-paths joining x to w and x′ to w . Let r be the intersection point of xpi and px′,w . Notice that the points x, x′ and r form a
right triangle that is right-angled at x. Therefore, the length of px,w is smaller than the length of px′,w , which implies that
we can maximize yi+1 by choosing the minimum projection of a vertex on e as si+1. �

In order to compute the candidate points on P , we first find, for each edge e ∈ P , the subset containing each point x ∈P
for which there is a segment perpendicular to e joining x and e, and completely contained in Ext(P). In such case we say
that x is orthogonally visible from e.

We define a lid as an edge of the convex hull of P that is not an edge of P . Each lid h = ab defines a polygon Ph , which
is the union of h and the interval of P determined by a and b which has no points in the convex hull of P besides a and
b. Note that any projection of a vertex or d-projection of an edge is defined by a segment whose endpoints are contained
in the same Ph , for otherwise the segment would intersect Int(P). Therefore, we only need to compute the set of points
orthogonally visible from each edge e contained in a Ph; moreover, we only need to look at the polygon Ph containing e to
find these points.

For the next lemma, we assume that we have computed the polygons defined by all the lids of P , as well as the
triangulation of each such polygon. This can be done in O (n) time overall, see [25] and [6].
190

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
e

f f ′

y′y

x′x

(a)

e

f f ′
x′x

y′y

(b)

Fig. 7. (a) Case 1: we only need to store the point x on edge e. (b) Case 2: we only need to store the point x on edge f .

p j

pi

e

x x′

w

r

(a)

p j

pi

(b)

Fig. 8. (a) Case 3: The distance from x to w is smaller than the distance from x′ to w . (b) We need to store all vertex projections except the one that is the
endpoint of the dotted segment.

Lemma 8. We can find the set containing all the segments of P orthogonally visible from any edge of P in O (n) time. Moreover, each
such set has O (n) size.

Proof. Let h = ab be a lid of P and let e = uv be an edge of Ph . We proceed as follows: Compute the set V P (Ph, e) of
points of Ph visible from a point in e. V P (Ph, e) can be computed in O (n) time [13].

Suppose w.l.o.g. that u ≺ v . Let R be the region contained between the lines perpendicular to e through u and v , and
to the left of the line directed from u to v . It is easy to see that any point of P orthogonally visible from e must lie in
Re = V P (Ph, e) ∩ R , which can be computed in O (n) time by intersecting V P (Ph, e) with both lines. We suppose w.l.o.g.
that e is horizontal and that the interior of Re lies above e.

We say that a vertex p ∈ Re is a turn vertex if the maximal vertical segment xy through p and completely contained in
Re separates Re into three subpolygons, see Fig. 9a. If two of these subpolygons lie to the right (left) of xy, we say that
p is a right (left) turn vertex. Let x be the top endpoint of xy. The segment px separates Re into two subpolygons, one of
them containing e. Let Re(p) denote the subpolygon generated by px not containing e. It is easy to see that any point in Re

not being orthogonally visible from e lies in the subpolygon Re(p) for some turn vertex p, and that any point in Re(p) \ px
is not orthogonally visible from e.

Note that the internal angles at both vertices of e = uv are convex in Re . Ghosh et al. [12] proved that for any vertex p
in Re , the shortest path from u to p, denoted as ρu,p , makes a left turn at every vertex of the path, and ρv,p makes a right
turn at every vertex of the path. This also holds true for the points in the interior of any edge of Re .

Let p be a turn vertex of Re and let x be the top endpoint of the maximal vertical segment through p completely
contained in Re . We claim that the vertical line through p, �p , does not intersect any point of Re(p) \ px. Suppose otherwise
that there is a point x′ in Re(p) \ px contained in �p . Then, there exists a vertex q in Re(p) \ px such that ρv,x′ makes a
left turn at q or ρu,x′ makes a right turn at q, which is a contradiction [12], see Fig. 9b. It follows that Re(p) ∩ �p = px. This
fact yields the following algorithm for removing Re(p) from Re for each turn vertex p.

We deal with the right turn vertices by traversing the edges of Re clockwise from v to u. We set a variable edgeIsVisible
to true. Let f = qr, q ≺ r, be the current edge in the traversal.
191

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
Fig. 9. (a) p is a left turn vertex, r is a right turn vertex, and q is not a turn vertex. (b) Neither x′ nor any point in the shaded region is in Re : the shortest
path from v to x′ makes a left turn at q.

• If edgeIsVisible is true we check if r is a right turn vertex. In the affirmative case, we set edgeIsVisible to false and store
the vertical line through r, �r and the edge f .

• If edgeIsVisible is false, then we had previously stored the last visible edge g = op, where p is a right turn vertex, and
the vertical segment through p, �p . We check if x = f ∩ �p is not empty. In such a case, we replace the interval [p, x]
of Re with the vertical segment px, set edgeIsVisible to true, and discard g and �p .

We can remove the sub-polygons defined by the left turn vertices analogously by traversing Re counter-clockwise from u
to v . As each edge of Re is visited at most twice, the removal of the sub-polygons defined by all the turn vertices takes
O (n) time. Let R′

e be the polygon obtained by these traversals.
To obtain the subset of P orthogonally visible from e, we only need to discard e, the segment contained in the lid of

Ph , and the vertical segments added in the previous process (at most one per turn vertex) from R′
e .

Since Ph has no holes, each edge of Ph provides at most one segment to R′
e . Therefore, the set of segments of P

orthogonally visible from any edge e has O (n) size. �
Lemma 9. For any edge e of P we can find the projections described in Lemma 7 in O (n) time.

Proof. Suppose that e = uv , u � v . By Lemma 8, we can find the set W of all the segments of edges and vertices of P
orthogonally visible from e in O (n) time; moreover, W has O (n) size. Let W B be the subset of elements of W smaller than
u and let W A be the subset of the elements of W greater than v with respect to �.

We find the d-projections corresponding to the first two cases of Lemma 7 as follows. Let � be the line parallel to e, to
the left of the line directed from u to v and at distance d from e. We first compute the intersection of � with both W B and
W A , which by the size of W can be obtained in O (n) time. To obtain the point described in the first case of the proof of
Lemma 7 we take the maximum point q with respect to � in � ∩ W A and store the intersection point of e with the line
through q perpendicular to e. To obtain the described in the second case of the proof of Lemma 7 we store the minimum
point in � ∩ W B with respect to �, if any.

We find the projection of the maximum vertex on e described in the third case of Lemma 7 as follows. For each vertex
of P in W B we compute its distance with respect to e. We then store the maximum with respect to � of the vertices at
distance less or equal than d from e. �

Now we need to solve the following subproblem: given a point x ∈ P , find the maximum w , x � w , such that δ(x, w) = d.
Guibas et al. [13] proved that, given the triangulation of a polygon R and a point p ∈ R, the euclidean shortest paths from
p to all the vertices of R can be found in linear time (see also [20]). The union of all the shortest paths from the source
point p to the vertices of R is a planar tree called the shortest-path tree of R with respect to p.

Let R be the polygon obtained by enclosing P in a sufficiently large rectangle and connecting one of the sides of the
rectangle to the starting point of the sequence, x0, with a thin corridor. The polygon R can be obtained in O (n) time,
see [28]. Note that R has m ≤ n + 8 vertices and P is contained in the exterior of R. We assign to the points in R that are
also points in P the same order as in P .

Henceforth we assume that R has been computed along with its triangulation, which as proven by Chazelle [6] can be
found in O (n) time.

Lemma 10. Given any point x ∈ P , the point w ∈ P with δ(x, w) = d such that w is maximum with respect to � can be found in
O (n) time.

Proof. Let x be a point in P and let x′ be its corresponding point in R. We compute the shortest path ρ(x′, y) from x′ to
every vertex y ∈ R such that y is also a vertex of P and x′ ≺ y. Let T be the shortest-path tree obtained by the union of
192

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
these shortest paths. Let M be the set of vertices of T such that, for any w ∈ M , δ(x′, w) ≤ d, and w shares an edge of R
with a vertex y such that δ(x′, y) > d. The set M can be found in O (n) time by traversing T from its root x′ .

Observe that any point of R at distance d from x′ is one of the following:

• An element of M .
• A point in an edge e = uv , u ≺ v , of R such that e ∈ E(T). In this case, u ∈ M and δ(x′, v) > d.
• A point in an edge e = uv , u ≺ v , of R such that e /∈ E(T). Notice that, in this case, δ(x′, v) > d. Moreover, there is

exactly one z ∈ M such that (z, u) ∈ E(T).

Hence, in order to find all the points at distance exactly d from x′ it is sufficient to check the edges having a neighbor of
an element of M in T as an endpoint. Since each vertex is adjacent to at most one element of M , this can be done in O (n)

time. At the final step we need to find the maximum among all the points at distance d from x′ , which can also be done in
O (n) time. Our result follows. �
Theorem 11. Let P be a polygon with n vertices and let s0 ∈ P be a point on the convex hull of P . Then OptSol returns an optimal
solution S to the MinStation Problem such that s0 ∈ S in O (n2 + L

d n) time, where L is the length of P .

Proof. By Lemma 5, given si , the point si+1 is either a point on P at distance exactly d from si , a vertex of P , the projection
of a vertex onto an edge, or the d-projection of an edge onto another edge.

By Lemma 6, we only need to consider the maximum point with respect to � at distance d from xi , which can be found
in O (n) time as stated in Lemma 10.

There might be O (n2) projections of vertices and d-projections of edges. However, Lemma 7 states that in the set of
candidates we need to store at most three projections for each edge of P . Moreover, these projections can be found in O (n)

time for each edge.
The set of candidate points to compute all the elements of the set S has O (n) size. For each candidate x, we compute

the maximum point at distance d from x and associate this point to x, which by Lemma 10 takes O (n) time per candidate.
It is easy to see that we only need to consider the candidates contained in the interval of P from si to the maximum

point with respect to � at distance d from si . From all these candidates, we choose as si+1 the candidate which maximizes
yi+1, which can be done in O (n) time. Since we might need to place O (L

d) stations, this step takes time O (L
d n). Therefore,

the set S can be found in O (n2 + L
d n) time. �

5. Discretization

In this section, we present a discretization algorithm that is easy to implement for the MinStation problem, and then
show how it can be utilized to obtain a solution to the MinDistance problem which is close to optimal. This algorithm
avoids computing projections, drone distances (geodesic paths) and orthogonal visibility, which makes it very practical. The
idea is to construct a graph and apply a slight modification of Dijkstra algorithm.

Fix 0 < ε ≤ d and let X = {s0 = x0 � . . . � xr−1} ⊆ P be a set of points so that s0 lies on P ∩ CH(P) and the distance
between xi and xi+1 along P is at most ε , addition taken mod r. For technical reasons that will become apparent later,
we also ask that the vertices of P are contained in X . Consider the graph Gd(X) such that V (Gd(X)) = X in which two
elements xi, x j ∈ X are adjacent if the length of the geodesic path πxi ,x j in P ∪ Ext(P) connecting them is at most d (as
we will show soon, computing Gd(X) does not require the shortest-path trees mentioned in Lemma 10). We then solve the
problem of finding a shortest cycle in Gd(X) from x0 to itself going around P . The set of vertices of that cycle, including x0,
is a valid solution to our problem, but not necessarily an optimal one.

Note that the problem of finding a shortest cycle from x0 to itself can be reduced to that of finding a shortest path from
x0 to a copy x′

0 = xr of x0. To this end, we insert x′
0 in V (Gd(X)) in such a way that, if the length of the interval [xi , x0] is

at most d, then xi is adjacent to x′
0 instead of x0.

Now we show in detail how the algorithm works, including how to compute Gd(X).
It is possible to check whether a directed edge (xi, x j) belongs to E2 in O (n) time. This leads to a total time complexity

of O ((L
ε)3 + (L

ε)2n) for AppSol, where L denotes the total length of P .
This algorithm, while simpler to implement than OptSol, does not directly yield an approximation to the MinStation

problem (this is discussed in more detail in the next section). We now show how we can improve on this by applying this
algorithm more than once: two applications of the MinStation AppSol algorithm can be used to certify the sharpness of a
single application of this result, and a logarithmic number of applications can be used to give an additive approximation for
MinDistance.

Denote by α(P, s0, d, ε) be the number of base stations returned by the AppSol algorithm for given P , s0 ∈ P ∩ CH(P),
flight range d, and ε > 0. Let k be the minimum number of base stations among all solutions that have s0 as one of their
base stations. The key is the following result:

Theorem 12. α(P, s0, d + ε, ε) ≤ k ≤ α(P, s0, d, ε). In particular, if α(P, s0, d + ε, ε) = α(P, s0, d, ε), the solution is best possible
among those containing s0.
193

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
Algorithm 2: AppSol.
Input: Polygon P , s0 ∈ P ∩ CH(P), d > 0, ε > 0
Output: List of stations in a d-hull of P

1 if s0 = x0 is not a vertex of P then
2 Split the edge containing s0 in two in such a way that s0 becomes a vertex

3 Let V be the set of vertices of P and set X = V
4 Add a copy x′

0 of x0 to X
5 for each edge of P of length � > ε do
6 Add � l

ε � points to X dividing the edge into segments of length ≤ ε

7 Let X = {x0, x1, . . . , xm−1, xm = x′
0} be the set of points in clockwise order around P

8 Construct a weighted directed graph Hd(X) = (X, E) with E = E1 ∪ E2 defined as follows:
(a) (xi , x j) ∈ E1 if j = i + 1 and xi , xi+1 are on the same edge of P
(b) (xi , x j) ∈ E2 if i < j, and the open segment from xi to x j has length ≤ d and is contained in Ext(P)

(c) The weight of each edge (xi, x j) ∈ E is the Euclidean distance between xi and x j

9 for each xi ∈ X do
10 Use Dijkstra’s algorithm to compute Xi , the set of vertices of X that can be reached from xi by a directed path of total weight ≤ d

11 Construct a graph with vertex set X where xi is adjacent to x j iff x j ∈ Xi or xi ∈ X j . Since the vertices of P belong to X , one can easily check that
this graph is actually Gd(X).

12 Using BFS (or Dijkstra’s algorithm with weights 1), compute a shortest path from x0 to x′
0 = xm of minimum length in Gd(X)

return the set of vertices of Gd(X)

Proof. Clearly, α(P, s0, d, ε) ≥ k. It suffices to show that α(P, s0, d +ε, ε) ≤ k. Consider an optimal set of k base stations S∗ .
Let S be a set of base stations obtained by selecting the nearest point in X for each point in S∗ , then the geodesic distance
between consecutive base stations in S is at most d + ε . Therefore α(P, s0, d + ε, ε) ≤ k. �

Since s0 lies on the boundary of the convex hull of P , every solution to MinStation must contain a station on a point
z ∈P such that δ(x0, z) � d. This can easily be seen to imply that Theorem 13 can be adapted to work for general solutions
(and not only those that contain x0) by modifying the algorithm so that it searches for the shortest path in Gd(X) from xi
to itself for all xi with δ(x0, xi) � d + ε

2 , and then returns the shortest one among all of these. This slight variant of AppSol

will be called AppSol2.
This has immediate implications for MinDistance; if the least number of stations in a solution in Gd+ε (X) is at most k,

then the optimal solution to the MinDistance Problem (find the smallest flight range such that k stations are sufficient) lies
between d and d + ε . Thus by using binary search on d, the optimal flight range can be approximated up to an additive
constant.

Theorem 13. Given a positive integer k and an ε > 0, it is possible to find a solution to the MinDistance problem using k base stations
such that the flight capacity of the drones is at most ε larger than the optimal one. This is achieved by running O (log |X |) = O (log(L

ε +
n)) iterations of AppSol2 to perform a binary search on the set of all distinct drone (geodesic) distances between pairs of points of X.

Corollary 14. Given a positive integer k and an ε > 0,

• An additive ε-approximation for the MinDistance problem with one fixed base station can be computed in O ((n2 + Ln) log(L
ε +n))

time.
• A quasi-optimal additive ε-approximation for the MinDistance problem (i.e. with k or k + 1 base stations) can be computed in

O ((n2 + Ln) log(L
ε + n)) time.

6. Experiments

We implemented algorithm AppSol. The program is written in Java and is available at [14]. We run experiments on data
from Salamis Island using data provided by Harvard WorldMap.9 There are 596 vertices in the polygon representing the
island. The vertices are given by latitude and longitude and we converted them to (x, y) coordinates in meters. According
to our data, the perimeter of the island is 113639.9 meters.

Our goal was to find the optimal number of base stations using approximation algorithm AppSol and the sufficient
condition provided by Theorem 12. For different values of d and a fixed base station (s0 = 0) on the island, we apply the
following approach. We start with epsilon equal to the drone capacity d. We divide ε by 1.2 each time it does not satisfy
the sufficient condition of Theorem 12. Interestingly, the optimal number of base stations was found in all experiments. The
results are shown in Table 1. The program was executed on a Linux server with 32 core CPUs and 64 GB RAM. Observe that
k is monotone with respect to d but ε is not. Two solutions for d = 2000 and d = 2400 are shown in Fig. 10.

9 http://worldmap .harvard .edu.
194

http://worldmap.harvard.edu

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
Table 1
Columns: distance d in meters, k is the optimal number of base stations, ε of the last iteration is in meters, T1

is the time (in seconds) of the last iteration, and T2 is the total time of AppSol.

d k ε T1 T2

1000 85 10.48 55.502 378.434
1200 69 12.58 40.774 360.072
1250 67 2.54 1034.178 7696.363
1300 63 1.06 6912.250 49544.916
1400 54 8.49 90.388 792.151
1500 51 15.72 36.228 317.915
1700 44 63.85 3.861 38.557
1750 43 12.74 53.491 508.694
1800 42 2.12 2443.456 17636.010
1900 38 16.60 44.015 363.716
2000 36 52.17 7.316 73.641
2100 34 1.43 6772.667 49193.534
2400 26 90.15 2.676 39.461
2500 25 93.90 2.950 36.413
3000 20 2.45 3688.721 26533.493
3200 19 120.20 2.753 44.280

Fig. 10. Salamis Island in the Saronic Gulf. (a) 36 base stations for d = 2000. (b) 26 base stations for d = 2400. The number of base stations in (a) and (b)
is optimal among those containing s0 by Theorem 12.

7. Conclusions

In this paper we consider the problem of finding the minimum number of refueling stations along the boundary of an
island, modeled as a polygon P with perimeter L, in such a way that a drone with flight range d can follow a polygonal
path enclosing P . We describe an O (n2 + L

d)-time algorithm that attains an optimal solution under the restriction that a
base station is a point in the intersection of the boundary of P and its convex hull. Moreover, if we remove this restriction,
our algorithm returns a solution with at most one additional base station with respect to a globally optimal solution.

The setting of the problem allowed us to suppose that the drones fly at constant height, and therefore the assumption
that any drone is always able to fly between base stations at distance at most d is not unreasonable. However, some
applications may require to consider the elevation differences or the presence of obstacles between base stations, which
means that re-computing the maximum flight distance each time a base station is placed might be necessary. If this value
can be obtained in linear time per base station, then our algorithm could be adapted for these settings while keeping the
original time complexity. To accomplish this we only have change the value of d in the steps described in Lemma 9 and
Lemma 10, as these steps are done for each base station.

It remains as an open problem to determine if the MinStation problem without the restriction that one base station has
to lie on the convex hull can be optimally solved in polynomial time. This is relevant, since there exist examples in which
an optimal solution contains no base station on the convex hull of the island.

We also presented an algorithm to obtain an additive approximation to the problem of minimizing the fuel capacity
required for the drones to patrol an island when we are allowed to place at most k base stations around its boundary. The
main tool in this solution is a discretization of the original MinStation problem. This discretized approach also yields an
easier to implement algorithm to approximate the MinStation problem, albeit without any theoretical guarantees on the
195

S. Bereg, J.M. Díaz-Báñez, M. Haghpanah et al. Theoretical Computer Science 928 (2022) 183–196
quality of the solution. It is also an open problem to determine if an exact solution to the MinDistance problem can be
obtained in polynomial time.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] N. Ahmed, S.S. Kanhere, S. Jha, The holes problem in wireless sensor networks: a survey, ACM SIGMOBILE Mob. Comput. Commun. Rev. 9 (2) (2005)
4–18.

[2] B. Alzahrani, O.S. Oubbati, A. Barnawi, M. Atiquzzaman, D. Alghazzawi, UAV assistance paradigm: state-of-the-art in applications and challenges, J.
Netw. Comput. Appl. 166 (2020) 102706.

[3] S. Bespamyatnikh, An o (nlogn) algorithm for the zoo-keeper’s problem, Comput. Geom. 24 (2) (2003) 63–74.
[4] B. Bhattacharya, M. Burmester, Y. Hu, E. Kranakis, Q. Shi, A. Wiese, Optimal movement of mobile sensors for barrier coverage of a planar region, Theor.

Comput. Sci. 410 (52) (2009) 5515–5528.
[5] P. Bose, P. Morin, I. Stojmenović, J. Urrutia, Routing with guaranteed delivery in ad hoc wireless networks, Wirel. Netw. 7 (6) (2001) 609–616.
[6] B. Chazelle, Triangulating a simple polygon in linear time, Discrete Comput. Geom. 6 (3) (1991) 485–524.
[7] W.-P. Chin, S. Ntafos, Optimum watchman routes, in: Proceedings of the Second Annual Symposium on Computational Geometry, 1986, pp. 24–33.
[8] C.T. Cicek, H. Gultekin, B. Tavli, The location-allocation problem of drone base stations, Comput. Oper. Res. 111 (2019) 155–176.
[9] J. Czyzowicz, P. Egyed, H. Everett, D. Rappaport, T. Shermer, D. Souvaine, G. Toussaint, J. Urrutia, The aquarium Keeper’s problem, in: Proceedings of

the Second Annual ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 459–464.
[10] J.M. Díaz-Báñez, J.A. Mesa, A. Schöbel, Continuous location of dimensional structures, Eur. J. Oper. Res. 152 (1) (2004) 22–44.
[11] S. Ganeriwal, A. Kansal, M.B. Srivastava, Self aware actuation for fault repair in sensor networks, in: IEEE International Conference on Robotics and

Automation, 2004, in: Proceedings. ICRA’04. 2004, vol. 5, IEEE, 2004, pp. 5244–5249.
[12] S.K. Ghosh, A. Maheshwari, S.P. Pal, S. Saluja, C.V. Madhavan, Characterizing and recognizing weak visibility polygons, Comput. Geom. 3 (4) (1993)

213–233.
[13] L. Guibas, J. Hershberger, D. Leven, M. Sharir, R.E. Tarjan, Linear-time algorithms for visibility and shortest path problems inside triangulated simple

polygons, Algorithmica 2 (1) (1987) 209–233.
[14] M. Haghpanah, Border protection project. GitHub repository, GitHub /mhaghpanah /RocioBorderProtection, 2022.
[15] I. Hong, M. Kuby, A.T. Murray, A range-restricted recharging station coverage model for drone delivery service planning, Transp. Res., Part C, Emerg.

Technol. 90 (2018) 198–212.
[16] H. Huang, A.V. Savkin, A method of optimized deployment of charging stations for drone delivery, IEEE Trans. Transp. Electrif. 6 (2) (2020) 510–518.
[17] Y. Karaca, M. Cicek, O. Tatli, A. Sahin, S. Pasli, M.F. Beser, S. Turedi, The potential use of unmanned aircraft systems (drones) in mountain search and

rescue operations, Am. J. Emerg. Med. 36 (4) (2018) 583–588.
[18] S. Kumar, T.H. Lai, A. Arora, Barrier coverage with wireless sensors, Wirel. Netw. 6 (13) (2007) 817–834.
[19] G. Laporte, S. Nickel, F. Saldanha-da Gama, Introduction to location science, in: Location Science, Springer, 2019, pp. 1–21.
[20] D.-T. Lee, F.P. Preparata, Euclidean shortest paths in the presence of rectilinear barriers, Networks 14 (3) (1984) 393–410.
[21] M. Li, L. Zhen, S. Wang, W. Lv, X. Qu, Unmanned aerial vehicle scheduling problem for traffic monitoring, Comput. Ind. Eng. 122 (2018) 15–23.
[22] Y. Liu, Z. Liu, J. Shi, G. Wu, C. Chen, Optimization of base location and patrol routes for unmanned aerial vehicles in border intelligence, surveillance,

and reconnaissance, J. Adv. Transp. (2019) 2019.
[23] T. Long, M. Ozger, O. Cetinkaya, O.B. Akan, Energy neutral Internet of drones, IEEE Commun. Mag. 56 (1) (2018) 22–28.
[24] S.G. Manyam, S. Rasmussen, D.W. Casbeer, K. Kalyanam, S. Manickam, Multi-UAV routing for persistent intelligence surveillance & reconnaissance

missions, in: 2017 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2017, pp. 573–580.
[25] A.A. Melkman, On-line construction of the convex hull of a simple polyline, Inf. Process. Lett. 25 (1) (1987) 11–12.
[26] A. Merwaday, A. Tuncer, A. Kumbhar, I. Guvenc, Improved throughput coverage in natural disasters: unmanned aerial base stations for public-safety

communications, IEEE Veh. Technol. Mag. 11 (4) (2016) 53–60.
[27] G. Nagy, S. Salhi Location-routing, Issues, models and methods, Eur. J. Oper. Res. 177 (2) (2007) 649–672.
[28] S. Ntafos, L. Gewali, External watchman routes, Vis. Comput. 10 (8) (1994) 474–483.
[29] J. O’rourke, Art Gallery Theorems and Algorithms, vol. 57, Oxford New York, NY, USA, 1987.
[30] R.G. Ribeiro, L.P. Cota, T.A. Euzébio, J.A. Ramírez, F.G. Guimarães, Unmanned-aerial-vehicle routing problem with mobile charging stations for assisting

search and rescue missions in postdisaster scenarios, IEEE Trans. Syst. Man Cybern. Syst. (2021).
[31] İ. Sarıçiçek, Y. Akkuş, Unmanned aerial vehicle hub-location and routing for monitoring geographic borders, Appl. Math. Model. 39 (14) (2015)

3939–3953.
[32] T.C. Shermer, Recent results in art galleries (geometry), Proc. IEEE 80 (9) (1992) 1384–1399.
[33] X. Tan, Fast computation of shortest watchman routes in simple polygons, Inf. Process. Lett. 77 (1) (2001) 27–33.
[34] X. Tan, T. Hirata, Finding shortest safari routes in simple polygons, Inf. Process. Lett. 87 (4) (2003) 179–186.
[35] X. Tan, T. Hirata, Y. Inagaki, Corrigendum to an incremental algorithm for constructing shortest watchman routes, Int. J. Comput. Geom. Appl. 9 (03)

(1999) 319–323.
[36] J. Urrutia, Art gallery and illumination problems, in: Handbook of Computational Geometry, Elsevier, 2000, pp. 973–1027.
[37] G. Wang, G. Cao, T.F. La Porta, Movement-assisted sensor deployment, IEEE Trans. Mob. Comput. 5 (6) (2006) 640–652.
[38] C. Wei-Pang, S. Ntafos, The zookeeper route problem, Inf. Sci. 63 (3) (1992) 245–259.
[39] E. Yakıcı, Solving location and routing problem for UAVs, Comput. Ind. Eng. 102 (2016) 294–301.
196

http://refhub.elsevier.com/S0304-3975(22)00392-9/bib1FA422823E4146748058196EBB033B3Es1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib1FA422823E4146748058196EBB033B3Es1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibD7D41ADF2AB99D330CED12DADA5AD07As1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibD7D41ADF2AB99D330CED12DADA5AD07As1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib89EB6093B820A14DE2F8C901B67482DAs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibFC78A7A4407E68F42AD9CCE6CC41139Fs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibFC78A7A4407E68F42AD9CCE6CC41139Fs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibDA423B47A7F4106820D4587BE214C734s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib40A6B8ED5CEFCAC01868620C8B0CCB5Ds1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibC040FD12752820FFAAF7AF5ECD2D7D62s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibB825FD8F61A774AD85BED69893BA11FEs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib22DA41D9AF56856587BFAF72ECD4BD71s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib22DA41D9AF56856587BFAF72ECD4BD71s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib88EA0FB0AA57D170FFCA5593EE92953Es1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib0C8058CD462A7530E11B4EDAC7907274s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib0C8058CD462A7530E11B4EDAC7907274s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib1A25191B2BF73A1DF8465122AD97068Cs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib1A25191B2BF73A1DF8465122AD97068Cs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib684AA0268FC536F1B265A6257ACAFEE9s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib684AA0268FC536F1B265A6257ACAFEE9s1
http://GitHub/mhaghpanah/RocioBorderProtection
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibF4BD48081BAE96A385BE17923C4C0635s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibF4BD48081BAE96A385BE17923C4C0635s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibEB1D9422B807AE812BFD448B314BF866s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib0939F9AC750D7889F2DEA8233B25064Ds1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib0939F9AC750D7889F2DEA8233B25064Ds1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib295C503AA487579E41CFC49F58C07FF7s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibDD5E71FCF2E5BF1825E8641A5D8E5C65s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib0A450C5AEF304FA3037819F0C2E77523s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibA3EB61D0F460AE67244B5EFFFED9523Bs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibC31E81CB877A1F0172D09BE296981E30s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibC31E81CB877A1F0172D09BE296981E30s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib7124C34BDF46A217246347134AE373E1s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib83188F17F205858D1C1AE1911FF4A7F3s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib83188F17F205858D1C1AE1911FF4A7F3s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib7E1E5B7AE5D416B347E854F9E9925C1Cs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib83C90ADBB0D320E7BF550FD9D6AF4C4Bs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib83C90ADBB0D320E7BF550FD9D6AF4C4Bs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib560CFF132842D5A16965DF99078073A7s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibA3CB54BD456DF25FC7E1814E149C7B56s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibC1942207DE98F7E7F24B5E111847FE27s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib3B2B2C9446559EF8A776BE12D8F8C426s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib3B2B2C9446559EF8A776BE12D8F8C426s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib07F70C313328B79CA30A1652EFF6CFC0s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib07F70C313328B79CA30A1652EFF6CFC0s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib2F32BD3888748A3C55D932311462ED04s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibBF5AB37C0FD78FB5E5FF711C38CFCDC4s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibCE60A3A5F6AC99BEC29B1E2205475F71s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib18422FAC9ADBF4EBA9D3BD62D4C4F6A3s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib18422FAC9ADBF4EBA9D3BD62D4C4F6A3s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib39B84A63249EEEE0C7051E39DECE569Bs1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib872969237731E9EDA2EAAFDF138EB85Ds1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bibFC50144F32850D1222FA3C0586093834s1
http://refhub.elsevier.com/S0304-3975(22)00392-9/bib9EA02025A83D06B92435E2468AA14C34s1

	Optimal placement of base stations in border surveillance using limited capacity drones
	1 Introduction
	1.1 Related work

	2 Terminology and problem formulation
	3 Preliminary results
	4 The algorithm
	4.1 Time complexity

	5 Discretization
	6 Experiments
	7 Conclusions
	Declaration of competing interest
	References

