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S. Bereg1, J.M. Dı́az-Báñez2, Paul Horn3, Mario A. Lopez4, and Jorge Urrutia5

1 Department of Computer Science, University of Texas at Dallas, USA. Partially
supported by NSF award CCF-1718994.

2 Department of Applied Mathematics II, University of Seville, SPAIN. Partially
supported by grants PID2020-114154RB-I00 and TED2021-129182B-I00 funded by

MCIN/AEI/ 10.13039/501100011033 and the European Union
NextGenerationEU/PRTR.

3 Department of Mathematics, University of Denver, USA. Partially supported by
Simons Collaboration Grant #525039.

4 Department of Computer Science, University of Denver, USA. Partially supported
by a University of Denver John Evans Award.
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Abstract. A set of n drones with limited communication range is de-
ployed to monitor a terrain partitioned into n pairwise disjoint and closed
convex trajectories, one per drone. There is exactly one communication
link between two trajectories if they are close enough, and drones can
communicate provided they visit the link at the same time. If each robot
flies around an assigned area and shares information with the neigh-
bors periodically the system is said to be synchronized. Over time, one
or more drones may fail and the ability to survey, communicate, and
stay connected decreases, thus the robustness against drone failure be-
comes crucial. In this paper we study various problems related to the
proper functioning of a synchronized system under drone failure. First,
we provide efficient algorithms, both centralized and decentralized, for
determining the connected components induced by the set of surviving
drones. Second, we study coverage, isolation, and connectivity under a
probabilistic failure model and show that, in the case of grids, the system
is quite robust in the sense that it can tolerate a large probability of fail-
ure before drones fail to completely cover the terrain, become isolated,
or the system loses full connectivity.

Keywords: Unmanned Aerial Vehicles · Synchronized Communication
System · Communication Graph · Connectivity · Probabilistic model.

1 Introduction

Teams of Unmanned Aerial Vehicles (UAVs), colloquially known as drones, are
becoming a trend in the last few years for their use in a wide variety of appli-
cations such as area monitoring, precision agriculture, search and rescue, explo-
ration and mapping, and delivery of products, to name a few; see [13,21,17] and
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references therein for a comprehensive survey on the topic. The coordination of
a team of autonomous vehicles enables the execution of tasks that no individual
autonomous vehicle can accomplish on its own, and thus there has been an in-
creasing interest in studying teams of drones that cooperate with each other. In
such multi-drone systems a desired collective outcome arises from the interaction
of the drones with each other and with their environment, via a set of installed
sensors and communication devices. Considering that multi-drone systems are
often deployed in adverse circumstances and the network may get disconnected,
robustness against drone failure becomes crucial.

The problems raised in this paper assume the framework recently proposed
in [8]. A partition of a terrain to be covered is given and every drone is assigned
a different section of the partition. Each drone travels on a fixed closed convex
trajectory while performing a prescribed task, such as monitoring its assigned
area. In order to allow cooperation, each drone needs to communicate periodi-
cally with other drones. Since the UAVs have a limited communication range,
two of them need to be in close proximity of each other in order to communicate.
In [8] the authors presented a framework to survey a terrain in the scenario de-
scribed above. As an abstraction, they considered a model in which each drone is
modeled as a point that travels on a unit circle at constant speed, and this speed
is the same for all the drones. Without loss of generality, they assume that one
time unit is the time required by a robot to complete a tour of a circle. These
circles may intersect at a single point but do not cross. The communication be-
tween two robots can take place if their corresponding circles touch, and it is
carried out at the point of intersection. They also show how to generalize the
results to a more realistic model. In [8] it is assumed that the unit disk graph
defined by the given set of circles (trajectories) is connected, they call it the
communication graph.

The main problem addressed in [8] is to obtain a synchronization schedule,
that is, to assign a starting position and travel direction to each trajectory so
that if n drones follow this schedule, every pair of them traveling in two adjacent
circles pass through the intersection point of their trajectories at the same time.
A set of trajectories with a synchronization schedule conform a synchronized
communication system (SCS) [8]. In the same paper, the authors also discuss
necessary and sufficient conditions for the existence of a synchronization sched-
ule. For an illustration see Figure 1 and related video6. Note that although not
every pair of robots can communicate directly, a robot may relay a message to
another robot through a sequence of intermediate message exchanges.

If the system is synchronized, as described above, a robot can easily detect
the failure of a neighboring robot. If a robot di in trajectory Ci arrives at the
communication point between Ci and another trajectory Cj , and it fails to meet
another robot, it will assume that the robot in Cj is no longer functional. Under
such circumstances, a reasonable strategy is for di to switch to Cj at this point
and take over the task of the missing robot. In [8], this strategy is called the
shifting strategy. Under the shifting strategy, an undesirable phenomenon known

6 https://www.youtube.com/watch?v=T0V6tO80HOI

 https://www.youtube.com/watch?v=T0V6tO80HOI


Connectivity and Robustness of Multi-drone Systems 3

(a)

3

(b)

Fig. 1: Examples of synchronized communication systems. The robots in the SCS
are represented by solid black dots. (a) The communication graph is a grid. (b)
The communication graph is a tree. If the white drones leave the system, the
black drones become isolated.

(b)(a) (c)

Fig. 2: Examples of SCSs where some robots fail. The path traversed by the
available robots is drawn in bold stroke. The robots are represented by solid black
points. (a) The robots are not isolated, however there are uncovered trajectory
segments. (b) The robots are isolated and everything is covered. (c) The robots
are isolated and there are uncovered trajectory segments.

as isolation, may occur. A drone is isolated if it fails permanently to meet other
drones. The three black drones in Figure 1(b) never meet, and thus they are
isolated. Note that an isolated robot always shifts trajectories at communication
links. See some examples in Figure 2(b) and Figure 2(c). Moreover, after enough
failures, some portions of the trajectories may never be visited again; i.e., some
parts of the terrain become uncovered. Figure 2(a) and Figure 2(c) illustrate
examples in which the circles are not totally covered when two robots fail.

A ring is the closed path followed by an isolated drone. Each ring is composed
of sections of various trajectories and has a direction of travel determined by
the direction of movement in the participating trajectories. Each section of a
trajectory between two consecutive link positions participates in exactly one
ring, thus the rings in an SCS are pairwise disjoint. The number of rings and its
length depends on the communication graph. Figure 3 illustrates some examples.
See [2] for a study on rings and the isolation phenomenon.

In [8], neighboring circles are assigned opposite travel directions (clockwise
and counterclockwise) so as to enable the shifting strategy. From now on we work
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Fig. 3: SCSs with two rings (a); one ring (b) and three rings (c).

with SCSs where every pair of neighboring circles have opposite travel directions
and, consequently, the communication graph is bipartite. Under this model, our
main contributions are the following:

1. Connected components. Consider a system in which some drones may have
failed. Two drones belong to the same connected component if they can ex-
change messages, possibly through a sequence of intermediaries. We provide
efficient algorithms for computing the connected components of the system,
both centralized (where a central server is privy of a snapshot of the system,
see Theorem 2) and decentralized (using only the information that drones
can gather while flying and meeting other drones, see Theorem 4). For the
case of grids, the required flying time can be proportional to the number of
trajectories, and this bound is tight (Theorem 3).

2. Probabilistic failure model. We address the robustness of a system in which
drones survive with probability p, and study three properties: coverage, full
connectivity, and drone isolation. For coverage, we establish a sharp thresh-
old in a t× t grid (Theorem 5) and derive a general (and exact) expression
for the probability that all trajectories are fully covered in a general system
(Theorem 6). Also for t× t grids, we establish sharp thresholds for the exis-
tence of isolated drones (Theorem 9) and connectivity (Theorem 10). These
results show that the system is extremely robust to random failure as these
thresholds are o(1) as t → ∞. For arbitrary grids, we provide less sharp
results (Theorems 11 and 12). For general systems, the problem for com-
munication is more complicated and we show some examples that illustrate
that robustness, similar to that of grids, is no longer possible.

2 Related work

There is a vast literature related to communication strategies for a team of
robots monitoring a given area. Our scenario shares similarities with works on
patrolling agents [10,16] where the drones patrol along predefined paths. The
goal is to share data by making observations as well as synchronizing with their
teammates during brief and sporadic opportunities. Typically, research has fo-
cused mostly on the construction and validation of working systems, rather than
a more general and formal analysis of problems from a mathematical point of
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view. In this paper, we study some algorithmic and probabilistic problems related
to communication and coverage in the particular framework of a synchronized
communication system (SCS), as proposed in [8].

Recently, several algorithmic and combinatorial problems arising from the
shifting strategy of a SCS, as outlined in the previous section, have been studied.
In [2,1] the authors propose various quality measures for a synchronized system
regarding the robustness of a SCS in the presence of failures. With respect to
communication between robots, they consider two quality measures, k-isolation
resilience and broadcasting resilience. The k-isolation resilience is the minimum
number of robots whose removal may cause the isolation of at least k surviving
robots. The broadcasting resilience is the minimum number of robots whose
removal causes a loss of connectivity in the system. For the study of robustness
with respect to area coverage, they introduce the concept of coverage resilience
as the minimum number of robots whose removal may result in at least one
non-covered trajectory segment. Computing these measures leads to interesting
combinatorial and algorithmic problems.

On the other hand, the use of stochastic strategies instead of the determin-
istic one in the shifting protocol of a SCS has been studied in [4]. In this work,
the authors propose the use of a random strategy : every time a robot arrives
at a communication link between its current trajectory and a neighboring one,
it chooses independently, with probability p to pass to the neighboring trajec-
tory by means of a shifting operation. The authors showed that using a random
decision in the shifting protocol generates random walks and proved theoret-
ical bounds on metrics related to the system performance. Also, in the same
paper, it has been experimentally proved that the random strategies outper-
form the deterministic strategy. Indeed, the study of stochastic UAV systems
has attracted considerable attention in the field of mobile robots. This approach
has several advantages such as shorter times to complete tasks, cost reduction,
higher scalability, and more reliability, among others [3,22].

In this paper we consider a stochastic model to study the robustness of a
SCS against drone failure in a synchronized multi-drone system. Connectivity
and reliability are important concerns of computational networks. For example,
in [11] the influence of the communication range has been examined to obtain
necessary and sufficient conditions for connectivity in wireless networks. The
authors derive the critical power a node in the network needs to transmit in order
to ensure that the network is connected with probability one as the number of
nodes in the network goes to infinity.

In the same context, the authors of [19] derived bounds for the probability
that a node is isolated. Maintaining a high reliability level of a drone fleet is
of great significance considering the possibility of drone failures. For instance,
models for performance evaluation of multi-state degraded systems are provided
in [20,15]. Theses models consider that the system degrades with use and that
these degradations may affect the system efficiency. As time progresses, it can
either go to the first degraded state upon degradation, or it can go to a failed
state upon a random and sudden failure. When the system in its last acceptable
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state, a preventive maintenance is performed to restore the system to one of the
previous higher performance states. Performance measures are used to evaluate
the systems subjected to minimal repairs.

In addition to studying the connectivity of a SCS, the goal of this paper is
to provide a probabilistic study of coverage, isolation, and connectivity of the
system under drone failures. A probabilistic analysis can be used for randomly
generating experimental data for the problem, with the property that the in-
stances are asymptotically robust with probability one. Moreover, the analysis
can suggest heuristics that are provably asymptotically optimal. Many problems
have been probabilistically analyzed in the literature, and as a consequence of
those studies, experimental data have been generated [12] and new heuristics
have been proposed (see, for instance, [14] for the multi-knapsack problem and
[18] for the generalized assignment problem).

3 Computing the connected components

In this section we design efficient algorithms for determining the connected com-
ponents induced by a set of surviving drones in a SCS. Accordingly, assume
we have a SCS where a subset of drones have left the system and the surviv-
ing ones apply the shifting protocol. It is further assumed that no more drones
leave the system. While some pairs of drones may communicate directly, com-
munication between other pairs may rely on passing information through other
drones; in some cases communication between drones may be impossible. We
define the drone communication graph GD as the graph whose vertices are the
drones, two of which are adjacent if the corresponding drones communicate di-
rectly at some point in time. The connected components of this graph identify
which sets of drones can, directly or indirectly, communicate with each other.
We denote by C(d) the connected component of a drone d in GD. It is easy
to see that communication through other robots can sometimes be faster than
direct communication, e.g. it may take a long time for two drones to meet each
other and communicate directly. In this section we show how to compute the
connected components in the drone communication graph under two models of
computation:

1. Centralized: Suppose a central server contains the full information of a
SCS, including the set of drone trajectories and the current locations of the
drones. How can the connected components of the SCS be found efficiently?

2. Decentralized: Suppose the drones themselves can pass messages when
they meet each other. How can they determine the other drones in their
connected component, and how quickly can this be accomplished?

Note that in the second case, the drones do not know how many other drones
are active or where they are; they merely learn what drones are active as they
meet other drones and exchange information. For that reason, the complexity
of both problems is different. The complexity of our algorithm in the first case,
is the number of steps the central server needs to compute, while in the second



Connectivity and Robustness of Multi-drone Systems 7

case it is the flying time of the drones before each drone knows its connected
component.

Nonetheless, we show that for the s × t grid both problems can be solved
with highly efficient algorithms. The key notion for our results is the use of the
token graph introduced in [1]. We assume that at time 0 each drone di holds a
token ti. This establishes a bijection between the drones and the tokens. When
two drones meet, they exchange their tokens. The token graph GT of a drone
system is the graph whose vertices are the tokens, two of which are adjacent if
at some time the corresponding tokens are exchanged. Note that each token ti
stays in the same ring of drone di. Thus, the token graph can also be defined
using drones as vertices where two drones are adjacent if they encounter each
other in a system where only two drones exist. We have the following result.

Theorem 1. Two drones of GD are in the same component if and only if the
corresponding tokens are in the same component in GT .

Proof. Note that if two tokens are neighbors inGT then the corresponding drones
are connected by a path in GD (corresponding to the drones which held the two
tokens before they were exchanged). Likewise, if two drones are neighbors in
GD, it corresponds to the exchange of a pair of tokens – and those tokens are
connected to the initial tokens held by the drones by a series of swaps, so that
the tokens corresponding to the connected drones in GD are connected by a path
in GT . �

In the case of an s× t grid with only two drones, the drones encounter each
other if and only if they are in the same row or the same column [1]. In this case,
the token graph can be viewed as the graph where the vertices are the drones
and two drones are adjacent if, at any point in time, they are in the same row
or column. If this happens, except when transitioning from one trajectory to
another, the said drones will always be in the same row (both moving down or
up) or column (both moving left or right) [1]. We call it an RC-graph.

Theorem 2. The connected components in GD can be computed in polynomial
time in the centralized model. Furthermore, they can be computed in linear time
in the s× t grid.

Proof. The token graph can be computed in polynomial time and, for the s× t
grid it can be computed in linear time [1]. The connected components in the token
graph can be computed in linear time using breath-first search. By Theorem 1,
this yields the connected components in GD in the centralized model. For a
drone system on a grid, the token graph is the RC-graph. The RC-graph and its
connected components can be computed in linear time. �

3.1 Decentralized Computation

The goal in the decentralized model is for each drone di to compute C(di), its
connected component in GD. We use the following algorithm. Each drone di
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maintains a list L(di) of some drones from C(di). Initially, we set L(di) := {di}.
When drones di and dj meet at some time, they replace both L(di) and L(dj)
with the union L(di) ∪ L(dj). It is clear that if we follow this protocol long
enough, all drones will know their connected components (that is L(di) = C(di)
for all i.) Our goal is to give bounds for the running time of this approach.

We emphasize, again, that the time measured here is actually flying time of
the drones, i.e. how long do the drones have to fly until they each, individually,
know the other drones own components. We ignore, then, the computation of
the set unions involved as this is negligible compared with the actual flying time
from one communication point to another. We further assume that a unit time
is needed to navigate a trajectory. We begin with sharp bounds for the problem
on a t× t grid.

Theorem 3. On the t× t grid, at time t · (t− 1) we have that L(d) = C(d) for
all drones d. Furthermore, there are drone configurations that require Ω(t2) time
until L(d) = C(d) for all drones d.

Proof. We use the idea of tokens. At the beginning (time 0), each drone di holds
token ti; recall that when two drones encounter each other they exchange tokens
(along with taking the union of their respective lists). Let d(i,m) denote the
drone holding token ti at time m. Thus, d(i, 0) = di. Note that d(i,m) is always
in the same component as drone di as it holds ti due to a sequence of interactions
with other drones, each passing ti to the next drone of the sequence. Moreover,
L(d(i,m)) ⊆ L(d(i,m′)) if m ≤ m′ as whenever tokens are exchanged, the lists
are passed along.

Fix an (arbitrary) drone d0 and consider any drone dk in C(d0). Let d0, d1, . . . ,
dk be the shortest path between d0 and dk in the token graph. By the construc-
tion of the token graph as an RC-graph, it is easy to see that the diameter of
the token graph is at most t − 1, and in particular k ≤ t − 1. Note that ti and
ti+1 are in the same row or column, and hence drones holding them meet within
time t. This implies that, for instance, d1 ∈ L(d(0, t)) at time t when the drones
with token t0 and t1 meet, the label d1 is passed to the drone holding token t0.
Inductively, it follows di ∈ L(d(0, i · t)) at time i · t: the label di is given to the
drone carrying token ti−1 in the first time t, then to the drone carrying token
ti−2 in the next time t, until it at last is passed to the drone hoping token t0.
This shows that L(d(0, t(t− 1)) is complete at time k · t ≤ (t− 1)t and as d0 is
arbitrary, this completes the proof.

We now provide a set of drones {d1, . . . , dk} which show this time can be
quadratic. For this set of drones, d1 6∈ L(d(k,m)) until time m = Ω(t2). The
construction involves a set of drones {d1, . . . , dk} on the t× t grid satisfying the
following conditions:

1. di and di+1, for i = 1, 2, . . . , k share the same row or column, and there are
no rows or columns with more than two drones.

2. The distances di,i+1 between di and di+1 are decreasing, for i = 1, 2, . . . , k.
3. The polygonal chain formed by the union of the segments connecting di to
di+1 is a spiral polygonal chain; see Figure 4.
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4. Drones on the same column move in opposite directions (clockwise and coun-
terclockwise) along their ring, while drones in the same row move in the same
direction.

d1

d2

d4

d3

(a)

d1

d2

d4

d3

p2

p1

(b)

Fig. 4: (a) Drones are arranged in a spiral polygonal chain. (b) The bold line
represents the propagation of the label d1 through the system for times ≤ t.
Drones holding tokens t3 and t4 meet at p1 and p2.

The key observation is that the drone holding token ti will only meet the
drones holding token ti+1 and ti−1 and by placing the drones carefully, the
intersections will be set up so that the label of d1 will only propagate through a
small number of consecutive drones in time t.

Consider four consecutive drones in {d1, . . . , dk}; without loss of generality
assume these are d1, d2, d3 and d4. We claim that at time t, the only elements
in {d1, . . . , dk} with d1 ∈ L(d(i, t)) are i = 1, 2, 3. To see this, observe that since
d1,2 > d2,3, t2 meets t3 the first time before it meets t1. The label d1 is thus
added to the list of the drone holding token t3 during the second time the drones
holding tokens of t2 and t3 meet. At this point t3 has already swapped with t4
twice. Hence d1 6∈ L(d(4, t)) at time t.

Figures 3a and 3b illustrate first this setup and then the process itself. Figure
4 illustrates how the threshold of knowledge of drone d1 moves forward through
the process Note it never moves from the drone holding token t1 directly to, say,
that holding token t3 as even though the rings of these drones intersect, drones
holding these tokens never directly communicate due to the timing. It follows
that to reach the drone holding token t2i label d1 will take t(i+ 1) time. ut

For a general system, a similar argument can be used to prove the following.

Theorem 4. Consider a general system of N drones on n trajectories and ring
lengths r1, r2, . . . , rk. Then at time N ·max{lcm(rl, rm) : l 6= m}, L(di) = C(di)
for all drones di, i = 1, · · · , N .
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Proof. The proof is similar to that of Theorem 3 and we highlight the slight
differences. The key observation here is that if two tokens will be exchanged,
they will be exchange within any interval of time length T = max{lcm(ri, rj) :
i 6= j}. Thus, instead of considering the lists L(d(i, k · t)) we consider the lists
L(d(i, k ·T )). Also, the upper bound of t−1 on the diameter of the token graph is
no longer valid; instead we replace it with an upper bound of N . The remainder
of the proof, however, is identical: the argument of Theorem 3 implies that for
any arbitrary drone d0, at time i · T the list L(d(0, i · T )) contains all drones at
distance at most i from d0 in the token graph. ut

4 A probabilistic failure model

In this section we consider a simple stochastic model to measure the robust-
ness of our drone systems. In [1,2], three notions of resilience of a system were
introduced:

– Coverage resilience: The minimum number of drones that need to be
destroyed so that some part of the system is no longer observed. The coverage
resilience is always the length of the shortest ring.

– Broadcasting resilience: The minimum number of drones that need to be
destroyed so that the system is no longer connected.

– Isolation resilience: The minimum number of drones that need to fail so
that some drone is isolated7.

Implicitly, these notions measure the robustness of the system against a malicious
attacker – how many drones must an attacker destroy to ruin some desirable
property of the system.

In this section, we study the robustness of solutions to random failure; this
can be thought of, perhaps, as the robustness of the drone system to mechanical
failure. Regarding coverage, we establish a sharp threshold for coverage in a
t× t grid and record a general (and exact) expression for the probability that all
trajectories are covered in a general system. This is fairly simple in that it only
depends on the multi-set of ring lengths, and not on how the system is laid out.
In comparison to the coverage resilience (which is t for the t × t) grid, it turns
out that nearly t2− t ln(t) random drones can be destroyed while the system will
still be covered (with high probability).

For communication, the situation is much more complicated for general sys-
tems as the robustness depends on how the rings interact with each other. Here,
we provide a number of results for a variety of systems. Our most precise result
is for the t× t grid, where we establish a precise threshold for both connectivity
and the existence of an isolated drone – again, there is a dramatic difference
from the deterministic case; the broadcasting and isolation resiliences for the
t× t grid both are 2(t− 1), yet nearly t2 − t ln t

2 drones can be destroyed at ran-
dom while maintaining connectivity. For general s× t grids, we establish weaker

7 In [2], the more general problem of isolating k drones is studied under the name
k-resilience.
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results in some regimes. Finally, we illustrate a number of phenomena that occur
in general systems to highlight the difficulties of understanding the problem in
general.

4.1 Coverage under random failure

Theorem 5. Consider a full drone system in the t×t grid, where drones survive
with probability p. Let V denote the event that the entire system is covered. Then
if p = ln t+c

t for some constant c

lim
t→∞

P(V) = e−e
−c

.

Proof. Recall that the system is covered as long as there is at least one drone in
every ring; in the full t× t grid there are t rings each with t drones. Hence, the
probability some ring is uncovered is (1−p)t. Since the rings partition the system,
the number of empty rings hence has a binomial Bin(t, (1 − p)t) distribution.
Note that if p = ln t+c

t , then

lim
t→∞

t(1− p)t = lim
t→∞

t

(
1− ln t+ c

t

)t

= e−c.

This ensures that the limiting distribution of the number of empty rings is
asymptotically Poisson, and the probability that there are no empty rings is
asymptotically e−e

−c

. �

Note that this implies that if ω(t) → ∞ arbitrarily slowly then p = ln t+ω(t)
t

implies P(V)→ 1 while p = ln(t)−ω(t)
t implies that P(V)→ 0.

Essentially the same argument proves that ring systems whose minimum
length is t are still covered (with probability tending to 1) after random drone

failure so long as the probability of survival is p = ln t+ω(t)
t . It is rather more

difficult here to give a meaningful bound in the other direction however, as this
depends on the ring length distribution. None the less, the general probability
is failure is given as follows:

Theorem 6. Suppose that a general system has ring lengths r1, . . . , rt and drones
fail with probability p. Then

P(V) =

t∏
i=1

(1− (1− p)ri).

4.2 Communication under random failures

In this section we study the connectivity of GD under random failure. In the case
of the t × t grid, we prove sharp thresholds for the properties of containing an
isolated vertex and for connectivity – cf. Theorems 9 and 10 below. We remark
that our results are quite similar to those for the well known Erdős-Rényi random
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graph [9], but our setting differs in two crucial ways. First the ‘host graph’ (which
can be thought of as the RC-graph for the full system) is not complete; nor is
the resulting random GD a subgraph of the full GD as which drones directly
communicate within a subsystem differs from that of the full. Second, while
most work generalizing results of the Erdős-Rényi graph to more general host
graphs (see, eg. [6,7]) takes a random set of edges, we actually take a random
set of vertices. A side effect is that the properties we study are not monotone;
additional drones surviving may break these properties.

Connectivity in general systems.
In contrast to Theorem 6 above – which provides a relatively simple expres-

sion for the probability that a system is covered after random failure, based only
on the ring lengths in the system – the problem of when all drones can pairwise
communicate is rather more complicated. Several interesting phenomena hap-
pen which make general statements hard, as the geometry of the system is much
more important. To motivate the restriction to grids, we highlight some of those
phenomena which make stating general theorems difficult.

– Bottlenecks: Bottlenecks can occur that make the system less robust, as
captured in the following proposition.

Proposition 7 Let S be a full drone system with broadcasting resilience t,
where the failure of t drones splits the system into sets of n1 and n2 drones
that do not communicate. Suppose that the drones survive with probability
p. Let C denote the event that the system of drones is connected (that is, all
drones can communicate with one another). Then

P(C) ≤ 1− (1− p)t(1− (1− p)n1)(1− (1− p)n2).

Proof. This follows immediately, as if a drone system has resilience t, then
there is a set of t drones whose removal disconnects the system and these
drones all fail with probability (1−p)t; meanwhile at least one drone survives
in each side with probability (1− (1− p)n1)(1− (1− p)n2) . ut

It is easy to construct drone systems that have small (i.e. constant sized)
bottlenecks. Indeed, consider a full drone system S shown in Figure 5 where
S1 and S2 are arbitrary systems of size n1 and n2 respectively. This drone
system has resilience at most three as if the drones in the red ring fail. Then

P(C) ≤ 1− (1− p)3(1− (1− p)n1+2)(1− (1− p)n2+2),

and hence for any p < 1, P(C) is bounded away from 1. This contrasts with
more robust systems, like the grid, where P(C)→ 1 for even relatively small
values of p (cf. Theorem 10.)

– Ring lengths do not determine threshold: As seen below, the t × t
grid has t rings of order t, and the threshold for communcation threshold is
ln(t)/2t. A modified system, the staircase system, also has t rings of length t
but very different connectivity properties. This figure is created by appending
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S1 S2

Fig. 5: An example of a non-robust system even if S1 and S2 are robust.

t rings in series, that each interface in only two places; see Figure 6. The
following simple proposition shows that for the staircase system, already
when p = o(t−1/2) the system is already disconnected – this is far larger
than the threshold in the t× t.

Proposition 8 Starting with the full t ring staircase, suppose p = o(t−1/2)
and p = ω(t−1) and drones survive with probability p. Then, if C is the event
that the resulting system is connected

P(C) = o(1).

. . .

Fig. 6: A staircase example where each ring has length t = 8.

Proof. Take the first (lower left in Figure 6) ring. Imagine that each drone
in the first ring initially holds an identifying token, that it exchanges each
time it encounters another drone as in the previous section. Then, for a fixed
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token in the first ring, there are k (1 ≤ k ≤ 4) tokens in the second ring it
might encounter. Then, the expected number of tokens in the first ring that
communicate with a token in the second ring is t · p(1− (1− p)k)) = O(p2t).
If p = o(t−1/2) this is o(1). By Markov’s inequality, then, the probability
that there are no drones in the first ring that can communicate with a drone
in the second tends to one in this regime as this would result from a token
from the first ring being exchanged with a token in the second. Furthermore
under the condition p = ω(t−1) there is (with probability tending to one) at
least one drone in the first ring and one drone in the tth ring with probability
tending to one. But as long as both of these events occur, which happens
with probability tending to one, the system is disconnected. ut

– Communication and ring lengths: If the ring lengths are relatively
prime, then as long as there is at least one drone in each ring all drones
in the system can communicate. Thus, the visibility probability and con-
nectivity probability in this case is the same. (Not all lengths here need be
relatively prime: One can construct the following auxiliary graph – the ver-
tices are the rings of the system, and two rings are connected if their lengths
are co-prime and they share a communication point. Then in these systems,
the same argument applies.)

Connectivity within t× t grids

Theorem 9. Consider a full drone system in the t×t grid, where drones survive
with probability p. Let I denote the event that some drone is isolated. Fix an
arbitrary ε > 0.

(a) If p = (1 + ε) ln t
2t then as t→∞, then P(I)→ 0.

(b) If p = (1− ε) ln t
2t then as t→∞, then P(I)→ 1.

Proof. For (a), note that there are t2 drone locations and in order for a drone
to be isolated it must survive while all others in its row and column must fail.
Hence the expected number of isolated drones is

t2p(1− p)2t−1 ≤ t2pe−p(2t−1) = (1 + ε)
t ln t

2
exp

(
−(1 + ε)

(2t− 1)

2t
ln(t)

)
→ 0,

where we note that for t sufficiently large (1 + ε) (2t−1)
2t > 1, so that the expo-

nential term is O(t−(1+ε′)). (a) then follows by Markov’s inequality.
For (b), note that the expected number of isolated drones in this situation is

t2p(1− p)2t−1 ≥ t2pe−
p

1−p (2t−1) = (1− ε) t ln t

2
exp

(
−(1− ε) (2t− 1)

2t(1− p)
ln(t)

)
=
t ln t

2
exp

(
− (1− ε)(1− o(1)) ln(t)

)
≥ tε/2,
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assuming that t is sufficiently large. Here, we make use of the fact that 2t−1
2t(1−p) →

1 as t → ∞; for the claimed ε/2 bound, all that is needed is that this ratio is
eventually strictly (because of the ln t term) bigger than 1

2 .
For (b), then it suffices, by Chebyschev’s inequality, to show that if X is the

number of isolated drones in the system, to show that Var(X) = o(E[X]2). Note
that X can be written as

∑
(i,j)∈[t]2 Xi,j , where Xi,j is the event that the drone

in the (i, j)th position is isolated. Then

Var(X) ≤ E[X] +
∑

(i,j) 6=(k,l)∈[t]2

(
E[Xi,jXk,l]− E[Xi,j ]E[Xk,l]

)
.

We bound the sum. If i = k or j = l, then E[Xi,jXk,l] = 0, and E[Xi,j ] =
E[Xk,l] = p(1 − p)2t−1. As the covariance terms being sum are negative these
terms can be discarded for upper bounding the variance. For the other terms,
where (i, j) and (k, l) are different in both coordinates, E[Xi,jXk,l] = p2(1 −
p)4t−4 and there are at most t4 terms of this type and these summands contribute
at most

t4
(
p2(1− p)4t−4 − p2(1− p)4t−2

)
= E[X]2((1− p)−2 − 1) = o(E[X]2),

where the last equality follows from the form of p. Hence, by Chebyschev’s
inequality X ∼ E[X] with probability tending to one, and thus are isolated
drones. ut

Remark 1. Note that for (a), if suffices that p ≥ (1 + ε) log t
t – this follows as

the expected number is decreasing in as p increases (assuming that p ≥ 1
2t−1 .)

Extending the lower bound works so long as the expected number of isolated
drones tends to infinity.

Remark 2. Theorem 5(a) implies that, even for fairly small p, the number of
isolated drones is 0 with high probability. At the threshold, the number of sur-
viving drones is only O(t log t), while t2−O(t log t) drones fail in this case. This
should be compared with the 1-isolation resilience of the grid, the miniminum
number of drones whose failure can result in an isolated drone, which is O(t) [1].

Theorem 10. Consider a full drone system in the t× t grid, where drones sur-
vive with probability p. Let C denote the event that the system of drones is con-
nected (that is, all drones can communicate with one another). Fix an arbitrary
ε > 0.

(a) If p = (1 + ε) ln t
2t then as t→∞, then P(C)→ 1.

(b) If p = (1− ε) ln t
2t then as t→∞, then P(C)→ 0.

Proof. Note that (b) follows directly from Theorem 9, as if there is an isolated
drone (and more than one drone, as there is at such a p with high probability)
then the system is not connected.

We proceed to prove (a). We have already shown that when p = (1 + ε) ln t
t

that there are no components of size 1. We still need to show there is a unique
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component. To do this, we study a modified breadth first search in the RC-graph,
introduced in the previous section. Recall, that performing a breadth-first search
in the RC-graph (where vertices are drones and they are joined if they in the
same row or column) reveals the connected component of a vertex.

To show that there is precisely one component in this setting, we study a
slightly modified tree finding algorithm. An exposing tree inside of a component
is a rooted tree generated as follows: Choose an initial root vertex (drone) to
explore. Add all vertices in its row and column to a queue. Now, each vertex in
the queue is iteratively explored. When a vertex is explored, vertices in their row
or column are added to the queue if either their row or column is different from
those already added to the queue. Since every vertex being explored was added
to the queue it shares either a row or column with one of the other vertices
previously explored, and each vertex is responsible for ‘exposing’ a new row or
new column (with the initial vertex responsible for exposing both.) The set of
explored vertices forms the exposing tree.

Generating an exposure tree ends with a subset of a connected component
which is both non-empty and possibly proper – but vertices in the component
and not in the tree share both a row and a column with vertices in the tree. It
also ends with a drone from each of some j columns and k rows (where j and k
are determined by the process) and j + k− 1 vertices. Furthermore, the process
ending means that there are no vertices in either of those j columns outside of
the k rows and likewise none in the k rows outside of the j columns.

Claim: The probability that the exposing tree process ends with 2 ≤ j+ k ≤
t+ 1 vertices from some starting point tends to zero.

Note that if there are two components, their rows and columns must be
disjoint, and hence one of the non-trivial components must have j+k ≤ t. Thus,
the claim will complete the proof of the theorem.

Fix ` = j + k. The number of potential exposing trees with ` − 1 vertices
in the t × t grid can be estimated (roughly) as follows. The degrees in the tree
can be represented by a sequence of non-negative integers (a1, a2, . . . , a`) with∑
ai = ` − 2 where a1, a2 are the row and column degrees of the first vertex,

and ai is the number of vertices added when the i − 1st vertex from the queue
is explored. The number of such solutions is bounded by

(
2`−2

`

)
≤ 4`. There

are fewer than t2 · t(`−2) = t` ways of choosing the vertices that are exposed.
Note that this is a rather large over-count: it assumes there are t choices each
time, when in reality there is a falling factorial type term and also introduces an
ordering when exposing the children of a given vertex. None the less, this upper
bounds the number of potential processes for a given ` is at most 4`t`.

Now, for a given one of these potential processes, the j + k − 1 = ` − 1
vertices explored must all survive, and the other vertices of their j columns
outside of the k rows, and k rows outside of the j columns, must all fail. This
has probability pj+k−1(1 − p)(t−j)k+(t−k)j = pj+k−1(1 − p)t(j+k)−2jk. Finally

note that jk ≤ (j+k)2

4 so that regardless of the individual j, k – for any potential
process with ` = j + k fixed the probability of ending is at most

pj+k−1(1− p)(t−(j+k)/2)·(j+k) = p`−1(1− p)(t−`/2)·`
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A union bound over potential exposing trees, shows that the probability that
the process ends with a given value of ` is at most

4`t`p`−1(1− p)(t−`/2)·` = 4` · t((1/2 + ε) ln(t))`−1(1− p)t−`/2·`

≤ exp

(
ln(t) + `

(
ln(4(1/2 + ε)) + ln ln(t)− (1/2 + ε)

ln t

t
(t− `/2)

))
.

In the last inequlality here, we used the inequality 1 − x ≤ e−x along with the
definition of p. Hence, per a union bound over potential ` it suffices to show that

t+1∑
`=2

exp

(
ln(t) + `

(
ln(4(1/2 + ε)) + ln ln(t)− (1/2 + ε)

ln t

t
(t− `/2)

))
→ 0

as t → ∞. To do this, we note that for 2 ≤ ` ≤ 10, these terms are o(1)

individually as for ` ≤ 10 ` · (1/2 + ε) · ln(t)t (t− `/2) > (1 + ε/2) ln(t) assuming
t is large enough. For t+ 1 ≥ ` ≥ 8, the dominant part of the terms comes from

` · (1/2 + ε)
ln t

t

(
t− 1

2

)
> (2 + ε/2) ln(t).

Thus these terms are actually o(t−1) and as there are fewer than t such terms
in total the sum is o(1) as desired. ut

Connectivity in general grids
Theorems 9 and 10 above consider the specialized case where the initial

setting is a full t× t grid. The case of general systems, even the case of general
s×t grids is significantly more complicated. Indeed, in s×t grids, the asymptotic
behavior of how s and t are taken to go to infinity in comparison with one another
can give rise to a number of different behaviors, depending on the values of s
and t.

For instance, when s > 1 is fixed, while t goes to infinity the isolation thresh-
old and connectivity threshold differ from each other, and both differ greatly
from the above. In this case, we have the following:

Theorem 11. Consider a full drone system s × t, where drones survive with
probability p, where s > 1 is fixed as t→∞.

1. If p = ω(1/t), then P(I)→ 0.
2. If p = o(1/

√
t), then P(C)→ 0 while if p = ω(1/

√
t), then P(C)→ 1.

Proof. For (1), the probability a row contains at most one drone is tp(1−p)t−1+
(1− p)t and if p = ω(1/t) this tends to zero and the result follows from a union
bound. For (2), if p = o(1/

√
t) the expected number of columns containing two

drones is
(
s
2

)
· t ·p2 → 0, which implies the resulting communication graph is dis-

connected as there will be no communication between rows. Once p = ω(1/
√
t),

each of the
(
s
2

)
pairs of rows will have some column where there is a drone in

that column in both rows with high probability, and this forces connectivity. ut
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When both s and t both tend to infinity, the situation becomes more complicated,
and we do not pursue a full investigation here. We do note, however, that the
following holds:

Theorem 12. Consider a full drone system in the s × t grid, where drones

survive with probability p. If s ≤ t and s → ∞ then if p = (1 + ε) ln(s)
s , then

P(C)→ 1.

Proof. Let S be a subset of drones taken initially from the s×s subgrid consisting
of the s rows and the first s columns. By Theorem 10 these drones are in the same
connected component with probability tending to one and each row contains at
least one drone from S. Then, having additional drones in the remaining columns
cannot destroy the connectivity, as they are in the same row as some drone in
the already connected S. ut

One final interesting aspect we highlight about general s× t grids is the re-
lationship between the thresholds for coverage and for communication. As we
showed, for the t× t grid, there is a factor of two difference between the thresh-
old for coverage (Theorem 5) and the threshold for connectivity (Theorem 10),
and the coverage threshold (about ln t

t ) is larger than the connectivty threshold

(about ln t
2t ). This difference indicates that, for the t× t grid, communication is a

more robust property than coverage. This is not, however, a universal property
of grids. For instance, in the t × (t + 1) grid, the threshold for connectivity is
(asymptotically) the same as in the t× t grid, about ln t

2t and the proof of The-
orem 10 works verbatim in this setting. But, since there is a single ring in this
setting, as t and t+1 are relatively prime, the system is covered with probability
tending to one if p = ω(1/t2).

5 Conclusions

Communication and coverage are fundamental and important properties of a
multi-drone system. This paper addresses some problems related to the connec-
tivity and robustness of a synchronized multi-drone system, where each drone
is in charge of supervising a certain area and shares information with its neigh-
bors every time they reach a communication link. This particular system has
been recently studied from a discrete and combinatorial optimization perspec-
tive [5]. First, we propose efficient algorithms both centralized and decentralized
to compute the connected components of a synchronized multi-drone system
when some drones are missing. Second, we consider a stochastic failure model to
study coverage, isolation and connectivity under drone failure. The results show
that the grid configuration is quite robust against drone failure. We also studied
the problem for general configurations showing that the robustness depends on
the ring lengths for the case of coverage and on the ring interactions for the
communication problem.

For t×t grids, Theorem 10 provides a sharp threshold ln t
2t for the connectivity.

We also observed that there is system, the staircase system, that has a signifi-
cantly worse threshold for connectivity and the same multi-set of ring lengths.
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An interesting open question is to determine whether the square grid, which
has exactly t rings of length t has the best (smallest) threshold for connectivity
among all systems which have the same distribution of ring lengths.
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