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Abstract. A vertex dominating path in a graph is a path P such that every vertex outside P
has a neighbor on P. In 1988 H. Broersma [HB88] stated a result implying that every n-vertex
k-connected graph G such that σ(k+2)(G) ≥ n − 2k − 1 contains a dominating path. We provide
a short, self-contained proof of this result and further show that every n-vertex k-connected graph
such that σ2(G) ≥ 2n

k+2 + f(k) contains a dominating path of length at most O(|T |), where T is a
minimum dominating set of vertices. The main result is a proof that every n-vertex k-connected
graph such that σ2(G) ≥ 2n

k+2 + f(k) contains a path of length at most O(|T |), through any set of

T vertices where |T | = o(n).

1. Introduction

Interest in dominating cycles and paths of various sorts began as a natural relaxation of hamil-
tonian cycle and path problems and moved in a number of directions: edge dominating cycles
(paths), vertex dominating cycles (paths), longest cycles (paths) that dominate in some manner
and so forth.

In particular, a paper by Bondy and Fan ([BF87]) proving a conjecture of Clark, Coburn and
Erdős [CCE], gave a condition for degree sums of sets of k+ 1 independent vertices in k-connected
graphs that imply the existence of a vertex dominating cycle. Shortly thereafter Broersma ([HB88])
produced a general result providing generalized degree sum conditions in k-connected graphs forc-
ing all vertices to be within a fixed distance of a cycle. Furthermore, at the end of the paper, an
analogue for paths is stated. There has continued to be investigation into vertex dominating cycle
structures though it has tended to focus on long cycles. (See [MOS], [SY].)

On the other hand, a vertex dominating path may also be viewed as a spanning tree of a
particular type, sometimes called a caterpillar. There has been much recent work on conditions
implying particular structural properties in spanning trees. See for example [FKKLR], [CFHJL],
or the recent survey by Ozeki and Yamashita ([OY11]) on spanning trees.

A converging of these two streams of research occurred in a recent paper by Faudree, Gould,
Jacobson, and West ([FGJW]) which contains several theorems relating minimum degree and
vertex dominating paths (or spanning caterpillars). Motivated by [FGJW], this paper contain
results relating degree sum conditions and dominating paths. Included is a short, self-contained
proof of a result originally stated in [HB88] and a theorem with corollary that answers a question
from [FGJW].
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All graphs are finite and simple. Notation and terminology generally follows West [DW96]. A
set X ⊂ V (G) dominates the graph G if every vertex of G−X has a neighbor in X. Observe that
this definition means the set X dominates the vertex set but not necessarily the edge set of G. We
will often say a path P or a cycle C dominates G if V (P ) or V (C) dominates V (G).

Given a graph G and integer k ≥ 2, we denote by σk(G) the minimum degree-sum independent
sets of k vertices. Observe that, by a natural extension of this definition, σ1(G) = δ(G).

Given a set of vertices X = {x1, x2, · · · , xm} ⊆ V (G), the notation N [X] = X∪{v ∈ V (G)|∃x ∈
X, vx ∈ E(G)}, often called the closed neighborhood of X.

2. Degree Sum and the Existence of a Dominating Path

In 1985, Clark, Colbourn, and Erdős [CCE] conjectured that every k-connected graph with
minimum degree at least n

k+1
+f(c) has a vertex dominating cycle. In [BF87], Bondy and Fan proved

the conjecture holds and made another similar conjecture replacing degree sum with distance m
neighborhoods and replacing dominating cycles with m-dominating cycles (where a cycle is m-
dominating if every vertex is at most distance m from the cycle.) In [HB88], Broersma generalized
the classic Erdős-Chvátal condition for hamiltonicity and, as one part of one corollary, settled
the conjecture of Bondy and Fan. At the end of the paper by Broersma, several general results
concerning paths, all of which are analogues of the cycle results proved earlier, are stated. These
earlier proofs are intricate, nontrivial, and carefully linked. Below is one corollary. Note that a
∆λ-traceable graph is one in which there exists a path such that all vertices are a distance at most
λ from the path and a set of mutually r-distant vertices is a set S ⊆ V (G) such that for every
u, v ∈ S, u 6= v, the distance from u to v is at least r.

Corollary 2.1. [HB88] Let G be an n-vertex, k-connected graph (k ≥ 1) and let λ ≥ 2. If the
degree sum of any k+ 2 mutually (2λ− 1)-distant vertices is at least n− 2k− 1− (λ− 2)k(k+ 2),
then G is ∆λ-traceable.

We offer a self-contained proof of the special case of Corollary 2.1 when λ = 2 and the path is
vertex-dominating.

Theorem 2.1. Every n-vertex k-connected graph with σ(k+2)(G) ≥ n− 2k − 1 contains a vertex-
dominating path.

Proof. Let G satisfy the hypothesis of the theorem and proceed by contradiction. Let P be a
path in G dominating a maximum number of vertices. Further, among all paths dominating a
maximum number of vertices, choose P to be as short as possible. Label the vertices of P as:
x = x1, x2, · · · , xt = y. If all the neighbors of x (or y) were dominated by the vertices of P − x (or
P − y), then a shorter path dominating the same number of vertices is possible. Thus there exist
vertices x′ (and y′) such that N(x′)∩ V (P ) = x (and N(y′)∩ V (P ) = y). In this case, we will say
x′ is uniquely dominated by x or that x uniquely dominates x′. Clearly this relationship depends
upon the choice of P , but we are assuming the choice of P is fixed.

Since G has no vertex dominating path, there exists a vertex, z, not dominated by P. Since G is
k-connected, there exist k paths from z to P that are vertex disjoint other than at initial vertex z.
Pick these k paths to as short as possible and label the terminal vertices xi1 , xi2 , · · · , xik in order
as they appear on P from x to y.
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Figure 1. This figure illustrates the paths from vertex z to P , a shortest path
dominating a maximum number of vertices. Note the circled section denotes Pr, the
section of the path strictly between two consecutive paths, xr and xr+1.

Let Pr = P (xir , xir+1) denote the subpath of P strictly between two consecutive endpoints of
paths from z. (See Figure 1.)

A vertex, u, in a subpath Pr is called moveable if either of the criteria below are satisfied:

(1) u has consecutive adjacencies on P − Pr. (That is, u could be “inserted” elsewhere on
P − Pr.

(2) Both u and all of its neighbors have adjacencies on P − Pr. (That is, u and all vertices it
dominates are dominated elsewhere on P − Pr.)

If there exists a single subpath such that all vertices on it are movable, then a path dominating
more vertices can be obtained by replacing this subpath with a path through z. Thus, for each
of the k − 1 subpaths, there exists at least one vertex that is not movable. Label as ur the first
vertex in Pr that is not movable as Pr is traversed from xir to xir+1 .

Let Qr consist of all the vertices on Pr between xir and ur. Observe that, for r1 6= r2, there are
no edges between Qr1 and Qr2 and no common neighbors in V − V (P ). If any such edges or paths
existed, choosing the “first” one (that is, the one with smallest index on P ) would produce a path
that dominates all the vertices that P dominates and z. The importance of this observation is the
conclusion that all vertices of Qr1 are not only moveable, but are moveable to regions of P other
than Qr2 as is the case for the vertices dominated by Qr1 . (See Figure 2.)

The fact that ur is not movable implies either ur dominates a vertex, u∗r, that is not dominated
by any vertex outside Pr (i.e. NP (u∗r) ⊆ V (Pr)), or ur itself is not dominated outside of Pr (i.e.
NP (ur) ⊆ V (Pr).)

Now define a set of vertices S to contain x′, y′, and z. Furthermore, for every subpath, add
either u∗r or ur to S, using whichever one has no neighbors on P − Pr.

By definition, |S| = k + 2, S is independent, and no pair of vertices in S can have a common
neighbor on P . Moreover, if any pair of vertices in S has any common neighbor outside of P a path
dominating more vertices can be found. Specifically, this path can be built including z, along with
the two involved vertices of S and relies on the fact that vertices of Qr1 and Qr2 can be moved if
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Figure 2. For each subpath of P, ui is the first nonmovable vertex and, so, those
in Qi are all movable. Observe that any edges between distinct Qi’s results in a path
dominating more vertices by using the edge between vertices of smallest indices (or,
alternatively, left-most vertices). New path: x to xir to z to xis to a to b to y. Note
that all vertices of Qr and Qs not on the new path are dominated elsewhere.

needed. Thus, for every a, b ∈ S such that a 6= b, N(a)∩N(b) = ∅. Since none of the vertices in S
are adjacent to {xi1 , xi2 , · · · , xik}, we have σk+2(G) ≤

∑
a∈S d(a) ≤ n−2k−2, a contradiction. �

The following example shows that the preceding theorem is best possible.

Example 2.1. Construct an n-vertex k-connected graph G as follows. Begin with a complete
graph on k vertices, Kk, and k + 2 independent vertices, v1, v2, · · · , vk+2. Partition the remaining
n − 2k − 2 vertices into k + 2 complete graphs such that the orders of the graphs are as equal as
possible and label them B1, B2, · · · , Bk+2. For each i add all edges between Bi and Kk ∪ vi. This
graph has no dominating path and σk(G) = n− 2k − 2. Note that n ≥ k2 + 4k + 2.

Kk

B1 B2 B3 Bk+2

v1 v2 v3
vk+2

Figure 3. Example 2.1

The following corollary follows immediately from the statement of the theorem:

Corollary 2.2. Let r ≥ 1 be an integer. Every n-vertex k-connected graph with σr(G) ≥ r
(
n−2k−1
k+2

)
contains a vertex-dominating path.

The following corollary follows immediately from the proof of the theorem:

Corollary 2.3. If α(G) ≤ κ(G) + 2, then G contains a vertex dominating path.
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3. Preliminary Lemmas

In order to streamline the proof of the results in Section 4, several preliminary results are
presented. Below is a well-known result by Dirac:

Lemma 3.1. [GD52] If G is k-connected and X ⊆ V (G) such that |X| ≤ k, then there exists a
cycle in G containing all the vertices of X.

Lemma 3.2, which asserts the existence of small dominating sets relative to a minimum degree
condition, is used to prove Lemma 3.3, an analogous result for degree sum conditions.

Lemma 3.2. Every n vertex graph G with minimum degree δ ≥ βn where 0 < β < 1 contains a
dominating set X ⊆ V (G) such that |X| ≤ dlog1/(1−β) ne.

Proof. Let G be an n vertex graph with minimum degree δ ≥ βn where 0 < β < 1. The proof will
proceed by iteratively constructing a dominating set of vertices using no more than dlog1/(1−β) ne
vertices.

Begin by choosing a vertex x1. Let X = {x1} and define S1 = V (G) − N [x1], the set of
vertices not dominated by x1. Given the iteratively constructed set X = {x1, x2, · · · , xi}, define
Si = V (G)−N [X], the set of vertices not dominated by X.

We claim there exists a vertex xi+1 such that dSi
(xi+1) ≥ β|Si| and this is the vertex we will

add to X.

If dSi
(x) < β|Si| for every vertex x in G, then, in G, dSi

(x) > (1 − β)|Si|. Using the previous
inequality and the definition of Si, we conclude

∑
v∈V (G) dG(v) ≥ (1 − β)|Si|(n − i) + i|Si|. An

application of the Pigeon Hole Principle implies there exists a vertex y ∈ Si such that dG(y) >
(1− β)(n− i) + i. Thus, dG(y) < n− [(1− β)(n− i) + i] = βn− iβ, contradicting the minimum
degree condition.

We claim that in r = dlog1/(1−β) ne iterations, the set |Sr| < 1 and so X dominates V (G).

By construction |Si+1| < (1 − β)|Si| < (1 − β)i+1n. For r > log1/(1−β) n, |Sr| < 1. Thus, the
dominating set X requires at most r = dlog1/(1−β) ne vertices. �

The next Lemma, an analogue of Lemma 3.2, uses the same proof technique.

Lemma 3.3. Every n vertex graph G with σ2(G) ≥ 2βn where 0 < β < 1 contains a dominating
set X ⊆ V (G) such that |X| ≤ dlog1/(1−β) ne.

Proof. Let G be an n vertex graph with σ2 ≥ 2βn where 0 < β < 1. The proof will proceed by
iteratively constructing a dominating set of vertices using no more than dlog1/(1−β) ne vertices.

If δ(G) ≥ βn, then apply Lemma 3.2. Otherwise, choose a pair of nonadjacent vertices vertex
x1 and x2 such that d(x1) < βn. Let X = {x1, x2} and define S2 = V (G) − N [x1, x2], the set of
vertices not dominated by x1 or x2. Observe that for every x ∈ S2, d(x) > βn because x and x1
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are nonadjacent. Also, note that |S2| < (1− 2β)n < (1− β)2n. Given the iteratively constructed
set X = {x1, x2, · · · , xi}, define Si to be the set of vertices not dominated by X.

The proof now follows precisely the same argument and the same arithmetic as Lemma 3.2. �

The next lemma provides conditions under which the existence of some cycle through a specified
set of vertices implies the existence of a small cycle through the specified set.

Lemma 3.4. Let G be an n-vertex graph with σ2(G) > 2n
k+2

. Let X ⊆ V (G) such that |X| ≤
g(n) = o(n). If there exists a cycle in G containing all vertices of X, then, for n sufficiently large,
a smallest cycle containing all vertices of X has at most (3k + 5)|X| vertices.

Proof. Let G and X satisfy the hypothesis of the Lemma and let C be a smallest cycle of G
containing X. Proceed by contradiction and assume |V (C)| > (3k + 5)|X|. Then there exists a
segment of C between consecutive vertices of X with at least 3k + 5 vertices strictly between
them, say x1 = v0, v1, v2, · · · , vq = x2, where q ≥ 3k + 6, x1, x2 ∈ X and v1, v2, · · · , vq−1 6∈ X. Let
S = {v0, v3, v6, · · · , v3k+6}.

Because C was chosen to be as small as possible, the set S is independent and no two vertices
of S can have a common neighbor in G−C. Since 1

2

∑k+2
i=0 (d(v3i) +d(v3(i+1))) >

1
2
(k+ 3)

(
2n
k+2

)
> n

(where indices are taken modulo 3k + 6), the vertices of S must have adjacencies on C.

Let b = n − |V (C)|. Then the number of chords in C from vertices of S is at least (k+3)n
k+2

−
b − 2(k + 3). Observe that all of these chords have their other endpoint outside the segment of
C containing S. Let c count the number of vertices at the other end of the chords from S. Now,
b+ c+ 3k + 7 ≤ n.

After allowing one chord to each of the c vertices, there remain at least (k+3)n
k+2

− b− 2k − 6− c
“excess” chords. Assume a particular segment of C has t vertices with at least one excess chord.
Observe that no pair of chords from S to this segment can cross due to the choice of C as smallest
possible. (See Figure 4.) Thus, consecutive pairs of the t vertices, taken in the order they appear
on C, can share at most one neighbor in S. Thus, these t vertices can accept at most 2k+3+(t−1)
chords and, therefore, at most 2k+ 2 excess chords. Thus, the total number of excess chords is at
most (2k + 2)|X| = o(n).

x1 v3 v3i v3j
v3k+3 x2

xsz1z2xs+1

Figure 4. A single pair of crossing edges results in a smaller cycle. Follow x1 = v0
to v3i, down to z1, around to v3j via xs, down to z2 and back to x1.
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Now, using the previous upper and lower bounds on the number of excess chords, we produce
the following contradiction:

1

k + 2
n =

(k + 3)n

k + 2
− n

≤ (k + 3)n

k + 2
− (b+ c+ 3k + 7)

<
(k + 3)n

k + 2
− b− 2k − 6− c

≤ (2k + 2)|X|
= o(n).

(1)

Thus, C can have at most (3k + 5)|X| vertices. �

This next lemma gives conditions under which there exists a short path between two specified
vertices avoiding a specified set of vertices.

Lemma 3.5. Let G be an n-vertex graph such that σ2(G) ≥ 2n
k+2

. Let Y ⊆ V (G) such that
|Y | ≤ g(n) = o(n) and u, v ∈ V (G)−Y. If there exists a u, v-path in G−Y, then, for n sufficiently
large, there exists a Y -avoiding u, v-path using at most 3k + 6 vertices.

Proof. Let G, Y , u, and v satisfy the hypotheses of the Lemma. Proceed by contradiction
and assume that the shortest Y -avoiding u, v-path contains at least 3k + 7 vertices, labeled
u = w0, w1, · · · , wq = v, where q ≥ 3k + 6. Thus the set {w0, w3, · · · , w3k+6} is not only an
independent set of vertices, but has the property that any pair of vertices from this set have
disjoint neighborhoods in G− Y. Thus,

(2) (k + 3)

(
2n

k + 2

)
≤

k+2∑
i=0

(
d(w3i) + d(w3(i+1))

)
≤ 2(k + 3)|Y |+ 2(n− |Y |),

where w3k+9 = w0. For n sufficiently large, equation 2 produces a contradiction. Thus, a smallest
Y -avoiding u, v-path has at most 3k + 6 vertices. �

Lemma 3.6. Let G be an n-vertex graph such that σ2(G) ≥ 2n
k+2

where k ≥ 1 is an integer. Let
T ⊆ V (G) such that |T | ≤ g(n) = o(n). If κ(G) ≥ 9k|T |, then, for n sufficiently large, there exists
a cycle (or path) in G on at most 9k|T | vertices containing all the vertices of T in any order.

Proof. Arbitrarily order the vertices of T : x1, x2, · · · , xt. Since G is connected, Lemma 3.5 implies
there exists an x1, x2-path on at most 9k vertices. Call it P1,2. Inductively, extend this path to
include the first r vertices of T. Call this path P1,r and assume it contains at most 9k(r−1) vertices.
Since κ(G − P1,r) ≥ 9k(t − r + 1), there will always exist an xr, xr+1-path avoiding P1,r provided
r ≤ t. Then, Lemma 3.5 implies a shortest xr, xr+1-path adds at most 9k additional vertices. Since
P1,t uses at most 9k(t − 1) vertices, G − P1,t is still connected. Thus, it is possible to find an
xr, x1-path avoiding P1,t and Lemma 3.5 implies it adds at most 9k additional vertices. �
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4. σ2 and short paths through specified vertices

The theorem below gives sufficient connectivity and σ2 conditions to ensure that there is a short
path in G containing T, given any vertex set T whose cardinality is sublinear. It requires G have
sufficiently large order and “short” in this case means a constant multiple of |T |.

Theorem 4.1. Let k ≥ 1 be an integer. Let G be a k-connected graph on n vertices such that
σ2(G) ≥ 2n

k+2
+ f(k) where f(k) is a recursively defined function of k and let T ⊆ V (G) such that

|T | ≤ g(n) = o(n). Then there exists a path in G on at most O(|T |) vertices containing all the
vertices of T .

Proof. Let G and T satisfy the hypotheses of the Theorem and let t = |T |. Define a recursive

sequence: b0 = 10k2 and, for i ≥ 1, bi = 10k2
(
k+2
2

)2
+
∑i−1

j=0 bj. Let f(k) = 2bk+1.

Assume G is t-connected. Then Lemma 3.1 implies there exists a cycle containing all the vertices
of T, and Lemma 3.4 implies the smallest such cycle contains at most 8kt vertices. Thus, there
exists a path containing all vertices of T using at most O(|T |) vertices, and the Theorem follows.
Thus, we can assume G is k-connected and k < t.

Now, we will iteratively find minimum cut sets, denoted by Si’s. We will collect all the vertices
of these iteratively selected cut sets into a set denoted by S. The connected components of G−S
will be denoted by Gj’s. The indices of the Si’s and the Gj’s are not important except that we
will eventually argue that there are at most k+ 2 of the Gj’s. Thus, we allow arbitrary reordering
of the indices as needed. (See Table 1 for an illustration of this algorithm.)

For iteration one, we let S0 be a minimum cut set of G; so |S0| < t. Let S = S0 and G1, G2, · · · , Gl

be the connected components of G − S. If each Gj is complete or has connectivity at least 30kt,
we stop.

Otherwise, we proceed to iteration two where, for each component Gj in G − S that is not
complete and has connectivity less than 30kt, we find a minimum cut set Si. We add all the
vertices from these new cut-sets to S. If each component of G − S is either complete or has
connectivity at least 30kt, we stop.

In general, on the ith iteration, we stop if all components of G− S are either complete or have
connectivity at least 30kt.

We claim the process stops with at most k + 2 connected components, Gj. Observe that the
first iteration produces at least two components and each subsequent iteration produces at least
one additional component. Thus, the ith iteration must end in a collection of cut sets producing
at least i+ 1 connected components.

Proceed by contradiction and find the first iteration, i0, such that G − S contains more than
k+ 2 connected components. From the previous observation, we know that i0 ≤ k+ 2. In fact, we
know that at most k + 2 cut sets in total were deleted from G. Since, every cut set has order less
than 30kt, at the end of iteration i0, |S| < (k + 2)(30kt).
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Table 1. Cut-Set Selection Algorithm

S0

G4

G3

G1

G2

complete κ(G1) ≥ 30kt

Iteration 1: A minimum cut set S0

results in four connected components,
G1, G2, G3, and G4. So S = S0 and
k ≤ s < t.

S0

G7 G1

S2
G6 G5 S1G2

G3

G4

complete κ(G1) ≥ 30kt

Iteration 2: Minimum cut sets S1 and
S2 are found in noncomplete compo-
nents of G − S with connectivity less
than 30kt. Now, S = S0 ∪ S1 ∪ S2,
s < t + 2(30kt) and G − S results in
seven connected components.

S0

G9 G1

S2
S4

G7

G8

G6 S1S3

G2

G3

G4

G5

Iteration 3: Minimum cut sets S3 and
S4 are found in noncomplete compo-
nents of G − S with connectivity less
than 30kt. Now, S = ∪4i=0Si, s < t +
4(30kt) andG−S results in 9 connected
components. The algorithm would ter-
minate with all components either com-
plete or with connectivity at least 30kt.

Let vj ∈ Gj for all j. Now, applying the degree sum condition to consecutive pairs of vertices in
the connected components, we have

(3)
∑
j

|Gj| >
1

2

∑
j

(d(vj) + d(vj+1)− 2|S|) ≥ k + 3

2

(
2n

k + 2
+ f(k)− 2|S|

)
,

(where indices of vj are taken modulo the number of components in G−S.) Thus, using equation
3, we produce the contradiction:

(4) n = |S|+
∑
|Gi| > |S|+

(
k + 3

k + 2

)
n+

(k + 3)f(k)

2
−(k+3)|S| > k + 3

k + 2
n−(k+2)2(30kt) > n,

for n sufficiently large and t = o(n). Thus, we can assume that the iterative selection of cut sets
terminates in at most k + 1 iterations and with at most k + 2 connected components.
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Since S is well-defined, let s = |S| and note that s < 30kt ∗ (the number of components− 1) ≤
30k(k + 1)t = o(n).

Next, we establish that following claims which will allow the application of Lemmas 3.4, 3.5,
and 3.6 to each component Gj.

Claim 1: For every S and resulting collection of Gj’s, σ2(Gj) >
2|V (Gj)|
k+2

.

Let L = {v ∈ V (G) | d(v) < 1
2
σ2(G)} and H = V (G)−L (where L stands for low-degree vertices

and H for high-degree vertices). Observe that the graph induced by L is complete. Thus, at most
one component of G−S can contain any vertices from L and every non-complete component must
contain vertices from H.

If G−S has at least three components, then for every non-complete component, say Gj1 , there
exists a different component, say Gj2 , containing a vertex, v ∈ Gj2 ∩H. Since N(v) ∩Gj1 = ∅, we

know |V (Gj1)| ≤ n− d(v) ≤ n− σ2(G)
2
, or, equivalently, σ2(G)

2
≤ n− |V (Gj1)|.

Now, for n sufficiently large,

σ2(Gj1) ≥
2n

k + 2
+ f(k)− 2s ≥ 2|V (Gj1)|+ 2(n− |V (Gj1)|)

k + 2
+ f(k)− 2s

>
2|V (Gj1)|
k + 2

+
2(σ2(G)/2)

k + 2
− 2s =

2|V (Gj1)|
k + 2

+
2n

(k + 2)2
− 2s

>
2|V (Gj1)|
k + 2

(5)

since s = o(n).

If G − S contains exactly two components, the argument and arithmetic above applies, unless
one of the components, say G1, contains only vertices from L. In this case, observe S = S0 where
|S0| = s < t, G1 is complete, and |G1| < |G2|.

If |G1| ≥ (k + 2)t, then |G1|+s
k+2

> t > s and, using |V (G1)|+ |V (G2)|+ s = n, we conclude

(6) δ(G2) ≥
n

k + 2
+
f(k)

2
− s =

|V (G2)|
k + 2

+
f(k)

2
+
|V (G1)|+ s

k + 2
− s > |G2|

k + 2
.

On the other hand, if |G1| < (k + 2)t, then δ(G2) > σ2(G)− (|V (G1)|+ s)− s ≥ 2n
k+2
− (k + 4)t >

|V (G2)|
k+2

, since t = o(n). In either case, σ2(G2) > 2 |G2|
k+2

, and the claim holds. �

Claim 2: Either a component Gi of G− S is complete or ni = |V (Gi)| = o(t).

If Gi is not complete, then Gi contains a vertex of degree at least σ2(G)/2. Now, ni >
n
k+2
− s >

n
k+2
− 30k(k + 1)t and, since t = o(n), the claim holds. �

Before explicitly constructing a path containing T , some additional notation will be introduced.
Let TS = T ∩ S. Define TL, TH , TL∩S , and TH∩S analogously.

Case 1: Assume G− S has r connected components where 2 ≤ r ≤ k.
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First observe that it is sufficient to construct a cycle on O(|TH |) vertices containing all of TH
because the vertices in TL form a clique and any shortest path from TL to the cycle could trivially
be extended to a path on at most O(|T |) through all of T. Thus, we show how to construct such
a cycle. Second, observe that any component of G− S of order less than k must be contained in
L and thus there is at most one of these. Finally, note that since the number of components is at
most k, the number of cut-sets producing S is at most k − 1. Hence, s ≤ 30k(k − 1)t.

Because the steps used in Case 1 will be essentially the same in Cases 2 and 3, the steps are
given names for ease of reference later. To aid the reader, pictures of the various steps are shown
in Table 2.

[Construct new graph G′ and cycle C ′.] Construct a new graph G′ by adding a new vertex
ui adjacent to all the vertices of Gi, for every component Gi containing vertices from TH . Since all
such Gi have at least k vertices and at most k new vertices were added, the new graph G′ is still
k-connected and therefore contains a cycle through all the ui’s. Choose a shortest such cycle. By
Lemma 3.4, this shortest cycle contains at most k(3k + 5) ≤ 8k2 vertices and call this cycle C ′.

For ease of reference, we will split the cycle, C ′ into 2r′ ≤ 2r segments: P ′1, Q
′
1, P

′
2, Q

′
2, · · · , P ′r′ , Q′r′

as follows. For each i, P ′i will be the segment of the cycle between two consecutive vertices of S that
contains ui. That is, P ′i = wi, y1, · · · , ui, · · · , yl, zi, where wi, zi ∈ S and y1, · · · , yl ∈ V (Gi). The
segment between P ′i and P ′i+1 will form Q′i (where indices are taken modulo r.) In particular, Q′i is
a path from zi to wi+1 and, if zi = wi+1, then Q′i is a single vertex. Since |V (C ′)| ≤ 8kr′ ≤ 8k2 and
each path P ′i contains at least three vertices other than wi and zi, we conclude ∪i|V (Q′i)| < 8k2.

[Identify Ti’s.] For every x ∈ TS∩H , there exists some i such that x has at least σ2(G)−2s
2k

≥
n

k(k+2)
− 30k2t neighbors in Gi. Thus, as t = o(n) and n is sufficiently large, for every such x, it is

possible to associate a pair of neighbors in some Gi unique to x. If x ∈ TS∩H − V (∪iQ′i), identify
such a pair and label them vx,1 and vx,2. In this case, we say the vertex x belongs to component
Gi.

For each component Gi, we define Ti to be the union of all vertices in (TH ∩ V (Gi)) − (∪iQ′i)
along with all associated pairs, vx,1 and vx,2, chosen in Gi. Observe that | ∪i Ti| ≤ 2t, and that this
upper bound would be achieved only if T = TH , T ∩ (∪iQ′i) = ∅, and T ⊆ S. Trivially, |Ti| ≤ 2t.

[Replace each P ′i with new paths Pi containing the vertices of Ti in a convenient
order and leaving ∪iQ′i intact.] Specifically, we want to construct new wi, zi-paths, Pi, such
that all internal vertices are contained in Gi and vertices of T that belong to Gi, all vertices of Ti
lie on the path, and such that any associated pairs (vx,1 and vx,2) occur on Pi as a P3 = vx,1, x, vx,2.

If Gi is complete, then we trivially construct a wi, zi-path using yi, yl, and vertices of Ti in
any order and |V (Pi)| ≤ 4 + |Ti|. If Gi is not complete, then we know κ(Gi) ≥ 30kt. Thus,
κ(Gi − ∪iV (Q′i)) > 30kt − 8k2 > 0. Constructing Pi requires finding a path through at most
|Ti| + 2 vertices where |Ti| + 2 = o(ni) and σ2(Gi) ≥ 2ni/(k + 2). Thus, Lemma 3.6 implies there
exists a path on at most 9k(|Ti| + 2) vertices through the specified vertices in any chosen order.
Thus, we can always include associated pairs consecutively on a 3-path of the form vx,1, x, vx,2.

Observe that |V (Pi)| ≤ 9k(|Ti|+ 2) + 2 and ∪i(V (Pi)) ≤ 9k(2t+ k) + 2k < 29kt.
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Table 2. Cartoon Illustrating the Proof of Theorem 4.1

S

G1

G2

G3

G4

Gr

...

S

G1

u1

G2

u2

G3

u3

G4

u4

Gr

ur

...

G′

S

G1

u1

G2

u2

G3

u3

G4

u4

Gr

ur

...

G′

This shows S and the com-
ponents of G− S

This shows G′ with added
vertices ui.

This shows C ′ (in red, green, and teal) in
G′. Note that the the Q′is are depicted in
green (and teal) which is the portion of C ′ left
intact. The teal section (Q′3) illustrates how
complicated these connector sections may be.
They may include vertices from G outside S
and possibly vertices from T.

S

G1

G2

G3

G4

Gr

...

Gi

S

zi

wi

y1

yl

In the diagram above, black vertices are in T , gray
vertices are designated neighbors of vertices of TS
not on any green path. For each Gi, the set Ti is
in a blue box. Observe that vertices of T on any
Q′j (in green) are not included in any Ti.

This diagram illustrates how the red portion of C ′

is replaced with a path containing the vertices of
Ti. As before, vertices of T are black, associated
neighbors of vertices that belong to Gi are in gray.
Observe that y1 and yl may or may not be on this
new path. It is enough to know that zi and wi
have distinct neighbors in Gi.
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[Form a new cycle C containing TH .] Form a new cycle C = P1Q
′
1P2Q

′
2 · · ·PrQ′r. We know

|V (C)| ≤ | ∪i V (Pi)|+ | ∪i V (Q′i)| < 29kt+ 8k2 < 37kt. Observe that TH ⊆ V (C), and thus, Case
1 is proved.

Case 2: Assume G− S has k + 1 ≥ 3 connected components.

We will begin as in Case 1. As before, construct G′, which may require adding k + 1 vertices.
Construct C ′ through u1, u2, and uk and define P ′i and Q′i as in Case 1. As before, |V (C ′)| ≤ 8k2

and hence | ∪i V (Q′i)| < 8k2.

In this case, we claim that δ(G) ≥ k−1
k(k+1)

n, and therefore every vertex in S could be assigned a

unique pair of neighbors in Gi (called v1,x, v2,x).

Let x be a vertex of degree at least σ2(G)− δ(G). If there exists a choice of x in the smallest or
second smallest component of G−S, then σ2(G)−δ(G) ≤ d(x) < n−s−1

k
+s. Hence, δ(G) > k−1

k(k+1)
n

and the claim holds. If no such vertex x exists, then every vertex in these smallest two components
must be adjacent to every vertex of minimum degree. This implies that the number of vertices in
these two components is at most δ(G). Let y1 and y2 be vertices from each of these components.
Now, σ2(G) = 2n

k+1
+ f(k) ≤ d(y1) + d(y2) < δ(G) + 2s. Thus, δ(G) > 2n

k+1
+ f(k) − 2s > k−1

k(k+1)
n,

since s ≤ 30k2t and t = o(n).

So, unlike Case 1, for every x ∈ TS (not just those in TS∩H), there exists some Gi such that x
can be assigned a unique pair of neighbors in Gi (called v1,x, v2,x) and we say x belongs to Gi.
Thus, in Case 2, if x ∈ TS − ∪iV (Q′i), we associate such a pair.

Similar to Case 1, for every i ∈ {1, 2, · · · , k + 1}, a set Ti will be identified, but in this case it
will not be restricted to TH . Specifically, Ti is the union of the vertices in (T ∩ V (Gi)) − (∪iQ′i)
along with all associated pairs, vx,1 and vx,2, chosen in Gi. Now every vertex in T either lies on
some Q′i, is contained in some Ti, or has a pair of neighbors in some Ti. Let tk+1 = |Tk+1| and let
t0 = ∪ki=1|Ti|.

By replacing each P ′i with a Pi as in Case 1, we form a cycle C containing all vertices of T except
those in Gk+1 − ∪iV (Q′i). As before, |V (C)| ≤ | ∪i V (Pi)|+ | ∪i V (Q′i)| < 29kt0 + 8k2 < 37kt0.

Observe that tk+1 ≤ 2t and, either Gk+1 is complete or κ(Gk+1 − ∪iQ′i) > 30kt− 8k2 > 9k(2t).
Thus, Gk+1 − ∪iQ′i contains a cycle through all of Tk+1 in any order. Let Ck+1 be a smallest such
cycle and observe that |V (Ck+1)| ≤ 9ktk+1.

Since G is connected, there must exist a path from C to Ck+1. Now these two cycles and a
shortest path between them contains at most 29kt0 + 8k2 + 9ktk+1 + 9k ≤ 38kt vertices and
trivially contains a path through all of T. Thus, the theorem holds for Case 2.

Case 3: Assume G− S has k + 2 connected components.

As in Case 2, we are guaranteed that every vertex v ∈ TS can be assigned a unique pair of
neighbors in some Gi. Furthermore, in this case, no component of G−S can have order less than
k.
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Claim 2: There exists some pair of the connected components, say Gk+1 and Gk+2, and some
cut set, Si, such that there exist 10k2 vertex disjoint P3’s from Gk+1 to Gk+2 through Si.

We will proceed by contradiction and let S0, S1, · · · , Sr be the cut sets in the order in which
they were chosen and such that G− ∪iSi has connected components G1, G2, · · · , Gk+2.

Recall the definition of the recurrence relation: b0 = 10k2 and bi = 10k2
(
k+2
2

)2
+
∑i−1

j=0 bi.

If |Sr| ≥ b0 = 10k2, any two children of Sr will suffice, and Claim 2 holds.

So, assume |Sr| < 10k2. Furthermore, assume there exists an i0 < r, such that for all i > i0,

|Si| < br−i but |Si0 | ≥ br−i0 = 10k2
(
k+2
2

)2
+
∑i0

i=0 bi.

Observe that, in the matchings between Si0 its children, we can delete from Si0 all vertices

on matching edges to {Si0+1, · · · , Sr} and still have 10k2
(
k+2
2

)2
matching edges left. Now all

remaining matching edges must go to vertices in ∪Gj. As there less than
(
k+2
2

)2
different pairs of

Gj’s in all, at least one pair of children of Si0 has at least 10k2 P3’s through Si0 .

On the other hand, if no such Si0 exists (that is, if |Si| < br−i for all i), then s < f(k)/2, by
definition of f(k). Yet, by considering two vertices v and w in the two smallest components of
G− {S1, S2, · · · , Sr}, we observe that

2n

k + 2
+ f(k) ≤ d(v) + d(w) ≤ 2

(
n− s
k + 2

+ s− 1

)
<

2n

k + 2
+ 2s

which implies s > f(k)/2. So Claim 2 holds.

Label the cut sets Si and components of G−∪Si such that Gk+2 and Gk+1 have at least 10k2 P3’s
through a cut set Sr. Now, we repeat the arguments from Cases 1 and 2. Specifically, construct
G′ by adding as many as k + 2 new vertices. Construct cycle C ′ through u1, u2, · · · , uk using at
most 8k2 vertices. Define subpaths P ′i and Q′i as before.

Observe that since cycle C uses at most 8k2 vertices, there still exist at least 10k2−8k2 = 2k2 ≥ 2
paths on three vertices between Gk+1 and Gk+2 through Sr. Label these two paths Qk+1 and Qk+2

and call the middle vertices on these paths m1 and m2.

For every x ∈ (T ∩ S) − (∪iQ′i) − {m1,m2}, associate a unique pair of neighbors in some Gi,
called v1,x and v2,x. For each i ∈ {1, 2, · · · , k + 2}, identify Ti as in Case 2. Let tk+2 = |Tk+2|,
tk+1 = |Tk+1|, and t0 = ∪ki=1|Ti|. Thus, t0 + tk+1 + tk+2 ≤ 2t. Replace each P ′i with a Pi as in
previous cases to form the cycle C on at most 29kt0 + 8k2 < 37kt0 vertices.

Finally, construct path Pk+1 from m1 to m2 in Gk+1 such that all internal vertices are contained
in V (Gk+1) and vertices of T that belong to Gi, all vertices of Ti lie on the path, and such that
any associated pairs (vx,1 and vx,2) occur on Pk+1 as a P3 = vx,1, x, vx,2. Find the analogous path
Pk+2 in Gk+2 and vertices that belong to Gk+2. Together Pk+1Qk+1Pk+2Qk+2 form a cycle, C1 on
at most 9k(tk+1 + tk+2 + 4) + 2 vertices.

Any shortest path between C and C1 contains our desired path and uses at most:
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|V (C)|+ |V (C1)|+ 9k ≤ 29kt0 + 8k2 + 9k(tk+1 + tk+2 + 4) + 2 + 9k < 38kt

concluding Case 3.

Thus, in all three cases, a path on at most O(t) vertices can be found through the set T, and
the Theorem holds. �

Corollary 4.1. Let k ≥ 1 be an integer. Let G be a k-connected graph on n vertices such that
σ2(G) ≥ 2n

k+2
+ f(k) where f(k) is a recursively defined function of k. Then there exists a vertex

dominating path in G on at most O(lnn) vertices.

Proof. Any G satisfying the hypotheses of the Corollary contains a dominating set of vertices of
order at most O(lnn) using Lemma 3.3. �

5. Concluding Remarks

Observe that Example 2.1 shows that Corollary 4.1 is close to sharp. That is, the example has

no dominating path and σ2(G) = 2n−4(k+1)
k+2

.

We conjecture that this is the extremal example.

Conjecture 5.1. Let k ≥ 1 be an integer. Let G be a k-connected graph on n vertices such that

σ2(G) > 2n−4(k+1)
k+2

.Then there exists a vertex dominating path in G on at most O(lnn) vertices.

In fact, using the same techniques as in Theorem 4.1, it is possible to prove the cycle analogues
of Theorem 4.1 and Corollary 4.1, stated below.

Theorem 5.1. If G is k-connected and σ2(G) ≥ 2n
k+1

+ f(k) and T ⊆ V (G) such that |T | = o(n),
then there exists a cycle through T on at most O(|T |) vertices.

Corollary 5.1. Let k ≥ 1 be an integer. Let G be a k-connected graph on n vertices such that
σ2(G) ≥ 2n

k+1
+ f(k) where f(k) is a recursively defined function of k. Then there exists a vertex

dominating cycle in G on at most O(lnn) vertices.
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[CCE] B. Clark, C. Colbourn, P. Erdős, A conjecture on dominating cycles, Comb. graph theory and computing,

Proc. 16th Southeast Conf., Boca Raton/Fla. 1985, Cong. Numerantium 47, 189-197 (1985).
[GD52] G. Dirac, Some theorems on abstract graphs. Proc. London Math. Soc. 2, (1952), 69-81.



16 J. FAUDREE, R.J. FAUDREE, R.J. GOULD, P. HORN, AND M.S. JACOBSON

[FGJW] R. Faudree, R. Gould, M. Jacobson, D. West, Minimum Degree and Dominating Paths, (submitted).
[FKKLR] E. Flandrin, T. Kaiser, R. Kuz̆el, H. Li, Z. Ryjác̆ek, Neighborhood unions and extremal spanning trees,

Discrete Math. 308 (2008), no. 23, 43-50. (double check this)
[L76] N. Linial, A lower bound for circumference of a graph, Discrete Math., 15 (1976), no. 3, 297-300.
[MOS] H. Matsumura, K. Ozeki, T. Sugiyama, Note on a longest cycle which is vertex dominating, J. Graphs.

Combin., 4, (2007) no. 3, 233-243.
[OY11] K. Ozeki, T. Yamashita, Spanning trees: a survey, Graphs Combin. 27 (2011), no. 1, 1-26.
[CP75] C. Payan, Sur le Nombre d’Absorbtion d’un Graphe Simple, Proc. Colloque sur la Theorie des Graphes

(Paris, 1974) Cahiers Centre Etudes Recherche Oper. 17 (1975), 307-317.
[SY] A. Saito, T. Yamashita, Cycles within specified distance from each vertex, Discrete Math. 278 (2004) 219-226.
[DW96] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
[TY07] Yamashita, Tomoki Vertex-dominating cycles in 2-connected bipartite graphs. (English summary) Discuss.

Math. Graph Theory 27 (2007), no. 2, 323-332.

Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK
99775-6660

E-mail address: jrfaudree@alaska.edu

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152

E-mail address: rfaudree@memphis.edu

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322

E-mail address: rg@mathcs.emory.edu

Department of Mathematics, University of Denver, Denver, CO 80208

E-mail address: paul.horn@du.edu

Department of Mathematics, University of Colorado Denver, Denver, CO 80217

E-mail address: Michael.Jacobson@ucdenver.edu


