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Abstract

We give an analysis of a variant of the contact process on finite
graphs, allowing for non-uniform cure rates, modeling antidote distri-
bution. We examine an inoculation scheme using PageRank vectors
which quantify the correlations among vertices in the contact graph.
We show that for a contact graph on n nodes we can select a set H of
nodes to inoculate such that with probability at least 1−2ε, any infec-
tion from any starting infected set of s nodes will die out in c log s+ c′

time, where c and c′ depend only on the probabilitstic error bound ε
and the infection rate, and the size of H depends only on s, ε and the
topology around the initially infected nodes, independent of the size of
the whole graph.

1 Introduction

The spreading and containment of epidemics on networks is a widely-studied
problem with many applications in modeling both disease outbreaks in hu-
man and animal populations as well as the spread of viruses and worms
on technological networks such as the Internet, online social networks, and
email. Many analytical models have been used to address numerous crucial
problems, such as the conditions for disease spreading, the critical threshold
for the infection rate, the duration of persistent epidemics, and the effective
distribution of limited amounts of antidote. We will examine a well-studied
contact process model [4, 14], coupled with an inoculation scheme using
PageRank vectors. In this paper, we give a complete analysis of our scheme,
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showing the improved efficiency of the inoculation scheme without affecting
the performance guarantee as in previous results in [4].

A contact graph consists of a set of nodes together with prescribed pairs
of nodes where direct contact can take place and infections can spread (see
[6, 9, 14]). Analysis of spreading on the contact graph is performed with
the contact process, a continuous-time Markov process originally studied in
the first half of the twentieth century [10]. Since then, it has been applied
specifically to network epidemics in many contexts, including social networks
[17], Internet viruses [3], and crop disease [8].

Previously, most analysis of network infection models concerned deter-
mining the critical infection threshold [3, 9, 14]. There is a parameter,
known as the infection rate, that models the virulence or resistance of a
given epidemic, and with it comes a threshold: if the infection rate exceeds
that point, then an epidemic will persist indefinitely. In these analyses, the
infected nodes became healthy all at the same rate. In the contact process,
this occurs when an equal amount of antidote is sent indiscriminately to
all nodes, requiring a large amount of antidote. In practice, this is often
undesirable; in this paper, we will give a model that avoids such widespread
antidote distribution.

Another approach is to combat epidemics by using contact tracing, or
inoculating neighbors of infected nodes, using a total amount of antidote that
depends only on the sum of the degrees of the infected nodes. However, both
simulation and mathematical analysis have shown that contact tracing can
be ineffective, especially on large real-world graphs that exhibit small-world
phenomena and power-law degree distributions [7, 11, 12, 15, 16, 17].

In [4], Borgs et al. show that for the contact process on a contact graph
G, inoculating every node with antidote equal to its degree will result in any
infection dying out in O(log n) time with high probability, where n is the
number of nodes in G. This scheme uses a total amount of antidote equal to
the sum of the degrees in G. For special graphs such as the expanders, it was
shown [4] that such a large amount of antidote is necessary (up to a constant
factor) when a constant proportion of the nodes are initially infected. Our
proposed model will not improve this result on expander graphs, but for
many classes of graphs, we will require antidote only on smaller portions of
the network.

In this paper, we analyze an inoculation scheme using PageRank vectors.
PageRank was first introduced by Brin and Page [5] for Web search algo-
rithms. Although the original definition is for the Web graph, PageRank
is well defined for any graph, including the contact graphs that we study.
Here, we will use a modified version of PageRank, known as personalized
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PageRank, for the contact graph with the initially infected nodes as seeds.
PageRank captures the quantitative correlation between pairs or subsets
of nodes. For example, if the contact graph has some small cuts or bot-
tlenecks, it is likely that an infection will not propagate through them, and
nodes on the other side will have low PageRank. Our inoculation scheme us-
ing PageRank specifies the selected nodes for sending antidote and provides
a probabilistic guarantee for the termination of any epidemic. Furthermore,
the number of selected nodes for inoculation is usually much smaller than
the total size of the contact graph, thus improving the previous schemes
which inoculated all the nodes. The number of selected nodes depends only
on the number of initially infected nodes, the probabilistic guarantee bound
and the isoperimetric invariant of the graph, the Cheeger ratio (to be defined
later). Hence, it is independent of the total size of the contact network.

Previously, an empirical study [13] found that inoculating nodes accord-
ing to their PageRank works well in combating epidemics for certain ex-
amples of contact networks. Our analysis complements this experimental
work and is applicable to any given general contact network. The analy-
sis in Section 3 provides a trade-off between the probabilistic guarantee of
termination and the time required.

2 Preliminaries

We model an epidemic spreading on a general undirected contact graph
G = (V,E) with vertex set V and edge set E. For a vertex v, let dv denote
the degree of v which is the number of neighbors of v. Suppose that the
graph G has n nodes with a degree sequence d = (d1, d2, . . . , dn), where di

is the degree of vertex vi. For a set of nodes T ⊆ V , the volume of T is
defined to be vol(T ) =

∑
v∈T dv. Let D denote the diagonal degree matrix

diag(d1, . . . , dn) and A the adjacency matrix of G, where

Aij =
{

1 if {vi, vj} ∈ E,
0 otherwise.

We consider a typical random walk on G with the transition probability
matrix defined by W = D−1A. Personalized PageRank vectors are based
on random walks and W , with two governing parameters: a seed vector s,
representing an initial distribution over V , and a jumping constant α, which
controls the rate of diffusion. Being a distribution, the entries of s sum to
1. The personalized PageRank pr(α, s) is defined to be the solution to the
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following recurrence relation:

pr(α, s) = αs + (1− α)pr(α, s)W. (1)

Here, s (and all other vectors) will be treated as row vectors. The original
definition of PageRank defined in [5] is the special case where the seed vector
is the the uniform distribution (as used in [13]).

From (1), an alternative expression for the personalized PageRank pr(α, s)
is a geometric sum of random walks (see [2]):

pr(α, s) = α

∞∑
t=0

(1− α)tsW t. (2)

For a subset of nodes H in a graph G, the Cheeger ratio h(H) is a
measure of the cut between H and its complement H̄:

h(H) =
e(H, H̄)

min(vol(H), vol(H̄))
,

where e(H, H̄) denotes the number of edges {u, v} with u ∈ H and v ∈ H̄.
For a given value h, we say that H is an h-cluster if its Cheeger ratio h(H)
satisfies h(H) ≤ h.

For an h-cluster H and a given α, the α-core C of H is the set of all
vertices u so that the personalized PageRank on H, with seed u and jumping
constant α, is at least 1− h

α :

C =
{

u ∈ V | pr(α,1∗u)1H ≥ 1− h

α

}
. (3)

It has been shown [2] that if C is the α-core of H, then vol(C) ≥ 1
2vol(H).

This indicates that there are many nodes u ∈ H for which the personalized
PageRank vector pr(α,1∗u) has very little mass outside of H if α is larger
than h..

3 Infection model and inoculation scheme

We use the following contact process (see [10]) as our infection model, which
is also used in [3]. The contact process is a continuous-time Markov pro-
cess parametrized by β, the infection rate, with 0 ≤ β < 1 and c =
(c1, c2, . . . , cn), the cure vector. We assume that at time t = 0, a seed set
S ⊆ V is infected. We will use 1S to denote the indicative vector associated
with S, and x(0) = 1S .
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Each node vi has an infection state xi(t); a node is considered “healthy”
if xi(t) = 0, and “infected” if xi(t) = 1. Thus, the entire process is character-
ized by a state vector x(t) = (x1(t), x2(t), . . . , xn(t)). The state transitions
are as follows:

• If a node xj is infected, an adjancent node xi becomes infected at rate
β. We refer to this transition as a spread event.

• An infected node vi becomes healthy at rate ci. We refer to this
transition as a cure event.

In any continuous-time Markov process, for a transition (e.g., spread or
cure event) that occurs with rate λ, the elapsed time until that transition
takes place assumes an exponential random variable with parameter λ, which
is independent of any state information. Such a random variable has a
probability density function f(x) = λe−λx for x ≥ 0, and 0 otherwise. We
denote such a random variable as Expo(λ).

Using this contact process as a model, our goal is to choose c such that
with high probability, the infection dies out quickly, and the total amount
of antidote used is small. Furthermore, we want c to only depend on the
seed set S and the degree distribution d, but not on t or x(t). Our main
theorem describes how to find such a cure vector c. First, we establish
the relationship between PageRank and the infection starting from S but
leaving a specified area.

Theorem 1 Suppose that an infection starts in S ⊆ H ⊆ V with infecction
rate β, and each node v ∈ H is inoculated with cv = dv. Let EH denote the
event that an infection started in S ever leaves the set H. Then EH can be
upper bounded by the PageRank vector as follows:

P(EH) ≤ s

β
pr
(

1− β,
1S

s

)
1∗H̄ .

The proof of Theorem 1 will be given in Section 5. Using Theorem 1, we
can further derive the following:

Theorem 2 Let G be a contact graph with n nodes, S be an initial set of
infected nodes with |S| = s, and β be the infection rate with 0 ≤ β < 1.
Suppose that H is an h-cluster that contains S in its (1 − β)-core. If all
nodes in H are inocluated with antidote equal to their degrees, then with
probability at least 1− 2 sh

β(1−β) , any infection starting from S will die out in
at most c log(1/h) + c′ time, where c and c′ depend only on β and not on n.
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Theorem 2 will be proved in Section 5.
We remark that Theorem 2 implies a tradeoff between the Cheeger ratio

h and the probabilistic bound. If the initial set of infected nodes S lie within
the (1− β)-core of a h-cluster H, the probability of the infection dying out
in O(log s) time is high, as long as the product sh is small. In particular,
if the seed set S lies on one side of a small cut, it will likely lie within the
core of an h-cluster with small Cheeger ratio h. If there is no such small
cut, then the infection is likely to spread about the graph. This leads to the
following corollary:

Corollary 1 For any ε > 0 and an infection starting from a seed set S, if
S lies within the (1 − β)-core of an h-cluster H, and h ≤ ε

sβ(1 − β), then
with probability at least 1− 2ε, the infection will die out in c log s + c′ time,
where c and c′ depend only on β and ε and not on n.

The proof of the corollary follows from applying the bound on ε to Theorem
2. We note that the above corollary explicitly relates the desired probabilis-
tic guarantee ε with the Cheeger ratio h of the h-cluster containing S in its
core.

The above theorems suggest the following inoculation scheme:
InoculationScheme(G, S, β, ε)
Input: a contact graph G, an initial set S of s infected nodes, the infection
rate β and the error bound ε.

• Set h = ε
sβ(1− β).

• Use PageRank-Nibble from [2] or Local Partition from [1] to find
an h-cluster H containing S, if one exists.

• Check to see if S is in the (1−β)-core of H. If so, then inoculate each
node v ∈ H with cv = dv.

• If S is not in the core of H, or an h-cluster could not be found, then
let H = G and inoculate every node with cv = dv.

This inoculation scheme relies on being able to find a cluster H that has small
Cheeger ratio h and contains S in its core. If such an H does not exist, then
the algorithm will terminate with the entire graph inoculated. For example,
in the case of expander graphs, the algorithm will soon terminate and is
reduced to same scenario as in [4]. Nevertheless, it is likely for a general
contact graph to contain small h-clusters. In such cases, only a small portion
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of the graph needs to be inoculated, while the desired performance guarantee
is maintained.

Next, we consider the case that the initially infected nodes are randomly
distributed in an h-cluster H. We might expect that the infection is not
likely to escape H. This is not strictly true, because if S contains some
nodes near the boundary of H, it is still quite likely that the infection will
escape. Nevertheless, we will be able to establish an upper bound for such
probability by proving the following theorem:

Theorem 3 Suppose H ⊆ G is an h-cluster, and the set S of initially
infected nodes consists of s nodes randomly and independently selected from
H with probability proportional to their degrees. Suppose the infection rate
is β. Then, for a given ε satisfying sh ≤ ε and s ≥ log(1/ε)/ε, if all nodes in
H are inocluated with antidote equal to their degrees, then with probability
at least 1− ε, any infection starting from S will die out in c log s + c′ time,
where c and c′ depend only on ε and β.

The proof of Theorem 3 will be given in Section 5. This randomized
model is relevant when a disease outbreak originates in a subpopulation,
which can be represented as an h-cluster in a larger population graph. The-
orem 3 implies that if the subpopulation is relatively isolated from the rest
of the population (i.e. the Cheeger ratio h is small), then we can effectively
combat the infection by only attacking the epidemic within that h-cluster.

4 An outline of the analysis of the inoculation
scheme and several useful facts

In order to prove Theorems 1 and 2, we will prove several basic facts which
are need in the following brief outline of our analysis of the inoculation
scheme:

• The probability of the infection spreading to a distant node is small
(Lemma 1).

• The probability that a nearby node will remain infected for a long time
is small (Lemmas 2, 3).

• The probability that an infection persists within the inoculated nodes
is small (Lemma 4).
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• The probability that an infection escapes the inoculated nodes depends
on the PageRank on the uninoculated nodes H̄, proving Theorem 1.

• After proving Theorem 1, Theorem 2 follows by showing that the per-
sonalized PageRank on H̄ is small.

In this section, we will first give some definitions and then proceed to
prove Lemmas 1–4.

Consider that if a vertex vk is infected at some time t, then the infection
must have traversed some walk in the graph from a vertex v0 ∈ S. Suppose
π = (v0, . . . , vk) is a path in G of length k. Let Sπ denote the event that
v0 is infected at time 0, and the infection spreads to vk before time t along
the path π. It is important to note that if Sπ occurs, vk is not necessarily
infected at time t, because it could have been cured before time t; however,
vk cannot be infected at time t if no Sπ occurred.

For a vertex v, let C(v, t) denote the time of the first cure event at vertex
v after time t. From this, we define a realization of a walk as the sequence
of random variables Xv as follows:

• A spread event from vertex vi to vi+1 occurs at time Xi+1.

• 0 < X1 < C(v0, 0).

• For all i ≥ 1, Xi < Xi+1 < C(vi, Xi).

For Sπ to occur, the infection must spread to vk before time t; therefore, Sπ

occurs if and only if there is a realization of π with Xk < t. There are many
possible realizations of π, but in our analysis, we will be concerned with
a specific realization: the canonical realization. In this realization, given
the times of all the cure and spread events, Xi is the maximum over all
possible realizations with those cure and spread times. Thus, the canonical
realization is the latest possible infection path along π.

With Xi as in the canonical realization, we also define an event S ′π which
occurs when at least one spread event from vi to vi+1 occurs between Xi

and C(vi, Xi). Thus, if S ′π occurs, then the infection spreads along π to vk,
but not necessarily before time t. While we are primarily concerned with
the event Sπ, when the spread occurs before time t, it is clear that Sπ ⊆ S ′π,
and using the canonical realization allows us to prove the following lemma
that indicates that the probability that an infection follows a long path is
small:
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Lemma 1 For any path π of length k,

P(Sπ) ≤ P(S ′π) ≤ βk
k−1∏
j=0

1
cj

.

Proof: Let Sj denote the event that there is a spread event from vj to vj+1

in between times Xj and C(vj , Xi). Due to the Markov property of the
contact process, the probability of Sj occurring is

P(Sj) ≤
β

cj
.

Since the curing process at every node is independent, we can write

P(Sπ) ≤ P(S ′π) =
k−1∏
j=0

P(Sj) = βk
k−1∏
j=0

1
cj

.

�

For a walk π of length k with canonical realization (Xi)k
i=1, we define

the canonical end time of π to be

Zπ =
{

Xk if Sπ occurs
0 otherwise.

In other words, Zπ is the last time that vk could become infected via the
path π, or 0 if it is never infected via π. The following lemma states that
the probability that Zπ is large is small:

Lemma 2 Suppose for a path π of length k, Zπ is its canonical end time.
Then,

P(Zπ > t) ≤ 1
(2k)!

t2k−1e−βtβk
k−1∏
j=0

1
cj

.

Proof: Let (Xi)k
i=1 denote the canonical realization of π. Then,

P(Zπ > t) = P(Zπ > t,Sπ)
= P(Xk > t,Sπ)
≤ P(Xk > t,S ′π)
= P(Xk > t|S ′π)P(S ′π).
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Applying Lemma 1, we have

P(Zπ > t) ≤ P(Xk > t|S ′π)βk
k−1∏
j=0

1
cj

.

We further observe that

P(Xk−1 > t|S ′π) = P

(
k∑

i=1

(Xi −Xi−1) > t|S ′π

)

≤ P

(
k∑

i=1

(C(vi, Xi−1)−Xi−1) > t|S ′π

)
.

We consider the time between Xi−1 and the first cure event at vi after
Xi−1 subject to the condition S ′π: at least one spread event occured before
the cure at C(vi, Xi−1). Therefore, the time between Xi−1 and C(vi, Xi−1)
is at least the time for one spread event, namely, the exponential random
variable Expo(β), plus the time for one cure event, Expo(ci). Thus, we have

k∑
i=1

(C(vi, Xi−1)−Xi−1) ≥
k∑

i=1

(Expo(β) + Expo(ci)).

Because β ≤ ci, Expo(ci) is stochastically dominated by Expo(β). We can
write

k∑
i=1

(C(vi, Xi−1)−Xi−1) ≥
k∑

i=1

(Expo(β) + Expo(β)).

The sum of 2k independent exponential random variables has a gamma
distribution Γ(2k, β). Therefore,

P(Xk−1 > t|S ′π) ≤ 1
(2k)!

∫ ∞

t
x2k−1e−xdx

≤ t2k−1e−βt

(2k)!
.

Putting all of this together, the lemma immediately follows. �

The next lemma addresses the question of whether or not a vertex v is
infected at time t. Note that Sπ only addresses whether or not a vertex was
infected via π at some time before t; it could be cured thereafter.

If (Xi)k
i=1 is the canonical realization of π, then we say that v is infected

at time t via path π if Sπ occurs and the first cure event at vk after Xk does
not occur until after time t. We denote this event by Tπ,t = Sπ∩{C(vk, Xk) >
t}.
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Lemma 3 Suppose π is a walk of length k, and the amount of antidote at
vk is ck ≥ β. Then,

P(Tπ,t) < e−βt/2

(
1 +

1
(2k)!

(t/2)2k−1

)
βk

k−1∏
j=0

1
cj

.

Proof:
We first note that the elapsed time from Xk to the cure event C(vk, Xk)

is an exponential random variable with parameter ck, independent of Sπ.
Thus, we can write

P(Tπ,t) = P(C(vk, Xk) > t,Sπ)
= P(Expo(ck) > t−Xk,Sπ)
≤ P(Expo(ck) > t/2,Sπ, Xk ≤ t/2) + P(Xk > t/2,Sπ)
≤ P(Expo(ck) > t/2)P(Sπ) + P(Xk > t/2,Sπ).

From the definition of the canonical end time Zπ, if Sπ occurs, then Xk = Zπ.
Therefore, we have

P(Tπ.t) ≤ P(Expo(ck) > t/2)P(Sπ) + P(Zπ > t/2,Sπ).

Using Lemma 2, we can write

P(Zπ > t/2,Sπ) ≤ 1
(2k)!

(t/2)2k−1e−βt/2βk
k−1∏
j=0

1
cj

.

Meanwhile, from the exponential distribution and Lemma 1,

P(Expo(ck) > t/2)P(Sπ) ≤ e−ckt/2βk
k−1∏
j=0

1
cj

≤ e−βt/2βk
k−1∏
j=0

1
cj

.

This implies

P(Tπ,t) ≤ P(Expo(ck) > t/2)P(Sπ) + P(Zπ > t/2,Sπ)

≤ e−βt/2

(
1 +

1
(2k)!

(t/2)2k−1

)
βk

k−1∏
j=0

1
cj

.

�

For a path π = (v0, . . . , vk), we say that π is safe if cvi ≥ dvi for 0 ≤ i ≤ k.
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We denote by Pk the set of paths originating in S of length exactly k,
and we define P ′k correspondingly for safe paths. We will prove the following
lemma which states that the probability that an infection persists within the
inoculated nodes can be made arbitrarily small by choosing an appropriate
length of time:

Lemma 4 Suppose G is a contact graph on n nodes with seed set S of size
s. Then for any h > 0 and any infection rate β, then

P

( ⋃
π∈P ′

Tπ

)
≤
∑
π∈P ′

P(Tπ) ≤ sh

β(1− β)
.

if

t ≥ 8
(

log(1/h) + log(2β)
min(β, β log(1/β))

)
= c log(1/h) + c′,

where c and c′ only depend on β and not on n or s.

Proof: Our strategy is to analyze short paths and long paths separately.
For long paths, we will use Lemma 1, and for short paths, we will use Lemma
3.

Building off our definitions of Pk and P ′k, we define P≥k =
⋃∞

j=k Pj , and
P ′≥k,P<k, and P ′<k accordingly. Let k0 be the cutoff between long and short
paths to be determined later. For paths of length at least k0, we observe
that ∑

π∈P ′≥k0

P(Tπ) ≤
∞∑

k=k0

∑
π∈P ′k

P(Sπ)

≤
∞∑

k=k0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

P(S(v0,...,vk))

≤
∞∑

k=k0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

βk
k−1∏
j=0

1
cj

≤
∞∑

k=k0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

βk
k−1∏
j=0

1
dj

=
sβk0

1− β
.
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On the other hand, for paths of length less than k0, we have

∑
π∈P ′<k0

P(Tπ) ≤
k0−1∑
k=0

∑
π∈P ′k

P(Tπ)

≤
k0−1∑
k=0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

P(Tπ)

≤
k0−1∑
k=0

∑
v0∈S

∑
v1∼v0

· · ·
∑

vk∼vk−1

e−βt/2

(
1 +

1
(2k)!

(t/2)2k−1

)
βk

k−1∏
j=0

1
cj

≤ s

k0−1∑
k=0

e−βt/2βk

(
1 +

(t/2)2k−1

(2k)!

)
≤ sk0e

−βt/2

(
1 +

(t/2)2k0−1

(2k0)!

)
.

Combining the bounds for short and long paths yields∑
π∈P ′

P(Tπ) ≤ s

(
βk0

1− β
+ k0e

−βt/2

(
1 +

(t/2)2k0−1

(2k0)!

))
We choose k0 = βt/8. Because t ≥ 8/β, we can use Stirling’s approximation
to derive the bound

eβt/4 ≥ k0 +
(t/2)2k0

(2k0)!
.

Thus we have ∑
π∈P ′

P(Tπ) ≤ s

(
βk0

1− β
+ e−βt/4

)

≤ s

(
ββt/8

1− β
+ e−βt/4

)

≤ sh

β(1− β)

by using the assumption t ≥ 8
(

log(1/h)+log(2β)
β log(1/β)

)
, ββt/8 ≤ sh

2β(1−β) . This
completes the proof of Lemma 4.

�
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5 Proof of the main theorems

We are now ready to prove Theorem 1. Suppose that an infection starts in
S ⊆ H ⊆ V , and each node v ∈ H is inoculated with cv = dv. Recall that
EH denotes the event that an infection started in S ever leaves the set H.
Theorem 1 states that EH satisfies

P(EH) ≤ s

β
pr
(

1− β,
1S

s

)
1∗H̄ .

Proof of Theorem 1: Let Bk denote the set of all paths of length k from
S to H̄ such that the first k−1 steps are in H. We define B to be the union
of all Bk. Note that if u ∈ H̄ is ever infected, then Sπ occurs for some π ∈ B.
We will bound that probability using the union bound:∑

π∈B
P(Sπ) ≤

∑
k

∑
π∈Bk

P(Sπ)

≤
∑

k

∑
v0∈S

∑
vk∈H̄

∑
π=(v0,...,vk)∈Bk

P(Sπ)

≤
∑

k

∑
v0∈S

∑
vk∈H̄

∑
π=(v0,...,vk)∈Bk

βk
k−1∏
j=0

1
dj

=
∑

k

1Sβk(D−1A)k1∗H̄

=
∑

k

1SβkW k1∗H̄

=
s

β
pr
(

1− β,
1S

s

)
1∗H̄ ,

where we use (1), the assumption on H and apply Lemma 1.
Note that if π is a path that contains vertices in H̄, then it has an initial

segment π̄ ∈ B, and Sπ ⊆ Sπ̄. The set of such walks is P \P ′; we have shown
that

P

 ⋃
π∈P\P ′

Tπ

 = P

(⋃
π∈B

Tπ

)

≤
∑
π∈B

P(Sπ)

≤ s

β
pr
(

1− β,
1S

s

)
1∗H̄ .
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Thus, we have shown that the probability that the infection leaves H de-
pends on the personalized PageRank on H̄. �

We are now ready to prove our next theorem.
Proof of Theorem 2: By the assumptions, H is a cluster with S contained
in its (1− β)-core. Thus, for u ∈ S, we have from (3)

pr(1− β,1∗u)1∗H̄ ≤ h

1− β
.

Summing over all u ∈ S gives

pr(1− β,
1S

s
)1∗H̄ =

1
s

∑
u∈S

pr(1− β,1u)1∗H̄

≤ h

1− β
.

Applying this bound to Theorem 1 gives

P(EH) ≤ sh

β(1− β)
.

Thus, the probability that the infection escapes H is at most sh
β(1−β) . Because

ci = di for vi ∈ H, all paths within H are safe paths, and we can apply
Lemma 4 to bound the probability that the infection persists in H. Lemma
4 implies that the probability that the infection persists in H for longer than
c log(1/h)+ c′ time is also at most sh

β(1−β) . Combining these two results, the
probability that the infection persists anywhere on the contact graph for
longer than c log s + c′ time is at most 2 sh

β(1−β) . �

Theorem 3 implies that if S is chosen randomly from an h-cluster H,
then there is a high probability that it is also in the core of H. This is
important, because if S is in the core of H, then we can effectively combat
any infection starting from S by only inoculating H. The proof is similar to
the analysis involved in local partitioning algorithms using PageRank [2].
Proof of Theorem 3: Suppose we are given an h-cluster H, and S is
formed by selecting s random vertices from H, independently with prob-
ability proportional to their degrees. Suppose v is one of those s nodes,
and let X be a random variable that marks the amount of personalized
PageRank contained in H̄:

X = pr(α,1v)1∗H̄ .
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From [2], we have

E(X) ≤ h

2α
,

where the expectation is over the possible nodes v ∈ H. Futhermore, since
X ≤ 1, we can bound the variance by Var(X) ≤ E(X).

Here we take α = 1 − β. Since we are selecting s random vertices,
we consider Y =

∑s
i=1 Xi where Xi is a copy of X. We are interested in

bounding

P(Y ≥ sh

α
) ≤ P(Y ≥ 2E(Y )).

Using Chernoff’s inequality and the known bound for E(X), we have

P(Y ≥ 2sE(X)) ≤ e−sE(X)2/(2Var(X))

≤ e−sh/(4α)

≤ ε

since sh/(4α) ≥ log(1/ε).
By Theorem 1, with probability at most 1−ε, the event that the infection

starting from S leaves H satisfies

P(EH) ≤ s

β
pr
(

1− β,
1S

s

)
1∗H̄

≤ sh

4αβ

≤ sh

4(1− β)β
≤ ε

by the assumption sh ≤ ε. This completes the proof of Theorem 3. �

6 Concluding remarks

There are many questions remaining, several of which we mention here:

1. In this paper, we show that if s infected nodes are in the core of a
h-cluster H and the product of s and h is small, then we only need
to inoculate nodes in H so that the infection will die out in O(log s)
time with high probability. Is it possible to improve or replace the
condition imposed on the product sh?
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2. In our main theorems, our analysis involves the Cheeger ratio which
is one of the parameters concerning the structure of a graph. It will
be desirable if other structural parameters can help improve the prob-
abilistic bounds in the statement of Theorem 2, for example.

3. In this paper, we consider a fixed infection rate β and ask how little
antidote can be used while still ensuring the contact process dies out
quickly. The other natural approach to this problem is to fix an amount
of antidote and ask for what range of β will the disease necessarily die
out quickly .

4. One can also consider alternative models of contact process where
cured nodes may or may not susceptible to reinfection. In addition,
the type of propagation on networks can be different.

Many related interesting questions remain to be answered.
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