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Abstract

Motivated by classical work of Alon and Füredi, we introduce and address the following
problem: determine the minimum number of affine hyperplanes in Rd needed to cover every
point of the triangular grid Td(n) := {(x1, . . . , xd) ∈ Zd

≥0 | x1 + · · · + xd ≤ n − 1} at least k
times. For d = 2, we solve the problem exactly for k ≤ 4, and obtain a partial solution for k > 4.
We also obtain an asymptotic formula (in n) for all d ≥ k− 2. The proofs rely on combinatorial
arguments and linear programming.

1 Introduction

A classical theorem of Alon and Füredi [2], answering a question of Komjáth [7], states that at

least n hyperplanes are necessary to cover the punctured hypercube {0, 1}n \ {−→0 }, if the origin
must be uncovered. This result, which can be proved by an application of the combinatorial Null-
stellensatz [1], has been built on over the years. Recent work of the second author and Huang [5]
investigated the situation where each point on the hypercube (except the origin) must be covered
at least k times by the hyperplanes. This was, in turn, built on by Sauermann and Wigderson [8]
who considered more general polynomial coverings of the hypercube and by Bishnoi, Boyadzhiyska,
Das, and den Bakker [3] who considered hyperplane covers of two-dimensional rectangular grids.

In this paper, inspired by the previous work on covering the hypercube, we study covering another
object: the triangular grid, defined as Td(n) := {(x1, . . . , xd) ∈ Zd

≥0 | x1 + · · · + xd ≤ n− 1}. Note

that Td(n) is affinely equivalent to a triangular lattice in Rd with n points along each edge of the
boundary.

While the triangular grid could be considered a ‘punctured’ version of a rectangular grid, this work
(unlike the work on the hypercube and in [3]) does not try to avoid the punctured part. The main
challenge (and interest), then, in this setting comes from the fact that — unlike in a hypercube or
a rectangular grid — the typical point of the grid does not lie in a hyperplane of maximum size.

Let f(n, d) be the fewest number of affine hyperplanes needed to cover every point of Td(n) at least
once. Noting that f(n, d) is the optimum of an integer program, we consider the following linear
programming relaxation: to every affine hyperplane H in Rd, assign a nonnegative weight w(H)
such that ∑

H3p
w(H) ≥ 1 for every p ∈ Td(n).
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We refer to such a weight assignment as a fractional cover. Let f∗(n, d) be the minimum size of a
fractional cover, i.e. the minimum of

∑
H w(H) over all fractional covers. Finally, we call a multiset

of hyperplanes which covers every point of Td(n) at least k times a k-cover (a 1-cover is simply a
cover). Let f(n, d, k) be the minimum cardinality of a k-cover of Td(n), so f(n, d, k) denotes the
fewest number of hyperplanes needed to cover every point of Td(n) at least k times. Note that
f(n, d, 1) = f(n, d).

Here, we study the fractional and integral problems laid out: first in dimension 2, then for higher
dimensions. In dimension 2, we completely solve the fractional problem (Theorems 2.1 and 2.2), and
then turn to the integral problem where we completely determine f(n, 2, k) for k ≤ 4 (Theorem 2.3).
The most interesting thing we notice, however, in dimension 2 is a seemingly strong connection
between the solution to the fractional problem for the triangular grid of size k, f∗(k, 2) and the
solution to the integral problem for covering arbitrarily large grids k times, f(n, 2, k). In particular,
it appears (Conjecture 2.5) that

f(n, 2, k) = f∗(k, 2)n+Ok(1).1

While we are unable to completely resolve this question, we prove that f∗(k, 2)n+Ok(1) is an upper
bound for f(n, 2, k) (Proposition 2.6) and prove the conjecture under certain natural assumptions
on the admissible lines in the covering (Theorem 2.7).

In Section 3, we turn to higher-dimensional analogues of the questions. Perhaps the highlight
here is Theorem 3.6, which determines f(n, d, k) asymptotically, so long as d is sufficiently large
compared with k. We also show that the natural analogue of Conjecture 2.5, mentioned above, fails
for higher dimensions. However, we conjecture an asymptotic formula for f(n, d, k) for all d and k
(Conjecture 4.7); this and other open problems are mentioned in Section 4.

Notation and terminology By a standard hyperplane, we mean a hyperplane of the form xi = c
or x1 + · · ·+ xd = n− 1− c with c ∈ {0, . . . , n− 1}. In particular, standard hyperplanes contain at
least one point of Td(n) and are parallel to a face of its convex hull. When c = 0, i.e., the hyperplane
contains a face of the convex hull, we refer to the hyperplane as a bounding hyperplane. A face of
Td(n) is the set Td(n) ∩H where H is a bounding hyperplane. If a hyperplane is not standard, we
say it is non-standard. Of course, for d = 2, we say lines instead of hyperplanes and, for d = 3, we
say planes instead of hyperplanes.

2 Triangular grids in two dimensions

Throughout this section, we will regard T2(n) as {(x, y) ∈ Z2
≥0 | x+ y ≤ n− 1}.

2.1 Fractional covering

Theorem 2.1. f∗(3j + 1, 2) = 2j + 1 for all integers j ≥ 0.

Proof. We begin by showing that f∗(3j+ 1, 2) ≤ 2j + 1. When j = 0, T2(3j+ 1) consists of a single
point, and we can cover it with one line. Suppose now that j ≥ 1, and note that T2(3j + 1) =
{(x, y) | x, y ≥ 0, x + y ≤ 3j}. Consider the fractional cover C where, for each i ∈ {0, . . . , 2j − 1},
the lines given by x = i, y = i and x+ y = 3j − i have weight (2j − i)/(3j), and all other lines have
weight 0.

1We use Ov1,v2,...,vk to represent the usual big-O notation where the constant of proportionality depends on the
variables v1, v2, . . . , vk. Unless otherwise specified, the big-O notation represents asymptotics as n → ∞.
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To see that this is indeed a (fractional) cover, let (a, b) ∈ T2(3j + 1). Note that at least one of a, b
is at most 2j − 1. Suppose, first, that both a, b ≤ 2j − 1, then (a, b) is contained in a vertical line
with weight (2j − a)/(3j) and a horizontal line with weight (2j − b)/(3j), for a total weight of at
least (4j−a− b)/(3j). Hence, if a+ b ≤ j, then (a, b) is covered by lines with total weight at least 1.
On the other hand, if a+ b > j, then (a, b) is contained in the line x+ y = a+ b which has weight
(a+ b− j)/(3j), for a total weight of

4j − a− b
3j

+
a+ b− j

3j
= 1.

Suppose now, without loss of generality, that a ≤ 2j − 1 and b ≥ 2j. Then, (a, b) is contained in a
vertical line with with weight (2j − a)/(3j), and in a diagonal line with weight (a+ b− j)/(3j), for
a total weight of

2j − a
3j

+
a+ b− j

3j
=
j + b

3j
≥ 1.

Hence, C is a fractional cover with total weight

3

3j

2j−1∑
i=0

(2j − i) = 2j + 1.

We now establish the lower bound. For j = 0 this is straightforward. For j ≥ 1, we assign
nonnegative mass, m(p), to each point p ∈ T2(3j + 1) such that the total mass assigned is 2j + 1.
Then, showing that the set of points of T2(3j + 1) contained in any line has total mass at most 1
implies the bound f∗(3j + 1, 2) ≥ 2j + 1.

Our construction assigns a number of points a mass of 0. In particular, any point that is covered by
lines of total weight more than 1 in C will be assigned a mass of 0. Indeed, consider the quantity

Q =
∑
(p,`)

w(`)m(p),

where the sum ranges over (p, `) such that p ∈ T2(n), ` has positive weight (denoted by w(`)) in C,
and p ∈ `. Since every line contains points of total mass at most 1, we have Q ≤ 2j + 1. If there is
a point with positive mass that is covered by lines of total weight more than 1 in C, then

Q >
∑

p∈T2(3j+1)

m(p) = 2j + 1,

a contradiction. On the other hand, since every point is contained in lines of total weight at least 1,
we have Q ≥ 2j+ 1. This implies that implies that any line ` with w(`) > 0 contains points of mass
exactly 1.

The points that receive positive mass can be partitioned into sets X1, . . . , Xj defined as follows.
Fix i ∈ {1, . . . , j}, and note that the lines given by the equations x = j − i, x = j + i, y = j − i,
y = j + i, x+ y = 2j − i, and x+ y = 2j + i form a hexagon. The set Xi ⊆ T2(3j + 1) is defined to
be the set of grid points contained on the boundary of this hexagon. See Figure 1 for an illustration
with j = 3. We refer to the sets X1, . . . Xj as hexagons.

We impose the additional restriction that, for each hexagon, the points contained in are assigned
equal mass. This implies that points of Xj contained in lines given by x = 0, y = 0, and x+y = n−1
(and, hence, all points of Xj) receive a mass of 1/(j + 1). We then successively assign mass to the
points in Xi for i = j− 1, . . . , 1, while ensuring that the lines x = j− i, y = j− i, and x+ y = 2j+ i
each contain points of total mass 1. Following this strategy determines the following assignment of
masses.
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Figure 1: Masses for T2(10) – Points in X1 are assigned mass 1/12, points in X2 are assigned mass
1/6, and points in X3 are assigned mass 1/4. All other points have mass 0.

For each i, the points of Xi are assigned a mass of i/(j(j+1)). All other points are assigned mass 0.
See Figure 1 for an illustration. Note that the hexagon Xi has i+ 1 points along a side for a total
of 6(i+ 1)− 6 = 6i points. Thus, the total mass of all the points in T2(3j + 1) is

j∑
i=1

6i

(
i

j(j + 1)

)
= 2j + 1.

It remains to show that no line contains points of total mass more than 1. Suppose first that ` is a
non-standard line, i.e., ` is not horizontal, vertical, nor has slope −1 (e.g., the line `1 in Figure 1).
Then ` can contain at most two points of each hexagon, implying that ` contains points with total
mass at most

2

j∑
i=1

i

j(j + 1)
= 1.

Similarly, if ` is a standard line and does not contain a side of Xi (e.g., if (j + 1, j + 1) ∈ `), then
` contains at most two points of each hexagon and so contains points with total mass at most 1.
Finally, suppose ` contains a side of Xs (e.g., the line `2 in Figure 1). Then ` contains s+ 1 points
of Xs and two points from Xi for each i > s. So ` contains points with total mass

(s+ 1)

(
s

j(j + 1)

)
+ 2

j∑
i=s+1

i

j(j + 1)
= 2

j∑
i=1

i

j(j + 1)
= 1.

Theorem 2.2. For all integers j ≥ 0,

(a) f∗(3j + 2, 2) = 2j + 1 +
2j + 1

3j + 2
,

(b) f∗(3j + 3, 2) = 2j + 2 +
j + 1

3j + 4
.
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Proof. We begin by establishing the upper bounds. Since the proof here is similar to that of the
upper bound in Theorem 2.1, we only present the fractional cover and leave the verification as an
exercise.

Let n = 3j+ 2 with j ≥ 0. The upper bound in (a) is obtained by considering the fractional cover C
where, for i ∈ {0, . . . , 2j}, the lines given by x = i, y = i, and x + y = 3j + 1 − i have weight
(2j + 1− i)/(3j + 2), and all other lines have weight 0.

Suppose now that n = 3j + 3 with j ≥ 0. The upper bound in (b) is obtained by considering the
fractional cover where, for i ∈ {0, . . . , 2j + 1}, the lines given by x = i, y = i, and x+ y = 3j + 2− i
have weight (2j + 2− i)/(3j + 4), and all other lines have weight 0.

We now proceed to establish the lower bound. As in the proof of Theorem 2.1, we will assign
nonnegative mass to each point of T2(n) such that no line contains points of total mass more than
1. This implies that f∗(n, 2) is at least the sum of all masses. The proof here is more involved than
that of Theorem 2.1. Hence, we give a detailed proof for n = 3j + 2. For n = 3j + 3, the proof is
similar to that of n = 3j + 2 and we only present the construction.

Proof of lower bound in (a): Let n = 3j + 2. As in the proof of Theorem 2.1, any point of T2(n)
covered by lines of total weight more than 1 in the upper bound construction C has mass 0, and any
line with positive weight in C contains points of total mass 1.

For j = 0, a cover is easily obtained by assigning each point a mass of 1/2. From here on, we
assume j ≥ 1. The points with positive mass can be partitioned into disjoint hexagons X1, . . . , Xj ,
and a triangle Y . The triangle Y consists of the three points (j, j), (j + 1, j), and (j + 1, j). For
i ∈ {1, . . . , j}, Xi consists of points of T2(n) lying on the hexagon formed by the lines given by
x = j − i, x = j + i+ 1, y = j − i, y = j + i+ 1, x+ y = 2j − i, and x+ y = 2j + i+ 1. Note that
the hexagons are not equilateral – the hexagon Xi has three short sides containing i+ 1 points, and
three long sides containing i+ 2 points. We will refer to a point as a corner point if it lies on both
a long and short side, or an interior point if it is not a corner point. See Figure 2 for an illustration
with j = 3.

Recall that points not contained in hexagons or Y have mass 0 and that each line with positive
weight in the fractional cover C contains points of total mass exactly 1. With these requirements,
we obtain that each standard line except for ones that contain a short side of Xj contain points
of total mass either 0 or 1. This forces the short sides of Xj to receive the leftover mass. Since C
assigns positive weight to 2j + 1 standard lines in each direction, the short sides of Xj each contain
points of total mass (2j + 1)/(3j + 2).

We first assign the corner and interior points on the short sides of Xj equal mass so that the lines
containing these sides contain points of total mass (2j + 1)/(3j + 2). Then, we assign equal mass to
the remaining points of Xj (interior points on the long sides) so that the lines given by x = 0, y = 0,
and x+y = n−1 each contain points of total mass 1. We then successively assign mass to the points
in Xi for i = j−1, . . . , 1. For each i, we first assign equal mass to the points on the short sides of Xi

such that the lines containing the short sides of Xi each contain points of total mass 1. This then
determines the total mass of the interior points on the long sides of Xi, which we distribute equally.
Finally, once we have assigned mass to each hexagon, the requirement that each line with positive
weight in the fractional cover C contains points of total mass 1 determines the masses of points in
Y .

The strategy outlined above results in the following mass assignment:

• the corner points and interior points on the short sides of Xj have mass (2j+1)/((j+1)(3j+2))
for a total mass of

3(j + 1)

(
2j + 1

(j + 1)(3j + 2)

)
=

3(2j + 1)

3j + 2
,

• for 1 ≤ i ≤ j − 1, the corner points and interior points on the short sides of Xi have mass
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X3

X2

X1

Y

Figure 2: Masses for T2(11) – corner points and interior points on the short sides (red) of X1, X2,
and X3 have mass 5/44, 2/11, and 7/44 respectively. Interior points on the long sides (blue) of
X1, X2, and X3 have mass 1/11, 7/44, and 5/22. Points on triangle Y have mass 1/22. All other
points have mass 0.

(3i+ 2)/((j + 1)(3j + 2)) for a total mass of

3

j−1∑
i=1

(i+ 1)

(
3i+ 2

(j + 1)(3j + 2)

)
=

3(j3 + j2 − 2)

(j + 1)(3j + 2)
,

• for 1 ≤ i ≤ j, the interior points on the long sides of Xi have mass (3i+ 1)/((j + 1)(3j + 2))
for a total mass of

3

j∑
i=1

i

(
3i+ 1

(j + 1)(3j + 2)

)
=

3j(j + 1)

(3j + 2)
,

• points of Y have mass 2/((j + 1)(3j + 2)) for a total mass of

6

(j + 1)(3j + 2)
.

The total mass of points in T2(3j + 2) is

3(2j + 1)

3j + 2
+

3(j3 + j2 − 2)

(j + 1)(3j + 2)
+

3j(j + 1)

3j + 2
+

6

(j + 1)(3j + 2)
= 2j + 1 +

2j + 1

3j + 2
.

It remains to show that no line contains points of total mass more than 1. Suppose first that ` is
a standard line, i.e., ` is horizontal, vertical, or has slope −1. It suffices to consider the following
cases:

Case (i): ` contains the short side of a hexagon. If this hexagon is Xj , then ` contains exactly j + 1
points of T2(n) for a total mass of

(j + 1)

(
2j + 1

(j + 1)(3j + 2)

)
< 1.
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Suppose now that ` contains the short side of Xs with s < j. Then ` contains two interior points
on the long sides of Xi for each i > s. The total mass of points contained in ` is

(s+ 1)

(
3s+ 2

(j + 1)(3j + 2)

)
+ 2

j∑
i=s+1

3i+ 1

(j + 1)(3j + 2)
= 1.

Case (ii): ` contains the long side of a hexagon. If this hexagon is Xj , then ` contains exactly j + 2
points with positive mass, for a total mass of

2

(
2j + 1

(j + 1)(3j + 2)

)
+ j

(
3j + 1

(j + 1)(3j + 2)

)
= 1.

Suppose now that ` contains the long side of Xs with s < j. Then ` contains two interior points on
the short sides of Xi for each i > s. The total mass of points contained in ` is

s

(
3s+ 1

(j + 1)(3j + 2)

)
+ 2

(
j−1∑
i=s

3i+ 2

(j + 1)(3j + 2)

)
+ 2

(
2j + 1

(j + 1)(3j + 2)

)
= 1.

Case (iii): ` contains a side of Y and two corner points of Xi for each i. The total mass of points
contained in ` is:

2

(
2

(j + 1)(3j + 2)

)
+ 2

(
j−1∑
i=1

3i+ 2

(j + 1)(3j + 2)

)
+ 2

(
2j + 1

(j + 1)(3j + 2)

)
= 1.

Case (iv): ` contains one point of Y and two interior points on the long sides of each hexagon. The
total mass of points contained in ` is:

2

(j + 1)(3j + 2)
+ 2

(
j∑

i=1

3i+ 1

(j + 1)(3j + 2)

)
= 1.

We now assume that ` is a non-standard line. Suppose, for contradiction, that ` contains points of
total mass more than 1. Let p, q ∈ ` be the points with largest mass. Note that the mass of each of
p, q is at most M := (3j+ 1)/((j+ 1)(3j+ 2)), the largest mass assigned to any point. Furthermore,
since the only points assigned a mass of M lie on a long side of Xj , ` can contain at most two points
with this mass. For j > 1, every other mass is at most (3j − 1)/((j + 1)(3j + 2)), so the number of
points contained in ` with positive mass is at least

2 +
1− 2 ((3j + 1)/((j + 1)(3j + 2)))

(3j − 1)/((j + 1)(3j + 2))
≥ j + 2.

For j = 1, we have 2M < 1 and, hence, the number of points contained in ` with positive mass is at
least j + 2.

Suppose (a, b), (a + m1, b + m2) ∈ T2(n) with m1,m2 non-zero integers are consecutive grid points
on `. The number of rows of T2(n) with points of non-zero mass is 2j + 2. The same is true for
columns of T2(n). A non-standard line can contain at most one point in any row or column. Since
` contains at least j + 2 points, this implies |m1|, |m2| = 1. Since ` is non-standard, it follows that
` has slope 1.

Observe that the mass assignment is symmetric up to affine transformations of R2 that map T2(n)
to itself. Furthermore, there are affine transformations which map ` to a line `′ with slope −2 or
−1/2. But, by the argument above, `′ contains points of total mass at most one. Thus, ` contains
points of total mass at most one, a contradiction.
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X3

X2

X1

Y

Figure 3: Masses for T2(12) – corner points and interior points on the short sides (red) of X1, X2,
and X3 have mass 7/52, 5/26, and 1/13 respectively. Interior points on the long sides (blue) of
X1, X2, and X3 have mass 5/52, 2/13, and 11/52. The corner points of Y have mass 1/13, and the
interior points have mass 1/26. All other points have mass 0.

Proof of lower bound in (b): Let n = 3j + 3. We assign mass to points of T2(n) for a total mass of
2j + 2 + (j + 1)/(3j + 4). The aim here is to be brief — we simply describe the construction and
leave verification as an exercise.

For j = 0, a cover is easily obtained by assigning mass 1/4 to the corners of T2(n) and mass 1/2 to
the remaining points. From here on, we assume j ≥ 1. Any point that is covered by lines with total
weight more than 1 gets mass zero. The remaining points can be partitioned into disjoint hexagons
X1, . . . , Xj , and a triangle Y . The triangle Y consists of the six points lying on the boundary of the
triangle with vertices (j, j), (j, j + 2), and (j + 2, j). The hexagon Xi consists of the grid points of
T2(n) on the hexagon formed by the lines x = j−i, x = j+i+2, y = j−i, y = j+i+2, x+y = 2j−i,
and x+ y = 2j+ i+ 2. Note that the hexagons are not equilateral – the hexagon Xi has three short
sides containing i+ 1 points, and three long sides containing i+ 3 points. We will refer to a point as
a corner point if it lies on both a long and short side, or an interior point if it is not a corner point.
Corner and interior points of Y are defined in the obvious manner. See Figure 3 for an illustration
with j = 3.

The mass is assigned as follows:

• the corner points and interior points on the short sides of Xj have mass 1/(3j + 4) for a total
mass of

3(j + 1)

(
1

3j + 4

)
=

3j + 3

3j + 4
,

• for 1 ≤ i ≤ j − 1, the corner points and interior points on the short sides of Xi have mass
(3i+ 4)/((j + 1)(3j + 4)) for a total mass of

3

j−1∑
i=1

(i+ 1)

(
3i+ 4

(j + 1)(3j + 4)

)
=

3(j3 + 2j2 + j − 4)

(j + 1)(3j + 4)
,
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• for 1 ≤ i ≤ j, the interior points on the long sides of Xi have mass (3i+ 2)/((j + 1)(3j + 4))
for a total mass of

3

j∑
i=1

(i+ 1)

(
3i+ 2

(j + 1)(3j + 4)

)
=

3j(j2 + 4j + 5)

(j + 1)(3j + 4)
,

• the corner points of Y have mass 4/((j+ 1)(3j+ 4)) and the interior points have mass 2/((j+
1)(3j + 4)) for a total mass of

18

(j + 1)(3j + 4)
.

The total mass of points in T2(3j + 3) is

3j + 3

3j + 4
+

3(j3 + 2j2 + j − 4)

(j + 1)(3j + 4)
+

3j(j2 + 4j + 5)

(j + 1)(3j + 4)
+

18

(j + 1)(3j + 4)
= 2j + 2 +

j + 1

3j + 4
.

The verification of the fact that each line contains points of total mass at most 1 follows similarly
to the computation in the proof of Theorem 2.2 (a).

2.2 Integer covering

The solution to the fractional problem gives an immediate lower bound on the integral problem:

f(n, 2, k) ≥ kf∗(n, 2). (1)

If n is fixed and k → ∞, then f(n, 2, k) = kf∗(n, 2) + On(1) (see for example [3], Proposition 1).
On the other hand, for fixed k as n→∞, we obtain via Theorems 2.1 and 2.2 that

f(n, 2, k) ≥ kf∗(n, 2) = k

(
2n

3
+O(1)

)
=

(
2k

3

)
n+Ok(1).

We show that this bound is not the best possible for k ≤ 4, and conjecture that this is the case for
every value of k.

Theorem 2.3. For all n ≥ 2,

f(n, 2, k) =


n if k = 1,

d3n/2e if k = 2,

d9n/4e if k = 3,

3n if k = 4.

Observation 2.4. If H is a bounding hyperplane of Td(n), then Td(n)\H is a copy of Td(n−1). Fix
d, k > 0 and suppose there are constants α := αd,k, β := βd,k such that f(n− 1, d, k) ≥ α(n− 1) +β.
Then any k-cover of Td(n) which contains a bounding hyperplane with multiplicity at least α has
cardinality at least αn+ β. Thus, in proving a bound of the form f(n, d, k) ≥ αn+ β via induction
on n, it suffices to consider k-covers in which each bounding hyperplane has multiplicity less than α.

Proof of Theorem 2.3. We begin by showing the lower bounds. For each k, the base case of n = 2
follows immediately from (1). Suppose now that n > 2.

For k ∈ {1, 2, 4}, our proof relies on the following idea: if a line is not a bounding line, then
it can cover at most two points contained in the bounding lines. Hence, any cover must either
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contain bounding lines with high multiplicity, or a large number of non-bounding lines. We present
these proofs first. Unfortunately, this method fails to give an optimal bound for k = 3. Here, our
argument is somewhat more involved and takes into account the multiplicity of other standard lines.
In particular, we consider the smallest non-negative integer c such that the line given by x1 = c has
low multiplicity in the cover. If c is large, many lines parallel to x1 = 0 have high multiplicity and
the cover is large. On the other hand, if c is small, many lines are needed to cover the points of
x1 = c again implying that the cover is large. We note that variations of both arguments are used
repeatedly in Section 3.

The case k = 1: Since we want to show f(n, 2, 1) ≥ n, by Observation 2.4, it suffices to consider
covers of T2(n) that do not contain any bounding lines. Let H be the line given by x = 0. Any
cover must contain a distinct line for each point in T2(n) ∩H, implying that f(n, 2, 1) ≥ n.

The case k = 2: Recall that we want to show f(n, 2, 2) ≥ d3n/2e. For n = 3, the desired result
again follows immediately from (1). By Observation 2.4, it suffices to consider 2-covers of T2(n)
where the multiplicity of each bounding line is at most one.

When n ≥ 4, let C be a 2-cover of T2(n) where exactly m bounding lines have multiplicity exactly
one, where 0 ≤ m ≤ 3. Then 3−m bounding lines have multiplicity zero. A bounding line contains
n− 2 points that are not covered by other bounding lines. In the union of the faces of T2(n), there
are at least m(n− 2) points that need to be covered one additional time and (3−m)(n− 2) points
that need to be covered two additional times. Since no line (that is not a bounding line) can cover
more than two of these points, we obtain

|C| ≥ m+
m(n− 2) + 2(3−m)(n− 2)

2
=

3n

2
+

(3−m)(n− 4)

2
.

Since |C| is an integer, we obtain f(n, 2, 2) ≥ d3n/2e.

The case k = 4: Recall that we want to show f(n, 2, 4) ≥ 3n. For n ∈ {3, 4, 5}, the result follows
immediately from (1). By Observation 2.4, it suffices to consider 4-covers where the multiplicity
of each bounding line is at most two. Let n ≥ 6 and C be a 4-cover of T2(n) where m bounding
lines have multiplicity exactly two, where 0 ≤ m ≤ 3. Then 3−m bounding lines have multiplicity
at most one. In the union of the faces of T2(n), there are at least m(n − 2) points that need to
be covered two additional times and (3 −m)(n − 2) points that need to be covered at least three
additional times. Since no line (that is not a bounding line) can cover more than two of these points,
we obtain

|C| ≥ 2m+
2m(n− 2) + 3(3−m)(n− 2)

2
= 3n+

(3−m)(n− 6)

2
,

implying that f(n, 2, 4) ≥ 3n.

The case k = 3: Let s (resp. t) be the smallest nonnegative integer such that the line given by x = s
(resp. x = t) has multiplicity at most one (resp. has multiplicity zero). Then the number of vertical
lines (with multiplicity) is at least 2s+ (t− s) = s+ t. Each of the n− s points on the line given by
x = s must be covered at least an additional two times, and any non-vertical line can cover exactly
one of these. It follows that

|C| ≥ s+ t+ 2(n− s) = 2n− s+ t. (2)

Similarly, each of the n− t points on the line given by x = t must be covered three times, and any
non-vertical line can cover exactly one of these. This gives

|C| ≥ s+ t+ 3(n− t) = 3n+ s− 2t. (3)

Combining (2) and (3), we obtain

|C| ≥ 7n− s
3

and |C| ≥ 5n− t
2

.
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Suppose, for contradiction, that |C| < 9n/4. Then s > n/4 and t > n/2, implying that there
are more than 3n/4 vertical lines (with multiplicity) in C. By the same argument, the number of
horizontal and diagonal standard lines is also more than 3n/4. But then |C| > 3(3n/4) = 9n/4, a
contradiction. Since |C| is an integer, we obtain f(n, 2, 3) ≥ d9n/4e.

We now present constructions which imply corresponding upper bounds.

The case k = 1: A cover of size n is easily obtained by considering the lines given by x = i, for
i ∈ {0, . . . , n− 1}.

The case k = 2: Our construction depends on the parity of n.

For even n, the cover consists of the lines given by x = i, y = i, and x + y = n − 1 − i, for
i ∈ {0, . . . , n/2− 1}.

For odd n, the cover consists of the lines given by x = i, y = i, for i ∈ {0, . . . , (n − 1)/2} and
x+ y = n− 1− i, for i ∈ {0, . . . , (n− 3)/2}.

The case k = 3: The cover contains:

• with multiplicity two, the lines given by x = i and y = i, for i ∈ {0, . . . ,
⌊
n−2
4

⌋
},

• with multiplicity one, the lines given by x = i and y = i, for i ∈ {
⌊
n−2
4

⌋
+ 1, . . . ,

⌊
n−1
2

⌋
},

• with multiplicity two, the lines given by x+ y = n− 1− i for i ∈ {0, . . . ,
⌊
n
4

⌋
− 1},

• with multiplicity one, the lines given by x+ y = n− 1− i for

i ∈

{
{
⌊
n
4

⌋
, . . . ,

⌊
n
2

⌋
} n ≡ 1 (mod 4),

{
⌊
n
4

⌋
, . . . ,

⌊
n
2

⌋
− 1} otherwise.

The case k = 4: The cover contains:

• with multiplicity two, the lines given by x = i, y = i, and x+y = n−1−i for i ∈ {0, . . . ,
⌊
n−1
3

⌋
},

• with multiplicity one, the lines given by x = i, y = i, and x + y = n− 1− i for i ∈ {
⌊
n−1
3

⌋
+

1, . . . ,
⌊
2n
3

⌋
− 1}.

Here, we verify the upper bound when k = 4. We omit the verification for other values of k, which
proceed similarly.

In each of the three standard directions, there are
⌊
n−1
3

⌋
+ 1 lines with multiplicity two and⌊

2n
3

⌋
−
⌊
n−1
3

⌋
− 1 lines with multiplicity one. Note that this is still true for n = 2, 4, where⌊

2n
3

⌋
− 1 <

⌊
n−1
3

⌋
+ 1 and no line has multiplicity exactly one. Hence the total number of lines

is

3

[
2

(⌊
n− 1

3

⌋
+ 1

)
+

(⌊
2n

3

⌋
−
⌊
n− 1

3

⌋
− 1

)]
= 3

(⌊
2n

3

⌋
+

⌊
n− 1

3

⌋
+ 1

)
= 3n.

It remains to verify that each point (a, b) ∈ T2(n) is covered at least four times. Suppose, without
loss of generality, that a ≤ b.

If a ≥
⌊
n−1
3

⌋
+ 1 and b >

⌊
2n
3

⌋
− 1, then a+ b > n− 1, a contradiction.

If
⌊
n−1
3

⌋
+1 ≤ a, b ≤

⌊
2n
3

⌋
− 1, then (a, b) is covered twice by vertical and horizontal lines. Note also

that a + b ≥ 2
⌊
n−1
3

⌋
+ 2 ≥ n− 1−

⌊
n−1
3

⌋
, so (a, b) is covered an additional two times by diagonal

lines.
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Suppose now that a ≤
⌊
n−1
3

⌋
. If b ≤

⌊
n−1
3

⌋
, then (a, b) is covered four times by vertical or horizontal

lines. If
⌊
n−1
3

⌋
+ 1 ≤ b ≤

⌊
2n
3

⌋
− 1, then (a, b) is covered three times by vertical or horizontal lines,

and once by a diagonal line since a+ b ≥
⌊
n−1
3

⌋
+ 1 ≥ n−

⌊
2n
3

⌋
. Finally, if b >

⌊
2n
3

⌋
− 1, then (a, b)

is covered twice by vertical or horizontal lines, and twice by a diagonal line since a + b ≥
⌊
2n
3

⌋
≥

n− 1−
⌊
n−1
3

⌋
. Thus, all points are covered at least four times.

The values determined in Theorem 2.3 along with computational evidence for k ≤ 7 suggest a
connection between the fractional covering problem for T2(k) and the integer k-covering problem for
a triangular grid of any size:

Conjecture 2.5. f(n, 2, k) = f∗(k, 2)n+Ok(1).

For the remainder of this section, we provide a partial resolution to Conjecture 2.5. In Proposi-
tion 2.6, we show that the upper bound on f(n, 2, k) always holds. In Theorem 2.7, we prove the
lower bound holds under certain natural assumptions on the lines contained in the k-cover.

Proposition 2.6. f(n, 2, k) ≤ f∗(k, 2)n+Ok(1).

Proof. When k = 1, the assertion follows from Theorem 2.3. Hence, we assume that k > 1.

We first give an overview of the proof idea. The k-cover C of T2(n) given below is obtained by lifting
the fractional covers given in the proofs of Theorems 2.1 and 2.2. More specifically, we group the
standard lines of T2(n) into sets B1, . . . , BN , each consisting of

⌈
n
M

⌉
consecutive standard lines in

each direction (the values of N and M are specified below). Roughly, each set Bi corresponds to
a standard line of T2(k) with positive weight in the fractional cover. This weight determines the
multiplicity in C of each line in Bi (so all lines in Bi have the same multiplicity).

Let j = b(k − 1)/3c, so that k = 3j + r with r ∈ {1, 2, 3}. Set N := k− j − 1 and M := 2k− 3j − 2.
Note that N,M > 0 since k > 1. For each u ∈ {1, . . . , N}, let Bu be the set of lines given by
x = i, y = i, and x + y = n − 1 − i with i ∈ {(u − 1)

⌈
n
M

⌉
, . . . , u

⌈
n
M

⌉
− 1}. When n is sufficiently

large compared to k, the sets Bu contain only standard lines. To explain the choice of N and M ,
we note that

N =


2j if r = 1,

2j + 1 if r = 2,

2j + 2 if r = 3,

and M =


3j if r = 1,

3j + 2 if r = 2,

3j + 4 if r = 3.

So, N is precisely the number of standard lines in each direction with positive weight in the fractional
covers given in the proofs of Theorems 2.1 and 2.2, and M is the denominator in the weight assigned
to each line in the same fractional cover.

Consider the k-cover C which contains, for each u, the lines in Bu with multiplicity k − j − u, and
no other line with positive multiplicity. Note that C contains 3N

⌈
n
M

⌉
distinct lines with an average

multiplicity of (k − j)/2, implying that

|C| = 3N
( n
M

+O(1)
)(k − j

2

)
=

3N(k − j)
2M

n+Ok(1). (4)

Noting that

3N(k − j)
2M

=


2j + 1 if r = 1,

2j + 1 +
2j + 1

3j + 2
if r = 2,

2j + 2 +
j + 1

3j + 4
if r = 3,

we obtain
|C| = f∗(k, 2)n+Ok(1).
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It remains to show that every point of T2(n) is covered at least k times. Let p = (a, b) ∈ T2(n).
Note that at least one of the lines given by x = a and y = b must have positive multiplicity in C,
otherwise a + b ≥ (2k − 2j − 2)

⌈
n
M

⌉
≥ n, a contradiction. By symmetry, the same is true for any

pair of standard lines containing p. Hence, we may assume, without loss of generality, that the lines
given by x = a and y = b are contained in the sets Bs and Bt respectively.

Now p is covered with multiplicity 2k − 2j − (s + t) by vertical and horizontal lines. Hence, if
s + t ≤ k − 2j, then p is covered with multiplicity at least k. From here on, we assume that
s+ t > k − 2j, so s+ t ≥ k − 2j + 1. Note that

(s+ t− 2)
⌈ n
M

⌉
≤ a+ b ≤ n− 1,

which implies

0 ≤ n− 1− (a+ b) ≤ n− 1− (s+ t− 2)
⌈ n
M

⌉
≤ (M − (s+ t− 2))

⌈ n
M

⌉
− 1.

Noting that
M − (s+ t− 2) = 2k − 3j − (s+ t) ≤ k − j − 1 = N,

we obtain that the line given by x+y = a+ b is contained in the set Br for some r ≤M − (s+ t−2),
and, hence, is contained in the cover C with multiplicity k − j − r which is at least

k − j − (2k − 3j − (s+ t)) = 2j − k + s+ t.

Since p is contained in the line x+ y = a+ b, we obtain that p is covered with total multiplicity at
least k.

In Theorem 2.7, we provide a partial resolution of the lower bound in Conjecture 2.5. Note that all
the covers we have given in order to prove upper bounds consist only of standard lines. Furthermore,
for two parallel lines, the multiplicity of the line containing more points of Td(n) is at least the
multiplicity of the other line. The following theorem proves Conjecture 2.5 for such covers.

Theorem 2.7. Suppose C is a k-cover of T2(n) satisfying the following:

• any line contained in C is a standard line, i.e., a line parallel to a side of T2(n),

• if `1, `2 ∈ C are parallel lines with |`1 ∩ T2(n)| ≤ |`2 ∩ T2(n)|, then the multiplicity of `1 is at
most the multiplicity of `2.

Then |C| ≥ f∗(k, 2)n+Ok(1).

Proof. Our proof proceeds by explicitly comparing the linear program for fractionally covering T2(k)
and the integer program for k-covering T2(n) for any n.

We first describe the linear program for fractionally covering T2(k). We will refer to this linear
program as L. For each i ∈ {1, . . . , k−1}, we associate variables ai, bi, ci to the standard lines given
by x = k− 1− i, y = k− 1− i, x+ y = i. Observe that the lines corresponding to ai, bi, and ci each
contain i+ 1 points. The variables give the weights of the corresponding lines in a fractional cover.
Note that we do not associate a variable to any line that contains at most one point of T2(k), e.g.,
the line x = k − 1. This is without loss of generality, as there is an optimal cover with these lines
having weight 0. We also have (a finite number of) additional variables d1, . . . , dq corresponding to
non-standard lines that contain at least two points of T2(k). With these definitions, the objective of
the linear program is to minimize the sum of all variables, i.e., the objective function is

minimize

k−1∑
i=1

(ai + bi + ci) +

q∑
i=1

di.
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The constraints for the linear program consist of a non-negativity constraint for each variable, and
a constraint that each point of T2(k) is contained in lines of total weight at least 1. Specifically, for
each point p ∈ T2(k), we have a constraint of the form

ar + bs + ct +
∑

i∈L(p)

di ≥ 1, (5)

where L(p) is the set of indices of non-standard lines containing p (and at least one other point of
T2(k)). Note that three standard lines intersect in a point of T2(k) if and only if they contain a total
of 2k+ 1 points of T2(k) (with multiplicity). This implies that we have such a constraint if and only
if (r + 1) + (s+ 1) + (t+ 1) = 2k + 1, or, equivalently, r + s+ t = 2k − 2.

We now consider the restricted k-covering problem for T2(n) and describe the corresponding integer
program. We will refer to this integer program as I. Recall that we require the covers to satisfy the
following restrictions:

• any line contained in the cover is a standard line,

• if `1, `2 are parallel lines with |`1 ∩ T2(n)| ≤ |`2 ∩ T2(n)|, then the multiplicity of `1 is at most
the multiplicity of `2.

We may assume that every line has multiplicity less than k. Indeed, if some line has multiplicity
at least k, then there is a bounding line with multiplicity at least k. However, by Observation 2.4,
we may assume that each bounding line has multiplicity less than f∗(k, 2), and f∗(k, 2) ≤ k by
Theorems 2.1 and 2.2.

For i ∈ {1, . . . , k − 1}, let αi denote the number of vertical lines which have multiplicity at least
k− i. Similarly, let βi and γi, with i ∈ {1, . . . , k− 1}, denote the number of horizontal and diagonal
standard lines (respectively) which have multiplicity at least k − i. Recall that the goal is to find a
minimum k-cover. The number of vertical lines (with multiplicity) in the cover is

(k − 1)α1 + (k − 2)(α2 − α1) + (k − 3)(α3 − α2) + · · ·+ 1(αk−1 − αk−2) =

k−1∑
i=1

αi.

Similarly, the number of vertical and diagonal lines is
∑k−1

i=1 βi and
∑k−1

i=1 γi respectively. Hence, the
objective function is

minimize

k−1∑
i=1

(αi + βi + γi).

The constraints for the integer program consist of an integrality and non-negativity constraint for
each variable. We also need constraints specifying that each point p ∈ T2(n) is covered by at least
k lines.

Consider an assignment of values to αi’s, βi’s, and γi’s such that each point p is covered at least
k times. Suppose αr + βs ≤ n − 1 and let p = (αr, βs) ∈ T2(n). Since p is covered at most
(k− r)− 1 + (k− s)− 1 = 2k− (r+ s+ 2) times by horizontal and vertical lines, it must be covered
at least an additional k− [2k− (r+ s+ 2)] = r+ s+ 2−k times by the diagonal line x+y = αr +βs.
This implies that if r + s+ 2− k ∈ {1, . . . , k − 1}, then γk−(r+s+2−k) ≥ n− (αr + βs), that is,

αr + βs + γ2k−2−(r+s) ≥ n.

Note that if r+ s+ t = 2k− 2 with r, s, t ∈ {1, . . . , k− 1}, then r+ s+ 2−k ∈ {1, . . . , k− 1}. Hence,
the following constraints are necessary to ensure that each point of T2(n) is covered k times. For
each r, s, t such that r + s+ t = 2k − 2, we have the constraint

αr + βs + γt ≥ n. (6)
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Suppose we have a feasible solution to the integer program I, and let B :=
∑k−1

i=1 (αi + βi + γi).
Of course, this feasible solution corresponds to a k-cover C of T2(n) with |C| = B satisfying the
assumptions of the theorem. Recall that we want to prove B ≥ f∗(k, 2)n + Ok(1). We show
this by constructing a feasible solution to the linear program L such that the objective function∑k−1

i=1 (ai + bi + ci) +
∑q

i=1 di ≤ B/n. Since L is a minimization problem, this implies the result.

The feasible solution to L is obtained as follows: for each i ∈ {1, . . . , k−1}, set ai = αi/n, bi = βi/n
and ci = γi/n. For each i ∈ {1, . . . , q}, set di = 0. That this results in a feasible solution is easy.
Note first that all the non-negativity constraints are satisfied. To see that the constraints given
by (5) are satisfied, it suffices to compare to the constraints given by (6) and to note that di = 0 for
each i.

3 Higher dimensions

In this section, we extend the results and techniques of Section 2.2 to the higher-dimensional setting.
We first consider the problem of covering the points of Td(n) at least k times for k ≤ 3.

Theorem 3.1. For every n ≥ 1,

(a) For d ≥ 1, f(n, d) = n,

(b) For d ≥ 1, f(n, d, 2) = n+ dnd e,

(c) For d ≥ 3, f(n, d, 3) =
(

1 + 2
d−1

)
n+Od(1).

Observation 3.2. The intersection of a bounding hyperplane H with Td(n) is a copy of Td−1(n).
Any hyperplane not parallel to H intersects H in a (d − 2)-dimensional affine subspace. Hence
covering the points of H ∩ Td(n) at least k times without using H requires at least f(n, d − 1, k)
hyperplanes.

Proof of Theorem 3.1.

Proof of (a): We begin by proving the lower bound. It is straightforward that f(1, d) ≥ 1. Let C
be a cover of Td(n) and H be the hyperplane given by x1 = 0. By Observation 2.4, we may assume
that H /∈ C. We have f(n, 1) = n, and Observation 3.2 gives |C| ≥ f(n, d− 1) so by induction on d,
f(n, d) ≥ n.

A matching upper bound can be obtained by considering the hyperplanes, x1 = i for i ∈ {0, . . . , n− 1}.

Proof of (b): The proof of the lower bound in (b) also proceeds by induction on d and n. When
n = 1, Td(1) consists of a single point and a cover requires two hyperplanes. For d = 1, each
hyperplane can cover at most one point of T1(n), so 2n planes are required. Suppose now that
d, n > 1.

Let C be a 2-cover of Td(n), H0 be the hyperplane given by x1 + · · · + xd = n − 1, and Hi be
the hyperplane given by xi = 0, for i ∈ {1, . . . , d}. By Observation 2.4, we may assume that the
multiplicity of each Hi in C is at most one.

If, for some i, Hi /∈ C, Observation 3.2 implies that

|C| ≥ f(n, d− 1, 2) = n+

⌈
n

d− 1

⌉
≥ n+

⌈n
d

⌉
.

Thus, we may assume that the multiplicity of each Hi in C is exactly one. Note that Hi ∩ Td(n)
constitutes a copy of Td−1(n) where only the points on the boundary are covered at least twice,
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leaving a copy of Td−1(n− d) that has only been covered once. Each of these requires f(n− d, d−
1, 1) = n − d affine subspaces of dimension d − 2 to be covered. A hyperplane H ∈ C \

⋃d
i=0{Hi}

cannot intersect every face of Td(n) so it can contribute at most d such (d−2)-dimensional subspaces,
implying that

|C| ≥ (d+ 1) +

⌈
(d+ 1)(n− d)

d

⌉
= n+

⌈n
d

⌉
.

This completes the proof of the lower bound in (b).

We now establish the upper bound in (b). Let q ∈ Z and 0 ≤ r < d + 1 be such that n +
⌈
n
d

⌉
=

q(d+ 1) + r. The cover consists of the following:

• the hyperplane given by xi = j for 1 ≤ i ≤ r and j ∈ {0, . . . , q},

• the hyperplane given by xi = j for r + 1 ≤ i ≤ d and j ∈ {0, . . . , q − 1},

• the hyperplane given by x1 + · · ·+ xd = n− 1− j for j ∈ {0, . . . , q − 1}.

If 1 ≤ i ≤ r, we set ci = q, and if r + 1 ≤ i ≤ d, we set ci = q − 1. Let p = (a1, . . . , ad) ∈ Td(n).
There must be at least one index i such that ai ≤ ci. Indeed, otherwise

d∑
i=1

ai ≥ r(q + 1) + (d− r)q = qd+ r ≥ d

d+ 1

(
n+

⌈n
d

⌉)
≥ n,

a contradiction. If there are at least two indices such that ai ≤ ci, then p is covered at least twice
by hyperplanes orthogonal to standard basis vectors.

Suppose that there is exactly one index i such that ai ≤ ci. Note that p is covered by the hyperplane
xi = ai. It suffices to show that

∑d
i=1 ai ≥ n− q, which implies that p is covered by x1 + · · ·+ xd =∑d

i=1 ai.

Since n+
⌈
n
d

⌉
= q(d+ 1) + r, we have

n− q ≤ q(d− 1) + r

(
1− 1

d+ 1

)
. (7)

If r = 0, then
∑d

i=1 ai ≥ (d − 1)q ≥ n − q. If r > 0, then
∑d

i=1 ai ≥ (r − 1)(q + 1) + (d − r)q =

q(d−1)+r−1. Since 0 < r/(d+1) < 1 and n−r is an integer, we obtain, by (7), that
∑d

i=1 ai ≥ n−q.

Proof of (c): We first show that f(n, d, 3) ≥
(

1 + 2
d−1

)
n − 2. We begin by showing f(n, 3, 3) ≥

2n− 2 via induction on n. The bound is trivial for n = 1. Suppose now that n > 1 and that the
assertion is true for smaller n.

Let C be a 3-cover of Td(n), H0 be the hyperplane given by x1 + x2 + x3 = n − 1, and Hi be
the hyperplane given by xi = 0, for i ∈ {1, 2, 3}. By Observation 2.4, we may assume that the
multiplicity of each Hi in C is at most one. If, for some i, Hi /∈ C, then by Observation 3.2,
|C| ≥ f(n, 2, 3) =

⌈
9n
4

⌉
> 2n− 2.

We may now assume that, for each i, the hyperplane Hi has multiplicity exactly one. Observe that
Hi ∩T3(n) is a copy of T2(n) where only the boundary points have been covered at least twice. The
interior points constitute a copy of T2(n−3) which has only been covered once and, by Theorem 2.3,

requires at least f(n− 3, 2, 2) =
⌈
3(n−3)

2

⌉
lines to be covered three times. Since every hyperplane in

C that is not a bounding hyperplane can intersect at most three faces of T3(n), we obtain that

|C| ≥ 4 +
4

3

⌈
3(n− 3)

2

⌉
≥ 2n− 2.
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This completes the proof that f(n, 3, 3) ≥ 2n− 2.

Now suppose d > 3 and proceed by induction on d. We trivially have f(n, d, 3) ≥ (1 + 2
d−1 )n− 2 for

n = 1 and by Observation 2.4, we may assume that each bounding hyperplane is used at most once.
Let C be a 3-cover of Td(n) and H be a bounding hyperplane of Td(n). If H /∈ C, then Observation
3.2 gives

|C| ≥ f(n, d− 1, 3) ≥
(

1 +
2

d− 2

)
n− 2 ≥

(
1 +

2

d− 1

)
n− 2.

Thus, we may assume the multiplicity in C of each bounding hyperplane is exactly one. Let s be
the smallest nonnegative integer such that x1 = s has multiplicity zero. Such an s exists and,
furthermore, s ≤ n − 1 since, without loss of generality, the hyperplane given by x1 = n − 1 has
multiplicity zero. Noting that the points in Td(n) ∩H still need to be covered twice, we obtain

|C| ≥ s+ f(n, d− 1, 2) ≥ s+ n+

⌈
n

d− 1

⌉
≥ s+ n

(
1 +

1

d− 1

)
. (8)

On the other hand, if H ′s is the hyperplane given by x1 = s, then the points in Td(n) ∩H ′s need to
be covered at least three times, implying

|C| ≥ s+ f(n− s, d− 1, 3) ≥ s+

(
1 +

2

d− 2

)
(n− s)− 2 = n

(
1 +

2

d− 2

)
− s

(
2

d− 2

)
− 2. (9)

Multiplying (8) by 2
d−2 and adding it to (9) eliminates s, and the inequality simplifies to

|C| ≥
(

1 +
2

d− 1

)
n− 2

(
d− 2

d

)
≥
(

1 +
2

d− 1

)
n− 2.

We now establish the upper bound in (c). The 3-cover consists of the following:

• the hyperplane given by xi = j, for 1 ≤ i ≤ d and j ∈ {0, . . . ,
⌈

n
d−1

⌉
− 1},

• the hyperplane given by x1 + · · ·+ xd = n− 1− j, for j ∈ {0, . . . ,
⌈

n
d−1

⌉
− 1}.

This gives a total of (d+1)
⌈

n
d−1

⌉
=
(

1 + 2
d−1

)
n+Od(1) hyperplanes. Let p = (a1, . . . , ad) ∈ Td(n).

We say a coordinate of p is small if it is at most
⌈

n
d−1

⌉
− 1. Note that p has at least two small

coordinates. Indeed, otherwise
∑d

i=1 ai ≥ (d− 1)
⌈

n
d−1

⌉
≥ n, a contradiction. If p has at least three

small coordinates, then p is covered at least three times by hyperplanes orthogonal to the standard
basis vectors. Suppose that p has exactly two small coordinates. Then

d∑
i=1

ai ≥ (d− 2)

⌈
n

d− 1

⌉
≥ n−

⌈
n

d− 1

⌉
.

It follows that p is covered by x1 + · · ·+ xd =
∑d

i=1 ai. Since p is also covered twice by hyperplanes
orthogonal to the standard basis vectors, p is covered by at least three hyperplanes in the cover,
thus completing the proof.

Given Conjecture 2.5 and the strong connection between the fractional and integer problems in
dimension two, we also investigate the fractional problem in higher dimensions.

Proposition 3.3. For every d > 0,

f∗(2, d) = 1 +
1

d
.
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Proof. Note that the d+1 points of Td(2) are the vertices of a d-dimensional simplex. For the upper
bound, assigning weight 1

d to each of the d+ 1 hyperplanes determined by a d-subset of points gives
a fractional cover of weight 1 + 1

d .

For the lower bound, we assign each point in Td(2) a mass of 1
d , for a total mass of 1 + 1

d . Since any
hyperplane can cover points of total mass at most 1, we obtain the required lower bound.

From Theorem 3.1(b) and Proposition 3.3, we obtain

f(n, d, 2) = (1 + 1/d)n+O(1) = f∗(2, d)n+O(1).

Thus, it is tempting to suggest a more general version of Conjecture 2.5: that f(n, d, k) = f∗(k, d)n+
Od,k(1). However, the following proposition, along with Theorem 3.1 (c), implies that f(n, 3, 3) >
f∗(3, 3)n+O(1).

Proposition 3.4. f∗(3, 3) ≤ 11
6 .

Proof. The following construction implies an upper bound of 11
6 for f∗(3, 3):

• the planes x1 = 0, x2 = 0, x3 = 0, and x1 + x2 + x3 = 2 have weight 1
3 ,

• the planes x1 + x2 = 1, x1 + x3 = 1, and x2 + x3 = 1 have weight 1
6 .

It is straightforward to check that each point of T3(3) is contained in planes with total weight at
least 1.

We are, however, able to obtain an upper bound on f(n, d, k) for all d, k. The construction is inspired
by features of the various upper bound constructions so far. In particular, the cover consists only of
standard hyperplanes. If h1, h2 are parallel standard hyperplanes with |h1 ∩ Td(n)| ≤ |h2 ∩ Td(n)|,
then the multiplicity of h1 is at most the multiplicity of h2. Furthermore, the hyperplanes in each
direction can be partitioned into contiguous blocks of equal size, where the hyperplanes in each block
have the same multiplicity.

Proposition 3.5. Suppose d is odd and k = (d + 1)q/2 + r with q, r ∈ Z and 1 ≤ r ≤ (d + 1)/2.
Then f(n, d, k) ≤ Cd,kn+Od,k(1) where

Cd,k = (q + 1)

(
1 +

r − 1

(d+ 1)(q + 2)/2− (r − 1)

)
.

Suppose d is even and k = (d + 1)q + r with q, r ∈ Z and 1 ≤ r ≤ d+ 1. Then f(n, d, k) ≤
Cd,kn+Od,k(1) where

Cd,k =


(2q + 1)

(
1 +

r − 1

(d+ 1)(q + 1)− (r − 1)

)
if 1 ≤ r ≤ d/2 + 1,

(2q + 3)

(
1− d+ 2− r

(d+ 1)(q + 1) + (d+ 2− r)

)
otherwise.

Proof. Suppose d is odd and k = (d + 1)q/2 + r with q, r ∈ Z and 1 ≤ r ≤ (d + 1)/2. Set
M := (d+ 1)(q + 2)/2− (r − 1). For each j ∈ {1, . . . , q + 1}, let Bj consist of the following :

• hyperplanes given by xi = c, for 1 ≤ i ≤ d and c ∈ {(j − 1)
⌈

n
M

⌉
, . . . , j

⌈
n
M

⌉
− 1},

• hyperplanes given by x1 + · · ·+ xd = n− 1− c, for c ∈ {(j − 1)
⌈

n
M

⌉
, . . . , j

⌈
n
M

⌉
− 1}.
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Note that, for n large enough, each set Bj consists of
⌈

n
M

⌉
standard hyperplanes in each of d + 1

directions. Consider the k-cover C which contains, for each j, the hyperplanes in Bj with multiplicity
q + 2− j, and no other hyperplane with positive multiplicity. Hence

|C| = (d+ 1)
⌈ n
M

⌉ q+1∑
j=1

j = (d+ 1)
( n
M

+O(1)
)( (q + 1)(q + 2)

2

)

= (q + 1)

(
(q + 2)(d+ 1)

2M

)
n+Od,k(1) = (q + 1)

(
1 +

r − 1

M

)
n+Od,k(1).

It remains to verify C is a k-cover of Td(n). Let p = (a1, . . . , ad) ∈ Td(n) and suppose that, for
each i, p is covered ci times by the hyperplane given by xi = ai. Then

d∑
i=1

ai ≥
⌈ n
M

⌉(
d(q + 1)−

d∑
i=1

ci

)
.

If
∑d

i=1 ci ≥ k, then p is covered at least k times. On the other hand, if
∑d

i=1 ci < k− (q+ 1), then

d∑
i=1

ai ≥
⌈ n
M

⌉
(d(q + 1)− (k − q − 2)) =

⌈ n
M

⌉
M ≥ n,

a contradiction. We may now assume that
∑d

i=1 ci = k − a with 1 ≤ a ≤ q + 1. Then

d∑
i=1

ai ≥
⌈ n
M

⌉
(d(q + 1)− k + a) =

⌈ n
M

⌉
(a− q − 2 +M) ≥ n−

⌈ n
M

⌉
(q + 2− a).

Hence, p is covered at least (q+ 2)− (q+ 2− a) = a times by the hyperplane given by x1 + . . . xd =∑d
i=1 ai, and so is covered at least k times.

Suppose now that d is even. Here, we only give the k-cover. The verification proceeds similarly to
the case when d is odd.

Assume k = (d+ 1)q + r with q, r ∈ Z and 1 ≤ r ≤ d/2 + 1. Set M := (d+ 1)(q + 1)− (r − 1). For
each j ∈ {1, . . . , 2q + 1}, let Bj consist of the following:

• hyperplanes given by xi = c, for 1 ≤ i ≤ d and c ∈ {(j − 1)
⌈

n
M

⌉
, . . . , j

⌈
n
M

⌉
− 1},

• hyperplanes given by x1 + · · ·+ xd = n− 1− j, for c ∈ {(j − 1)
⌈

n
M

⌉
, . . . , j

⌈
n
M

⌉
− 1}.

The k-cover for this case contains, for each j, the hyperplanes in Bj with multiplicity 2q + 2 − j.
Every other hyperplane has multiplicity zero.

Finally, assume k = (d+ 1)q + r with q, r ∈ Z and d/2 + 1 < r ≤ d+ 1. Set M := (d+ 1)(q + 1) +
(d+ 2− r). For each j ∈ {1, . . . , 2q + 2}, let Bj consist of the following:

• hyperplanes given by xi = c, for 1 ≤ i ≤ d and c ∈ {(j − 1)
⌈

n
M

⌉
, . . . , j

⌈
n
M

⌉
− 1},

• hyperplanes given by x1 + · · ·+ xd = n− 1− j, for c ∈ {(j − 1)
⌈

n
M

⌉
, . . . , j

⌈
n
M

⌉
− 1}.

The k-cover C contains, for each j, the hyperplanes in Bj with multiplicity 2q + 3− j. Every other
hyperplane has multiplicity zero.

Finally, when d is sufficiently large compared to k, we obtain an asymptotic formula for f(n, d, k).
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Theorem 3.6.

(a) If k ≥ 2 and d ≥ 2k − 3, then

f(n, d, k) =

(
1 +

k − 1

d− k + 2

)
n+Od,k(1),

(b) If k ≥ 3 and 2k − 3 ≥ d ≥ k − 2, then

f(n, d, k) =

(
2 +

2k − 3− d
2d+ 3− k

)
n+Od,k(1).

Proof of Theorem 3.6. We begin with the proof of the lower bound for (a). By Theorem 3.1, the
statement holds for k ∈ {2, 3}. Now assume k > 3 and proceed by induction.

We first prove that f(n, 2k − 3, k) ≥ 2n+Ok(1). In order to establish a lower bound of the form
2n+Ok(1), we may assume, by Observation 2.4, that each bounding hyperplane has multiplic-
ity at most one. If some bounding hyperplane has multiplicity zero in a k-cover C of T2k−3(n),
Observation 3.2 gives that |C| ≥ f(n, 2k − 4, k).

We first establish that f(n, 2k − 4, k) ≥ 2n + Ok(1), allowing us to assume that each bounding
hyperplane has multiplicity exactly one. By the induction hypothesis, we have that f(n, 2k− 5, k−
1) = 2n+Ok(1), so f(n, 2k− 5, k) ≥ 2n+Ok(1). To establish a lower bound of the form 2n+Ok(1)
for f(n, 2k − 4, k), we may assume, by Observation 2.4, that each bounding hyperplane is used
at most once. Let C′ be a k-cover of T2k−4(n). If some bounding hyperplane has multiplicity
zero in C′, Observation 3.2 gives that |C′| ≥ f(n, 2k − 5, k) ≥ 2n + Ok(1). Thus, we may assume
that every bounding hyperplane has multiplicity exactly one in C′. Observe that for any bounding
hyperplane H, H ∩ T2k−4(n) is a copy of T2k−5(n), the interior points of which constitute a copy of
T2k−5(n− (2k− 4)) which still needs to be covered k− 1 times. By Observation 3.2, this requires at
least f(n− (2k− 4), 2k− 5, k− 1) hyperplanes and any non-bounding hyperplane in C′ can intersect
at most 2k − 4 of the faces of T2k−4(n), so we obtain

|C′| ≥
(

2k − 3

2k − 4

)
f(n− (2k − 4), 2k − 5, k − 1)

≥
(

2k − 3

2k − 4

)
(2(n− (2k − 4)) +Ok(1))

≥
(

1 +
1

2k − 4

)
2n+Ok(1).

Hence we obtain that f(n, 2k − 4, k) ≥ 2n+Ok(1).

From here on we may now assume that each bounding hyperplane in C has multiplicity exactly one.
The intersection of a bounding hyperplane with T2k−3(n) is a copy of T2k−4(n), the interior points
of which constitute a copy of T2k−4(n− (2k − 3)) which still needs to be covered k − 1 times. This
requires at least f(n − (2k − 3), 2k − 4, k − 1) hyperplanes and any non-bounding hyperplane in C
can intersect at most 2k − 3 of the faces of T2k−3(n), so we obtain

f(n, 2k − 3, k) ≥
(

(2k − 3) + 1

2k − 3

)
f(n− (2k − 3), 2k − 4, k − 1)

≥
(

2k − 2

2k − 3

)((
1 +

k − 2

k − 1

)
n+Ok(1)

)
= 2n+Ok(1).

Suppose now that d > 2k− 3 and proceed by induction on d. In order to establish the lower bound,
by Observation 2.4, we may assume that each bounding hyperplane has multiplicity at most one.
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Furthermore, if the hyperplane H given by x1 = 0 is not contained in a k-cover C, we have, by
Observation 3.2 that

|C| ≥ f(n, d− 1, k) =

(
1 +

k − 1

d− k + 1

)
n+Od,k(1) ≥

(
1 +

k − 1

d− k + 2

)
n+Od,k(1).

Thus, we can assume that the multiplicity of H in C is exactly one. Let s be the smallest nonnegative
integer such that x1 = s has multiplicity zero. Such an s exists and, furthermore, s ≤ n − 1 since,
without loss of generality, the hyperplane given by x1 = n−1 has multiplicity zero. Since the points
in Td(n) ∩H still need to be covered k − 1 times,

|C| ≥ s+ f(n, d− 1, k − 1) ≥ s+

(
1 +

k − 2

d− k + 2

)
n+Od,k(1). (10)

On the other hand, if H ′s is the hyperplane given by x1 = s, then the points in Td(n) ∩H ′s need to
be covered at least k times, implying

|C| ≥ s+ f(n− s, d− 1, k) ≥ s+

(
1 +

k − 1

d− k + 1

)
(n− s) +Od,k(1). (11)

Multiplying (10) by k−1
d−k+1 and adding it to (11) eliminates s, and the inequality simplifies to

|C| ≥
(

1 +
k − 1

d− k + 2

)
n+Od,k(1).

This completes the proof of the lower bound for (a).

For the upper bound for (a), we rely on Proposition 3.5. If d = 2k − 3, then d is odd and we have
k = (d + 1)q/2 + r with q = r = 1. If d ≥ 2k − 2 and d is odd, then k = (d + 1)q/2 + r with
q = 0, r = k. If d ≥ 2k − 2 and d is even, then k = q(d+ 1) + r with q = 0 and r = k ≤ d/2 + 1. In
all cases, Proposition 3.5 implies the desired upper bound.

Proof of (b): For the lower bound, we proceed via induction on k where the base case of k = 3 has
already been established — d = 1 is straightforward, d = 2 is given by Theorem 2.3, and d = 3
comes from Theorem 3.1(c). For a given k, we first assume k− 2 ≤ d ≤ 2k− 6. By Observation 2.4,
it suffices to assume each bounding hyperplane has multiplicity at most two in the cover C. For any
bounding hyperplane H, H∩Td(n) is a copy of Td−1(n), the interior points of which constitute a copy
of Td−1(n− d), which still needs to be covered at least k − 2 additional times. By Observation 3.2,
this requires at least f(n− d, d− 1, k − 2) hyperplanes and any non-bounding hyperplane in C can
intersect at most d faces of Td(n), so we obtain

|C| ≥
(
d+ 1

d

)
f(n− d, d− 1, k − 2).

If k = 4, then d = 2, and we already have the desired result from Theorem 2.3. Otherwise, we note
that k − 2 ≥ 3 and 2(k − 2)− 3 ≥ d− 1 ≥ (k − 2)− 2. The induction hypothesis gives:

|C| ≥
(
d+ 1

d

)((
2 +

2(k − 2)− 3− (d− 1)

2(d− 1) + 3− (k − 2)

)
(n− d) +Od,k(1)

)
=

(
2 +

2k − 3− d
2d+ 3− k

)
n+Od,k(1),

as desired.

For d = 2k − 5, we let s (resp. t) be the smallest non-negative integer such that the hyperplane
x1 = s (resp. x1 = t) has multiplicity at most one (resp. has multiplicity zero) in C. This yields

|C| ≥ s+ t+ f(n− s, d− 1, k − 1)
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and
|C| ≥ s+ t+ f(n− t, d− 1, k).

The asymptotics for f(n−s, d−1, k−1) and f(n− t, d−1, k) are given by the induction hypothesis.

We may then assume that |C| <
(

2 + 2k−3−d
2d+3−k

)
n + Ok(1) and proceed as in the proof of the k = 3

case of Theorem 2.3 to derive a contradiction. Having now established that the induction hypothesis
holds for d = 2k − 5, we repeat the exact same process for d = 2k − 4. We omit the details of these
calculations.

For the upper bound, we again rely on Proposition 3.5. Suppose d = k − 2. If d is odd, we have
k = (d+1)q/2+r with q = 2, r = 1. If d is even, we have k = (d+1)q+r with q = 1, r = 1. Suppose
now that k− 2 < d ≤ 2k− 3. If d is odd, then k = (d+ 1)q/2 + r with q = 1, r = k− (d+ 1/2). If d
is even, then k = q(d+ 1) + r with q = 0 and r = k > d/2 + 1. In all cases, Proposition 3.5 implies
the desired upper bound.

Finally, we remark that for fixed n and k, the function f(n, d, k) is non-increasing in d — any
collection of hyperplane equations constituting a k-cover in dimension d also gives a k-cover in
dimension d + 1. Along with Theorem 3.6(b), this establishes that f(n, d, k) ≥ 3n + Ok(1) for
d < k − 2.

4 Conclusion and open questions

In Proposition 2.6, we obtained the upper bound f(n, 2, k) ≤ f∗(k, 2)n + Ok(1). In Section 3, we
show that, for d ≥ 3, it is not true that f(n, d, k) ≤ f∗(k, d)n+Od,k(1). Perhaps instead, it is
the case that the solution to the problem of fractionally covering Td(k) gives a lower bound for the
k-covering problem on Td(n).

Question 4.1. Is f(n, d, k) ≥ f∗(k, d)n for all n, d, k?

A positive answer to Question 4.1 for d = 2 would establish Conjecture 2.5.

We have shown asymptotics for f(n, 3, k) for k ≤ 5 and similar techniques yield f(n, 3, 7) = 4n+O(1).
On the basis of these results and computations performed with Gurobi [6], we pose the following
conjecture.

Conjecture 4.2. For all n, k ≥ 1,

f(n, 3, k) =


(
k + 1

2

)
n+Ok(1) if k is odd,(

k(k + 2)

2(k + 1)

)
n+Ok(1) if k is even.

If Conjecture 4.2 holds, we note that f(n, 3, k) is linear in n up to a constant term and that the slope
is integral when k ≡ 1 (mod 2). Recall that we have established that f(n, 5, 1) = n, f(n, 5, 4) =
2n+O(1), and f(n, 5, 7) = 3n+O(1). Similarly, we also have f(n, 7, 1) = n, f(n, 7, 5) = 2n+O(1),
and f(n, 7, 9) = 3n+O(1). This leads to the next question.

Question 4.3. Is f(n, 5, 3m+ 1) = (m+ 1)n+Om(1) for all m? More generally, for all m and b,
is f(n, 2b− 1, bm+ 1) = (m+ 1)n+Om(1)?

In Proposition 3.5, we established a linear upper bound on f(n, d, k), and we have the trivial linear
lower bound f(n, d, k) ≥ f(n, d) = n. We conjecture that f(n, d, k) is always linear in n.
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Conjecture 4.4. For all d, k, there exists a constant Cd,k such that

f(n, d, k) = Cd,kn+Od,k(1).

In the cases where we know such Cd,k exists, we notice a few patterns and ask if they continue.

Question 4.5. Is Cd,k = 2k
d+1 +Od(1)?

Question 4.6. For all k, is Cd,k+(d+1) ≥ Cd,k + 2?

Lastly, whenever we have provided a formula for f(n, d, k), the constructions given in the proof
of Proposition 3.5 are optimal, up to Od,k(1) terms. If this is the case for all d, k, then Conjec-
tures 4.2 and 4.4 are true and Questions 4.3, 4.5, and 4.6 can be answered in the affirmative. We
conjecture that this is indeed the case, thus conjecturing an asymptotic formula for f(n, d, k) for all
pairs of d and k.

Conjecture 4.7. Suppose d is odd and k = (d + 1)q/2 + r with q, r ∈ Z and 1 ≤ r ≤ (d + 1)/2.
Then f(n, d, k) = Cd,kn+Od,k(1) where

Cd,k = (q + 1)

(
1 +

r − 1

(d+ 1)(q + 2)/2− (r − 1)

)
.

Suppose d is even and k = (d + 1)q + r with q, r ∈ Z and 1 ≤ r ≤ d+ 1. Then f(n, d, k) =
Cd,kn+Od,k(1) where

Cd,k =


(2q + 1)

(
1 +

r − 1

(d+ 1)(q + 1)− (r − 1)

)
if 1 ≤ r ≤ d/2 + 1,

(2q + 3)

(
1− d+ 2− r

(d+ 1)(q + 1) + (d+ 2− r)

)
otherwise.
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