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ABSTRACT
It has been observed that individuals’ decisions to adopt a
product or innovation are often influenced by the recom-
mendations of their friends and acquaintances. Motivated
by this observation, the last few years have seen a number
of studies on influence maximization in social networks. The
primary goal of these studies is identification of k most in-
fluential nodes in a network. A major limitation of these
studies is that they focus on a non-adversarial environment,
where only one player is engaged in influencing the nodes.
However, in a realistic scenario multiple players attempt to
influence the nodes in a competitive fashion. The proposed
model considers a competitive environment where a node
that has not yet adopted an innovation, can adopt only one
of the several competing innovations and once it adopts an
innovation, it does not switch. The paper studies the sce-
nario where the first player has already chosen a set of k
nodes and the second player, with the knowledge of the
choice of the first, attempts to identify a smallest set of
nodes (excluding the ones already chosen by the first) so
that when the influence propagation process ends, the num-
ber of nodes influenced by the second player is larger than
the number of nodes influenced by the first.

The paper studies two propagation models and shows that
in both the models, the identification of the smallest set of
nodes to defeat the adversary is NP-Hard. It provides an
approximation algorithm and proves that the performance
bound is tight. It also presents the results of extensive ex-
perimentation using the collaboration network data. Ex-
perimental results show that the second player can easily
defeat the first with this algorithm, if the first utilizes the
node degree or closeness centrality based algorithms for the
selection of influential nodes. The proposed algorithm also
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provides better performance if the second player utilizes it
instead of the greedy algorithm to maximize its influence.
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F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: [Non-numerical Algorithms and Problems]

General Terms
Algorithms, Experimentation, Performance

Keywords
Social Networks, Influence Maximization, Adversarial Envi-
ronment

1. INTRODUCTION
It has been widely observed in various studies in social sci-

ences and economics that an individuals’ decision to adopt
a product, behavior or innovation is often influenced by the
recommendations of their friends and acquaintances. Mo-
tivated by this observation, the last few years have seen a
number of studies on influence maximization problem in so-
cial networks [2, 3, 4, 6, 7, 11, 13]. One major goal of several
of these studies is identification of k most influential nodes
in a network. A product manufacturer may want to identify
the k most influential nodes in the network, as she may want
to incentivize these nodes to buy the new product by pro-
viding free samples to them, on the expectation that once
these nodes are convinced about the quality of the prod-
uct, they will recommend it to their friends on the social
network and encourage them to buy the product. This set
of k nodes, being the most influential on the network, will
have the largest impact on convincing the rest of the nodes
about the quality of the product. Since the manufacturer
has a fixed budget for advertising, she can provide free sam-
ples only to a limited number of nodes in the network. The
size of the advertising budget determines the value of the
parameter k.

It may be noted that most of the studies on influence
propagation are geared toward a non-adversarial environ-
ment, where only one manufacturer (player) is attempting



to influence the nodes of a social network to buy her prod-
uct. However, in a realistic market scenario, most often
there exists multiple players, each attempting to sell their
competing products or innovations. For example, just as
Coke attempts to convince customers in an emerging mar-
ket about the quality of their beverage, its main competitor,
Pepsi, also does the same. Both the competitors have only a
finite advertisement budget and both of them want to derive
the greatest benefit out of their advertising campaign. The
goal of both the players often is to capture a share of this
emerging market that is larger than its competition.

The non-adversarial influence propagation models con-
sider scenarios where a user (a node u in a social network
graph G = (V,E)) adopts (or does not adopt) an innova-
tion based on how her acquaintances have adopted the in-
novation. In these models each node u in the social network
graph is in one of the following two states: (i) u has adopted
innovation A, and (ii) u has not adopted innovation A but u
is open to the idea of adoption. One can visualize such a sce-
nario by coloring the nodes of the social network graph with
red if they have adopted the innovation A and with white if
they have not adopted A yet, but are open to the idea of
adopting A in the future. As the diffusion process progresses
with time, by observing changing color of the nodes of the
graph one can infer if innovation A is being adopted by the
members of the social network. Although, this paper focus
on influence propagation in social networks, conceptually,
the scenario is identical for spread of any contagion through
a network - be it spread of diseases through a human contact
network or spread of worms through the Internet.

The influence (contagion) propagation models can be di-
vided into three distinct classes:

• Class I: Non-adversarial

• Class II: Adversarial with passive adversary

• Class III Adversarial with active adversary

The problems in classes I and II can be stated as follows:

• Class I: How to identify a set of k initial (seed) nodes,
so that once they are influenced/infected, they will in-
fect the largest number of uninfected nodes in the net-
work?

• Class II: Given that a subset of the nodes is already in-
fluenced/infected, how to identify a set of k uninfected
nodes, so that when they are immunized, they will have
the largest impact in preventing the uninfected nodes
from being infected.

In most of the influence propagation models, influence
propagates in a step-by-step fashion and as such there is
a notion of time step (or propagation step) involved. The
expected number of nodes influenced at the end of time step
D is at most the expected number of nodes influenced at the
end of time step D + 1. In other words, expected number
of nodes influenced at the end of time step D is a non-
decreasing function of D.

The Class I influence propagation problem considered in
[11] may be viewed to have three dimensions, (i) the number
of seed nodes activated at the beginning (budget or cost of
influence), (ii) the expected number of activated nodes at
the end of propagation (impact or coverage of initial seed
nodes), and (iii) time steps for propagation. The objective
of the influence maximization problem considered in [11], is

to maximize the coverage subject to a budget constraint but
without any constraint on the number of time steps.

The Class I problem considered in [11] can be stated in
the following way: “Which k white nodes should be colored
red initially, so that the largest number of white nodes turn
to red at the end of propagation process?”. The Class II
problems can be stated in the following way: “Given that
some nodes are already colored red, which k white nodes
should be colored blue, so that this set of nodes will have the
largest impact in preventing the white nodes from turning
red.

In Class I, there is no notion of an adversary. The red
nodes are trying to convert all the white nodes into red
nodes and there is no agent that is actively trying to pre-
vent this conversion. The Class II, although it has a notion
of an adversary (i.e., the blue nodes) which is trying to slow
down (or stop) white-to-red conversion, at best this agent
can be viewed as a passive adversary, because its goal is
to prevent white-to-red conversion, and it is not engaged in
white-to-blue conversion. This gives rise to Class III, a truly
adversarial scenario, where the red agent is trying to convert
all the white nodes into red, while the blue agent is trying
to convert all the white nodes into blue. In this case, the
blue agent can be viewed as an active adversary of the red
agent.

The Class III models the scenario where a node u is being
actively encouraged by an adversary not only not to adopt
the innovation but also to adopt a competing innovation. In
this case, each node u in the social network graph can be
in one of following three states: (i) u has adopted innova-
tion A , (ii) u has adopted innovation B, and (iii) u has not
adopted any innovation A or B but is open to the idea of
adopting either one of them. This adversarial scenario can
be viewed as a classic case of a strategic conflict game be-
tween the proponent(s) and the opponent(s) of adoption of
an innovation and a game is won by the proponent(s) if u
decides to adopt the innovation A.

This paper studies a Class III scenario where two vendors
(players) are trying to sell their competing products by in-
fluencing the nodes of a social network. The goal of both
the players is to have a market share that is larger than its
competition. It considers the scenario where the first player
(P1) has already chosen the k nodes to have a large influ-
ence (coverage) on the social network. The second player is
aware of the first player’s choice and the goal of the second
player (P2) is to identify a smallest set of nodes (excluding
the ones already chosen by the first player) so that the num-
ber of nodes influenced by the second player will be larger
than the number of nodes influenced by the first player within
D time steps. In other words, the objective of the problem
is to minimze the cost subject to the constraint that the cov-
erage of the second player is larger than the coverage of the
first player within D time steps. Since the goal of the second
player is to win the “game” (i.e., to have a larger coverage or
market share), with influencing (incentivizing) as few nodes
as possible, the problem under study in this paper is referred
to as the“Winning with Minimum Investment”(WMI) prob-
lem. In [3], the authors study a similar problem belonging
to class III. However, the objective of the problem studied in
[3] is different from the one being studied in this paper. The
goal of the second player in the problem studied in [3] is not
to defeat the first player with least amount of investment,
but to maximize its own influence.



Using the same two influence propagation models intro-
duced in [3], the contributions of the paper may be listed as
follows:

• Introduction of a new influence propagation problem
in an adversarial setting where the goal of the second
player is to defeat the first within D time steps and
least amount of cost (i.e., number of seed nodes)

• NP-Hardness proof for the problem under both the
influence propagation models

• Approximation algorithm for the problem with a tight
performance bound.

• Experimental evaluation of the Approximation algo-
rithm with collaboration network data

Experimental results show that utilizing the proposed algo-
rithm, the second player can easily defeat the first, if the first
player utilizes the node degree or closeness centrality based
algorithms for the selection of the initial (seed) nodes. The
proposed algorithm also provides better performance for the
second player if she utilizes it instead of the algorithm to
maximize influence proposed in [3], in the sense that it re-
quires selection of a fewer number of seed nodes to defeat
the first player.

The rest of the paper is organized as follows. The sec-
tion II summarizes related work on influence propagation.
The section III describes the propagation models used in
the paper in detail. The sections IV, V and VI discuss the
problem statement, computational complexity and approxi-
mation algorithm results respectively. The results of exper-
imental evaluation is presented in section VII and section
VIII concludes the paper.

2. BACKGROUND AND RELATED WORK
The studies on identification of influential nodes in a social

network were triggered by a paper authored by Domingos
and Richardson [6]. They introduced the notion of “network
value” of a node in a social network and using a Markov
random field model where a joint distribution over all node
behavior is specified, computed the network value of the
nodes. Kempe, Kleinberg and Tardos followed up the work
in [6] by providing new models derived from mathematical
sociology and interacting particle systems [11]. They made
a number of important contributions by providing approx-
imation algorithms for maximizing the spread of influence
in these models by utilizing the submodularity property of
the objective functions. In addition to providing algorithms
with provable performance guarantee, they also presented
experimental results on large collaboration networks. Their
experimental results showed that their greedy approxima-
tion algorithm significantly out-performed the node selection
heuristics based on degree centrality and distance centrality
[18].

The approximation algorithm proposed in [11] is compute-
intensive. Accordingly, several researchers approached the
issue of scalability from different directions. Chen et. al. in
[4] provided improvement of the original greedy algorithm of
[11] and proposed a degree discount heuristic to improve in-
fluence spread. Mathioudakis in [13] introduced the notion
of sparsification of influence networks and presented an al-
gorithm, SPINE, to compute the“backbone”of the influence
network. Utilizing SPINE as a pre-processing step for the

influence maximization problem, they showed that compu-
tation on the sparsified model provided significant improve-
ments in terms of speedup without compromising accuracy.
Wang et. al. in [17] considered the influential node identi-
fication problem in a mobile social network and presented a
two step process, where in the first step, communities in the
social network are detected and in the second step a subset
of communities is selected to identify the influential nodes.
Experimental results with data from large real world mobile
social network showed that their algorithm performed an
order of magnitude faster than the state-of-the-art greedy
algorithm for finding the top-k influential nodes. A simu-
lated annealing (SA) based algorithm for finding the top-k
influential nodes was presented in [10]. It has been reported
in [10], that using data from four real networks, the SA based
algorithm performed 2-3 orders of magnitude faster than the
state-of-the-art greedy algorithm.

In addition to attempts to address the scalability issue of
the greedy algorithm in [11], efforts on variations of the orig-
inal problem formulation and also the computation model is
underway in the research community. In [7] two new prob-
lem formulations are provided. In the first formulation, the
goal is to minimize the cost, subject to the constraint that
coverage exceeds a minimum threshold ν without any con-
straint on the number of time steps. The goal of the second
formulation is to minimize the number of time steps, sub-
ject to a budget constraint k and a coverage constraint ν.
For the first version of the problem, the authors provide a
simple greedy algorithm and show that it provides a bicrite-
ria approximation. For the second version, they show that
even bicriteria or tricriteria approximations are hard under
several conditions. In [1], the authors argue that a user (a
node in the social network) may be influenced by positive
recommendations from a group of friends (neighbors in the
network) but that does not necessarily imply that she will
adopt the product herself. However, she may pass on her
positive impression about the product to another group of
friends. Clearly, such a model departs from the model con-
sidered in [11]. The authors in [1] consider an “adoption
maximization” problem instead of “influence maximization”
problem and present both analytical and experimental re-
sults for the new problem. The authors in [12] argue that a
limitation of the traditional influence analysis technique is
that they only consider positive relations (agreement, trust)
and ignore the negative relations (distrust, disagreement).
Moreover, the traditional techniques also ignore conformity
of people, i.e., an individual’s inclination to be influenced.
The paper studies the interplay between influence and con-
formity of each individual and computes the influence and
conformity indices of individuals. The authors in [5] suggest
an alternate way of measuring the influencing capability of
an individual on her peers, through the individuals reach
within the social network for certain actions.

All the references discussed in the last three paragraphs
pertain to the class I (non-adversarial) problems as defined
in the previous section. Results on study of class II problems
(adversarial with passive adversary) is presented in [8]. It
focuses on identification of blockers, the nodes that are most
effective in blocking the spread of a dynamic process through
a social network, and reports that simple local measures such
as the degree of a node are good indicators of its effectiveness
as a blocker. The blocker identification problem has been
extensively studied in the public health community, where



the goal is to stop or slow down progress of an infectious
disease by immunizing a small set of key individuals in the
community.

As indicated in the previous section, the WMI problem
studied in this paper belongs to Class III (adversarial with
active adversary). Unfortunately, there exists only a hand-
ful of studies on problems belonging to Class III. Bharathi
et. al. were one of the earliest to study a Class III problem
[2]. They proposed a mathematical model for diffusion of
multiple innovations in a network, an approximation algo-
rithm with a (1 − 1/e) performance guarantee for comput-
ing the best response to an opponent’s strategy. In addition
they prove that the “price of competition” of the game is
at most 2. While game theoretic framework was utilized
for deriving the results in [2], Carnes et al. used an algo-
rithmic framework to study a Class III problem [3]. Their
research primarily extends the problem studied in [11] from
the Class I domain to the Class III domain. They study
the follower’s perspective (i.e., the player who entered the
market after the first player) and investigate how a follower
can maximize her influence in the network with a limited
budget, given that the first player has already entered the
market and influenced a certain number of key individuals
(nodes in the network). They prove that the influence max-
imization problem for the second player is NP-complete and
provide an approximation algorithm that is guaranteed to
produce a solution within 63% of the optimal. Adversar-
ial models in evolutionary game dynamics was studied by
Istrate em et al. in [9].

In all the problems discussed in [2, 3] once a node adopts
an innovation (i.e., changes its color from white to red or
white to blue), it is not allowed to change its color, i.e., the
model precludes the possibility of an individual changing her
mind. However, the model considered by Nowak et al. in
[16] there are only red and blue nodes (no white nodes) and
the model allows a node to change its color from red to blue
and vice-versa. Although this model was developed to cap-
ture a biological phenomenon involving viruses and cells, this
model can be equally effective in capturing the phenomenon
of the spread of ideas and behaviors in human population.
Using evolutionary game theoretic and evolutionary graph
theoretic techniques, the authors establish fundamental laws
that govern choices of competing players regarding strate-
gies.

3. INFLUENCE PROPAGATION MODELS
A number of influence propagation models for the

non-adversarial scenario have been proposed in the litera-
ture [11]. Among these, the Linear Threshold Model (LTM)
and the Independent Cascade Model (ICM) have drawn most
attention in the research community. As indicated earlier,
the literature on influence propagation in adversarial sce-
nario with active adversaries is very sparse [2, 3]. Bharati
et al. in [2] and Carnes et al. in [3] have studied influence
propagation in adversarial scenario with active adversaries,
and have proposed two different models for it. Both of these
two models are generalizations of the Independent Cascade
Model. The model proposed in [2] is suitable for a multi-
player scenario, whereas the model proposed in [3] is for two
competing players. Bharati et al. in [2] study the prob-
lem from a game-theoretic perspective and focus on finding
best response strategies for the players. Carnes et al. on
the other hand study the problem from an algorithmic per-

spective. Since this paper studies the problem with only
two competing players, the models proposed in [3] are more
relevant for this study than the one proposed in [2]. Accord-
ingly, the influence propagation models of [3] are used here.
Since these models, Distance-based Model (DBM) and Wave-
propagation Model (WPM), are generalization of the ICM,
the paper first discusses ICM and then DBM and WPM.

3.1 Independent Cascade Model
The social network is modeled as a graph G = (V,E),

where each node represents an individual. Each individual
may either be active (i.e., has adopted innovation) or inac-
tive. A node can switch from an inactive state to an active
state but cannot switch back in the other direction. The
propagation process from the perspective of an inactivate
node v ∈ V can be described in the following way: With
passage of time, more and more of v’s neighbors become ac-
tive and this may cause v to become active at some time step.
The activation of v in turn may trigger activation of some
of v’s inactive neighbors. In the ICM model there exists a
set of nodes V ′ ⊂ V that are active (seed nodes) initially
and the rest of the nodes are inactive. Influence propaga-
tion unfolds in discrete steps following a randomized process.
When a node v first becomes active in time step d, it has
a single chance to activate each of its inactive neighbors w
with probability pv,w at time step d + 1. If v succeeds, w
become active at d + 1. However, if v fails, it doesn’t get
another chance to turn w active. The process of conversion
of nodes from the inactive to the active state continues, till
no further activation is possible. Since v influences w with
probability pv,w, the v − w edge is considered active with
probability pv,w. The set of active edges is denoted by Ea.

3.2 Generalized ICM for Adversarial Scenario
The ICM can be adapted to handle adversarial scenario by

allowing the nodes to be in one of the following three states
- (i) active by adopting innovation A, (ii) active by adopting
innovation B, and (iii) inactive. We use the notation IA and
IB to indicate the initial adopters (seed nodes) of technolo-
gies A and B respectively. The nodes in the set V −(IA∪IB)
are the nodes that are inactive initially. The sets IA and IB
are disjoint, i.e., IA ∩ IB = ∅. Just as in ICM, an active
node v may influence each one of its inactive neighbors w
with probability pv,w. However, in an adversarial scenario,
an inactive node w, may be in a situation where one of its
active neighbor v attempts to influence w with innovation A,
whereas another active neighbor u attempts to influence w
with innovation B. In order to deal with this situation, the
authors in [3] proposed two new models - (i) Distance-based
Model, and (ii) Wave-propagation Model. The models spec-
ify the probability with which the node w will be influenced,
when its active neighbors attempt to influence w with two
competing technologies. The GICM operates on a random
subgraph of the social network graphG = (V,E), where each
edge is included independently with probability pv,w. The
details of these two models are described in the following
two subsections.

3.3 Distance-based Model
Suppose that du(I, Ea) denotes the shortest path distance

from the node u to the node set I where I = IA∪IB along the
active edges in the edge set Ea. If u is not connected to any
node of I using only the active edges Ea, then du(I, Ea) =



∞. Let νu(IA, du(I, Ea)) and νu(IB , du(I, Ea)) be the num-
ber of nodes in IA and IB respectively, at distance du(I, Ea)
from u along edges in Ea. The probability that node u
adopts innovation i ∈ {A,B} when maximum number of
propagation steps is D is denoted by Pi(u|IA, IB , Ea, D) and
is computed in the following way:
if du(I, Ea) ≤ D,

Pi(u|IA, IB , Ea, D) = νu(Ii,du(I,Ea))
νu(IA,du(I,Ea))+νu(IB ,du(I,Ea))

;

otherwise, it is zero.
In this model the expected number of nodes which adopt

i ∈ {A,B} will be computed in the following way:

σj(IA, IB , D) = E

[∑
u∈V

Pi(u|IA, IB , Ea, D)

]

where j = 1 if i = A; else j = 2 and the expectation is over
the set of active edges.

3.4 Wave-propagation Model
In this model, in step d < D all nodes that are at distance

d− 1 from some node in I have adopted technology A or B
and all nodes that are farther than d − 1 from I have not
adopted any technology yet(where the distance is measured
with respect to active edges). Every node at distance d
from I chooses one of its neighbors at distance d − 1 from
I independently at random and adopt the same technology
as its neighbor. For every node u, S denotes the set of
neighbors of u that are closer to I than u; i.e., their distance
from I is du(I, Ea) − 1. In this model Pi(u|IA, IB , Ea, D),
the probability that node u adopts innovation i ∈ {A,B} in
at most D steps, is computed as follows:
If du(I, Ea) ≤ D,

Pi(u|IA, IB , Ea, D) =
∑

v∈S Pi(v|IA,IB ,Ea,D)

|S| ;

otherwise, it is zero.
In this model the expected number of nodes which adopt

i ∈ {A,B} will be computed in the following way:

σj(IA, IB , D) = E

[∑
u∈V

Pi(u|IA, IB , Ea, D)

]

where j = 1 if i = A; else j = 2 and the expectation is over
the set of active edges.

4. PROBLEM STATEMENT
The WMI problem can be stated informally as follows:

Given a diffusion model and the information that a sub-
set of network nodes IA have already adopted innovation A
marketed by player P1, what is the fewest number of nodes
should player P2 (marketing innovation B) target so that
by the end of D time steps, the number of nodes that adopt
innovation B will exceed the number of nodes that adopt
innovation A? If σ1(IA, IB , D) and σ2(IA, IB , D) denote the
expected number of nodes that adopt innovations A and B
respectively within D time steps, the objective of the WMI
problem is to

minimize | IB |
subject to σ2(IA, IB , D) > σ1(IA, IB , D)

5. COMPUTATIONAL COMPLEXITY
In this section, we prove that WMI problem is NP-hard

for both propagation models.
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Figure 1: Graph G = (V,E) of WMI instance in set
cover reduction

5.1 Distance-based Model
Decision version of WMI: Is there a set IB where |IB | ≤M

and σ2(IA, IB , D) > σ1(IA, IB , D)?

Theorem 1. WMI is NP-hard for the distance-based model.
Proof: In order to prove that WMI is NP-hard when diffu-
sion is based on distance based model, we reduce the NP-
compete Set Cover problem to WMI. The decision version
of the Set Cover problem is defined in the following way: A
ground set of elements S = {e1, e2, . . . , en}, a collection of
sets C = {s1, s2, . . . , sm} such that si ⊆ S and a positive
integer K ≤ |C| are given. The question is whether there
exists a collection Q ⊆ C that covers all the elements in S
and |Q| ≤ K.

Given an instance of set cover problem we construct an
instance of WMI. We compute G = (V,E) in the following
way. For every element ei ∈ S we add a node ei and for
every set sj ∈ C we add a node sj to V . We add an edge
(ei, sj) to E for every ei and sj if ei ∈ sj . Also, we add a
node a and nodes x1, . . . , xn to V . Then, for every ei we
add edges (a, xi) and (xi, ei) to E. Moreover, for every ei
we add a set of r nodes, Li = {li,j |1 ≤ j ≤ r} to V and
we connect them directly to ei. We identify the value of r
later in the proof. Finally, we add n × r additional nodes,
y1, . . . , yn×r, to V and edges (yt, a), 1 ≤ t ≤ n× r (Fig. 1).
We consider that all edges are active; i.e., pu,v = 1 for all
edges in E. We assign D = 4 equal to the diameter of the
graph G, M = K and IA = {a}.

Now, we show that the set cover problem has a solution if
and only if there is a set IB ⊆ V −IA such that |IB | ≤M and
σ2(IA, IB , D) > σ1(IA, IB , D). First we consider that there
is a collection Q ⊆ C that covers S and |Q| ≤ K. Then IB
includes all nodes sj corresponding to the sets in Q. In this
case, all ei will be at distance one from IB and two from IA.
So, all ei and the nodes in Li will adopt IB with probability
one. Moreover, the nodes sj /∈ IB are two hops away from
IB while 3 hops away from IA. Hence, all nodes sj will adopt
IB . Therefore, we have σ2(IA, IB , D) = m + n(1 + r); so,
σ2(IA, IB , D) > σ1(IA, IB , D).

Next, we show that if there is no collection Q of size K
that covers all elements then there is no set IB ⊆ V − IA
of size M where σ2(IA, IB , D) > σ1(IA, IB , D). Consider-
ing that set cover does not have a solution, there should be
at least one ei whose distance from IB cannot be one; so,
there is an ei and consequently nodes in Li that choose A
with the probability at least 1

K+1
and the probability that

they choose B is at most K
K+1

. Also, at most K nodes from
x1, . . . , xn can be at distance less than or equal to 1 from
IB . Hence n−K of them will adopt A with probability one.
Therefore, we have



σ2(IA, IB , D) ≤ m + (n − 1)(1 + r) + K
K+1

(r + 1) + K and

σ1(IA, IB , D) ≥ 1+nr+n−K+ 1
K+1

(r+1). We choose r in

our instance large enough such that r > (m+2K−2)(K+1)+K−1
2

.

Then we have 1+nr+n−K+ 1
K+1

(r+1) > m+(n−1)(1+

r) + K
K+1

(r + 1) +K; so σ2(IA, IB , D) < σ1(IA, IB , D).

5.2 Wave Propagation Model

Theorem 2. WMI is NP-hard for the wave propagation
model.

Proof: Similar to Theorem 1, we reduce decision version of
Set Cover problem to decision version of WMI when wave
propagation model is used for diffusion. We construct an
instance of WMI in the same way as in Theorem 1. The
only change that should be made to this instance is the value
of r which will be computed later.

We need to show that the set cover problem has a solution
if and only if there is a set IB ⊆ V − IA such that |IB | ≤M
and σ2(IA, IB , D) > σ1(IA, IB , D). First we consider that
there is a collection Q ⊆ C that covers S and |Q| ≤ K.
Then IB includes all nodes sj corresponding to the sets in Q.
Similar to the proof of Theorem 1 we have σ2(IA, IB , D) =
m+ n(1 + r); so, σ2(IA, IB , D) > σ1(IA, IB , D).

Next, we show that if there is no collection Q of size K
that covers all elements then there is no set IB ⊆ V − IA
of size M where σ2(IA, IB , D) > σ1(IA, IB , D). Consider-
ing the construction of G and the fact that set cover does
not have a solution , there should be at least one ei whose
distance from IB cannot be one or smaller. Since the node
xi connected to this ei will have probability 1 to accept A
and the maximum number of nodes in first hop neighbor-
hood of ei that are at distance one from IA ∪ IB is m + 1,
there is an ei and consequently nodes in Li that choose A
with the probability at least 1

m+1
and the probability that

they choose B is at most m
m+1

. Also, at most K nodes from
x1, . . . , xn or y1, . . . , yn×r can be at distance less than or
equal to 1 from IB . Hence n(r + 1)−K of them will adopt
A with probability one. Therefore, we have
σ2(IA, IB , D) ≤ m + (n − 1)(1 + r) + m

m+1
(r + 1) + K and

σ1(IA, IB , D) ≥ 1+n(r+1)−K+ 1
m+1

(r+1). We choose r in

our instance large enough such that r > m2

2
+K(m+1)− 3

2
.

Then we have 1 + n(r + 1) −K + 1
m+1

(r + 1) > m + (n −
1)(1+r)+ m

m+1
(r+1)+K; so σ2(IA, IB , D) < σ1(IA, IB , D).

6. APPROXIMATION ALGORITHM
Since we proved that finding the optimal solution forWMI

is hard, in this section we propose a greedy algorithm called
GWMI. In this algorithm either of the two propagation
models discussed before can be used as the diffusion pro-
cess.

Let ω(IA, IB , D) be (σ2(IA, IB , D) − σ1(IA, IB , D)). We
define Fi to denote the amount of increase in the value of ω
when node i is added to IB ; i.e., Fi = ω(IA, IB ∪ {i}, D) −
ω(IA, IB , D). Initially IB is empty. Hence, ω(IA, IB , D) ≤
0. The algorithm executes through iterations and in each
iteration node i ∈ V − IA with the maximum Fi is selected.
The steps of the algorithm GWMI has been shown in Al-
gorithm 1.

Algorithm 1 GWMI

Input: G = (V,E), IA, D
Output: IB
1: while ω(IA, IB , D) ≤ 0 do
2: for every node i ∈ V − (IA ∪ IB) do
3: Compute Fi
4: end for
5: Select node j with maximum Fj
6: IB = IB ∪ {j}
7: end while
8: return IB

In [11], it is mentioned that computing the exact value of
σ1(IA, ∅, D) efficiently is an open question. Similarly, there
is no known way to compute σ1(IA, IB , D), σ2(IA, IB , D)
in both propagation models efficiently. However, by sam-
pling the active sets we can get a close approximation with
high probability. Given IA, IB and a set of active edges Ea,
computation of σ1 and σ2 in both propagation models has
O(n3) time complexity since it needs computation of sin-
gle all-pairs shortest paths. Given IA, IB and input graph
G, using sampling, we can then approximate σ1 and σ2 to
within (1+γ) for any γ > 0 where the running time depends
on 1/γ [3].

6.1 Upper Bound Computation

Theorem 3. GWMI has a logn approximation ratio.
Proof. Let ItB be the set of B’s initial adopters selected by
GWMI at step t. Initially, IB is empty and ω(IA, I

0
B , D) =

−σ1(IA, ∅, D). In every iteration t, the nodes in the opti-
mal set of B’s initial adopters, IoptB , will make ω(IA, I

t−1
B ∪

IoptB , D) positive. We denote the size of IoptB by OPT and
the size of the solution of GWMI by H. Therefore, There
will be at least one node in V − {IA ∪ It−1

B } that increases

ω(IA, I
t−1
B , D) at least by

|ω(IA,I
t−1
B

,d)|
OPT

. Let, vt be the node

selected byGWMI at iteration t. Then, Fvt ≥
|ω(IA,I

t−1
B

,D)|
OPT

.
Therefore, for t < H we have

|ω(IA, I
t
B , D)| ≤ |ω(IA, I

t−1
B , D)| − |ω(IA, I

t−1
B , D)|

OPT

≤ |ω(IA, I
0
B , D)|(1− 1

OPT
)t

Also, we know that |ω(IA, I
0
B , D)| = σ1(IA, ∅, D) ≤ n. Hence

we have

|ω(IA, I
t
B , D)| ≤ n(1− 1

OPT
)t ≤ ne

−t
OPT .

Since adding a node to IB will increase ω(IA, IB , D) at least
by one, we need to find the smallest t that |ω(IA, I

t
B , D)| < 1.

Then adding at most one more node will make ω(IA, IB , D)
positive. Therefore, H ≤ 1 + OPT lnn. We note that this
proof holds for both propagation models.

6.2 Lower Bound Computation
We now give a construction giving the lower bound for

GWMI when distance-based propagation model is used. Let
X and Y be disjoint sets of n

2
vertices and G(n, 3/4) be the

Erdős-Renyi random graph on X ∪ Y with p = 3/4.
We take two new vertices u and v, connect u to all vertices

of X and v to all vertices of Y . Now, we add a disjoint star
S with n+ 2 leaves and connect the center of the star to u
and v. This yields our graph G (Fig. 2).



n/2 n/2 

G(n, 3/4)

u v

Red set

X Y

Figure 2: Construction of G.

We consider that the center of the star is the only initial
adopter of A (red node), and pu,v is uniform and it is 1 for
all the edges of G and D = 3. An optimal set of initial
adopters of B (initial blue nodes) includes u, v and any of
the leaves of S. We claim that the greedy algorithm GWMI
will select Ω(logn) vertices with high probability, assuming
n is large enough.

In order to prove this we first state a technical lemma
giving a condition that G satisfies with high probability. Let
S ⊆ X ∪ Y . We say S is fair if

1. |X \ ∂(S)| = (1/4)|S| n
2

+ O(n3/4) and |Y \ ∂(S)| =

(1/4)|S| n
2

+O(n3/4).

where ∂(S) is the set of one hop neighbors of vertices in
S.
We claim the following lemma, whose proof we defer:

Lemma 4. With probability 1− o(1) every set S ⊂ X ∪Y
with |S| < 1

100
ln(n) is fair. Furthermore, the induced graph

on X ∪Y has diameter 2, every vertex in Y is at distance at
most 2 from u and every vertex in X is at distance at most
2 from v.

Assuming Lemma 4 we prove the lower bound. In partic-
ular we prove the following: The greedy algorithm selects at
least 1

100
lnn vertices from X∪Y . We proceed by induction.

At the first step, the greedy algorithm has to choose between
a vertex in X ∪Y , one of u or v, or one of the vertices in the
star. Selecting a vertex in the star will cause the number of
blue vertices to increase by one and red vertices to decrease,
a net change of two. Selecting u (or resp. v) will increase
blue (and decrease red) by a total of 1 + n

2
+ n

4
; since every

vertex in X will be at distance 1 from a blue vertex and
every vertex in Y will be at distance 2 from both u and the
red vertex if u is selected. On the other hand, by fairness, if
a vertex x in X∪Y is selected; the increase in blue is at least
3n
4

+ n
8

+O(n3/4); since 3n
4

+O(n3/4) vertices are at distance

1 from x and the other n
4

+ O(n3/4) are at distance 2 from
both x and the red vertex. Therefore the greedy algorithm
will select from X ∪ Y at the first time.

Now suppose that the greedy algorithm has selected from
X∪Y a total of k < 1

100
lnn times. Let B denote the selected

set, and X ′ = X \ ∂(B) and Y ′ = Y \ ∂(B). Every vertex in
X ′∪Y ′ is at distance two from all k blue vertices, and hence
they are currently blue with probability k

k+1
. Furthermore

by fairness X ′ and Y ′ are both of size (1/4)k n
2

+O(n3/4).
Again, the greedy algorithm must choose: If u (or simi-

larly v) is chosen, then increase is at most

1 +
1

k + 1
|X ′|+ 1

(k + 1)(k + 2)
|Y ′| (1)

=
1

k + 1
(1/4)k

n

2
+

1

(k + 1)(k + 2)
(1/4)k

n

2
+O(n3/4).

On the other hand, if a vertex x in X ′ ∪ Y ′ is chosen, the
increase is at least

1

k + 1
|∂(x) ∩X ′|+ 1

k + 1
|∂(x) ∩ Y ′| (2)

+
1

(k + 1)(k + 2)
|X ′ ∪ Y ′ \ ∂(X)|

= 2 · 1

k + 1
· 3

4
(1/4)k

n

2
+

1

(k + 1)(k + 2)
(1/4)k+1 n

2
+O(n3/4);

therefore, (2) - (1) is positive and hence the vertex in X ′∪
Y ′ will be chosen as desired. We note that this construction
is for sufficiently large n and (1/4)kn >> n3/4.

Proof of Lemma 4. Let S ⊂ X∪Y , with |S| < 1
100

lnn.
Then

E[|X \ ∂S|] = (1/4)|S|(|X| − |X ∩S|) = (1/4)|S|
n

2
+O(lnn).

Let XS = |X \ ∂S|. Chernoff bounds imply that

P(|XS−E[XS ]| > n3/4) ≤ exp(−Ω(
n3/2

E[XS ]
)) ≤ exp(−Ω(n1/2)).

Bounds for |Y \∂S| follow similarly. On the other hand there
are at most

1
100

lnn∑
i=1

(
n

i

)
≤ 1

100
ln(n) · nlnn,

sets S. Thus union bounds imply every set is fair with prob-
ability 1− exp(−Ω(n1/2)).

Note that the expected number of common neighbors be-
tween x and y in X ′ ∪ Y ′ is 9n

16
, and Chernoff bounds plus

union bounds imply every pair x and y is of distance 2 (and
in fact has (1 − o(1)) 9n

16
common neighbors). Likewise, u

and a vertex in Y have 3n
8

expected neighbors and Cher-

noff bounds imply that every pair has (1 + o(1)) 3n
8

common
neighbors. Likewise, for v and vertices in X. A union bound
over all events completes the proof.

7. SIMULATION
In this section we evaluate the performance of our ap-

proximation algorithm, GWMI, on a real network data set.
It has been suggested in [15] that the co-authorship graphs
are representative of typical social networks. As such, we
use the real collaboration network data set of the scien-
tists posting preprints on the high-energy theory archive
at www.arxiv.org, 1995-1999 [14]. This network has 8361
nodes (authors) and 15751 edges. The largest connected
component has 5835 number of nodes (authors) and maxi-
mum distance between the nodes in a connected component
is 19.

Our experiments were conducted on a high performance
computer which is a 5K processor Dell Linux Cluster. The
program is parallelized with OpenMP, optimized with Intel
compiler and was executed on an 8 core compute node. The
cores in the node have equal access to a common pool of
shared memory. Each node is comprised of 2.66/2.83 GHz



processors, 8MB cache, 16GB memory and 8 cores. Since
our experiments required execution of the algorithm on a
large number of instantiation of a social network (the graphs
were different as their set of active edges were different), we
used OpenMP for parallelization of the graph instances for
the simulation with one data set.

In the first set of experiments we evaluate the perfor-
mance of GWMI algorithm against the results obtained from
the heuristics based on node degree and closeness centrality.
These heuristics are most often used in social networks to
identify most influential nodes [11]. We also compare per-
formance of GWMI with the greedy algorithm proposed in
[3] for selection of seed nodes for the second player P2. In
our model the first player P1 is trying to market product
A and the second player P2 is trying to market product B.
Since WMI problem is NP-hard and the input data set is
large, computation of the optimal solution within a reason-
able amount of time is unlikely. It may be noted that there is
no known way of computing the exact value of σ1(IA, IB , D)
and σ2(IA, IB , D) efficiently [11]. Accordingly, we use sam-
pling of the active edge sets to obtain close approximation
of σ1(IA, IB , D), σ2(IA, IB , D) with high probability. As in
the experiments reported in papers [11, 3], we assign the
edge probabilities to be 0.1. In all the experiments we use
WPM as the diffusion model.

The node degree based heuristic selects the nodes in the
decreasing order of their degrees and the closeness centrality
based heuristic selects the nodes in the increasing order of
their average distance to other nodes. The distance between
two nodes that are not in the same connected component is
taken to be n, where n is number of nodes in the network.
In the greedy algorithm proposed in [3], in every iteration
the node that increases σ2(IA, IB , D) the most is selected.
We refer to this algorithm as Second Player Influence Max-
imization (SPIM) algorithm. In these experiments, maxi-
mum number of propagation steps is taken to be 10, i.e.,
D = 10. In the experiments, the player P1 used node degree
based heuristic to select its k initial adopters. In our exper-
iments, the size of initial adopters of A is varied from 20 to
100. The results of this set of experiments using the WPM
is shown in Fig. 3. The Fig. 3 shows that all five sizes of
the initial adopters of A (20, 40, 60, 80, 100), the GWMI
algorithm required the fewest number of initial adopters of
B necessary to defeat A’s influence at the end of time step
10. The legend Degree-Degree in Fig. 3 denotes that both
the players are using the node degree based heuristics to se-
lect the initial adopters. Similarly,the legend Degree-GWMI
denotes that while P1 is using the node degree based heuris-
tics to select the initial adopters, P2 is using the GWMI
algorithm to do the same.

The Figs. 4 and 5 show the coverage (i.e., the number of
nodes influenced at the end of 10 time steps) for players P1

and P2 respectively. Although the GWMI algorithm does
not make an effort to minimize the coverage of P1, it may
be observed from the Fig. 4, the coverage of P1 is less if
P2 uses GWMI instead of SPIM. Thus P2 is better off using
GWMI instead of SPIM, if in addition to be able to defeat
P1 with least investment (i.e., initial adopters), P2 wants
to have a smaller market share for P1. The Fig. 5 shows
the coverage of P2 at the end of ten time steps. It may be
observed from the Fig. 5, that at all five data points the cov-
erage for P2 is highest when she uses the SPIM algorithm.
This is not surprising as the stated goal of SPIM is to maxi-
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Figure 3: Number of initial adopters of B for differ-
ent values of |IA|
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Figure 4: Expected number of nodes adopting A
after 10 propagation steps

mize P2’s coverage (influence). However, this figure may be
somewhat misleading because it does not provide the infor-
mation pertaining to the number of initial adopters required
by the SPIM algorithm to achieve the higher coverage. By
its stated objective, the number of initial adopters required
by GWMI to defeat P1 cannot be higher than the the num-
ber of initial adopters required by SPIM. Once this is fac-
tored in, and we compute the coverage per initial adopter,
we find that the coverage per initial adopter of the SPIM al-
gorithm is very close to that of the GWMI algorithm. This
is shown in Fig. 6.

From Fig. 3 it is clear that the node degree and centrality
based heuristics and the SPIM algorithm require a larger
number of initial adopters of B to beat A than is needed
by the GWMI algorithm. While this is a negative aspect
of SPIM (cost), it also has a positive aspect in the sense
that at the end of ten time steps, it also secures a larger
coverage for B (benefit). We compute the additional benefit
provided by the additional initial adopters. Let IB(X) be
the smallest set of initial adopters of B that is required by
algorithm X to defeat A and σ2(X) be the expected number
of nodes that adopt B after D propagation steps. Here X
can be node-degree or centrality based heuristic or the SPIM
algorithm. In the case, (σ2(X) − σ2(GWMI)) indicates the
additional benefit and (|IB(X)| − |IB(GWMI)|) indicates the
additional cost. In this case, (σ2(X)−σ2(GWMI))/(|IB(X)|−
|IB(GWMI)|) indicates the average market share gain of B
with each additional initial adopter when using algorithm
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after 10 propagation steps
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Figure 6: Expected number of nodes adopting B per
initial adopter of B after 10 propagation steps

X. The Fig. 7 depicts the results for the heuristics and
SPIM. The negative gains are not shown. It may be observed
from Fig. 7 that the average market share gain of B with
each additional initial adopter diminishes with increase of
the number of initial adopters of A, when it uses the SPIM
algorithm.

While the stated objective of P2 is to have a larger market
share than P1 with the fewest number of initial adopters, it
may also have two other unstated objectives - (i) to have a
large σ2(X) and (ii) a small σ1(X) for all X (σ1(X) be the
expected number of nodes that adopt A after D time steps).
Therefore while considering the benefit of the additional ini-
tial adopters, we can consider not only (σ2(X) − σ2(GWMI))
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Figure 7: Average market share increase that inno-
vation B can capture per additional initial adopter
with respect to GWMI
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Figure 8: Extended benefit that B can capture per
additional initial adopter with respect to GWMI

but also (σ1(GWMI) − σ1(X)). It introduces a notion of ex-
tended benefit by combining these two factors in the following
way: (σ2(X) − σ2(GWMI))− (σ1(GWMI) − σ1(X)). With this
notion of extended benefit,

((σ2(X) − σ2(GWMI)) + (σ1(GWMI) − σ1(X)))

|IB(X)| − |IB(GWMI)|

indicates the average market share gain of B with each ad-
ditional initial adopter when using algorithm X. The Fig.
8 depicts the results for the heuristics and SPIM. It may be
observed from Fig. 7 that when extended benefit is consid-
ered, the average market share gain of B with each addi-
tional initial adopter diminishes even more drastically with
increase of the number of initial adopters of A, when it uses
the SPIM algorithm. Moreover, the gain of each additional
initial adopter is smaller than 1 and implies that the addi-
tional adopter is not worth its cost.

In the second set of experiments we investigate different
strategies for selection of initial adopters of A when P2 uses
GWMI. The strategies that we consider for selection of
initial adopters of A includes the greedy algorithm proposed
in [11] and heuristics based on node degree and closeness
centrality. In these experiments WPM is used as diffusion
model and D = 10.

Fig. 9 depicts the results of these experiments. We ob-
serve that the closeness-centrality based heuristic performs
poorly in comparison to other two algorithms. This is true
because the number of initial adopters of B that it needs
to defeat A’s overall influence (coverage) is much smaller
than the size of initial adopters of A. More specifically, for
closeness-centrality based heuristic, for |IA| values greater
than 60, the number of initial adopters of B is less than
50% of |IA|. This set of results show that if the influence
maximization algorithm (IM) proposed in [11] is used for
the selection of IA, it forces P2 to select a large set for IB in
order to be able to defeat P1 within D time steps.

8. CONCLUSION
In this paper we have introduced a new influence prop-

agation problem in an adversarial setting where the goal
of the second player is to defeat the first within D time
steps and least cost, measured in terms of the number of
seed nodes. Considering two different influence propagation
models, we provided the NP-Hardness proof for the problem
and an approximation algorithm with a tight performance
bound. In addition, we evaluated the performance of the
approximation algorithm with collaboration network data.
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Figure 9: Size of initial adopters of B for different
values of |IA|

We can envisage at least two new directions of research with
this problem. In the first direction, P2 is not aware of P1’s
choice. In the second direction, back and forth transition of
the nodes between two competing products is allowed.
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