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1. Introduction

A graph G on n ≥ 3 vertices is called hamiltonian if G contains a cycle of length n
and is called hamiltonian connected if every pair of vertices can be connected by a path
on n vertices. G is said to be {H1, H2, ..., Hk}-free if G contains no induced subgraph
isomorphic to any of the graphs Hi, i = 1, 2, ..., k. In this case the graphs H1, H2, ..., Hk

are said to be forbidden subgraphs for G.

We now establish some notation that we will use throughout the paper. Of particular
importance is the claw, K1,3, which is the complete bipartite graph with partite sets of
size one and three. Also, we will denote the path on k vertices as Pk, and the generalized
net as N(i, j, k), which is a triangle with disjoint paths of length i, j, and k, attached
to distinct vertices of the triangle. We use Γ (v) to denote the neighborhood of v, Γ [v]
to denote the closed neighborhood of v (i.e. Γ (v) ∪ {v}), and  Lk to denote two triangles
connected by a path with k edges. For terms not found here, see [3].

It is well known that the only single forbidden graph which implies G is hamiltonian
is P3. Since both pancyclicity and hamiltonian connectedness imply hamiltonicity, no
single forbidden graph (with the exception of P3) can suffice for these properties either.
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Therefore, the interesting question is to classify all pairs of graphs {H1, H2} such that
any graph G which is free of this pair necessarily has the desired hamiltonian property. A
complete classification of forbidden pairs that imply a 2-connected graph is hamiltonian
was determined by Bedrossian [1] for all graphs and further generalized by Faudree and
Gould [7] for all sufficiently large graphs.

A graph G is said to be pancyclic if G contains at least one cycle of each length
from 3 to |V (G)| and panconnected if any two vertices of G are joined by paths of all
possible lengths from dist{x, y} (the distance between x and y) to |V (G)|−1. A complete
classification of forbidden pairs which imply a 2-connected graph G is pancyclic has also
been determined by Faudree and Gould [7], as well as a classification of forbidden pairs
which imply a 3-connected graph G is panconnected.

The next natural question to consider is which forbidden pairs imply that a 3-connected
graph G is hamiltonian connected. These pairs have been much harder to determine, and
thus a complete classification is not yet known. However, it is known that one of the two
forbidden subgraphs must be the claw. In [7], Faudree and Gould began to classify the
properties of graphs H2 that could form a forbidden pair with the claw, H1 = K1,3, im-
plying a 3-connected graph is hamiltonian connected. A strengthening of these properties
was given in [2]. These results greatly reduce the number of potential graphs that can
play the role of H2.

We now summarize the known graphs H2 which, together with the claw, imply that a 3-
connected graph is hamiltonian connected. Shepherd [10] has shown that H2 = N(1, 1, 1)
is one such graph. Faudree and Gould [7] show that H2 = N(2, 0, 0) works as well. Chen
and Gould [4], added three additional choices for H2 to the collection of forbidden pairs
that imply a 3-connected graph is hamiltonian connected, namely N(3, 0, 0), N(2, 1, 0)
and P6. Broersma et. al. in [2] showed that  L1 also yields the desired result. Recently,
in [5], it was shown that the pair {K1,3, P8} implies a 3-connected graph is hamiltonian
connected, as well as several generalized nets.

Combining these results, the only remaining possibilities for the graph H2 are as fol-
lows:
(a) P9;
(b) N(i, j, k) with some restrictions on how large i, j, k can be;
(c)  Lk with k ≥ 2;
(d)  Lk with k ≥ 2 with tree components attached to either of the two triangles.

In this paper we work to further classify the pairs of graphs such that G being 3-
connected and {K1,3, H2}-free implies G is hamiltonian connected. The results of this
paper are presented in two parts. First, we present infinite families of graphs that are
3-connected and not hamiltonian connected in order to further reduce the list of possible
forbidden pairs. In particular, we eliminate  Lk for k ≥ 7 as well as  Lk with k even. Second,
we prove the following theorem:

Theorem 1. Every 3-connected {K1,3, P9}-free graph is hamiltonian connected.

As it is known that there are {K1,3, P10}-free graphs which are not hamiltonian con-
nected, this result is the best possible.
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1.1. Families of 3-connected non-hamiltonian connected graphs

In this section, we further reduce the list of possible graphs H2 such that every {K1,3, H2}-
free graph is hamiltonian connected by presenting some infinite families of claw-free graphs
that are {K1,3, H2}-free, but not hamiltonian connected.

K4

K4K4

K4

K4

K4

K4

Kn

1

Fig. 1. Non-hamiltonian connected graph which is {K1,3,  Lk}-free, k ≥ 7.

Theorem 2. If G being 3-connected, claw-free and  Lk-free implies G is hamiltonian con-
nected, then k ≤ 6

Proof. Consider the graph G shown in Figure 1. Note that the dashed lines in the figure
represent identifications. Since G is 3-connected, claw-free and not hamiltonian connected,
it follows that any graph Y such that {K1,3, Y }-free implies hamiltonian connectedness
must be an induced subgraph of G. The two end triangles of the  Lk must be in two
separate cliques. Without loss of generality, we can assume that one triangle is in the
copy of Kn. It can also be noted that any two edges between the end triangles must be in
separate cliques, otherwise another triangle would be induced. This gives the result that
k ≤ 6 since there are only six remaining cliques in which to place an edge of the  Lk.

Theorem 3. If G being 3-connected, claw-free and  Lk-free implies G is hamiltonian con-
nected, then k must be odd.

Proof. Consider the two graphs G1 and H1 shown in Figure 2. Since both G1 and H1

are claw-free and not hamiltonian connected, it follows that any graph Y , such that
{K1,3, Y }-free implies hamiltonian connectedness, must be an induced subgraph of G1

and H1.

Observe that in the graph G1 there are no triangles that share a common vertex. Thus
the shortest distance between two triangles is one. Now choose any triangle T in G1. To
induce a subgraph that connects T with a second triangle via a path of length longer than
one, one must include the edge between T and one of the triangles at distance one from
T , call this triangle T1. If we include more than two vertices of T1, we induce an  L1. Thus,
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Fig. 2. Non-hamiltonian connected graphs G1 and H1 which are {K1,3,  Lk}-free for k even.

we can only include one edge of T1. There is no other triangle at the end of this path of
length two, thus we must add in an edge between T1 and a triangle of distance one from
T1. Continuing in this manner, it can be seen that G1 contains no induced subgraph  Lk

with k even.

A similar argument shows that H1 also contains no induced copies of  Lk with k even.

Combining the results of Theorems 2 and 3, we deduce that the only possible values of k
such that a graph G being 3-connected and {K1,3,  Lk}-free implies that G is hamiltonian
connected are k = 1, 3, 5. Note that the k = 1 case was proven in [2], thus the only
remaining k for which the question is unknown are k = 3 and k = 5.
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Fig. 3. Graph G3 eliminating L3 with trees off the triangles.

Theorem 4. If G being 3-connected, claw-free and Y -free implies G is hamiltonian con-
nected, then Y cannot be an  Lk with tree components on either of the two triangles.

Proof. As before, it is only necessary to provide a class of 3-connected, claw-free graphs
that are not hamiltonian connected and do not contain any  Lk with trees attached to either
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Fig. 4. Graph G15 eliminating L1 and L5 with trees off the triangles.

of the end triangles as induced subgraphs. By Theorems 2 and 3, it is only necessary to
consider  L1,  L3, and  L5 with tree components.

The graph G15 in Figure 4 contains no  L1 with trees attached to either of the triangles
and no  L5 with trees attached to either of the triangles. This can be seen by noting that
the only induced  L1’s and  L5’s occur with triangles contained in separate cliques. Adding
any edge off of either triangle would induce an additional edge between the new vertex
and another vertex of the triangle, also in the clique.

Likewise, the graph G3 in Figure 3 contains no  L3’s with trees attached to either of
the triangles, since any induced  L3 must occur with the triangles between the cliques.

Theorem 5. If G being 3-connected claw-free and N(i, j, k)-free implies G is hamiltonian
connected, then i+ j + k ≤ 7.

Proof. Consider the graph in Figure 1 used in the proof of Theorem 2. The triangle at
the center of the net must be contained in one of the cliques. Without loss of generality it
can be assumed to be in the Kn. Any other clique can contain at most one edge from one
of the paths off of the triangle, giving a total of at most 7 edges among the three paths.

2. Proof of main result

In this section we focus on proving Theorem 1:

Theorem 1. Every 3-connected, {K1,3, P9}-free graph G is hamiltonian connected.

2.1. Setup

Suppose G is a {K1,3, P9}-free graph. Fix an arbitrary pair of vertices u and v. We wish
to show that there is a hamiltonian path between u and v. A tool which we will use to
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find this hamiltonian path is a closure concept introduced by Kelmans [8]. We denote this
closure as klu,v.

Let Nx denote V (Γ [x] \ {u, v}). Kelmans defines Nx to be a klu,v-cone if the following
hold:
(i) x ∈ V (G \ {u, v}),
(ii) Γ (x) \ {u, v} is connected, and if {u, v} ⊆ V (Γ (x)) then both u and v are adjacent
to some vertices in Γ (x) \ {u, v},
(iii) Nx has no induced claw centered at x,
(iv) G has no induced claw centered at t that contains the edge tx for any t ∈ V (Γ (x) \
{u, v}.

The klu,v closure of G is obtained by creating a sequence of graphs G = G1, G2, ..., Gn

where Gi+1 is obtained from Gi by completing the neighborhood of x ∈ V (G \ {u, v})
when Nx is a klu,v-cone. The maximal graph obtained by this process will be referred to
as klu,v(G).

This closure is especially useful because when applied to G it preserves the length of
the longest u, v path and also preserves the property of G being P`-free. We summarize
the important facts about this closure below when G is a claw-free graph:

Theorem 6. [8] Let G be a claw-free graph and suppose G′ = klu,v(G). Then:

(i) G′ has a hamiltonian u, v path if and only if G has a hamiltonian u, v path,
(ii) If G is P`-free, so is G′,

(iii) G′ \ {u, v} is the line graph of a triangle-free graph.

Proof. Fact (i) and the assertion that G′\{u, v} is a line graph are proven in [8]. We make
the additional observation that when G is claw-free, then it is the line graph of a triangle-
free graph. Kelmans showed that when G is a claw-free graph G′ \ {u, v} = c(G \ {u, v})
where c is the standard closure of Ryjác̆ek (see [9].) In his paper, Ryjác̆ek noted that c(G)
is the line graph of a triangle free graph, which gives item (iii).

Item (ii) has already been noted in the closure of Ryjác̆ek [9] and the proof here is
identical.

We thus assume that G = klu,v(G) for the remainder of the paper. Let G̃ = L−1(G)
denote the inverse line graph of klu,v(G). A basic property of line graphs is the following:

Fact 1. Suppose G contains some graph H as a (not necessarily induced) subgraph. Then
L(G) contains L(H) as an induced subgraph.

Based on this fact it follows that if a 3-connected, claw-free graph G is P9-free, then
G̃ does not have any copies of P10 as subgraphs.

Let S = Γ (u) denote the neighborhood of u and T = Γ (v). Let R = L−1(S) and
B = L−1(T ) be the set of edges in the inverse line graph G̃ corresponding to the set of
vertices S and T in G respectively. We call the edges in R ‘red’ and edges in B ‘blue’. Of
course an edge may be both red and blue, i.e. R∩B is not necessarily empty. The key to
our approach is the following:
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Fact 2. Suppose there is a dominating trail in G̃ starting at a red edge r ∈ R, and ending
at a blue edge b ∈ B with b 6= r. Then there is a u, v hamiltonian path in G.

By a dominating trail starting at a red edge r and ending at a blue edge b, we mean
a dominating trail starting at one end of r and ending at one end of b, which does not
include either r or b in the trail itself. It is well known that a dominating trail in a graph
corresponds to a hamiltonian path in the corresponding line graph. By starting adjacent
to a red edge, and finishing adjacent to a blue edge we ensure that the endpoints of the
hamiltonian path lie in the neighborhoods of u and v, and hense the path may be extended
from a hamiltonian path in L(G̃) to a u, v hamiltonian path in G.

Our task throughout the remainder of the section is to show that any given inverse line
graph G̃ with longest path length at most nine has a dominating trail from some r ∈ R to
some b ∈ B. Let P ′ = p0p1p2 . . . pk−1 denote a longest path in G̃, and let P = p1p2 . . . pk−2
be the vertices in the interior of P ′. Note that |P ′| < 10, so |P | ≤ 7.

We will choose to view G̃ so that P runs from left to right and, since G̃ is connected,
the rest of the graph G̃ \ E(P ) will be a disjoint set of components of G̃ attached to P ′

at a number of the pi, i ∈ {0, 1, . . . , 9}. We will further classify these components by the
number of vertices along P ′ on which the component is attached as follows:

Lemma 1. Let C consist of the set of components of G̃ \E(P ). Then a component C ∈ C
can be classified as one of four types T1, T2, T3, and T4, where C ∈ Ti if i = |C ∩ P |.
Furthermore, if C ∈ C contains more than one vertex that is not in P the following are
true:

(i) If C has exactly one edge incident with P , i.e. C is of type (a) or (b), then there is
both a red and blue edge in C (they may be the same). Furthermore, such a component
is unique if it exists.

(ii) If C has exactly two edges incident with P , then there is either a red or a blue edge
within C. In this situation, C must be of type (e), (g), (h), or a special case of type
(c), (d) or (f). There may be at most two components of such a type for each color.

(iii) If C ∈ T1 and has more than one edge incident with P , i.e. C is of type (c), (d), or
(e), then there exists a closed trail dominating C.

Furthermore, all components C are isomorphic to one of the types enumerated in Appendix
A.

Proof. That the components fall into one of the types {Ti}4i=1 is immediate from the fact
that |P | ≤ 7, and G̃ is triangle free. The first assertions of (i) and (ii) follow from G being
3-connected. Consider e, e1, e2 ⊆ G̃. Define L(e) to be the vertex in G that corresponds
to the edge e in G̃. Suppose the removal of e from G̃ disconnects e1 and e2. Since G is
3-connected, the removal of L(e) ∈ V (G) does not disconnect L(e1) and L(e2). In fact,
there must exist two vertex disjoint paths between them in G as G \ L(e) is at least
2-connected. Since these paths do not correspond to paths in G̃, they must pass through
u and v (and hence there must be red and blue edges on both sides of the cut). Likewise,
if the removal of two edges disconnects G̃, the three connectivity of G implies that there
must be either a red or a blue edge on each side of the cut. (Note: if uv ∈ E(G), then it
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may be the case that there is a red edge on one side of the cut, and a blue edge on the
other - there need not be the same color on both sides.)

The second part of (ii) follows from the fact that there cannot be three vertex disjoint
red (or blue) edges. If there were, this would correspond to a claw in G. This observa-
tion also helps imply the second part of (i). Suppose there were two such components,
connected to P by e1 and e2. There cannot be a red or blue edge elsewhere in the graph,
other than in those components, as otherwise there would be three disjoint edges of the
same color. But then removing L(e1) and L(e2) disconnects u and v from the remainder
of the graph, violating the condition that G is 3-connected.

Statement (iii) follows from inspection of the types enumerated in Appendix A. We
also argue that these are the only classes in the appendix.

A brief outline of the proof is as follows: in the case where there are T3 or T4 components,
it turns out that the structure of G̃ is very restricted when we take into consideration
that P is a longest path. We will (through some rather tedious, but easy, case analysis)
handle these cases separately. In the case where all components are of type T1 or T2, we
will define a new (multi)graph on a subset S ⊆ P , where a suitably defined trail hitting
all vertices of S (and perhaps a few specified edges) will correspond to a dominating trail
starting at a red edge and ending at a blue edge in G̃. By the observation in Fact 2, this
dominating trail in G̃ will correspond to the desired hamiltonian uv-path in G. This will
be the main subject of the next section.

2.2. Graphs without T3 and T4 components

Here, as in the previous section, we assume G̃ is a triangle-free graph with maximum length
path P and C is the set of components of G̃ \E(P ). By assumption, all components in C
are of type T1 or T2.

Let S ⊆ V (P )(⊆ V (G̃)) denote the set of vertices x ∈ V (P ) satisfying either of the
following:

(i) x is incident to an edge in some component C ∈ C.
(ii) All edges incident to x are colored.

We define a (multi)graph on S where there is an edge xy ∈ E(S) with multiplicity the
total multiplicity of any of the following events:

(i) There is an edge from x to y in G̃.
(ii) There is a T2 component C such that V (C) ∩ V (P ) = {x, y}.

(iii) If x = pi and y = pi+2 ∈ V (P ) and pi+1 6∈ S.

Note that we call an edge e ∈ S marked if it arises from case (ii) above and the
component C contains an edge e′ which is vertex disjoint from P . The reason that we
mark these edges is because it will be necessary that our dominating trail in S uses these
edges in order to lift to a trail in G̃ which dominates edges such as e′.

We color an edge xy ∈ E(S) red (respectively blue) if it corresponds to a red (resp.
blue) edge in P or if it corresponds to a component C ∈ C that contains a colored edge.
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Note that by part (ii) of Lemma 1, all marked edges are colored. An edge, of course, may
be colored both red and blue.

We will now use the colored edges to color the vertices of S. The following lemma is
key in allowing us to do so in a well-defined manner:

Lemma 2. If an edge in G̃ is colored, then one of its endpoints must be the center of a
monochromatic star.

Proof. Let xy be a colored edge. Without loss of generality, we can assume that it is
colored red. If all edges incident to x are red, then x is the center of a monochromatic
star. So assume that there exists an edge xxi such that xxi is not colored red. If there
exists an edge yyj such that yyj is also not red, then the images of xy, xxi, and yyj in
G = L(G̃) along with the vertex u form an induced claw centered at the image of xy.
Therefore, all edges yyj must be colored red. The argument for an edge colored blue is
similar, with v being the fourth point in the induced claw.

We color a vertex x ∈ S red (or blue) if one of the following conditions hold:

(i) x is the center of a monochromatic star in red (or blue),
(ii) x is adjacent to a marked red (blue) edge.

(iii) x is the attachment point of a component of type (a) or (b) in G̃.

Notice that in case (iii) above, x is colored both red and blue since, by Lemma 1 (i),
the component must contain an edge of each color. Our main tool is the following:

Lemma 3. If there exists a spanning trail T in S with all of the following properties:

(i) One endpoint of T is a red vertex and the other is a blue vertex,
(ii) If a component of type (a) or (b) is present and y ∈ V (S) is the attachment point of

this unique component in G̃, then T starts at that vertex (which is colored both red and
blue),

(iii) T uses every marked edge;

Then there exists a dominating trail in G̃ connecting a red edge to a blue edge.

Proof. There is an obvious lift from such a trail T to a trail T ′ in G̃. It is clear that T ′

starts at a red vertex because one of the three conditions listed above. The first possibility
is that T starts at a red vertex that corresponds to the center of a red star in G̃ then the
trail T ′ starts at that vertex. The second possibility is that T starts at a red edge that
corresponds to a marked component C which contains a red edge. In this case we will
consider T ′ as starting at the red edge within C. By Lemma 1 and inspection we observe
that we can find trail starting at a red edge in the interior of any component of type T1
or T2 that dominates all edges of C with the exception of possibly one edge incident to
P .

At a given vertex x in G̃, there may exist components of type T1. Note that except
for the case when x is colored both red and blue, there is a loop based at x which travels
through the component and dominates all edges. In the case where there is a T1 component
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connected to P by a single edge, we start at the red edge within this component in order
to dominate it. Thus, we may extend T ′ to a trail T ′′ which dominates all T1 components.

Note that all T2 components which are not a single vertex connected to P by two edges
are marked, and thus are used by assumption. An edge in S that is not used by T may
correspond to an edge in G̃ or may correspond to a T2 component consisting of a single
vertex connected to P by two edges. In these cases the edges involved are dominated as
their endpoints are in S and all vertices in S are visited. Another possibility is that an
edge in S not used by T corresponds to a P3 ⊆ P . Note that Lemma 1 guarantees that
this edge cannot correspond to a longer path. The end vertices of this path are clearly
visited by T ′, which shows that the edges of this P3 are dominated by T ′.

For the rest of the section, we concentrate on finding the desired trail T in S which
uses all of the vertices of S and all of the marked edges.

We will begin by assuming that V (S) = V (P ). That is, none of the vertices on the main
path are lost when we perform the reduction from G̃ to S. We will then remark on how the
case when |V (S)| < |V (P )| is different. Let s1, s2, . . . , s7 denote the vertices of S and define
the graph S ′ so that V (S ′) = V (S) and E(S ′) = E(S) \ {sisi+1 : i = 1, 2, . . . , 6}. Note
that since we have removed more than three edges from S then S ′ may be disconnected.

Our main argument is to find an appropriate connected subgraph in which all of the
vertices are of even degree and there is an edge between a red and blue vertex. The even
degree condition implies that this subgraph has an eulerian trail. Futher, since there is an
edge between a red vertex and a blue vertex, we will thus find an eulerian trail from the
red vertex to the blue vertex which finishes the argument. The main obstacle to this goal
is that S ′ may be disconnected, and in fact might have up to five components. Since S
is connected (in fact essentially three-edge connected) we can easily reintroduce enough
edges to connect S ′ with the added edges. The argument is more complicated however
due to the fact that we wish to preserve the parity of the degrees of all of the vertices as
well. Therefore, we split the remainder of the argument into cases based on the number
of components that have at least one color.

Definition 1. Let G be a graph and H ⊆ G be a subgraph such that V (H) = V (G). Then
if H has at least one vertex of odd degree, we rectify H by adding edges from E(G)\E(H)
in order to make the degree of every vertex even. In this case we call H rectifiable.

Notice that not every subgraph is necessarily rectifiable. However we will now show
that S ′ is always rectifiable.

Lemma 4. It is always possible to rectify S ′ by reintroducing a subset of the edge set
{sisi+1 : 1 ≤ i ≤ 7}.

Proof. It is a simple fact that the number of vertices in S ′ with odd degree must be even.
We will therefore pair up the vertices of odd degree, (si, sk), consecutively along the path
from left to right and define a new graph S ′′ so that V (S ′′) = V (S ′) and

E(S ′′) = E(S ′) ∪ {sjsj+1 : (si, sk) are a pair of vertices with odd degree and i ≤ j < k}
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Note that if sj is of odd degree in S ′, then this process increases the degree sum by one,
thereby making it even. Also note that if sj is of even degree and i < j < k then the
degree of sj is increased by two, preserving its even parity. Thus every vertex in S ′′ is of
even degree.

Theorem 7. Any graph S ′ constructed as described above can be modified by adding an
edge between a red vertex and a blue vertex so that the graph obtained by rectifying the
modified S ′ contains an eulerian circuit.

Proof. The argument proceeds by cases depending on the number of components that
contain a colored vertex, and we begin with a simple case that motivates the ideas used
throughout the proof.

Case 1: (S ′ is connected)
We start by adding an edge between a red vertex and a blue vertex, which we will refer to
as a phantom edge since the edge itself does not exist in G̃. The purpose of the phantom
edge is to directly connect a red and blue vertex, so if they are already connected this edge
is not strictly necessary. Finally since S ′ (and hence S ′′) is connected and every vertex
in S ′′ has even degree by Lemma 4, it follows that we can find an eulerian circuit in S ′′.
Note that since S ′′ has an edge between a red and a blue vertex, if we remove this edge
from S ′′ the result is an eulerian trail starting at a red vertex and ending at a blue vertex.
Thus we have found the desired trail when S ′ is connected.

For the rest of the proof we will assume that S ′ is disconnected, and split the argu-
ment into cases based on the number of components of S ′ which have at least one colored
vertex. For each case, we argue that there is a way to connect S ′′ by strategically adding
the phantom edge, removing non-marked edges, and rectifying S ′.

Case 2: (Exactly one component of S ′ contains colored vertices)
In this case, S ′ can contain at most three components. Otherwise if there are four or more
components, a simple averaging argument yields that at least one component must be an
isolated vertex. Any isolated vertex in S ′ can be disconnected from S by at most a 2-cut
and hence must be a colored vertex in order to retain the 3-edge connectivity of G̃. By
the assumption of the case, this must be the only colored vertex in S. This implies that
all of the colored vertices are on one side of a 2-edge cut in S. This yields a 2-cut in G
which cannot happen. Thus there can be at most three components. Note that we add
the phantom edge only to connect a red vertex to a blue vertex, but otherwise we do not
use the phantom edge in this case to increase connectivity among the components of S ′.
Also note that since we can place the phantom edge between any red and blue vertex, if
there is a vertex that is colored both red and blue due to a component of type (a) or (b)
we take care to ensure that it is one of the endpoints of the phantom edge.

If there are two components, let us call them C and N where C is the component
which contains the colored vertices. Since C and N cannot be separated by a two-edge
cut, there must be a vertex from C between two vertices from N (where “between” here
is in reference to the ordering given to the vertices of S ′ by the main path). Thus consider
the subpath sisi+1 . . . sj such that si, sj ∈ V (N) and sk ∈ V (C) for i < k < j. If, after
rectifying S ′, either of the edges sisi+1 or sj−1sj are added, then the two components
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will be connected and we can find the desired eulerian circuit. Otherwise, neither edge is
added in the process of rectification. We can remedy this situation as follows. Since N is a
connected component, there exists a path in N connecting si to sj. We will remove from
S ′ the edge of the shortest such path which passes over the edges sisi+1 and sj−1sj in our
embedding. Note that there must be a single edge which passes over both since there are
no vertices of N strictly between si and sj. Since no edges in N are colored by assumption,
then the edge which we remove is not marked, thus its deletion causes no problems. It
can easily be observed that this changes the parity of exactly one vertex to the left of si+1

by one as well as the parity of exactly one vertex to the right of sj−1. Therefore, when we
rectify S ′, the edges sisi+1 and sj−1sj will now be added, which connects N and C. Note
that by removing an edge of N , we may disconnect it into a most two subcomponents,
but if this happens si and sj will be in different components and both are connected to C
in the process. Thus the result of this removal prior to rectifying S ′ is a single component
after rectifying S ′, and hence we can find the desired eulerian trail.

If there are three components, then the orders of the three components must be pre-
cisely two, two and three. This follows from the fact that none of the components are
allowed to have order one without there being a 2-edge cut between the component with
colored vertices and at least one of the components without colored vertices. The ver-
tices {s0, s1, s5, s6} must span at least two components since there are four vertices. Thus
at least one of the edges (s0, s1) or (s5, s6) connects two components of S ′. By forcing
either s0 or s6, respectively, to have odd degree in S ′, we can force two components to
be connected by rectifying the modified S ′. Consider then the outer vertices along the
main path, s0 and s6. If these two vertices are in the same component, then in order to
avoid the 2-edge cut (s0, s1) and (s5, s6) the vertices must be in the unique component of
order three. An easy observation is that we may make the degree of either s0 or s6 (of
our choice) odd by removing edges without disconnecting the component, since no edge
incident to either s0 or s6 is marked. Otherwise, if s0 and s6 are in different components,
then at least one of the two vertices must be in a component of order two, let us say
s0 without loss of generality. Thus we can ensure that the degree of s0 is odd. Note also
that s1 must be in a different component from s0 since the only edge in S which connects
the two vertices is the edge along the main path. (This follows from the fact that S is
triangle-free.) In both cases the number of components is reduced from three to two. It is
easy to observe that we may apply the argument from the previous paragraph to connect
the third component. Note that the steps taken in the above argument cannot change the
parity of the outer vertex which we modified.

Case 3: (Exactly two components of S ′ contain colored vertices)
Consider the two components of S ′ which have a colored vertex. Since there is at least one
blue vertex and at least one red vertex in S ′, it follows that one of the components must
contain a red vertex and the other a blue vertex. We therefore connect the two colored
components by adding a phantom edge between the red vertex of one component and the
blue vertex of the other component. Now there is exactly one component with colored
vertices, so the resulting graph can be handled with Case 2. As in the previous case, we
take care to choose any vertex colored both red and blue due to a component of type (a)
or (b) as an endpoint of the phantom edge if such a vertex is present.
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Case 4: (Exactly three components of S ′ contain colored vertices)
Let si, sj, sk, 0 ≤ i < j < k ≤ 6 be the first colored vertex from the colored components
C1, C2 and C3 respectively as we traverse the main path of S from left to right. There must
be some `, i ≤ ` < j such that all of the vertices from si and s` are in C1 and s`+1 ∈ C2∪C3.
Similarly there must be some integer m, i ≤ m < j such that sm ∈ C1∪C3 and sm+1 ∈ C2.

First suppose that si and sj are red and sk is blue. In this case, if the edge smsm+1

is not added when we rectify the graph, then by adding the phantom edge between si
and sk we force the edge smsm+1 to be present after rectifying the modified S ′. Hence all
three colored components are connected. Suppose instead that the edge smsm+1 is added
by rectifying S ′. Notice that, if sm ∈ C1 then simply choosing sjsk as the phantom edge
connects all three components, so suppose that sm ∈ C3. Since sk ∈ C3 then there is a
path connecting these vertices. Consider the edge in this path which passes over the edge
smsm+1. This edge could not have been marked, or else sm would have been colored, and
we assumed that sk with k > m is the first colored vertex in C3. Thus we remove this
edge from S ′ and add the phantom edge again between si and sk. The combined result
of these two modifications to S ′ is that all three colored components are again connected
after rectifying the modified S ′. Finally we must consider the possibility of the presence
of components without colored vertices. In order to satisfy the assumption that sm ∈ C3

for some i < m < j we need that four vertices are in colored components. Since each
noncolored component must contain at least two vertices and that there are only at most
seven vertices total in S ′, it follows that there can be only a single non-colored component
in this case, call this component N . The spanning subtree of N must be a path of length
two, so remove all of the “excess” edges, so that N is isomorphic to a path of length two.
Then two of the vertices in N are both of odd degree, which leaves only two possibilities.
Either the two vertices in N of odd degree are consecutive along the main path of S,
or else they are not. Each of the two vertices will be connected to the vertex to either
its immediate left or immediate right after rectifying S ′, so in the latter case, N will
always be connected to one of C1, C2 or C3. In the former case, it is possible that the two
vertices in N of odd degree are paired up in the rectification process. While this initially
seems problematic, we can fix this by removing one of the two edges and isolating the
corresponding vertex. The two vertices will each be connected to a colored component.
Thus we conclude that we can connect all components after rectifying S ′ in this case.

Now suppose instead that si and sk are red and sj is blue. If there exists a pair of
vertices s`, s`+1 such that s` ∈ C1 and s`+1 ∈ C3 (or vice versa), then whether or not the
edge s`s`+1 is added after rectifying S ′, we can add the phantom edge in such a way as to
connect all three colored components. If no such pair exists, then there must be an integer
m such that j < m < k and sm ∈ C2, sm+1 ∈ C3. Since sm+1 is not 1-edge disconnectable
from S, there must be either a vertex from C3 to the left of sm or a vertex from C1 ∪ C2

to the right of sm+1. In either case, there is again a (necessarily unmarked) edge which
passes over smsm+1. Removing this edge allows us to force the edge smsm+1 to be added
after rectifying S ′ and thus connecting all of the colored components as before. Finally
we can handle the noncolored components similarly to the previous paragraph.

There is one final case to consider, when one of the colored vertices is colored both
red and blue. In this case the doubly colored vertex must be one of the vertices in the
phantom edge. If si (or symmetrically sk) is the vertex colored both red and blue, then
si is a component of order one. There are two possible choices for the phantom edge, sisj
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and sisk, and the choice is dictated by the presence of the edge smsm+1 where m is defined
as above. Instead, suppose that sj is the component of order one which is colored both
red and blue. It is easy to see in this case there must be an `, 1 ≤ ` ≤ 6 such that s` ∈ C3

and s`+1 ∈ C1 (or vice versa) from the fact that sj is the only vertex in C2 and neither C1

nor C3 can be 1-edge disconnected from S. By the symmetry present in this case, we may
assume that ` < j. If s`s`+1 is present after rectification, we choose sjsk as the phantom
edge. If s`s`+1 is not present, then we choose sisj as the phantom edge.

Case 5: (Exactly four components of S ′ contain colored vertices)
There are at most seven vertices in the graph S ′, and since there are four components
with color, there must be a colored component which is an isolated vertex. Further this
isolated component cannot be either of the outer two vertices (s0 or s6). Let us call si
the isolated colored component. Since si is of even degree in S ′, it will not interfere with
whether or not the edges si−1si and sisi+1 are included after rectifying S. Therefore, we
can ignore this vertex and use the argument from Case 4 for the remaining graph S ′ \{si}
which has precisely three colored components.

Thus there is always a way to modify the graph S ′ so that rectifying the modified S ′

results in a connected graph with a eulerian trail from a red vertex to a blue vertex.

2.3. Graphs with T3 and T4 components

Here, we again assume G̃ is a triangle-free graph with P the interior of a selected longest
path P ′ in G̃. For ease of notation, we will use {0, 1, 2, . . .} to label the vertices of P ′. Also,
for any vertex x on P ′, we will use x+ to denote the vertex immediately following x and x−

to denote the vertex immediately preceding x along P . If there is a choice of P ′ without a
T3 or T4 component we may select that P ′ and be guaranteed a red-blue dominating trail
from the previous subsection. We can therefore assume that for all choices of P ′ there is
at least one T3 or T4. When referring to a specific component, we will refer to it as T (X)
where X is the set of vertices of P which the component is incident to. If there exists a
vertex within the component that is not incident to P , we will denote the component by
T ′(X).

In each subsection, we will consider one component to be the primary component and
all other components secondary components. Throughout, we will use A when referring to
a vertex in the primary component that is adjacent to P and B when referring to a vertex

in the primary component that is not adjacent to P . We denote by i
−→
P j the subpath of P

between vertices i and j and denote by i . . . j(k . . . `) either the trail i . . . j or the extended
trail i . . . jk . . . `.

The claw-free condition on G forces a useful structure on the colored edges of G̃. We will
use this structure to color the vertices of G̃ and more easily identify red-blue dominating
trails.

We initially color vertices of P based on the colored edges in G̃. A vertex is colored red
or blue if it is the center of a monochromatic star of that color. If an edge is colored, at
least one of its end vertices is also colored by Lemma 2. If a dominating trail that starts
at a red vertex and ends at a blue vertex can be found, it can be converted to a trail that
begins at one end of a red edge and ends at one end of a blue edge that does not use
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either edge in the following way. If there is an edge incident to the colored vertex that
is not used in the dominating trail, we have the necessary trail. If there is not an edge
incident to the colored vertex that is not used in the dominating trail we truncate the
path at the second to last vertex to ensure we end at the end of the colored edge without
actually using it. Note that truncating the trail in this manner only removes dominance
of edges incident to an end vertex, all of which are used in the trail if this truncation is
necessary.

While only one type of T4 component, T (1, 3, 5, 7), can exist, eleven types of T3 compo-
nents can exist: T (1, 3, 5), T (1, 3, 6), T (1, 3, 7), T (1, 4, 6), T (1, 4, 7), T (1, 5, 7), T (2, 4, 6),
T (2, 4, 7), T (2, 5, 7), and T (3, 5, 7). Additionally, different choices of P ′ can give rise to
different component types. Therefore, we choose P ′ in a specific manner so as to obtain
one of our preferred primary components if possible.

We select our P ′ by carefully reducing the set of longest paths. We select first the subset
of longest paths that have the maximum number of T4 components. We further reduce
the number of paths in our set by taking the subset with the fewest T3 components. From
this final subset we choose a path that has the most preferred primary component. Our
preference for a primary component is given by the following order: T (1, 3, 5, 7), T (1, 3, 7),
T (1, 3, 5) and finally T (2, 4, 6). We need not extend our component preferences further
because if any of the other seven T3 types is present, we can find an alternate P ′ that has
one of our preferred types and the same number of T3 components.

We can eliminate the need to consider the components T (3, 5, 7), T (2, 5, 7), T (2, 4, 7),
and T (1, 5, 7) by noting that reversing the path P ′ transforms them to T (1, 3, 5), T (1, 3, 6),
T (1, 4, 7), and T (1, 3, 7), respectively. We can also trade the components T (1, 3, 6), T (1, 4, 6)
and T (1, 4, 7) in favor of T (2, 4, 6), but this requires a bit more work. In each of the fol-
lowing cases, we first consider an alternate path with the intention of forcing certain edges
to be present. We then show there exists an alternate path with the preferred component.

Suppose T (1, 3, 6) is present and the number of T3 components is minimized. The
alternate path 01A34567(8) must have a T3 with center 2 because the T3 with center
A was eliminated. Vertex 2 is adjacent to 1 and 3 and must be adjacent to a third
vertex. Edges 02 and 24 create triangles, and edges 25, 27, and 28 create longer paths
012543A7(8), 01A654327(8), and 01A6543287 respectively. The final edge must then be
26. The alternate path 543A12678 must have a T3 with center 0 because the T3 with
center A was eliminated. Edge 02 creates a triangle. Edges 04, 05, 07, and 08 create
longer paths A32104567(8), 054321A67(8), (8)70123456A, and 780123456A respectively.
The remaining edges are then 03 and 06, and the T3 with center 0 is of type T (2, 4, 6)
relative to this alternate path.

Suppose T (1, 4, 6) is present and the number of T3 components is minimized. The
alternate path 01234A67(8) must have a T3 with center 5 because the T3 at A was elim-
inated. Vertex 5 is adjacent to 4 and 6 and must be adjacent to a third vertex. Edges
35 and 57 create triangles, and edges 05, 25, and 58 create longer paths 054321A67(8),
01A432567(8), and 01234A6587 respectively. The final edge must then be 15. The alter-
nate path 23451A678 must have a T3 with center 0 because the T3 with center A was
eliminated. Edge 02 would create a triangle. Edges 03, 05, 07, and 08 create longer paths
0321A4567(8), 054321A67(8), (8)70123456A, and 780123456A respectively. The remain-
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ing edges are then 04 and 06, and the T3 with center 0 is of type T (2, 4, 6) relative to this
path.

Suppose T (1, 4, 7) is present and the number of T3 components is minimized. The
alternate path 654321A78 must have a T3 with center 0 because the T3 atA was eliminated.
Vertex 0 is adjacent to 1. Edge 02 would create a triangle. Edges 03, 05, 06, and 08, create
longer paths 0321A45678, 234A105678, 0654321A78, and 087654321A respectively. The
remaining edges are then 04, and 07. Repeating this argument with the original path
reversed implies that edges 18 and 48 are also present. The original T (1, 4, 7) based at A
then becomes type T (2, 4, 6) relative to alternate path 321048765.

Note that in all three cases, any secondary T3 meets the path at three vertices in the
set {1, 2, 3, 4, 5, 6, 7}, which also appear in the alternate paths and that no new secondary
T3 can be created because no new vertices are added to form the center of a secondary T3.
The alternate paths must then also belong to the subset of longest paths with the fewest
T3 components and so there is indeed a path with one of our preferred components.

We now turn our attention to finding red-blue dominating trails in G̃ for each preferred
primary component. If we can find a dominating trail between any two potentially colored
vertices from the set {1, 2, 3, 4, 5, 6, 7, A}, then no matter which vertices are in fact colored
we can find a red-blue dominating trail.

2.3.1. Graphs with primary component T (1, 3, 5, 7) We first show that no vertex can be
distance two from P . The vertices {1, 2, 3, 4, 5, 6, 7, A} form an 8-cycle. Clearly, any vertex
of distance two from this cycle will form a P10. Also note that the edge 08 creates a P10,

80
−→
P 7A, so all edges must be dominated by the vertices of P .

Since all edges are dominated by P , if a colored vertex x is not on P and it is necessary
to start or end the dominating trail at that vertex, it is sufficient to find a dominating
trail that starts or ends at a neighbor of x and extend the trail appropriately.

If the start and end vertex are the same or appear consecutively on P , x
−→
P 7A1

−→
P x−(x)

and x
←−
P 1A7

←−
P x+(x) are dominating trails. For any remaining pair of red and blue ver-

tices in {1, 2, 3, 4, 5, 6, 7, A} one of the following provides a dominating trail: (A)1
−→
P 7(A),

123A7
←−
4 (3), 1

−→
P 5A76(5), 21A7

←−
P 4, 21A345A76(5), 21A3

−→
P 7(A), 321A345A76(5), 321A3

−→
P 7(A),

45A123A76, 4
←−
P 1A567(A), 5

←−
P 1A567(A), and 67A5

←−
P 1A.

2.3.2. Graphs with primary component T (1, 3, 7) None of the reasoning in the T (1, 3, 5, 7)
section made use of the edge A5 that T (1, 3, 7) lacks. By the same argument used with a
T (1, 3, 5, 7) primary component, all edges must be dominated by the vertices of P . The

existence of a vertex x such that x is adjacent to 2,4, or 6, gives the longer path x21A3
−→
P 8,

0
−→
P 3A7

←−
P 4x, or x6

←−
P 1A78 respectively. The edges 04, 60, 26, 28, and 48 give the longer

paths 6540123A78, 4560123A78, 0126543A78, 01A7
←−
P 28, 0123A78456, respectively. All

other edges within the set {0, 2, 4, 6, 8} create a triangle, thus all edges from {0, 2, 4, 6, 8}
must be to some subset of {1, 3, 5, 7}. Thus the set {1, 3, 5, 7} dominates all edges in G̃,
and a dominating trail need only contain these vertices.
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As in the previous case, if a colored vertex x is not on P and it is necessary to start
or end the dominating trail at that vertex, it is sufficient to find a dominating trail that
starts or ends at a neighbor of x and extend the trail appropriately.

If the start and end vertex are the same or appear consecutively on P the following

are dominating trails: x
−→
P 7A1

−→
P x−(x) and x

←−
P 1A7

←−
P x+(x).

The following provide dominating trails for several of the remaining possible pairs of

end vertices : (A)1
−→
P 7(A), 123A7

←−
4 (3), 1

−→
P 5A76(5), 21A7

←−
P 4, 21A3

−→
P 7(A), 321A3

−→
P 7(A),

4
−→
P A123A, 5

←−
P 1A7, and 567A123A.

The only pairs not addressed above are {(2, 5), (2, 6), (3, 5), (3, 6), (4, 6), (4, 7), (6, A)}.
These require us to examine a bit more of the structure of G̃. Since the number of T3
components is minimized, the alternate path A12345678 must have a T3 centered at 0.
Edges 02, 04, 06, and 08 were already ruled out, so two of the remaining possible edges, 03,

05, and 07, must be present. If 05 is present, then (2)3
−→
P 7A105, (2)3

−→
P 501A76, 450123A76,

43210567, and 67A10543A are dominating trails for the remaining pairs. If not, then 03

and 07 are both present and (3)2107A345(6), 4
−→
P 7A32107, and 6

←−
P 107A are dominating

trails for the remaining pairs except (4, 6).

Lastly, consider the case of finding a dominating trail between 4 and 6 when 05 is not
present. For such a dominating trail to be necessary, 4 and 6 must be the only red and
blue vertices. Also, neither vertex is colored both red and blue, otherwise the trail that
starts and ends at the same vertex will suffice. Without loss of generality, assume 4 is
colored red. Vertex 4 is then incident to every red edge because Lemma 2 and our rules
for vertex coloring imply that every red edge is incident to a red vertex and 4 is the only
such vertex. By 3- connectivity of G, u has at least 3 neighbors and so there are at least 3
red edges. The only known edges incident to 4 are 34 and 45. By the previous analysis of
edges from 4, the unknown third edge must be either 14 or 47 which produce dominating
trails for (4, 6) of 4321A701456 and 4321A7456 respectively.

2.3.3. Modified Coloring for T (1, 3, 5) and T (2, 4, 6) Primary Components In the cases
where the primary component is either a T (1, 3, 5) or T (2, 4, 6) we modify the coloring
process to facilitate finding the required dominating trail. If a colored vertex y appears
in a secondary component T (X), we move the color to P by coloring every vertex in X
with the color that appears on y. Similarly, if the first or last vertex of P ′ is colored, we
move that color to the adjacent vertex on the interior of the path.

If we wish to use one of these newly colored x’s as an end vertex of our dominating
trail, we temporarily remove the component containing y before finding a dominating trail.
Once we have the dominating trail in this new graph, we extend it to a dominating trail in
the original graph by using a path within the removed component. The only components
that can occur with either a T (1, 3, 5) or a T (2, 4, 6) where the path extension to the
colored vertex may not necessarily dominate all edges in the component are e′ and f ′.
These special cases are discussed at the end of this section.

In the event that we wish to use two newly colored vertices that received their colors
from two different components as the end vertices of the dominating trail, we temporarily
remove both components containing the colored y’s. Once again, we can take the domi-
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nating trail in the new graph and extend it to a dominating trail in the original graph by
using paths within the two removed components.

Lastly, it is necessary to address the case where it is necessary to use two of the newly
colored vertices that received their color from the same secondary component. This is only
necessary when all the colored vertices lie in a single component. The three connectivity
of G requires there be three disjoint paths from the neighbors of u and v to the remainder
of the graph, which forces the component to be either a T3 or a T4. The case where it is
a T4 was handled in a previous section, so we may assume it is a T3. For the dominating
trail, we choose distinct start and end vertices from the three possibilities. It is then easy
to extend the trail to start and end at the appropriate place based on which edges are
actually colored.

We now consider how to dominate the edges of e′ and f ′ appropriately. We first note
that the component e′ has very specific color requirements. Since any two edges within
the cycle of the component form a 2-cut, each set of pendant edges must be colored. Since
there are at most two vertex disjoint edges of a single color due to the claw-free property
of the original graph, two sets of pendant edges must be the same color while the third is
different. Thus all edges of a single color are within this component and one of the colored
vertices must be of distance one from P . It is then required that any dominating trail
start at this component and end at the colored vertex outside of the component. Since a
side vertex is colored with the correct color, the component can be dominated by going
around the cycle and ending at that vertex.

The component f ′ cannot occur with the T (1, 3, 5), and it can only occur with T (2, 4, 6)
when f ′ is adjacent to 2 and 6 and pendant edges within the component are not allowed.
Every dominating trail that will be presented in the T (2, 4, 6) section includes both 2 and
6, so the edge that is not dominated by the path extension is dominated by the original
path.

2.3.4. Graphs with primary component T (1, 3, 5) Unlike the previous two preferred com-
ponents, the longest path need not be a P9. While much of the following argument im-
plicitly assumes a P9 for P ′, these portions remain vacuously true if vertices 7 or 8 are
not present.

First we consider what components can coexist with a T (1, 3, 5). No vertex x can be

adjacent to vertices 2 or 4 since x21A3
−→
P 6(7(8)) and x4321A56(7(8)) are longer paths. We

also note that there cannot be a path of length 2 incident to vertex 3 since xy321A56(7(8))
would be a longer path. Lastly, if a vertex x is adjacent to both vertices 3 and 6 then
01A543x6(7(8)) is a longer path and if a vertex is adjacent to both vertices 1 and 6 then
2345A1x6(7(8)) is a longer path. This means that any T2 or T3 component must have
all adjacencies from the set {1, 3, 5, 7}, and all edges within these components must be
dominated by the path. Further, it is possible to have T1 components of type b and c
incident with 5. The T1 component e can also occur incident with 5, but the component
cannot have any pendant edges on the vertices distance one from P . The T1 component
a can occur incident with either 5 or 6, and pendant edges can be incident to any vertex
from the set {1, 3, 5, 6, 7}.
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As stated above, a T (1, 3, 5) can in theory coexist with T (1, 3, 7), T (1, 5, 7), and
T (3, 5, 7) components. However, the presence of any of these with a primary T (1, 3, 5)
imply the existence of a longest path with a T (1, 3, 7). With the T (1, 3, 7), P ′ itself is
such a path. With the T (1, 5, 7) the reversal of P ′ is such a path. If a T (3, 5, 7) with
center C is present, then relative to the alternate path 0123C7654 the primary compo-
nent, T (1, 3, 5), is a T (1, 3, 7) and this path would have been chosen instead of P ′. This
together with the arguments presented in the preceding paragraph implies that graphs
with primary component T (1, 3, 5) can only have T (1, 3, 5) components as secondary T3
components.

Now we consider what other structure a graph with a primary T (1, 3, 5) component

must have. The edges 04, 06, 08, 26, 28, and 48 give the longer paths 04321A5
−→
P ,

A5
←−
P 106(7(8)), A5

←−
P 10876, 01A5

←−
P 26(7(8)), 01A5

←−
P 2876, or 0123A54876, respectively.

Any other edge from within the set {0, 2, 4, 6, 8} creates a triangle. Also, any edge from
{0, 2, 4, A} to vertex 7 would create a T4 so we may assume that these edges are not
present. Edges between pairs of vertices in the set {1, 3, 5} together with the edges of
the primary component form forbidden triangles, so 13, 15, and 35 cannot be present.

The alternate paths A1
−→
P ′ and 01A3

−→
P ′ must have T3 components centered at 0 and 2

respectively. The restrictions already imposed give that both must be T (1, 3, 5) compo-
nents, and so the edges 03, 05, and 25 are present. These edges permit the alternate path

A32105
−→
P ′ which must have a T3 based at 4. The only option which does not produce a

T (1, 3, 7) is to include the edge 14, which creates another T (1, 3, 5). The subgraph induced
on {0, 1, 2, 3, 4, 5, A} is then a K4,3 with partite sets {0, 2, 4, A} and {1, 3, 5}. To make use
of the symmetry of this K4,3 we relabel the partite sets {a, b, c, d} and {E,F,G}. For any
choice of start and end vertices, a trail that dominates the entire K4,3 structure is one of
aEbFcGdF (a), (E)aGbFcGdE(b), and EaGbFcGdF .

It is now necessary to account for the end of the path P ′, as well as any additional
structures that may be adjacent to vertex 5 or 6. If P ′ is a P7, the only additional edges
must be pendant edges incident with vertex 5. In this case all edges are dominated by the
vertices of the K4,3.

If P ′ is a P8, any structure based at vertex 5 cannot contain a path of length three,
otherwise there is a longer path. Any T2 or T3 secondary component based at 5 cannot also
be adjacent to vertex 7 because it gives a longer path. Thus all T2 and T3 components must
have their adjacencies within {1, 3, 5} and all edges within the components are dominated
by the vertices of the K4,3. The only T1 component that does not contain a path of length
3 is type (a). When considering the first 6 vertices of P ′ as a path, Lemma 1 gives that
there can be at most one component of this type (a). So without loss of generality, we
can assume that this component is the end of P ′ if it is present. If 6 or 7 is colored, the
necessary dominating trail can be found by extending the dominating trail starting at a
colored vertex within the K4,3 and ending at 5 to include 6 and, if necessary, 7.

If neither 6 nor 7 is colored, 7 must have an adjacency within the K4,3. There are
two symmetric possibilities, either the adjacency is from the set {1, 3} or from the set
{0, 2, 4, A}. Assume 7 is adjacent to 1 or 3. Let {E,F} represent {1, 3}, with F being
the vertex 7 is adjacent to. The following trails give dominating trails for any pair of
starting and ending vertices aEbF765cFd(E(a)), aEbF765cFd(5), EaF765bEcFd(E),
EaF765bEcFd(5), or EaF765bFcEdF . Now assume 7 is adjacent to a from the set
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{0, 2, 4, A}. One of the following dominating trails is the desired trail: a765bEcFdE(a(5)),
a765bEcFdE(b, (F )), Ea765bFcEdF , Ea765bFcEd5, Ea765bEcFdE, or 567aEbFcEd5.

Now consider when P ′ is a P9. If there is are components of type (c) or (e) adjacent
to 5, we simply add the trail beginning and ending at 5 that dominates the component
into the middle of the trail that dominates the remainder of the graph. Lemma 1 gives
that there is at most one component of type (a) or (b). If there is a component of type
(b) incident to 5 or a component of type (a) incident to 6, we take this component to be
the end of the path. If 7 or 8 is colored, the necessary dominating trail can be found by
extending the dominating trail starting at a colored vertex within the K4,3 and ending at
5 to include 6 and 7, and, if necessary, 8.

If neither 7 nor 8 is colored, 8 must have an adjacency in the K4,3. The adjacency
cannot be from the set {0, 2, 4, A} since that would result in the longer path a8765b1c3d.
If 8 is adjacent to 5, we can dominate the end of the path by replacing one instance of
the vertex 5 in the dominating trail with 56785. Lastly, if 8 is adjacent to 3, the alternate
P9 given by 012387654 transforms the primary component to a T (1, 3, 7).

2.3.5. Graphs with primary component T (2, 4, 6) Like the previous primary component,
a T (2, 4, 6) need not have a P9 as the longest path. However, if the longest path is a P8

the component can be viewed as a T (1, 3, 5) when looking at the reversed path.

We first consider what additional structure must be present with this primary com-
ponent. Edges between pairs of vertices in the set {1, 3, 5, 7}, with the exception of 17,
form forbidden triangles if they differ by two or create one of the following longer paths:
015432A678 or 012A654378. The alternate paths 012A45678 and 01234A678 must have a
T3 with center 3 and 5 respectively. The only available edges to form these T3 components
are 36 and 25 respectively. The induced subgraph on {2, 3, 4, 5, 6, A} is then a K3,3 with
partite sets {2, 4, 6} and {3, 5, A}. Up to relabeling, the dominating trails for this K3,3

are aDbEcF (a) or aDbEcFb. Note that this K3,3 structure forbids 24, 26, and 46.

Earlier we noted that 17 can be present, however this case is highly restrictive. If there
is an edge from {2, 3, 4, 5, 6, A} to a vertex, x, not in P ′∪{A}, then 17 cannot be present.
Suppose that such an edge and 17 were both present. We either produce a path longer
than P ′: x32A456710, x5432A6710, xA23456710, or have an alternate longest path with
a T (1, 3, 5) component: x23456710, x43256710, x65432178 both contradictions. The only
additional vertices that can be present are pendent vertices from 1 or 7. Therefore edges

incident to {3, 5, A} are dominated by {2, 4, 6}. In this case, 1
−→
P 7 suffices as a dominating

trail provided both 1 and 7 are colored. If one of the 1 and 7 is colored and the other is
not, without loss of generality we may assume 7 is colored and 1 is not, then we extend the
dominating trail from a vertex v of the opposite color within the K3,3 to 2 by beginning
with the dominating trail within the K3,3, that begins at v and ends at 2 and appending
217 to the end. Now consider when neither 1 nor 7 is colored. Let {D,E, F} represent
the partite set {3, 5, A}. The following dominating trails then suffice for any choice of
starting and ending vertices: D2176E4(F (2)), D2176E4(F (6)), 2176D2E4, 6712D6E4,
2176D4E6.

We may now assume that 17 is not present for the rest of the analysis on this primary
component. We are much less restricted in additional components, but can still make
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several observations. If there exists a P3 in a component with an endpoint from the set
{3, 5, A} or a P4 in a component with an endpoint from the set {2, 4, 6} we produce a
longer path, e.g. xy32A45678 or xyz456A210 respectively. This observation gives that the
only possible components incident to {3, 5, A} are pendent edges, and the only components
incident to {2, 4, 6} are T1 components of type (a), T2 components of type (f) (where the
type (f) component has no pendant edges) or type (g), or T3 components of type (i). Note
that if there is a component of type (a) incident to 2 or 6, we can assume that it serves
as the end of the path P .

For the first part of the analysis, we assume that there are no secondary T1, T2 and
T3 components. We will account for these components at the end of this section. Let
{D,E, F} denote the partite set {3, 5, A}. If we wish for the path to begin at 1 and end
at 7, we use the path 12D4E2F67. If one is colored and either 7 is not colored or we
wish to end at a vertex within the K3,3 because it is incident to a type (a) component,
it must be the case that 7 has an adjacency other than 6 within the K3,3. To prevent
a triangle, this adjacency must be 2 or 4. If 7 is adjacent to 2, we can use one of the
following dominating trails: 12D672E4F (6), 12D672E6F (4), or 12D6E4F672. If 7 is
adjacent to 4, the following dominating trails cover all possibilities: 12D476E4F (2/6)
and 12D476E2F (4).

The only case in which we would need to have both the starting and ending vertices
within the K3,3 would be if neither 1 nor 7 is colored. In this case, both 1 and 7 must have
a second adjacency from within the set {2, 4, 6}. Both 1 and 7 and their incident vertices
act the same as T2 components, so we set them aside to be accounted for with the other
T2 components and use the appropriate path to dominate the K3,3.

We now account for the secondary components previously set aside. By Lemma 1, only
one type (a) component can be present, and if present it must have a red and a blue vertex.
There must also be a red and a blue vertex not in the type (a) component. In this case we
extend the dominating trail of the K3,3 ending at the vertex incident to the component
to a trail ending at the appropriately colored vertex in the type (a) component.

Recall that it was previously argued that any T2 or T3 component must be incident
to vertices within the set {2, 4, 6}. Let x, y ∈ {2, 4, 6}. For a component T (x, y), let
Qi denote a trail that travels through that component. If there are an even number of
components T (x, y), we can dominate these components by adding xQ1yQ2x to the middle
of the dominating trail the first time we see x. An even number of T3 components can be
dominated in a similar manner. This means there are at most 1 of each of the following
types of components that cannot be dominated in this manner: T (2, 4), T (2, 6), T (4, 6)
and T (2, 4, 6).

If there is a component of type T (2, 4, 6) and any T2 component T (x, y), then these
can be paired and dominated in the above fashion. So if there is an unpaired T (2, 4, 6)
component, it must be the only component that cannot be paired and it can be treated
as a T2 since it has a T2 subgraph. If all three of the possible T2 components remain,
they can be dominated by adding 2Q14Q26Q32 into the dominating trail. Lastly, if two
T2 components remain they can be treated as one T2 component. For example, a T (2, 4)
and a T (4, 6) will act the same as a T (2, 6) component since the path 2Q14Q26 can be
added to the middle of the dominating trail in the same way 2Q36 can. Therefore, it is
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only necessary to consider modifying the dominating trails to account for one additional
T2 component.

When the dominating trail started at 1 and ended at 7, the new dominating trails are
12Q4D2E4F67 for the component T (2, 4) and 12Q6D2E4F67 for the component T (2, 6).
The case where the component is T (4, 6) is symmetric to T (2, 4).

Now consider when the dominating trail began at 1 and ended within the K3,3. Recall
that in this case 7 had an additional adjacency to either 2 or 4. The additional T2 must
have at least one adjacency in common with 7. If the additional T2 has the both adjacen-
cies in common with 7, we add 67xQ6, where x ∈ {2, 4}, into the middle of 12DaEbF (c).
If the T2 has only one adjacency in common, we treat the edges incident to 7 and the
T2 as one component in the same manner as discussed previously. If this combined com-
ponent is T (2, 6), we can use one of the following dominating trails: 12D672E4F (6),
12D672E6F (4), or 12D6E4F672. If the component is T (4, 6), the following dominating
trails cover all possibilities: 12D476E4F (2/6) and 12D476E2F (4). Lastly, if the compo-
nent is T (2, 4) we can use one of 124D6E2F (4, 6) or 124D6E4F (2).

In the case where the dominating trail starts and ends within the K3,3, we modify the
dominating trails as follows. If the component is T (a, b) and the third vertex from the
partite set {2, 4, 6} is c, the following dominating trails give all possibilities: DaQbEcF (a),
DaQbEaF (c), aDbQaEcF (a, b), aDbQaEbF6, and cDaQbEaFc.

3. Appendix

Let G be a 3-connnected (K1,3, P9)-free graph. In this section we want to classify all pos-
sible types of components that can be obtained from the inverse line graph of the closure
klu,v(G), namely G̃. As shown in Lemma 1, there are four types of components, T1, T2, T3
and T4.

For the components that lie in Tn, with n ≤ 4, we say that the sequence (x0, x1, · · · , xn)
is admissible for component C ∈ Tn if

∑n
i=0 xi = 8 and component C can be attached

to P with distance xi between the i− 1st and ith attachment point along the main path
P . Here x0 is the length between the left endpoint of the path and the first attachment
point, and similarly xn is the distance between the last attachment point and the right
endpoint of the path. Some general observations about admissible sequences are:

1. x0, x1 ≥ 1, and xi ≥ 2 for 1 < i < n.
2. If ` is the maximum distance between two vertices in a component which are attached

at attachment points i and j then

j∑
k=i

xk ≤ `.

3. If x0 = 1 or xn = 1 then the component type is trivial. That is, the component is a
single vertex attached to the path P . In general for component C, it must hold that
for any vertex v ∈ C, the distance between the left attachment point and v is at most
x0 and the distance between the right attachment point and v is at most xn..
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4. If component C is attached at vertices i and j then the maximum distance between i
and j through the component must be at most equal to the distance between i and j
along the path.

Using the four criteria above, one can deduce that the only possible non-trivial com-
ponents of each type, referenced from the figure below, are as follows:

(Case: T1) The non-trivial admissible sequences (up to symmetry) are (2, 6), (3, 5) and
(4, 4). The only component type possible for sequence (2, 6) is (a) in the figure below.
A component type with sequence (3, 5) may be (a), (b) or (c). Finally, a component
type with sequence (4, 4) may be any of (a)-(e).

(Case: T2) In this case, the possible non-trivial admissible sequences are (2, 4, 2), (2, 3, 3),
and (3, 2, 3). The component types with sequence (2, 4, 2) are (g) and a single edge with
one attachment point on each vertex (notice this is a special case of (f) with no pendent
edges and only a single path between the two base vertices). The component types with
sequence (2, 3, 3), are (f) and (g). Finally the comopnent types possible with sequence
(3, 2, 3) are (g) and (h).

(Case: T3) For three attachment points, the only non-trivial sequence possible is (2, 2, 2, 2).
The only possible non-trivial component type (with sequence (2, 2, 2, 2)) is (i).

(Case: T4) Finally, for four attachment points, the only sequence possible is (1, 2, 2, 2, 1)
which is trivial, and thus only the trivial component type is attainable with four at-
tachment points.

. . .

(a)

. . .

(b)

· · · · · ·

. . .

(c)

· · · · · ·

. .
. . . .

(d)

...
...

(e)

...
...

. . .

(e’)

. .
.

. .
.

(f)

. . .

(g)

. . .

(h)

. . .

. . .

(h’)

. . .

(i)

1
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