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Abstract
Personalized PageRank has found many uses in not only the ranking of webpages, but also algorithmic
design, due to its ability to capture certain geometric properties of networks. In this paper, we study the
diffusion of PageRank: how varying the jumping (or teleportation) constant affects PageRank values. To
this end, we prove a gradient estimate for PageRank, akin to the Li–Yau inequality for positive solutions to
the heat equation (for manifolds, with later versions adapted to graphs).
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1. Introduction/Background
Personalized PageRank, developed by Brin & Page (1998), was developed to rank the importance
of webpages; the personalized version was intended to rank the importance of webpages with
respect to a specified seed. The novelty at the time of introduction was that it uses the geometric
aspects of the network—in particular the link structure—to rank the webpages.

While there are a variety of interpretations of PageRank available, one of the most fruitful ones
is that it gives the distribution of a random walk allowed to diffuse for a geometrically distributed
number of steps. The parameter controlling the (expected) length of the random walk involved is
the “jumping” or “teleportation” constant. As the jumping constant controls the length, it controls
locality—that is, how far from the seed the random walk is (likely) willing to stray.

When the jumping constant is small, the involved walks are (on average) short, and the mass
of the distribution will remain concentrated near the seed. As the jumping constant increases,
then the involved walk will (likely) be much longer. This allows the random walk to mix, and
the involved distribution tends toward the stationary distribution of the random walk. As the
PageRank of individual vertices (for a fixed jumping constant) can be thought of as a measure of
importance to the seed, then as the jumping constant increases this importance diffuses.

In this paper, we are interested in how this importance diffuses as the jumping constant
increases. This diffusion is related to the network’s geometry; in particular, the importance can
get “caught” by small cuts. This partially accounts for PageRank’s importance in web search but
has other uses as well—for instance, Andersen, Chung, and Lang use PageRank to implement
local graph partitioning algorithms in Andersen et al. (2008), and in Chung et al. (2009), the
authors investigate the evolution of the contact process, a continuous time model of disease, using
PageRank.

This paper seeks to understand the diffusion of influence (as the jumping constant changes)
in analogy to the diffusion of heat. The study of solutions to the heat equation Δu= ∂

∂t u on both
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graphs and manifolds has a long history, motivated by its close ties to geometric properties of
graphs. On graphs, the relationship between heat flow and PageRank has been exploited several
times. For instance, Chung (2007) introduced the notion of heat kernel PageRank and used it to
improve the algorithm of Anderson, Chung, and Lang for graph partitioning.

A particularly useful way of understanding positive solutions to the heat equation is through
curvature lower bounds, which can be used to prove “gradient estimates”, which bound how heat
diffuses locally in space and time and which can be integrated to obtain Harnack inequalities.
Most classical of these is the Li–Yau inequality (Li & Yau, 1986), which (in its simplest form) states
that if u is a positive solution on a non-negatively curved n-dimensional compact manifold, then
u satisfies

|∇u|2
u2

− ut
u

≤ n
2t

(1)

This inequality shows how, in a sense, heat “smooths out” as time goes to infinity in such a
way that at any point where the gradient remains large the time derivative (which represents the
heating/cooling at a point) is large enough to ensure the entire quantity is bounded. In the graph
setting, Bauer, et al. proved a gradient estimate for the heat kernel on graphs in Bauer et al. (2015).
In this paper, we aim to prove a similar inequality for PageRank. Our gradient estimate, which is
formally stated as Theorem 1 below, is proved using the exponential curvature dimension inequal-
ity CDE, introduced by Bauer et al. It, like the Li–Yau inequality shows how heat smooths out as
time gets larger, shows that the PageRank vector smooths out as the jumping constant changes.

We remark that, in some ways, our inequality is more closely related to another inequality of
Hamilton (1993) which bounds merely |∇u|2

u2 and was established for graphs by Horn in (2019).
Indeed, Theorem 1 shows a bound on a function of this form where u is replaced by a PageRank
vector (and ∇ is appropriately defined for graphs). This shows that not only the gradient of
PageRank is decreasing, but also actually a normalized version of such a bound is decreasing.

Other related works establish gradient estimates for eigenfunctions for the Laplace matrix;
these include Chung et al. (2014).

This paper is organized as follows: in the next section, we introduce definitions for both
PageRank and the graph curvature notions used. We further establish a useful “time parameteri-
zation” for PageRank, which allows us to think of increasing the jumping constant as increasing
a time parameter and makes our statements and proofs cleaner. In Section 3, we prove a gradi-
ent estimate for PageRank. In Section 4, we use this gradient estimate to prove a Harnack-type
inequality that allows us to compare PageRank at two vertices in a graph.

In the conference version of this paper, Horn & Nelsen (2019), this result was announced and
a sketched proof of the gradient estimate was given. The present paper expands on this by giving
a full proof but more critically by providing a full statement and proof of the Harnack inequality
which was not fully described in the conference version.

2. Preliminaries
2.1 Spectral graph theory and graph Laplacians
Spectral graph theory involves associating a matrix (or operator) with a graph and investigating
how eigenvalues of the associated matrix reflect graph properties. The most familiar such matrix
is the adjacency matrix A, whose rows and columns are indexed with vertices and

aij =
{
1 if vi ∼ vj
0 else

where vi ∼ vj if and only if the vertices vi and vj are adjacent.
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The adjacency matrix is a real, symmetric matrix and has n eigenvalues, λ1 ≥ |λ2| ≥ · · · ≥ |λn|.
Eigenvalues of A capture many graph properties but not all. For instance, they tell us how many
edges are in the graph, but they do not tell us if the graph is connected in general.

Another matrix that is often studied is the Laplacian matrix (which is sometimes called the
combinatorial Laplacian matrix). The Laplacian matrix is defined to be L=D−A, where D is the
diagonal matrix of vertex degrees.

In this work, the principal matrix that we will consider is the normalized Laplace operator

Δ =D−1A− I

where D is the diagonal matrix of vertex degrees and D−1A is the transition probability matrix for
a simple random walk.

Thought of as an operator acting on functions f :V →R, the Laplacian acts as

Δf (x)= 1
deg(x)

∑
y∼x

( f (y)− f (x))

As a quick observation, note that Δ is non-positive semidefinite. This is contrary to usual sign
conventions in graph theory but is the proper sign convention for the Laplace–Beltrami operator
in Riemannian manifolds, the analogy we emphasize in this paper. Also note that this matrix is
(up to sign) the unsymmetrized version of the normalized Laplacian popularized by Chung (see
Chung, 1997), L= I −D−1/2AD−1/2.

We remark briefly that the machinery utilized in this paper—using curvature lower bounds
as introduced in Section 2.3 below—can be adapted to much more general Laplace operators
essentially without change: arbitrary edge and vertex weights (wxy and μ(x), respectively) can
be introduced to obtain a Laplace operator so that

Δf (x)= 1
μ(x)

∑
y∼x

wxy( f (y)− f (x))

Setting μ(x) := deg(x) yields the normalized Laplacian, while setting μ(x) := 1 yields the com-
binatorial Laplacian. For the purpose of the study of PageRank, however, the normalized Laplace
operator is the most natural.

One of the most important bits of geometric information certified by the spectrum is expan-
sion: the number of edges leaving subsets. For instance, when looking for disjoint spanning
structures in graphs, a sparse cut limits the number we can hope to find. It turns out that
sparse cuts in our graph are related to an eigenvalue of the normalized Laplacian matrix
through Cheeger’s inequality. Before discussing Cheeger’s inequality, we introduce some necessary
notation.

For a graph G, the volume of a subset S, of V(G), denoted by Vol(S), is defined as follows:

Vol(S)=
∑
v∈S

deg(v)

We define E(S, S) to be the set of edges with one end in S and the other outside of S and let hG(S)=
|E(S, S)|

min{Vol(S), Vol(S)} . The Cheeger constant (or isoperimetric constant), hG is then defined by

hG =min
S

hG(S)

Determining hG is computationally difficult but is related to an eigenvalue of the normalized
Laplacian matrix through the following result known as Cheeger’s inequality.
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Proposition 1 (Cheeger’s inequality, Chung, 1997). If G is a connected graph and λ1 is the second
smallest eigenvalue of the normalized Laplacian of G, then

h2G
2

< λ1 ≤ 2hG

Proposition 1 reveals that a sparse (normalized) cut in G is equivalent to λ1 being small. This
equivalence shows up in the close relationship between spectral properties of Δ and the mixing of
random walks and is really key in the diffusion of PageRank as explored below.

We remark that the lower bound |λ1| ≥ h2G/2 of this inequality is analogous to Cheeger’s
inequality in Riemannian geometry (Cheeger, 1970). The first graph theoretical result was by
Dodziuk (1984), for infinite graphs. Later versions were proved for (finite) regular graphs (Alon,
1986). It is interesting to note that not just are the statements of the Cheeger inequality similar in
Riemannian geometry and graph theory, but even the proofs are similar.

2.2 PageRank
Personalized PageRank was introduced as a ranking mechanism (Jeh &Widom, 2003) to rank the
importance of webpages with respect to a seed. To define personalized PageRank, we introduce
the following operator which we call the PageRank operator. This operator, P(α), is defined as
follows:

P(α)= (1− α)
∞∑
k=1

αkWk

whereW =D−1A is the transition probability matrix for a simple random walk. Here, the param-
eter α is known as the jumping or teleportation constant. For a finite n-vertex graph, P(α) is a
square matrix; the personalized PageRank vector of a vector u :V →R is

uTP(α)= (1− α)
∞∑
k=1

αkuTWk

PageRank can then be viewed as the distribution of a geometric sum of the distribution of
simple randomwalks, that is, the expected distribution of a simple randomwalk of length geomet-
rically distributed with parameter 1− α starting at initial distribution u. As α → 1, the expected
length of this geometric random walk tends to infinity, and the resulting distribution tends to the
limiting distribution of a simple random walk (which, for a finite graph is proportional to the
degree).

It has been noticed (Chung, 2007, 2011) that PageRank has many similarities to the heat kernel
etΔ. Chung defined the notion of “Heat Kernel PageRank” to exploit these similarities. In this
work, we take inspiration in the opposite direction: we are interested in understanding the action
of the PageRank operator in analogy to solutions of the heat equation.

In order to emphasize our point of view, we note that graph theorists view the heat kernel
operator in two different ways: for a vector u :V →R studying the evolution of

uTetΔ

as t → ∞ is really studying the evolution of the continuous time random walk while studying the
evolution of

etΔu
as t → ∞ is studying the solutions to the heat equation

Δu= ut
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The differing behavior of these two evolutions comes from the fact that (for irregular graphs)
the left and right eigenvectors of Δ =W − I are different: the left Perron–Frobenius eigenvector
of Δ is proportional to the degrees of a graph (as it captures the stationary distribution of the
random walk), while the right Perron–Frobenius eigenvector is the constant vector. In particular,
as t → ∞, the vector etΔu tends to a constant. Physically, this represents the “heat” on a graph
evening out, and this regularization (and the rate of regularization) is related to a number of
geometric features of a graph.

A similar feature holds for PageRank. As α → 1, uTP(α) tends to a vector proportional to
degrees, but P(α)u regularizes. Here, we study this regularization. Note that the real novelty of
what we do here is that we are understanding the evolution of PageRank locally using a notion of
graph curvature defined at the end of this section.

To see this regularization, notice that

W =D−1A

=D−1/2 (D−1/2AD−1/2)D1/2

=D−1/2

(n−1∑
i=0

λiϕiϕ
T
i

)
D1/2

where 1= λ0 ≥ λ1 ≥ · · · ≥ λn−1 are the eigenvalues of D−1/2AD−1/2 and ϕ0, · · · , ϕn−1 are the
corresponding orthonormal eigenvectors. Let d be the n-dimensional vector where di = deg(vi).
Notice that ϕ0 = d1/2√

Vol(G) is the eigenvector corresponding to λ0 = 1, since

D−1/2AD−1/2d1/2 =D−1/2A1
=D−1/2d
= d1/2

So

Wk =D−1/2

(n−1∑
i=0

λki ϕiϕ
T
i

)
D1/2

Thus,

P(α)= (1− α)
∞∑
k=0

αkWk

= (1− α)
∞∑
k=0

D−1/2

(n−1∑
i=0

(αλi)kϕiϕ
T
i

)
D1/2

= (1− α)
n−1∑
i=0

D−1/2

( ∞∑
k=0

(αλi)kϕiϕ
T
i

)
D1/2 by Fubini’s theorem

= (1− α)
n−1∑
i=0

D−1/2
(

1
1− αλi

ϕiϕ
T
i

)
D1/2

= (1− α)

(
1

1− α
D−1/2 d

1/2 (d1/2)T
Vol(G)

D1/2 +
n−1∑
i=1

D−1/2
(

1
1− αλi

ϕiϕ
T
i

)
D1/2

)

= 1dT

Vol(G)
+

n−1∑
i=1

1− α

1− αλi
D−1/2ϕiϕ

T
i D

1/2
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Consider
1− α

1− αλi
(2)

Notice that if G is connected and not bipartite, then λi < 1 for 1≤ i≤ n− 1. So
1− α

1− αλi
→ 0 as

α → 1. As α → 1, the dominant term in P(α) becomes
1dT

Vol(G)
. Note that the smaller the λi are,

the faster this tends to zero. This is Cheeger’s inequality in action—if λ1 ≈ 1, then there is a sparse
cut (since D−1/2AD−1/2 = I −L), so diffusion will take longer. If the λi are far from 1, then there
will not be a sparse cut, so the diffusion will happen more quickly.

If ϕ is a probability distribution, then

ϕT 1dT

Vol(G)
= dT

Vol(G)
which is the stationary distribution for a random walk.

If, instead, we consider P(α)u for a vector u, then
1dT

Vol(G)
u= c1, for a constant c. So P(α)

regularizes or “smooths out” as α → 1.
We note that the left and right actions of the PageRank operator are closely related, and we

study the left action versus the right action. For an undirected graph,

uTP(α)= (P(α)Tu)T = (DP(α)D−1u)T

so that the regularization of D−1u can be translated into information on the “mixing” of the
personalized PageRank vector seeded at u.

To complete the analogy between P(α)u and etΔu, it is helpful to come up with a time parame-
terization t = t(α) so we can view the regularization as a function of “time”, in analogy to the heat

equation. To do this in the best way, it is useful to think of α = α(t) and compute
∂

∂t
Pα .

Lemma 1
∂

∂t
Pα = α′

(1− α)2
ΔP2α

where ΔP2α = ΔPα(Pα).

Proof. From the chain rule and algebra, we have
∂

∂t
Pα = ∂

∂t
(1− α)(I − αW)−1

= α′((αW − I)(I − αW)−2 + (1− α)W(I − αW)−2)= α′

(1− α)2
ΔP2α

This is remarkably close to the heat equation if α′(t)= (1− α)2; solving this separable
differential equation yields that α = α(t)= 1− 1

t+C . Since we desire a parameterization so that
α(0)= 0 and α → 1 as t → ∞, this gives us that C = 1 from whence we obtain

α(t)= 1− 1
t + 1

t = α

1− α

(3)

(4)

Given the time parameterization in Equation (3), we get the following Corollary to Lemma 1.
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Corollary 2
∂

∂t
Pα = ΔP2α

where ΔP2α = ΔPα(Pα).

Proof. From Lemma 1 and our choice of parameterization, we see that

∂

∂t
Pα = α′

(1− α)2
ΔP2α =

1
(t + 1)2(

1
t + 1

)2ΔP2α = ΔP2α

Fix a vector u :V →R. From now on, we let

f = Pαu (5)

Lemma 2. For f = Pαu and t = α

1− α
, we have that Δf = f − u

t
.

Proof. We know thatW =D−1A and Δ =W − I, so

ΔPα = (W − I)(1− α)(I − αW)−1

= − 1
α
(I − αW)(1− α)(I − αW)−1 + 1− α

α
· (1− α)(I − αW)−1

= 1− α

α
(Pα − I)

Hence,

Δf = ΔPαu= (1− α)
α

(Pα − I)u= f − u
t

2.3 Graph curvature
In this paper, we study the regularization of P(α)u for an initial seed u as α → 1. On one hand, as
seen above, the information about this regularization is contained in the spectral decomposition of
the random walk matrixW. As α → 1, all eigenvalues of Pα tend to zero except for the eigenvalue,
1, ofW, and this is what causes the regularization. Thus, the difference between Pαu and the con-
stant vector can be bounded in terms of (say) the infinity norms of eigenvectors of Pα and α itself.

On the other hand, curvature lower bounds (in graphs and manifolds) have proven to be
important ways to understand the local evolution of solutions to the heat equation. As we have
already noted important similarities between heat solutions and PageRank, we seek similar
understanding in the present case. Curvature, for graphs and manifolds, gives a way of under-
standing the local geometry of the object. A manifold (or graph) satisfying a curvature lower
bound at every point has a locally constrained geometry which allows a local understanding
of heat flow through which a “gradient estimate” can be proved. These gradient estimates can
then be “integrated” over space-time to yield Harnack inequalities which compare the “heat” of
different points at different times.

While a direct analog of the Ricci curvature is not defined in a graph setting, a number of
graph theoretical analogs have been developed recently in an attempt to apply geometrical ideas
in the graph setting. In the context of proving gradient estimates of heat solutions, a new notion
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of curvature known as the exponential curvature dimension inequality was introduced in Bauer
et al. (2015). In order to discuss the exponential curvature dimension inequality, we first need
to introduce some notation. As seen above, the normalized Laplace operator, Δ, on a graph G is
defined at a vertex x by

Δf (x)= 1
deg(x)

∑
y∼x

( f (y)− f (x))

Definition 3. For x ∈V(G), ∑̃
y∼x

h(x, y)= 1
deg(x)

∑
y∼x

h(x, y)

Definition 4. The gradient form Γ is defined by
2Γ ( f , g)(x)= (Δ( f · g)− f · Δ(g)− Δ( f ) · g)(x)

=
∑̃

y∼x
( f (y)− f (x))(g(y)− g(x))

and we write Γ ( f )= Γ ( f , f ).

Note that Γ ( f , g) plays the role of 〈∇f ,∇g〉 (and Γ ( f ) of |∇f |2) in the graph theoretical setting
and that it is not uncommon notation in the literature to use the gradient (i.e. ∇) instead of Γ .

In general, there is no “chain rule” that holds for the Laplacian on graphs. However, the
following formula from Bauer et al. (2015) does hold for the Laplacian and will be useful to us:

Δf = 2
√
fΔ
√
f + 2Γ

(√
f
)

(6)

At the heart of the exponential curvature dimension inequality is an idea that had been used
previously based on the Bochner formula. The Bochner formula reveals a connection between
solutions to the heat equation and the curvature of a manifold. The Bochner formula implies that
for an n-dimensional manifold with Ricci curvature at least K, we have

1
2
Δ|∇f |2 ≥ 〈∇f ,∇Δf 〉 + 1

n
(Δf )2 +K|∇f |2 (7)

An important insight of Bakry and Emery was that an object satisfying an inequality like (7)
could be used as a definition of a curvature lower bound even when curvature could not be directly
defined. Such an inequality became known as a curvature dimension inequality, or the CD inequal-
ity. Bauer et al. introduced a modification of the CD inequality that defines a new notion of
curvature on graphs that we will use here Bauer et al. (2015), the exponential curvature dimension
inequality.

Definition 5. A graph is said to satisfy the exponential curvature dimension inequality CDE(n,K)
if, for all positive f :V →R and at all vertices x ∈V(G) satisfying (Δf )(x)< 0

ΔΓ ( f )− 2Γ
(
f ,

Δf 2

2f

)
≥ 2

n
(Δf )2 + 2KΓ ( f ) (8)

where the inequality in (8) is taken pointwise.

While the inequality (8) may seem somewhat unwieldy, as shown in Bauer et al. (2015), it
arises from “baking in” the chain rule and is actually equivalent to the standard curvature dimen-
sion inequality (7) in the setting of diffusive semigroups (where the Laplace operator satisfies the
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chain rule). Additionally, in Bauer et al. (2015), it is shown that some graphs, including the Ricci
flat graphs of Chung and Yau, satisfy CDE(n, 0) (and hence are non-negatively curved for this
curvature notion), and some general curvature lower bounds for graphs are given.

We remark that the parameters n and K of CDE can be interpreted as an effective dimension
(upper bound) and curvature lower bound of the graph: if CDE(n,K) hold for some graph G so
does CDE(n′,K ′) for n′ > n or K ′ <K. Thus, this gives a notion of “dimension” to the (inherently
combinatorial) graph. There is often a bit of a trade-off between curvature and dimension—but
as the curvature is generally the most important part in applications of the CDE inequality, when
showing a graph satisfies CDE(n,K) one typically tries to first take K as large as possible, then n
as small as possible. Graphs are known to exist, for instance, satisfying CDE(∞, 0), which satisfy
CDE(n, 0) for no finite n, while the standard Cayley graphs Zd are known to satisfy CDE(2d, 0). In
gradient estimates like what we prove, the dimension tends to control the constants.

An important observation is that this notion of curvature only requires looking at the second
neighborhood of a graph, and hence this kind of curvature is truly a local property (and hence a
curvature lower bound can be certified by only inspecting second neighborhoods of vertices).

3. Gradient estimate for PageRank
Our main result will make use of the following lemma from Bauer et al. (2015), and we include its
simple proof for completeness.

Lemma 3 (Bauer et al., 2015). Let G(V , E) be a (finite or infinite) graph, and let f ,H :V × {t�} →
R be functions. If f ≥ 0 and H has a local maximum at (x�, t�) ∈V × {t�}, then

Δ(fH)(x�, t�)≤ (Δf )H(x�, t�)

Proof. Observe that

Δ( fH)(x�, t�)=
∑̃

y∼x�
( f (y, t�)H(y, t�)− f (x�, t�)H(x�, t�))

≤
∑̃

y∼x�
( f (y, t�)H(x�, t�)− f (x�, t�)H(x�, t�))

= (Δf )H(x�, t�)

Our goal is to show that Γ (
√

f )√
f ·M ≤ C(t)

t for some function C(t), where 0≤ f (x)≤M for all

x ∈V(G) and t ∈ [0,∞). However, C(t)
t is badly behaved as t → 0. The way that we handle this

is by showing that H := t · Γ (
√

f )√
f ·M ≤ C(t). If H is a function from V × [0,∞)→R, then instead

consider H as a function from V × [0, T]→R for some T > 0. Then, by compactness, there is a
point (x�, t�) in V × [0, T] at which H(x, t) is maximized. Using the CDE inequality, along with
some other lemmas and an identity, we are able to relateH2 withH. This allows us to find an upper

bound for H, and thus for Γ (
√

f )√
f ·M . Our situation is a little easier because we consider a fixed t.

Lemma 4. Let G be a graph, and let f = Pαu for some seed u. Suppose 0≤ f (x)≤M for all x ∈V(G)

and t ∈ [0,∞) and let H = tΓ (
√

f )√
f ·M . Then

Δ
√
f = f − u

2t
√
f

−
√
MH
t
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Proof. Using (6), we get that Δ
√
f =

Δf − 2Γ
(√

f
)

2
√
f

. Thus,

Δ
√
f = Δf

2
√
f

−
Γ
(√

f
)

√
f

= f − u
2t
√
f

−
√
MH
t

by Lemma 2.

At the heart of the proof of the Li–Yau inequality on manifolds is the identity

Δ log u= Δu
u

− |∇ log u|2 = Δu
u

− |∇u|2
u2

The Li–Yau inequality on graphs (Bauer et al., 2015) uses the identity

Δ
√
u√
u

= Δu
u

− Γ (
√
u)

u
Lemma 4 is similar to these other identities and the CDE inequality allows us to exploit this

relationship.

Theorem 1. Let G be a graph satisfying CDE(n, 0) and let f = Pαu for some seed u. Suppose
0≤ f ≤M for all x ∈V(G) and t ∈ (0,∞). Then

Γ
(√

f
)

√
f ·M ≤ n+ 4

n+ 2
· 1
t

+
√

n
n+ 2

· 1√
t

Notice that a true Li–Yau-type inequality would have a time derivative. (Note the ut in (1).)
However, proving this in space is just as strong as it would be with the time derivative.

Proof. LetH = tΓ (
√
f )√

f ·M . Fix t > 0. Let (x�, t) be a point in V × {t} such thatH(x, t) is maximized.

All of the following computations are made at the point (x�, t). In order to apply the exponential
curvature dimension inequality to

√
f , we must have that Δ

√
f < 0.

If Δ
√
f ≥ 0, then by Lemma 4, we get that

f − u
2t
√
f

−
√
MH
t

≥ 0. Thus,

√
MH
t

≤ f − u
2t
√
f

≤
√
f

2t

which implies that

H ≤
√
f

2
√
M

≤ 1
2

So we can assume Δ
√
f < 0, which allows us to use the inequality in (8).

Then, we have that

(Δ
√
f )H ≥ Δ(

√
f H) by Lemma 3

≥ t√
M

(
2
n

(
Δ
√
f
)2 + 2Γ

(√
f ,

Δf
2
√
f

))
by (8)
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Thus,

(
Δ
√
f
)
H ≥ t√

M

⎛⎝2
n

(
f − u
2t
√
f

−
√
MH
t

)2

+ 1
t
Γ
(√

f
)

− 1
t
Γ

(√
f ,

u√
f

)⎞⎠
using Lemmas 2, 4, and the fact that Γ is bilinear. Notice that

1
t
Γ
(√

f
)

− 1
t
Γ

(√
f ,

u√
f

)

= 1
t

(
1
2
∑̃

y∼x

(√
f (y)−√

f (x)
)2 − 1

2
∑̃

y∼x

(√
f (y)−√

f (x)
)( u(y)√

f (y)
− u(x)√

f (x)

))

≥ − 1
2t
∑̃

y∼x

(√
f (y)−√

f (x)
) ( u(y)√

f (y)
− u(x)√

f (x)

)

Therefore,

(
Δ
√
f
)
H ≥ 2√

Mnt

(
( f − u)2

2
√
f

− ( f − u)
√
MH√

f
+MH2

)

+
Γ
(√

f
)

√
M

− 1√
M

Γ

(√
f ,

u√
f

)

≥ 2
(−√

f
√
MH +MH2)

√
Mnt

− 1
2
√
M

∑̃
y∼x

(√
f (y)−√

f (x)
) ( u(y)√

f (y)
− u(x)√

f (x)

)

≥
2
(
MH2 −√

f
√
MH

)
√
Mnt

− 1
2
√
M

∑̃
y∼x

(
u(x)

(
1−

√
f (y)
f (x)

)
+ u(y)

(
1−

√
f (x)
f (y)

))

≥
2
(
MH2 −√

f
√
MH

)
√
Mnt

−
√
M
2

Here, the last inequality—replacing the large averaged sum by
√
M follows first by noting that

one of
√
f (y)/f (x) or

√
f (x)/f (y) is at least one. This means that one of the interior terms is non-

positive; this subtracted term is non-negative and can be dropped. In the other case, we use the
fact that u≤M; this implies that each term in the interior of the averaged sum is at mostM. Thus,
the average is at mostM, and the inequality follows.
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By Lemma 4, we have that

Δ
√
f = f − u

2t
√
f

−
√
MH
t

≤
√
f

2t
−

√
MH
t

So we have that (Δ
√
f )H ≤

√
f H
2t

−
√
MH2

t
.

This implies that √
f H
2t

−
√
MH2

t
≥ 2

√
MH2

nt
− 2

√
f H
nt

−
√
M
2

Combining terms, we get(√
f

2t
+ 2

√
f

nt

)
H +

√
M
2

≥
(
2
√
M

nt
+

√
M
t

)
H2

Multiplying by t/
√
M yields the inequality( √

f
2
√
M

+ 2
√
f

n
√
M

)
H + t

2
≥
(
2
n

+ 1
)
H2

which implies (
1
2

+ 2
n

)
H + t

2
≥
(
2
n

+ 1
)
H2

since
√
f√
M

≤ 1. Thus,

H2 ≤

(
1
2

+ 2
n

)
H(

1+ 2
n

) + t

2
(
1+ 2

n

)
= C1 ·H + C2 · t (9)

for constants C1 = C1(n) and C2 = C2(n).
If C1H ≥ C2 · t, then H2 ≤ 2C1H, which implies that H ≤ 2C1. Thus,

Γ
(√

f
)

√
f ·M ≤ 2C1

t

If C2 · t > C1H, then H2 ≤ 2C2t, so H ≤ √
2C2t. Therefore,

Γ
(√

f
)

√
f ·M ≤

√
2C2t
t

=
√
2C2√
t

Since

C1 =
1
2

+ 2
n

1+ 2
n
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and

C2 = 1

2
(
1+ 2

n

)
we have that

Γ
(√

f
)

√
f ·M ≤ 2C1

t
+

√
2C2√
t

= 2 ·
⎛⎜⎝

1
2

+ 2
n

1+ 2
n

⎞⎟⎠ · 1
t

+
√√√√√ 2

2
(
1+ 2

n

) · 1√
t

=
1+ 4

n
1+ 2

n

· 1
t

+
√√√√ 1

1+ 2
n

· 1√
t

= n+ 4
n+ 2

· 1
t

+
√

n
n+ 2

· 1√
t

Remark. In a typical application of the maximum principle, we maximize over [0, T] and then
use information from the time derivative. Here, we do not do this. This is important because of
the form of the inequality (9). Because of the dependence of this inequality on the time where
the maximum occurs, if the t� maximizing the function over all [0, T] is considered, then the

result will depend on t�, giving a bound like H ≤
√
2C2t�
t

. However, since we are able to do the
computation at t, this problem does not arise.

Note that the result of Theorem 1 gives us a bound for any time t, but we have two regimes: if t
is small, then the first term dominates, and if t is large, then the second term dominates.

Corollary 6

• For 0< t ≤ 1+ 6n+ 16
n2 + 2n

,

Γ
(√

f
)

√
f ·M ≤ 2(n+ 4)

(n+ 2)
· 1
t

• For t ≥ 1+ 6n+ 16
n2 + 2n

,

Γ
(√

f
)

√
f ·M ≤ 2

√
n

n+ 2
· 1√

t

Proof. We want to show that if t is small, then 2C1
t is the dominating term in the bound from

Theorem 1, and if t is large, then
√
2C2√
t dominates. Let A= 2C1 and B= √

2C2. We are interested
in knowing when A

t = B√
t . This is equivalent to

√
t = A

B , so
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t = A2

B2
= (2C1)2

(
√
2C2)2

= 4C2
1

2C2
=

2

⎛⎜⎝
1
2

+ 2
n

1+ 2
n

⎞⎟⎠
2

⎛⎜⎜⎝ 1

2
(
1+ 2

n

)
⎞⎟⎟⎠

=
4
(
1
2

+ 2
n

)2

1+ 2
n

=
4
(
1
4

+ 2
n

+ 4
n2

)
1+ 2

n

= n2 + 8n+ 16
n2 + 2n

= n2 + 2n+ 6n+ 16
n2 + 2n

= 1+ 6n+ 16
n2 + 2n

If t ≤ 1+ 6n+ 16
n2 + 2n

, then
A
t

≥ B√
t
, so

Γ
(√

f
)

√
f ·M ≤ 2 · A

t
= 2(n+ 4)

(n+ 2)
· 1
t

If t ≥ 1+ 6n+ 16
n2 + 2n

, then
A
t

≤ B√
t
, so

Γ
(√

f
)

√
f ·M ≤ 2 · B√

t
= 2

√
n

n+ 2
· 1√

t

4. Harnack-type inequality
One of the most classical uses of gradient estimates is to prove “Harnack inequalities”; comparison
inequalities that multiplicatively compare functions at different points. In this vein, Theorem 3
can be used to compare the PageRank of two vertices in a graph, depending on the distance
between them.

The classical form of a Harnack inequality one obtains from the Li–Yau inequality for heat
diffusion is the following.

Proposition 7 (Bauer et al., 2015). Suppose G is a graph satisfying CDE(n, 0). Let T1 < T2 be real
numbers, and let d(x, y) denote the distance between x, y ∈V(G). If u is a positive solution to the
heat equation on G, then

u(x, T1)≤ u(y, T2)
(
T2
T1

)n
exp

(
4Dd(x, y)2

T2 − T1

)
where D=maxv∈V(G) deg(v).
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This allows a comparison of heat at different points and different times. In turn, this can be used
to detect geometric features of a graph. Delmotte (1999) showed the equivalence of a sufficiently
strong Harnack inequality for heat flow to several other conditions, such as volume doubling
and satisfying a Poincaré inequality. Horn et al. (2019) complemented the work of Delmotte by
showing that curvature lower bounds on graphs can be used to prove these equivalent conditions,
along with deriving other geometric consequences from curvature lower bounds.

Using Theorem 1, we are able to relate PageRank at different vertices, but our result is not
quite of the right form to be a classical Harnack inequality. The fundamental reason for this is the
scaling in Theorem 1. In particular, the dependence on the maximum function value weakens our
estimate, and it would be better if we had an f instead of

√
f ·M in the denominator. Since we do

not, this makes proving a “Harnack-type” inequality more difficult.
The key step to is to compare the PageRank at adjacent vertices. From now on, we will consider

t fixed and write f (x) instead of f (x, t). If a vertex, w, is adjacent to a vertex, z, then we want to
lower bound

√
f (z) by a function only involving f (w). The trick to this is to rewrite

√
f (w)
f (z) so that

we can use Theorem 1 in order to get rid of the “
√
f (z)” in the denominator; in such a way, we get

a proper multiplicative comparison between values.

Lemma 5. Let G be a graph satisfying CDE(n, 0) and let f = Pαu for some seed u. Suppose 0≤ f ≤M
for all x ∈V(G). If w∼ z and t ∈ [1+ 6n+16

n2+2n ,∞), then√
f (w)
f (z)

≤ 4CD
√
M√

t
· 1√

f (w)
+ 2

where D=maxv∈V(G) deg(v) and C =
√

n
n+2 .

If t ∈ (0, 1+ 6n+16
n2+2n ), then √

f (w)
f (z)

≤ 4CD
√
M

t
· 1√

f (w)
+ 2

where C = 2(n+4)
(n+2) .

Proof. We prove this in the case where t ∈ [1+ 6n+16
n2+2n ,∞); in the case where t is smaller, the proof

is identical except for the result of applying the gradient estimate through Corollary 6.
If
√
f (z)≥ 1

2
√
f (w), then

√
f (w)
f (z) ≤ 2≤ 4CD

√
M√

t · 1√
f (w)

+ 2

If
√
f (z)< 1

2
√
f (w), then√

f (w)
f (z)

=
√
f (w)−√

f (z)+√
f (z)√

f (z)

=
√
f (w)−√

f (z)√
f (z)

+ 1

=
D
(√

f (w)−√
f (z)

)2
D
√
f (z)

(√
f (w)−√

f (z)
) + 1
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≤ 2CD
√
M√

t
· 1√

f (w)−√
f (z)

+ 1

≤ 2CD
√
M√

t
· 2√

f (w)
+ 1 since

√
f (z)<

1
2
√
f (w)

≤ 4CD
√
M√

t
· 1√

f (w)
+ 2

We remark that a slight variant of this proof can prove a one-step inequality which looks
more akin to the standard inductive one-step inequality for proving a Harnack inequality but
is in general weaker when iterated due to the form of the exponent.

Corollary 8. Let G be a graph satisfying CDE(n, 0) and let f = Pαu for some seed u. Suppose 0≤
f ≤M for all x ∈V(G). If w∼ z and t ∈ [1+ 6n+16

n2+2n ,∞), then

f (z)≥ f (w) exp

(
−8CD

√
M√

t · f (w) − 2

)

If w∼ z and t ∈ (0, 1+ 6n+16
n2+2n ), then

f (z)≥ f (w) exp

(
−8CD

√
M

t
√
f (w)

− 2

)

This follows from Lemma 5 using the inequality

1+ x≤ ex

Using Lemma 5, we can prove Theorem 2.

Theorem 2. Let G be a graph satisfying CDE(n, 0) and let f = Pαu for some seed u. Suppose
0≤ f ≤M for all x ∈V(G) and t ∈ (0,∞). If dist(x, y)= d, where d ≥ 2, then

1√
f (y)

≤ 42
d−2 · max

k=0,d

{
A2k−1

(
√
f (x))2k

}

where A= 8CD
√
M√

t if t ∈ [1+ 6n+16
n2+2n ,∞) and A= 8CD

√
M

t if t ∈ (0, 1+ 6n+16
n2+2n )

Proof. We proceed by induction on d.

If d = 2, then let z ∈V(G) such that x∼ z and z ∼ y. Then by Lemma 5,

1√
f (y)

≤ 4CD
√
M√

tf (z)
+ 2√

f (z)

≤max

{
A
f (z)

,
4√
f (z)

}

≤max

{
A ·max

{
A2

( f (x))2
,
42

f (x)

}
, 4 ·max

{
A
f (x)

,
4√
f (x)

}}
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=max

{
A3

( f (x))2
,
42A
f (x)

,
42√
f (x)

}

≤ 42 ·max

{
A3

( f (x))2
,

A
f (x)

,
1√
f (x)

}
Assume the result holds for d ≥ 2. Let x, y ∈V(G) with dist(x, y)= d + 1. Let z ∈V(G) such

that z ∼ y and dist(x, z)= d. Then by Lemma 5, we have that

1√
f (y)

≤ 4CD
√
M√

tf (z)
+ 2√

f (z)

≤max

{
A
f (z)

,
4√
f (z)

}

≤max

{
A · 42d+1−22 · max

k=0,d

{
A2k+1−2

(
√
f (x))2k+1

}
, 4 · 442d−2 · max

k=0,d

{
A2k−1

(
√
f (x))2k

}}
by the inductive hypothesis

=max

{
42

d+1−22 · max
k=0,d

{
A2k+1−1

(
√
f (x))2k+1

}
, 42

d−1 · max
k=0,d

{
A2k−1

(
√
f (x))2k

}}

≤ 42
d+1−2 ·max

{
max

k=0,d+1

{
A2k−1

(
√
f (x))2k

}
, max
k=0,d

{
A2k−1

(
√
f (x))2k

}}

= 42
d+1−2 · max

k=0,d+1

{
A2k−1

(
√
f (x))2k

}
where the last step follows since

max
k=0,d

{
A2k−1

(
√
f (x))2k

}
≤ max

k=0,d+1

{
A2k−1

(
√
f (x))2k

}

To see this, notice that
A2k−1

(
√
f (x))2k

= ( A√
f (x)

)2k · 1
A
. This function of k is either increasing

or decreasing, so the maximum over the interval 0≤ k≤ d + 1 is achieved at either k= 0 or
k= d + 1.

5. Conclusions, applications, and future work
In this paper, we investigated PageRank as a diffusion, using recently developed notions of discrete
curvature. These results, while theoretical (and in some cases not as strong as would be desired
due to the dependence on the maximum value “M” in the gradient estimate), show that curva-
ture aspects of graphs can be used to understand relative importance in networks—at least when
ranking is based on random walk-based diffusions.

Regarding these points, we highlight the following:

– Curvature is a local property—based only on second neighborhood conditions. An upshot of
this is that it can be certified quickly. While the work here focuses on situations where the
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entire graph is non-negatively curved for simplicity, work in Bauer et al. (2015) and Horn
(2019) shows that these methods can be used when only parts of the graph satisfy such a
radius using cutoff functions. In principle, these yield algorithms that are linear, either in the
size of the graph or even in a considered portion of the graph, verifying curvature conditions
and elucidating PageRank’s diffusion in bounded degree graphs.

– The influence of the jumping constant on PageRank has been important for certain algo-
rithms or in the analysis of certain stochastic processes (such as in Andersen et al., 2008;
Chung et al., 2014, 2009). On the other hand, for its use in web search, the jumping constant
was originally picked rather arbitrarily, or at least experimentally (see, e.g. Page et al., 1998).
Due to the importance of the PageRank vector (and particularly, how the PageRank vector
“falls off ”) in the application papers cited above, a study of this phenomenon seems impor-
tant for the analysis of complex networks and stochastic processes on them. In particular,
these applications produce the best results when there is a sharp drop in the PageRank vec-
tor, and whose existence depends on a lack of regularity. This paper, then, should be seen as
part of this thrust by investigating local conditions that imply a well-controlled smoothing of
the PageRank vector.

– There are several interesting areas for improvement here: the non-ideal scaling in Theorem 1
leads to a weaker than ideal result in Lemma 5. While Lemma 5 seems a reasonable result,
when iterated it quickly loses power (unlike the Harnack inequality from a “properly scaled”
gradient estimate like in Proposition 7). While a “properly scaled” Theorem 1 may not
even be true, we suspect the scaling can be improved. An interesting question is whether
a true “Hamilton type” gradient estimate is true: Is Γ (

√
f )/f ≤ C log (M/f )t−1? Note that the

addition of the logarithmic term damages a Harnack inequality, but the results obtainable
from this are far better than we obtain. Also, a version including the time derivative term is
desirable as well.
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