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Abstract

We examine the relationship of a graph G and its random subgraphs which are defined by in-
dependently choosing each edge with probability p. Suppose that G has a spectral gap λ (in terms
of its normalized Laplacian) and minimum degree dmin. Then we can show that a random sub-
graph of G on n vertices with edge-selection probability p almost surely has as its spectral gap

λ−O
(√

logn
pdmin

+ (logn)3/2

pdmin(log logn)3/2

)
.

1 Introduction

Often, when we examine a large graph, perhaps arising from some realistic setting (e.g. webgraphs,
biological networks, or some information network derived from a large database), we are unable to see
the entire graph. Instead, what we can observe are relatively small subgraphs of the large graph. We
are interested, then, in understanding the relationship between the large host graph, and the subgraphs
that we actually observe. The basic question becomes whether there are some graph invariants that we
can evaluate for the original host graph which lead to good estimates for properties and structures of our
observed subgraphs, and vice-versa.

In this paper, we begin by considering a host graph G. Fixing an edge-selection parameter, p ∈ [0, 1],
we consider the family of subgraphs by percolating G with parameter p. That is, our observed subgraph
H is a random subgraph of G such that each edge from G is chosen independently with the edge-selection
probability p.

An example of the utility of such an approach is in the study of epidemiological models. Here, the host
graph represents a contact network where the vertices represent people in some community of interest,
and edges denote certain contact or interaction among pairs of people. A disease is often considered to
pass through an interaction with probability p. Thus, the observed random subgraph can represent the
actual spread of disease through the contact network. Other examples concern various social networks
such as telephone or instant messanging networks. A group of friends contacting each other during a
specified period of time in a large social network can be viewed as a random subgraph of a large host
graph consisting of all contacts between members of the network. The classical Erdős-Rényi model,
G(n, p), is also a particular instance of this model. Indeed, it is the special case where the host graph is
the complete graph Kn.

In this paper, we consider the relationship of the spectrum of the host graph and that of a random
subgraph with edge-selection probability p. The methods that we use here are based on Wigner’s high
moment methods [13]. Such an approach has been extensively utilized in the early work on random
graphs and matrices in numerous research papers including the early work by Füredi and Komlós [6]
as well as in some recent work on random sparse graphs in [3] and [12]. However, these previous
works belong to the special case that the host graph is taken to be the complete graph (or the full
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matrix). Here similar techniques are used and modified in order to deal with the spectral gap of a
random subgraph of a given host graph. Nachmias and Peres [10] have studied properties related to the
spectum, in particular diameter and mixing time, in percolated regular graphs. Similarly, Ofek [11] has
studied expansion in the giant component of percolated pseudorandom graphs. Several other authors
have studied several properties of percolated finite graphs. In particular, Alon, Benjamini and Stacey [1]
and Frieze, Krivelevich and Martin [7] have studied the emergence of the giant component in expanders,
with Alon, Benjamini and Stacey also studying isoperimetric properties.

Since we are dealing with a general graph (with possibly uneven degree distribution), we consider the
(normalized) Laplacian (see [2]). For a graph on n vertices, the Laplacian is a symmetric matrix of size
n× n defined as follows: (More details will be given in the next section.)

L = I −D−1/2AD−1/2,

where A denotes the adjacency matrix and D denotes the diagonal degree matrix. Let

0 = λ0 ≤ λ1 ≤ . . . ≤ λn−1

denote the eigenvalues of L. We write

λ = min{λ1, 2− λn−1}.

For example, a random d-regular graph on n vertices almost surely has a spectral gap λ > 1−(2
√
d− 1+

ε)/d for any positive constant ε as n approaches infinity (see [5]).

When there is a nontrivial spectral gap, i.e., λ is separated from 0, the graph has many nice properties,
such as expansion properties and the rapid convergence of random walks on the graph. What we will
show here is how to derive a bound for the spectral gap of a random subgraph of G in terms of the
probability p of edge-selection and the spectral gap of G.

Theorem 1. Suppose G is a graph on n vertices with spectral gap λ and minimum degree dmin. A
random subgraph H of G with edge-selection probability p almost surely has a spectral gap λH satisfying

λH = λ−O
(√ log n

pdmin
+

(log n)3/2

pdmin(log log n)3/2

)
.

An equivalent statement for the above theorem is the following: For pdmin ≥ (log n)2/(log log n)3, we
have

λH = λ−O

(√
log n
pdmin

)
and, for pdmin < (log n)2/(log log n)3, we have

λH = λ−O
( (log n)3/2

pdmin(log log n)3/2

)
.

As immediate consequences of the above theorem, a random graph almost surely will have the fol-
lowing properties (see [2, 9]):

Corollary 1. For a graph G on n vertices with spectral gap λ and minimum degree dmin, a subgraph H
with edge-selection probability p almost surely satisfies the following properties:

1. H satisfies the expansion property as follows: For X ⊆ V (H), the number of edges in H leaving
X, denoted by ∂H(X) satisfies

∂H(X) ≥

(
λ−O

(√ log n
pdmin

+
(log n)3/2

pdmin(log log n)3/2

))
pvol(X)

where vol(X) is
∑
x∈X d(x) and d(x) denotes the degree of x in the host graph G.
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2. H satisfies the discrepancy property as follows: For X,Y ⊆ V (H), the number of edges of H
between X and Y , denoted by eH(X,Y ), satisfies

|eH(X,Y )− pvol(X)vol(Y )
vol(H)

| ≤

(
1− λ−O

(√ log n
pdmin

+
(log n)3/2

pdmin(log log n)3/2

))
p
√

vol(X)vol(Y ).

3. For a random walk on H with transition probability matrix PH , the total variation distance after t
steps from the stationary distribution π, denoted by ∆TV (t), is bounded above by

∆TV (t) = max
A⊆V

max
y∈V
|
∑
x∈A

(P tH(y, x)− π(x))|

≤ e−c

for any c > 0 provided t satisfies

t ≥ 1

λ−O
(√

logn
pdmin

+ (log n)3/2

pdmin(log log n)3/2

) (log
vol(H)

minx d(x)
+ c

)
.

The above theorem depends on the volume vol(X) of a subset X in G. However it can also be thought
of as a statement depending on the volume of X in H in the following manner. The volume of X in H
is denoted by volH(X) =

∑
x∈X dH(x), where dH(x) is the degree of x in the subgraph H. If the volume

of X in G is large, we have good control over the volume of X in H using Chernoff bounds. It is not
difficult to prove that if Vol(X) is sufficiently large, we almost surely have (see [4])

|volH(X)− pvol(X)| ≤ g(n)
√
pvol(X) (1)

for any function g(n) that goes to infinity with n.

2 Preliminaries

Let G = (V,E) be a graph. We denote by H a random graph obtained from G by taking each edge
independently with probability p. That is,

Pr({u, v} ∈ E(H)) =
{
p if {u, v} ∈ E(G),
0 otherwise.

Let A and AH denote the adjacency matrix of G and H, respectively. We denote the diagonal
matrices whose entries consist of the degrees of the vertices in G and H respectively, by D and DH .
Let 0 = η0 ≤ · · · ≤ ηn−1 denote the eigenvalues of LH , and let ϕi for i = 0, . . . , n − 1 denote a set of
orthonormal eigenvectors associated with the ηi (represented here as row vectors). The projection to ϕi,
for each i, is Pi = ϕ∗iϕi where ϕ∗ denotes the transpose of ϕ. Then we have

LH =
∑
i

ηiPi.

We consider, then, the matrix

M = I − LH − P0

=
∑
i 6=0

(1− ηi)Pi.
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We will use the fact that for any integer k, we have

Trace(M2k) =
∑
i 6=0

(1− ηi)2k.

Immediately we have the following:

Fact 1. For any positive integer k

max
i 6=0
|1− ηi| = ||M || ≤ (Trace(M2k))1/(2k).

We denote the spectral gap of H by λH = max{η1, 2− ηn−1}. Hence we have

λH = 1−max
i 6=0
|1− ηi| = 1− ||M || .

Let K denote the all ones matrix. We can rewrite M as:

M = D
−1/2
H AHD

−1/2
H − P0

= D
−1/2
H AHD

−1/2
H − ϕ∗0ϕ0

= D
−1/2
H AHD

−1/2
H − 1

vol(H)
D

1/2
H KD

1/2
H .

Instead of directly dealing with M , we consider the simpler matrix

C = p−1D−1/2AHD
−1/2 − 1

pvol(G)
pD1/2KD1/2

= p−1D−1/2AHD
−1/2 − 1

vol(G)
D1/2KD1/2. (2)

where one may note that pvol(G) is the expected volume of H.

In a way, C can be thought of as an estimate for the expectation of M . Our plan is to first carefully
consider ||C|| in the next section, and then bound the norm of the difference between M and C in Section
4.

3 A bound on ||C||

In this section we prove the following theorem.

Theorem 2. Let G be a given graph with spectral gap λ and minimum degree dmin. Let H be a random
subgraph of G with edge-selection probability p. Then the matrix C as defined in (2) almost surely satisfies

||C|| = 1− λ+O
(√ log n

pdmin
+

(log n)3/2

pdmin(log log n)3/2

)
.

Proof. To bound the norm of C, we express C as a sum of two parts:

C = B +M ′

where

B = p−1D−1/2AHD
−1/2 −D−1/2AD−1/2
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and

M ′ = D−1/2AD−1/2 − 1
vol(G)

D1/2KD1/2.

Note that M ′ is equivalent to the matrix M for the graph G. Hence we have

||M ′|| = 1− λ.

It suffices to show that almost surely we have ||B|| = O
(√

logn
pdmin

+ (log n)3/2

pdmin(log log n)3/2

)
. In other words,

we wish to prove that for any ε > 0, there is an absolute constant c so that for n sufficiently large, we
can bound the following probability as follows:

Pr

[
||B|| ≥ c

(√ log n
pdmin

+
(log n)3/2

pdmin(log log n)3/2

)]
≤ ε.

The matrix B is a random matrix, where the entries bij are independent random variables defined
by:

bij =


1

p
√
didj
− 1√

didj
= 1−p

p
√
didj

if vi ∼ vj ∈ H
− p

p
√
didj

if vi 6∼ vj ∈ H and vi ∼ vj ∈ G
0 otherwise.

Here di denotes the degree of vi in G. It follows from the definition that the expected value of bij satisfies

E[bij ] = 0.

Now consider the (i, i)th entry of B2k. A typical term of such an entry is of the form

bi1i2bi2i3 . . . bi2k−1i2k

with i1 = i2k = i. Assuming this term is non-zero, this corresponds to a closed walk in G starting and
ending at vi. Taking expectations, we note that E[bi1i2bi2i3 . . . bi2k−1i2k ] 6= 0 only if each bij occurs at
least twice (since E[bij ] = 0 and all bij ’s are independent). In other words, each edge must occur at least
twice in the closed walk. We refer to a such a closed walk, which contributes to the expected trace, as a
surviving walk.

To determine the expected contribution of a surviving walk to Trace(B2k), we consider the expected
value E[bmij ]. Note that for m ≥ 2

|E[bmij ]| ≤
|(1− p)mp+ (−p)m(1− p)|

pm(didj)m/2
≤ p

pm(didj)m/2
=

1
pm−1(didj)m/2

.

The last inequality follows from the easy fact that |(1− p)mp+ (−p)m(1− p)| ≤ p when p ≤ 1.

To bound the trace of B2k, we must get a handle on the number of surviving walks and their
contribution to the trace. Consider a surviving walk of length 2k on vertices v1, . . . , vl+1 and let us
assume that the vertices are labelled by their first occurrence in the walk. Thus to get to vertex vi, we
must have followed an edge from one of v1, . . . , vi−1. We define the exposure sequence of the walk to
be a vector (a1, . . . , al) such that we first travel to vertex vi from vertex vai−1 . Clearly, ai ∈ {1, . . . , i}.
Hence there are at most l! possible exposure sequences. We seek to enumerate our surviving walks by
their exposure sequences.

5



Consider a surviving walk on vertices v1, . . . , vl+1 with exposure sequence (a1, . . . , al). Let us assume
that the walk contains edges e1, . . . , ek with multiplicitiesm1, . . . ,mk, respectively. Then the contribution
of the walk to the expected value of the trace is at most

E[bm1
e1 . . . bmkek ] =

∏
i

E[bmiei ] ≤
∏
ei

ei={vi1,vi2}

1
pmi−1(di1di2)mi/2

≤ 1(∏l
i=1 dai

)
(pdmin)2k−l

where the dai terms comes from the fact that there must exist an edge contributing 1/(pdai) to the
product since an edge incident to ai, must occur with multiplicity at least 2, while replacing all other
terms with their minimum possible values.

Given a set of vertices S = {v1, . . . , vl+1} and a exposure sequence e = (a1, . . . , al), let W (S, e, k)
denote the number of surviving walks of length 2k on vertices S with exposure sequence e. We can upper
bound the number of surviving walks by the number of surviving walks on these vertices in a complete
graph of the same size. Let W ′(k, l) denote the number of surviving walks of length 2k on the complete
graph Kl+1 such that the vertices are visited in order v1, . . . , vl+1. (Clearly the labeling does not affect
the number of paths; just the fact that the vertices are visited in a particular order.) We note that for a
given set S with |S| = l + 1, there can be at most l! exposure sequences. Furthermore, for a set S with
l + 1 vertices and an exposure sequence e, we have

W (S, e, k) ≤W ′(k, l).

This inequality is immediate, as each surviving walk on G|S corresponds injectively to a walk on the
complete graph Kl+1. Further note that this inequality holds independently of the exposure sequence e.

Füredi and Komlós [6] gave an upper bound on W ′(k, l). Recently this bound was improved by Vu,
and it is this new bound we use. Inequality (9) in Vu [12] asserts

Lemma 1.

W ′(k, l) ≤
(

2k
2l

)
2k+2(k−l)+1(l + 1)3(k−l)

We can now bound the expected value of Trace(B2k) by both applying the above bound for W ′(k, l)
and using the fact that we are counting surviving walks. We use the notation u ∼ v to denote that u
and v are adjacent in G.
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E[Trace(B2k)] ≤
k∑
l=1

∑
S={v1,...,vl+1}

∑
e=(a1,...,al)

W (S, e, k)
1(∏l

i=1 dai

)
(pdmin)2k−l

≤
k∑
l=1

∑
e=(a1,...,al)

∑
v1

∑
v2∼va1

∑
v3∼va2

· · ·
∑

vl+1∼val

W (S, e, k)
1(∏l

i=1 dai

)
(pdmin)2k−l

≤
k∑
l=1

∑
e=(a1,...,al)

∑
v1

∑
v2∼va1

∑
v3∼va2

· · ·
∑

vl+1∼val

W ′(k, l)
1(∏l

i=1 dai

)
(pdmin)2k−l

=
k∑
l=1

∑
e=(a1,...,al)

∑
v1

∑
v2∼va1

∑
v3∼va2

· · ·
∑

vl∼val−1

W ′(k, l)
1(∏l−1

i=1 dai

)
(pdmin)2k−l

...

=
k∑
l=1

∑
e=(a1,...,al)

∑
v1

W ′(k, l)
1

(pdmin)2k−l

≤
k∑
l=1

∑
e=(a1,...,al)

n

(
2k
2l

)
2k+2(k−l)+1(l + 1)3(k−l) 1

(pdmin)2k−l

≤
k∑
l=1

l!n
(

2k
2l

)
23k(l + 1)3(k−l) 1

(pdmin)2k−l

≤
k∑
l=1

lln

(
2k
2l

)
23k(l + 1)3(k−l) 1

(pdmin)2k−l

≤
k∑
l=1

n32k(l + 1)3k−2l 1
(pdmin)2k−l

=
k∑
l=1

n32ksl,k

where we define

sl,k =
(l + 1)3k−2l

(pdmin)2k−l .

For a fixed ε > 0, with ε < 1/4 we now choose

k = blog n+ log(1/ε)c (3)

and set
pdmin = α

( k

log k
)3/2

.

Note that α is a function of k (and hence n). We wish to show the following:

Claim:

sl,k ≤
( c

αmin{α, k1/2

log3/2 k
}

)k
(4)

for some absolute constant c.

7



We let

f(l) :=
sl,k
sl−1,k

=
(1 + l−1)3k−2lpdmin

l2

= c0
e3k/lpdmin

l2
(5)

where c0 is upper and lower bounded by some absolute constants. For a given value of pdmin and for the
range of 0 ≤ l ≤ k, the function sl,k either attains its maximum at l0 satisfying l0 = k and f(k) > 1, or
l0 is one of the two integers closest to the solution of f(l) = 1. Note that for the first case, we have

sl0,k = sk,k ≤ c
( k + 1
pdmin

)k
≤ c

( k

αk3/2 log−3/2 k

)k
= c

( 1

αk1/2 log−3/2 k

)k
which implies (4). We may assume that l0 is one of the two integers closest to the solution of f(l) = 1.
Furthermore, for l < k/(2 log k), we have, from (5),

sl,k
sl−1,k

>
e2 log k

k2
> 1.

Therefore we may assume that

l0 ≥
k

2 log k
.

There are two possibilities:

Case 1: l0 ≤ 100k/ log k. Then

sl0,k ≤
(
c′

l30
(pdmin)2

)k
≤

(
c
k3/(log k)3

α2(k/ log k)3

)k
=

( c

α2

)k
which implies (4).

Case 2: l0 ≥ 100k/ log k. We use the fact that l0 is one of the two integers closest to the solution of
f(l) = 1. From equation (5), we have:

sl0,k ≤
( l

3−2l0/k
0

(pdmin)2−l0/k

)k
≤

(
c′′

l
3−2l0/k
0

(l20e−3k/l0)2−l0/k

)k
≤

(c′′′e6k/l0

l0

)k
(6)
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One can check that for the given range of l0 this satisfies:

(6) ≤
(c′′′k
l20

)k
≤

(c′′′ke3k/l0

l20

)k
≤

( c0

αk1/2 log−3/2 k

)k
which again implies (4). In this section, c0, c, c′, c′′, . . . are suitably chosen integers. The proof for the
claim is completed.

We are now ready to consider bounding the norm of B.

E[Trace(B2k)] ≤ n232k max
l
sl,k

≤ 2n2
( 32c0
αmin{α, k1/2 log−3/2 k}

)k
.

Since E[||B||2k] ≤ E[Trace(B2k)], we have

E[||B||2k] ≤ 2n2
( c

min{α, α1/2k1/4 log−3/4 k}

)2k

.

By the previous equation and Markov’s equality, we have

Pr

(
||B|| ≥ 2

c

min{α, α1/2k1/4 log−3/4 k}

)
= Pr

||B||2k ≥ 22k

(
c

min{α, α1/2k1/4 log−3/4 k}

)2k


≤ E[||B||2k]

22k
(

c
min{α,α1/2k1/4 log−3/4 k}

)2k
≤

2n2
(

c
min{α,α1/2k1/4 log−3/4 k}

)2k
22k
(

c
min{α,α1/2k1/4 log−3/4 k}

)2k
≤ 2n2

22k

≤ ε

for the given ε > 0 (noting this holds as ε < 1/4) and our choice of k in (3). Hence we have proved that
almost surely we have

||C|| ≤ ||M ′||+ ||B|| = 1− λ+O
( 1

min{α, α1/2k1/4 log−3/4 k}

)
.

In a similar way, we can use the fact that ||C|| ≥ ||M ′|| − ||B|| to get

||C|| = 1− λ±O
( 1

min{α, α1/2k1/4 log−3/4 k}

)
.

It is easily verified that

O
( 1

min{α, α1/2k1/4 log−3/4 k}

)
= O

(√ log n
pdmin

+
(log n)3/2

pdmin(log log n)3/2

)
which completes the proof of Theorem 2.
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4 Bounding the Spectral Gap

In this section, we plan to give a complete proof for Theorem 1. Namely, we wish to show that for a
graph G with spectral gap λ and minimum degree dmin, a random subgraph H obtained from G with
edge-selection probability p almost surely has eigenvalues of the Laplacian LH of H satisfying:

λH = max
i 6=0
|1− ηi| = 1− λ+O

(√ log n
pdmin

+
(log n)3/2

pdmin(log log n)3/2

)
.

As a matter of notation, we let di refer to the degree of vertex vi in G and d′i refer to the degree of
vertex i in H. We also let a′ij refer to the ijth entry of AH , the adjacency matrix of H.

To prove Theorem 1, recall that the eigenvalues of the Laplacian LH satisfy

max
i 6=0
|1− ηi| = ||M ||

where M = D
−1/2
H AHD

−1/2
H − 1

vol(H)D
1/2
H KD

1/2
H . Now we write:

M = E + C +R+ S

where we define

E = D
−1/2
H AHD

−1/2
H − 1

p
D−1/2AHD

−1/2 − p

vol(G)
DD

−1/2
H KD

−1/2
H D +

1
vol(G)

D1/2KD1/2

R =
p

vol(G)
DD

−1/2
H KD

−1/2
H D − 1

pvol(G)
D

1/2
H KD

1/2
H

S =
(

1
pvol(G)

− 1
vol(H)

)
D

1/2
H KD

1/2
H

and C is as defined in (2). Thus

eij =
(
a′ij −

pdidj
vol(G)

) 1√
d′id
′
j

− 1
p
√
didj


rij =

1
pvol(G)

p2didj − d′id′j√
d′id
′
j

sij =
(

1
pvol(G)

− 1
vol(H)

)√
d′id
′
j

and

cij =
a′ij

p
√
didj

− 1
vol(G)

√
didj .

Clearly

||M || ≤ ||E||+ ||C||+ ||R||+ ||S|| .

Hence, it suffices to establish the appropriate upper bounds for the norms of E,C,R and S.

To bound these, we use the following Chernoff bounds (see, e.g. [4]).

Lemma 2. For 1 ≤ i ≤ n, let Xi be independent random variables satisfying |Xi| ≤M . Let X =
∑
iXi.

Then we have, for any a > 0,

P (|X − E[X]| > a) ≤ e−
a2

2(Var(X)+Ma/3) . (7)
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We will prove the following lemma (whose proof we delay until after the proof of Theorem 1).

Lemma 3. Assuming that pdmin � log n, almost surely every vertex vi satisfies

d′i = pdi(1 +O

(√
log n
pdmin

)
).

Let Xe, for e ∈ E(G), be the random indicator variable which is 1 if e ∈ H and 0 otherwise. We can
write

vol(H) =
∑

e∈E(G)

2Xe. (8)

We can show that almost surely

|vol(H)− pvol(G)| < 2
√
pvol(H)g(n) (9)

for any function g(n) that goes to infinity as n approaches infinity.

We also have the following lemma (whose proof will be given later).

Lemma 4. Suppose that pdmin � log n. Almost surely the vector χ with χ(i) = (d′i−pdi)/
√
pdi satisfies

||χ||2 ≤ (1 + o(1))n.

Proof of Theorem 1. We note that we already established a bound on ||C|| in the last section. By
Theorem 2, we have that almost surely

||C|| = 1− λ+O
(√ log n

pdmin
+

(log n)3/2

pdmin(log log n)3/2

)
.

For convenience, we define

β =

√
log n
pdmin

+
(log n)3/2

pdmin(log log n)3/2
.

For ||R||, almost surely we have the following by using equation (8) and the Cauchy-Schwartz in-
equality.

||R|| = max
||y||=1

〈y,Ry〉

≤ max
||y||=1

1
pvol(G)

∑
i,j

yiyj
d′i(d

′
j − pdj) + (d′i − pdi)pdj√

d′id
′
j

=
1

pvol(G)
max
||y||=1

{∑
i

√
d′iyi

∑
j

(d′j − pdj)yj√
d′j

+
∑
i

(d′i − pdi)yi√
d′i

∑
j

pdjyj√
d′j

}
≤ 1

pvol(G)
max
||y||=1

{(∑
i

d′i
)1/2 ||y|| (∑

j

(d′j − pdj)2

d′j

)1/2 + ||y||
(∑

j

(d′j − pdj)2

d′j

)1/2(∑
j

(pdj)2

d′j

)1/2}
≤ (2 + o(1))

√
n

pvol(G)

≤ (1 + o(1))
2√
pd

= o(β).
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For ||S||, by using (9) and the Cauchy-Schwartz inequality we have:

||S|| = max
||y||=1

〈y, Sy〉 = max
||y||=1

∑
i,j

|yiyj
( 1
pvol(G)

− 1
vol(H)

)
|
√
d′id
′
j

≤
( 1
pvol(G)

− 1
vol(H)

)
max
||y||=1

∑
i,j

|yi
√
d′i||yj

√
d′j |

≤
2
√
pvol(G) log(n)

pvol(H)vol(G)
max
||y||=1

(∑
i

|yi
√
d′i|
)2

≤
2
√
pvol(G) log(n)

pvol(H)vol(G)
(∑

i

y2
i

)(∑
i

d′i
)

= O
(√ log n

pvol(G)
||y||2

)
= o

( log n√
pdmin

)
= o(β).

Finally, it remains to bound ||E||. We recall

eij =
(
a′ij −

pdidj
vol(G)

)( 1√
d′id
′
j

− 1
p
√
didj

)

= cij
p
√
didj −

√
d′id
′
j√

d′id
′
j

.

Thus we have

||E|| = max
||y||=1

〈y,Ey〉

= max
||y||=1

∑
i,j

yiyjci,j

√
d′i(
√
d′j −

√
pdj) + (

√
d′i −

√
pdi)

√
pdj√

d′id
′
j

.

Let y′i = yi(
√
d′i −

√
pdi)/

√
d′i and y′′i = yi

√
pdi/

√
d′i. Then we have almost surely

||E|| ≤ max
||y||=1

〈y, Cy′〉+ 〈y′, Cy′′〉

≤ max
||y||=1

||C|| ||y′||+ ||C|| ||y′|| ||y′′||

≤ O(β).

This last observation follows from Lemma 3, which implies

||y′|| ≤ ||y||
(

1− 1√
1 +O(

√
log n/pdmin)

)
= O(β)

and, ||y′′|| = (1 + o(1))||y|| = O(1). Note that we have already observed that ||C|| = O(1). Combining
these results, we have

max
i 6=0
|1− ηi| = ||M ||

≤ ||E||+ ||C||+ ||R||+ ||S||
≤ 1− λ+O(β).
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In the other direction, the lower bound follows as ||M || ≥ ||C|| − ||E|| − ||R|| − ||S|| = 1− λ+O(β).

This gives the following bound on the spectral gap of H, completing the proof of Theorem 1:

λH = 1−max
i 6=0
|1− ηi| = λ−O(β).

It remains to prove Lemmas 3 and 4.

Proof of Lemma 3. For a vertex vi ∈ G, we can write d′i =
∑
vj∼vi Xj where Xi is the random indicator

variable having value 1 if {vi, vj} ∈ E(H) and 0 otherwise. Then E[d′i] = pdi and Var(d′i) = dip(1− p).
By the Chernoff bounds, we have

Pr(|d′i − pdi| > a) ≤ exp
(
− a2

2(dip(1− p)) + a/3

)
.

Setting a = 2
√

log(n)pdi, we have that

Pr(|d′i − pdi| > a) ≤ exp
(
− 4pdi log(n)

2pdi(1− p) + 4
√
pdi log(n)/3

)
≤ n−2+o(1)

Thus almost surely, for all i we have |d′i − pdi| ≤ 2
√

log(n)pdi. This can be restated as, for all i,

|d′i − pdi| ≤ pdi

√
log n
pdi

= pdiO

(√
log n
pdmin

)
.

The following proof of Lemma 4 is analogous to Lemma 3.3 in [3].

Proof of Lemma 4. For a vertex vi ∈ G, let Xi = (d′i−pdi)2 and X =
∑n
i=1

Xi
pdi

. For each i, we can write

Xi =
( ∑
vj∼vi

Xij − p
)2

where Xij ’s are the indicator random variables of the event that vi adjacent to vj in H (as denoted by
vi ∼ vj). We define

xij =
{
Xij − p if vi ∼ vj ,
0 otherwise.

Thus, E[xij ] = 0, and Xi = (
∑
j xij)

2. Also,

E[Xi] = Var(d′i) = E[
∑
vi∼vj

x2
ij ] < pdi

E[X2
i ] = E[(d′i − pdi)4]

= E
[( ∑

vi∼vj

xij
)4]

=
∑
i∼j

E[x4
ij ] + 6

∑
j 6=k

vj∼vi,vk∼vi

E[x2
ijx

2
ik]

≤ pdi + 6p2d2
i .
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If vi 6∼ vj and vi 6= vj , then Xi and Xj are independent. If vi ∼ vj and vi 6= vj , we have

E[XiXj ] = E[(d′i − pdi)2(d′j − pdj)2]

= E[(
∑
vk∼vi

xik)2(
∑
vl∼vj

xlj)2]

=
∑

vk∼vi,vl∼vj
{i,k}6={l,j}

E[v2
ikv

2
lj ] + E[v4

ij ]

≤ p2didj + p.

Thus,

Var(Xi) ≤ pdi + 5p2d2
i

coVar(Xi, Xj) ≤
{

0 if vi 6∼ vj ,
p otherwise.

Therefore

E[X] =
n∑
i=1

1
pdi

E[Xi] < n

Var(X) =
n∑
i=1

1
p2d2

i

Var(Xi) + 2
∑
i<j≤n

1
wiwj

coVar(Xi, Xj)

≤ (5 +
1

pdmin
+

1
d

)n

≤ 6n.

Using Chebyshev’s inequality, we have, for any a > 0,

Pr(|X − E[X]| > a) ≤ Var(X)
a2

.

Setting a =
√
ng(n), with g(n) � 1, then almost surely we have X ≤ (1 + o(1))n. From the definition,

||χ||2 = X. Thus, almost surely

||χ||2 ≤ (1 + o(1))n

as desired.

5 Concluding remarks

In this paper, we examine the spectral relationship between a host graph G and its random subgraph
with edge-selection probability p. If G has n vertices with a spectral gap λ and minimum degree dmin,
then we prove that a random subgraph of G on n vertices with edge-selection probability p almost surely
has a spectral gap of λ−O

(√
logn
pdmin

+ (log n)3/2

pdmin(log log n)3/2

)
. The special case of having the host graph as the

complete graph on n vertices and a random subgraph H chosen with edge-selection probability p is the
Erdős-Rényi graph G(n, p). Since the complete graph Kn has eigenvalue λ1 = n/(n− 1), our bound for
λH is |1− λH | = O(

√
(log n)/n) which is off by a factor of

√
log n of the best known spectral bound for

G(n, p). Therefore there is room for improvements (e.g., by a factor of
√

log n) concerning the statements
of the main theorem here.
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