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a b s t r a c t

A sensor network is typically modeled as a collection of spatially distributed objects with
the same shape. The resilience of a sensor network is the number of sensors that can be
removed without disrupting the coverage which is the network’s purpose. We introduce
two new extremal problems for networks of one-dimensional sensors (lines, rays, and
segments) in the two-dimensional plane, where network coverage means protecting
locations from external intruders. (1) How well is it possible to simultaneously protect
k locations with n (line/ray/segment)-shaped sensors from up to k attackers? (2) How
well is it possible to simultaneously protect k locations with n ray-shaped sensors from
a single attacker? We show first that (1) and (2) are questions to be answered separately
and provide complete answers for k = 2 locations for both questions. We also provide
asymptotically tight answers for question (1) when k = 3, 4 and the locations are in
convex position, and provide a general lower bound for question (1) that matches the
specific asymptotic results.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The physically distributed nature of wireless sensor networks, which consist of spatially distributed sensors deployed
o monitor physical conditions in their environment, lends particular importance to the network’s geometry.

A geometric model is chosen to represent the network’s coverage: disks in the plane [5] can model the effective range
f cell towers or broadcasting drones; line segments [1,8], rays [3,6], or infinite lines, might abstract the behavior of a
aser beam or other barriers designed to detect or impede intruders. In each case the geometry of the network of sensors
s a major factor in the range of possibilities for the coverage of such a network.

Previous work has examined the resilience of sensor networks [2–4,6,8], broadly defined as the number of sensors
hose removal from a network does not diminish its coverage. Resilience is distinct from k-barrier coverage [7], which
eeks k-fold coverage. Some results on resilience are algorithmic and describe disk networks [2] or ray networks [6], some
esults describe computational complexity [6], and others explore taxonomy of possible networks [3].

Motivated by previous work on the resilience of ray sensor networks, we seek in this paper to understand the following
ery natural situation: Suppose intruders approach a set of k point locations, protected by a network of n ray sensors, from
far and from an unknown direction. The quality of a network of sensors, then, can be measured in how many sensors
ust be disabled in order for intruders to reach their destinations. That is, how many of the rays must be removed before
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the target points are exposed, i.e. until each lies in an unbounded region. There are two natural and distinct notions of
resilience for this kind of coverage, which lead to two natural extremal questions regarding how well a set of points can
be protected:

Question 1. Given k designated target locations and allowing the placement of n ray barriers, what number of those barriers
is always sufficient and sometimes necessary to remove so that all target locations are exposed?

With regard to this question we establish a general lower bound of the form k
k+1n+O(1), and prove that such a bound

is tight for k = 1, 2, 3, and for k = 4 provided the points are in convex position. This first question models a situation
where there are as many intruders as target locations. It turns out that Question 1 has the same answer whether the
network consists of line segments, rays, or infinite lines (see Proposition 3), but interestingly, this does not hold when
there is only one intruder who must reach all locations, which is modeled by the following question:

Question 2. Given k designated target locations and allowing the placement of n ray barriers, what number of those barriers
is always sufficient and sometimes necessary to remove so that a single unbounded region contains all of the targets?

We mention that these questions, while motivated by the topic of ray sensor networks, are natural questions in
combinatorial geometry regarding how well a collection of rays can ‘protect’ a set of k points. As mentioned above, the
first question is agnostic to whether the barriers considered are rays, lines, or segments, but for the second question, rays
are the only interesting type of barrier, in a sense.

We also find the answer to Question 2 quite interesting. While in the k = 1 case this is identical to the answer to
Question 1 above (and hence, asymptotically is n

2 ), we show that for k = 2 the answer differs and is actually asymptotically
3
4n rather than 2

3n.
The rest of this paper is organized as follows: in Section 2 we further formalize Question 1, give a general lower bound

for any number of locations and sensors in general position, and give asymptotically tight results for k = 1, 2, 3 with
locations in general position and for k = 4 locations in convex position; in Section 3 we address Question 2 and describe
the cases when k = 1 and 2.

2. Exposing points

The first extremal question we examine asks how well a collection of locations can be protected from multiple
intruders. This question is interesting and natural for rays, but it is also natural to define the question for lines and
segments.

Let p be a point in the plane, and consider a partition of the plane into connected regions. We say p is exposed if the
region containing p is unbounded, and that the partition exposes p. Similarly, a set P of points is exposed if every point
in it is exposed.

Consider a finite set P of points, and suppose the plane partition is induced by a set R of rays, a set L of lines, or a set
S of segments. A subset X ⊆ R is an exposing set if the partition induced by R \ X exposes P . The definition is the same
for an exposing set of lines or of segments.

We define rk(n) to be the smallest integer so that for any k points, any set of n rays has an exposing set of size rk(n).
We call the analogous quantity when lines are used instead of rays ℓk(n), and the quantity for segments we denote by
sk(n). When the points are in convex position, we call these quantities rck (n), ℓ

c
k(n) and sck(n) respectively.

A ray emanating from a point p is said to be anchored at p. A witness set is a set of k rays, one anchored at each of
the k points.

Observation 1. A witness set W induces an exposing set E(W ) composed of those rays in X (resp. lines or segments) its rays
intersect.

Thus, a witness set W can be thought of as a set of routes of attack for k intruders attacking the k points that removing
E(W ) exposes. Witness sets are naturally tied to exposing sets, in that for each exposing set there is a witness set that
witnesses the fact that it exposes the target points.

Lemma 2. Let L be a set of n lines and P a set of k points. Suppose X ⊆ L is an exposing set of lines. Then there exists a witness
set W such that E(W ) ⊆ X.

Proof. Consider a point p ∈ P . It suffices to show that there is a ray anchored at p completely contained in the unbounded
region of the plane partition induced by L \ X . If L = X then we may choose any ray, so suppose X ̸= L.

The unbounded region containing p is convex, as it is the intersection of half-planes, so its boundary contains at least
one unbounded ray r . The ray anchored at p parallel to r does not intersect any element of X . □

We call such a set W a witness set of X , as its existence witnesses that X is an exposing set. From Lemma 2 it is clear
that finding an exposing set of line barriers is the same as finding a witness set. Note that Lemma 2 implies that if X is
an exposing set for a set of lines L, and L′ is another set of lines, then X ∪ L′ is an exposing set for L ∪ L′.
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Proposition 3. rk(n) = ℓk(n) = sk(n) ≥ rck (n) = ℓck(n) = sck(n).

Proof. Fix a collection P of k points, and let L be a set of n lines. Choose a set of rays R so that each ray in R has a distinct
line of L as its supporting line, and so that each ray intersects all lines intersected by its supporting line. Choose a set of
segments S supported by lines in L similarly.

Suppose L′
⊆ L is an exposing set of minimal size. Let R′

⊆ R be the set of rays whose supporting lines are in L′, and
let S ′

⊆ S be similar for segments. Then P is also exposed by R \ R′ and S \ S ′, because each point of P is in an unbounded
region according to the partition induced by L \ L′, which is a refinement of the partitions according to R \ R′ and S \ S ′.

On the other hand, the supporting lines of an exposing set of rays (or of segments) are witnessed by the same witness
set that witnesses the rays. Since P was arbitrary, this means the minimal size of an exposing set for any collection of k
oints is the same whether we are using line barriers, ray barriers, or segment barriers. □

emark. Proposition 3 allows us to address the value of rk(n) by examining only line barriers, since the arguments using
hese seem to be more tractable.

We note in the next lemma that for fixed k, adding one barrier to any set of barriers can increase the size of the
mallest exposing set by at most one, and of course cannot reduce the size of the smallest exposing set.

emma 4. 0 ≤ rk(n + 1) − rk(n) ≤ 1

Next we prove an asymptotic lower bound for rk(n) for all k. We then prove asymptotically matching upper bounds
or k = 1, 2, 3, and 4. The upper bound proofs have a common flavor, in that we choose a small collection of canonical
itness sets W depending on the set of points P , show that each E(W ) is always an exposing set for P , and moreover
hat its size is small enough. In spite of this common flavor, generalizing these upper bounds as with the lower bounds
as proven elusive.

heorem 5. rk(n) ≥ rck (n) ≥
⌈ k

k+1n
⌉

− k

Proof. Let P be any set of k points in the plane, convex or not. We construct a set of lines so that any exposing set has
the desired size.

First suppose that n = a(k + 1). Choose a different slopes that are not the slope between any pair of points in P . For
each chosen slope t , place k + 1 line barriers so that each pair of these barriers closest to each other has a single point
between them (see Fig. 1 for an example with a = 2 and k = 6). These slope t barriers we will call t-barriers.

Consider an exposing set X of minimal size, and let W be a witness set as guaranteed by Lemma 2. We proceed to
lower-bound |E(W )|, and hence |X |.

Fix a slope t among the chosen slopes and let k′(t) denote the number of rays in W of that slope. Note that t induces
an order on P and the t-barriers, and each ray anchored at p ∈ P not parallel to t intersects all t-barriers either above or
below p.

From this it is easy to see that rays in W cross at least k − k′(t) t-barriers.
Thus

|X | ≥ |E(W )| ≥

∑
t

(k − k′(t)) =

∑
t

k −

∑
t

k′(t) ≥ ak − k =
k

k + 1
n − k.

If instead n = a(k+1)+b, just add the additional b < k+1 barriers in a group of parallel barriers with slope different
from the rest of the groups. The argument above applies to this group as well, except that we only have b total barriers
instead of k + 1, so the barriers from this group crossed by witness rays is now b − k′(t). This implies

|E(W )| ≥ ak + b − k =
k

k + 1
(n − b) + b − k ≥

⌈
k

k + 1
n
⌉

− k. □

Because the proof of Theorem 5 did not assume convexity of the k points, it holds as a lower bound both for rk(n) and
c
k (n).

emma 6. Suppose P is a set of any number of points and L a set of lines such that at most one line intersects the convex hull
f P (and no line of L contains a point of P). Then there is an exposing set in L of size at most ⌊(|L| − 1)/2⌋.

roof. Suppose there is no line through the convex hull of P . Then all points lie in the same convex region of the partition.
ick an arbitrary point p in that region, and line ℓ ∈ L. Consider the rays from p parallel to ℓ. One of these rays witnesses
n exposing set of size at most

⌊ 1
2 (|L| − 1)

⌋
by the pigeonhole principle.

If there is a line ℓ ∈ L through the convex hull, the points in P are split into two regions. The proof proceeds similarly,
taking rays starting at two arbitrary points, one in each of the two regions, parallel to ℓ. □

Lemma 6 allows to compute an exact bound when k = 1.
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Fig. 1. Two sets of 7 t-barriers for a set of 6 points.

Corollary 7. r1(n) = ⌊
1
2 (n − 1)⌋.

roof. Let L be any set of n lines not containing some target point p. By Lemma 6, there is an exposing set of size at most
1
2 (n − 1)

⌋
. Thus, r1(n) ≤

⌊ 1
2 (n − 1)

⌋
. Furthermore, Theorem 5, with k = 1, implies that r1(n) ≥

⌊ 1
2 (n − 1)

⌋
. □

heorem 8. r2(n) =
2
3n − O(1).

Proof. Let L = LI ∪ LE be any set of n lines not containing points p and q, where LI are the lines that pass between p and
(the ‘‘interior’’ lines), and LE are the rest (the ‘‘exterior’’ lines). Let |L| = n and |LI | = i, so that |LE | = n − i.
LE is clearly an exposing set of size n − i, witnessed by the rays along the line through p and q pointing outward. On

he other hand, another exposing set of size at most i + n−i
2 is obtained by removing all elements of LI , and at most half

f the elements of LE (per Lemma 6).

r2(n) ≤ max
i

{n − i, i + (n − i)/2}

This minimum occurs when the two bounds are equal (as one bound is increasing and the other decreasing in i), and
ence when i = n/3, from which we obtain r2(n) ≤ 2n/3 as desired. □

A more careful argument, keeping track for the floors and negative-one term in Lemma 6, implies r2(n) = ⌊
2
3 (n − 1)⌋

xactly but, although not difficult, the proof of the tighter lower bound is more complicated than illuminating, so we
rovide the details in Appendix 5.

heorem 9. r3(n) =
3
4n − O(1).

Proof. Let a, b, and c be any three points, listed in clockwise order. Consider the lines through each pair of these, with
he rays at their ends labeled a1, a2, b1, b2, c1, and c2, in clockwise order according to the nearest point, as in Fig. 2.

Let L be any set of n lines not containing a, b, or c , and separate L into ‘‘interior’’ and ‘‘exterior’’ lines LI and LE as before,
ccording to whether they intersect the convex hull of {a, b, c} or not, respectively. As before, let |L| = n and |LI | = i, so
hat |LE | = n − i.

Let A1 be those lines of LI intersecting a1, B2 be lines of LI intersecting b2, and so on. For lines of LI that do not intersect
ny of these, include them with A1 as well.
Letting L1 := A1 ∪ B1 ∪ C1 and L2 := A2 ∪ B2 ∪ C2, we have that LI is the disjoint union of L1 and L2, since a line

ntersecting any two of these labeled ends does not separate any of a, b, or c. Then either |L1| ≤
i
2 or |L2| ≤

i
2 ; without

oss of generality, assume |L1| ≤
i
2 .

LE ∪ L1 is an exposing set, as witnessed by W1 = {a1, b1, c1}, and has size at most n −
i
2 .

For a second bound, we again note that LE ∪ {ℓ} satisfies the conditions of Lemma 6 for any ℓ ∈ LI , and so there is an
exposing set for LE ∪ {ℓ} = L \ (LI \ {ℓ}) of size at most

⌊ 1
2 (n − i)

⌋
, which together with the rest of LI yields an exposing

et of size at most i + 1 (n − i).
2
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Fig. 2. A canonical witness set of three rays for a set of three points.

Fig. 3. The three canonical witness sets for 4 points in convex position; witness sets are grouped by dash type.

As before, the minimum of these two upper bounds is maximized when they are equal (again, as one bound is
ncreasing and the other decreasing), and hence when i∗ =

n
2 . Thus r3(n) ≤ n − i∗/2 =

3
4n.

From Theorem 5 we have that ⌈
3
4n⌉ − 3 ≤ r3(n), so the result follows. □

heorem 10. rc4(n) =
⌈ 4

5n
⌉

− O(1).

roof. Let a, b, c , and d be points in convex position, and suppose L is a set of n lines containing none of the four points.
et LI and LE be the set of lines in L which cross the convex hull of the points (‘‘internal‘‘) and the set which do not
‘‘external’’), respectively. Again, let |L| = n and |LI | = i, so that |LE | = n − i.

As before, using Lemma 6 yields an exposing set for LE ∪ {ℓ} (where ℓ ∈ LI ) which together with the rest of LI is an
xposing set of size at most i − 1 + ⌊

1
2 (n − i)⌋.

Consider the diagram in Fig. 3. Group the rays anchored at the points and pointing outward along the line between
ach pair of points, as in the figure. Every line of LI avoids intersecting one of these groups entirely, so let R, G, and B be
he sets of lines that avoid the red, blue, and green rays respectively (the dotted, dashed, and solid rays). If a line does
ot intersect any, include it along with R.
Since LI = R ∪ G ∪ B, one of R, G, or B (say, R) must contain at least 1

3 i lines; therefore, G ∪ B contains at most 2
3 i lines.

But LE ∪ G ∪ B is an exposing set, witnessed by the red rays, and thus rc4(n) ≤ n − i + 2
3 i = n −

1
3 i.

Together these bounds give rc4(n) ≤ maxi min
{
i − 1 + ⌊

1
2 (n − i)⌋

n −
1
3 i

.

As before, the minimum of these upper bounds is maximized when they are equal, and hence when i∗ =
3
5 (n + 2).

This implies rc4(n) ≤ ⌊n −
1
3 (

3
5 (n + 2))⌋ = ⌊

2
5 (2n − 1)⌋ ≤ ⌊

4
5n⌋. Together with the result of Theorem 5, we have

4
5n

⌉
− 4 ≤ rc4(n) ≤ ⌊

4
5n⌋, so that rc4(n) =

⌈ 4
5n

⌉
− O(1). □

The case for k ≥ 5, unfortunately, only gets more complicated. While we suspect that Theorem 5 provides the proper
symptotics, for the case k = 5 the proof balloons in difficulty even when the points are assumed to be in convex position.
ndeed, already in the case k = 5, the types of ‘pairing’ strategies used when k = 3, 4, where a number of candidate
xposing sets are compared and the best taken, fails when run naively as there are more potential ‘escape routes’ from
ach of the k = 5 points. For k = 5, it actually is possible to recover the result that rc5(n) =

5
6n + O(1) by recording

all possible ‘escape routes’, and running a linear program but this does not easily generalize to k ≥ 6 nor is the proof it
yields enlightening. Furthermore, while we have no construction to suggest that the convex and general positions differ,
we have no proof of this for k ≥ 4.

We conjecture that rck (n) =
k

k+1n + O(1) and suspect that this may remain the case for points in general position, but
t seems a different approach will be required to prove this for general k.
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Fig. 4. The partition of rays in Theorem 13.

. Simultaneously exposing points

efinition 11. Let P be a set of points in the plane, and consider a partition of the plane into connected regions. We say
he points of P are jointly exposed, or that the partition jointly exposes them, if they are contained in the same region
nd that region is unbounded.
A joint exposing set for a set of rays (resp. segments) R is a subset X ⊆ R such that the partition induced by R \ X

ointly exposes the points of P . Similarly, a joint witness set is a set of rays, one anchored at each point of P , with a
ommon direction.
Rk(n) is the smallest integer so that for any k points, any set of n rays has a joint exposing set of size Rk(n).

bservation 12. A joint witness set W induces a joint exposing set J(W ) composed of those rays it intersects.

Previously, when studying rk(n), we observed that the quantity was the same regardless of whether we considered ray
arriers, line barriers, or segment barriers. Interestingly, this is not the case when studying Rk(n), where it turns out that
nly ray barriers are interesting.
Indeed, if a finite number of segments is used to partition the plane, then there is only one unbounded region, and

ence jointly exposing a set of points is the same as exposing the set of points. If lines are used, then placing all lines
etween two points forces one to remove all of them to put the points in the same unbounded region. If rays are used,
owever, the extremal problems for exposing a set of points and for jointly exposing them are genuinely different.
Our lower bound argument will still take the form of a construction: an arrangement of rays which requires at least a

articular fraction of them to be part of any joint exposing set. We provide and argue bounds for such a construction for
2(n) in the remainder of this paper, but the (asymptotically) matching upper bound is relatively simple and, as before,
elies on finding canonical witness sets, as we argue in the next theorem.

In arguing each bound we will make use of some results from [6] about an auxiliary graph, called the barrier graph,
sed for the case of finding a path between two points by removing some of a set of ray barriers. The barrier graph for a
air of points and set of ray barriers is the graph whose vertices are the barriers and which has an edge for any pair of
arriers which alone separates the two points. A vertex cover of a barrier graph, then, is a set of barriers whose removal
eaves the two points in the same region, bounded or unbounded.

This notion is crucial to the problem of finding a joint exposing set for two points. Indeed, removal of any joint exposing
et yields an unobstructed path between the two points, and hence its rays must form a vertex cover of the associated
arrier graph (although typically not a minimal one).

heorem 13. R2(n) ≤
3
4n

roof. Let p and q be points in the plane, and X any collection of n rays not containing either point. Without loss of
enerality, suppose p and q lie on a common horizontal line ℓ and p is left of q. Partition X into four subsets (see Fig. 4):
, those rays whose supporting line intersects ℓ left of p; R, those rays whose supporting line intersects ℓ right of q; A,
hose rays themselves intersecting the segment pq from above; and B, those rays themselves intersecting pq from below.
Include rays parallel to pq along with L.

As argued by [6], X separates the points p and q if and only if some pair of rays in it does. Moreover, two rays from A
cannot be in such a pair, nor can two rays from B or two rays from L∪R; in addition, if a ∈ A, b ∈ B, then a and b separate
from q if and only if they intersect, while if c ∈ A ∪ B and d ∈ L ∪ R, then c and d separate the two points if and only if

hey intersect on the same side of ℓ as the anchor of c.
Clearly then, each of A, B, L, and R is on its own insufficient to separate p from q without a ray from one of the other

ets, and the plane partition induced by any one of them jointly exposes p and q. Thus, each of (X \A), (X \ B), (X \ L), and
X \ R) is a joint exposing set for p and q. One of |A|, |B|, |L| or |R| has size at least n/4, and the result follows. □
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Fig. 5. The relative arrangement of some of the rays in P (solid), Q (dotted), and M (dashed).

We now give a construction yielding a lower bound for R2(n) that asymptotically matches the upper bound of Theo-
em 13. While the construction has some similarities to the case of line barriers, the ray barriers involved make analysis
ignificantly more difficult. In particular our analysis will heavily use the notion of barrier graphs introduced above.

heorem 14. R2(n) =
3
4n − O(1).

To prove Theorem 14 we will provide a general construction of a set X of n rays around a pair of points for the case
hen n = 8m, which only has large joint exposing sets of size at least 6m − O(1) =

3
4n − O(1).

Fix points p, q at (−δ, 0) and (δ, 0), and fix points a and b at (−δ′, 0) and (δ′, 0) for some 0 < δ′ < δ < 1 to be precisely
determined later.

Note that a subset of X is a joint exposing set for a and b if and only if there is some point t that is jointly exposed
along with a and b, which is in an unbounded region of the plane partition due to X (so that t is initially exposed without
removing any ray in X). This point can be thought of as marking a target region in which to jointly expose a and b.

The anchors of all rays in X will be located on the unit circle, as follows (see Fig. 5):

• 8m anchor locations are chosen by placing 4m of them uniformly around the top open half of the unit circle and 4m
uniformly around the bottom open half and each half indexed 1, 2, . . . , 4m from left to right. (Using open halves
just avoids anchoring a ray on the line between p and q.)

• P , a set of 2m rays intersecting the point p, where m are anchored uniformly around the top of the unit circle in
locations 1, 4, 7, . . . , and m are anchored uniformly around the bottom of the unit circle antipodal to these (so, in
locations 4m, 4m − 3, . . . ).

• Q , a set of 2m rays similarly placed intersecting q, in locations 2, 5, 8, . . . , on the top of the unit circle and
4m − 1, 4m − 4, . . . , around the bottom.

• M , a set of 4m rays that intersect the origin. These anchors are placed in pairs, where the distance between members
of a pair is δ′′, and so that the midpoints of the pairs are at locations 3, 6, 9, . . . , on the top of the unit circle and
4m − 2, 4m − 5, . . . around the bottom. Note that this placement gives antipodal rays of M the same supporting
line; if one perturbs the anchors around the unit circle a small enough amount, the argument will still follow.

The rays of P,Q , and M are placed so that no anchor is on the x-axis, and so that no two rays are parallel.
Our choice of δ, which is the distance from p or q to the origin, determines a circular permutation of the anchors in

X and their intersections with the unit circle (two per ray, one at the anchor and one not). There is some value of δ such
that any smaller positive value induces the same permutation, so choose this or any smaller positive value for δ.

In particular, this choice ensures that as one traverses the top of the unit circle in a clockwise fashion, one witnesses
the tail of a ray in P followed by an anchor of a ray from P , then a ray’s anchor from Q followed by the tail of a ray from
Q , and then a pair of ray tails from M and a pair of anchors from M (the tails each contain an anchor), after which the
pattern repeats. The same pattern is observed traversing the bottom of the unit circle in a clockwise fashion, except the
order of consecutive anchors and tails from P or Q is reversed. This fact is key to understanding neighborhoods in G and
thus how vertex covers of G are formed.

After fixing such a δ, there is some circle centered at the origin that intersects the interior of each of the unbounded
regions of the plane as partitioned by X , and without loss of generality we can always choose t to be on this circle, in any
of these regions’ interiors.
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Fig. 6. The angle α from the positive x-axis to the line through t and the midpoint of ab and the partition of the unit circle into half-open arcs
hich group the rays anchored on it.

Choose 0 < δ′ < δ, which controls the distance from a and b to the origin, so that the triangle with vertices a, b, and
contains at most one anchor from a ray of X . Finally, choose δ′′ so that each pair anchored near the same designated

ocation intersects exactly the same set of other rays in X . Ideally, we would place these paired rays in the exact same
ocation, but general position forbids this, so we use this δ′′ to get as close as is needed.

Since a, b, and t must have unobstructed paths to each other when jointly exposed, the corresponding joint exposing
et forms a vertex cover of each of the barrier graphs Ga,b and Gt,b for the point pairs (a, b) and (t, b), respectively. Note
that it also forms a vertex cover for the barrier graph Gt,a, however as any joint vertex cover of the first two graphs has
this property, we will not explicitly exploit it. This connection to joint exposure of a and b yields the following lemma.

Lemma 15. If C is a minimum vertex cover of G, then |C | ≤ R2(n).

Our goal, then, is to show that all vertex covers of G := Ga,b ∪ Gt,b contain at least 6m − O(1) vertices, for any choice
of t .

Fix some point t in an unbounded region of the partition according to X , and suppose without loss of generality that
t is in the top half plane. The line through the origin and t forms an angle α with the positive x-axis, normalized to be
between 0 and 1, where α = 1 corresponds with π radians (See Fig. 6). This line and the x-axis together divide the unit
circle into four regions, labeled 1 through 4 as in the figure.

These regions partition the rays in P , Q , and M further into four subsets each, according to the region containing the
ray’s anchor. For the rays anchored in region i, call these subsets P i(α), Q i(α), and M i(α), or P i, Q i, and M i when α is clear
from context.

We create an auxiliary graph whose vertices are the sets P i, Q i, and M i, which we will call Gα = (Vα, Eα). Gα has an
edge between a pair A, B ∈ Vα if and only if G has an edge in A × B. A vertex cover of Gα then corresponds to a vertex
cover of G by simply taking the union of the vertices of Gα .

We will refer to the cardinalities of the vertices in Vα (which are sets of rays) as their weights. The weights of these
vertices are as follows, where the −O(1) terms account for rounding.

|P1
| = |P3

| = |Q 1
| = |Q 3

| = αm − O(1)

|P2
| = |P4

| = |Q 2
| = |Q 4

| = (1 − α)m − O(1)

|M1
| = |M3

| = 2αm − O(1)

|M2
| = |M4

| = 2(1 − α)m − O(1)

First, notice that each A ∈ Vα is an independent set of G, and moreover that many pairs A, B ∈ Vα do not share an
edge, recorded as dots in the modified adjacency matrix in Fig. 7.

Inspecting the edges in Eα , we see that they correspond to specific types of subgraphs of G. Recall that a half graph
with 2x vertices is a bipartite graph with vertices u1, . . . , ux and v1, . . . , vx that has an edge (ui, vj) whenever i ≤ j. A
doubled half graph is the result of doubling the vertices on one side of a half graph, including adjacencies. Refer to Fig. 9
to see all of Gα with these edge types labeled.

Lemma 16. If (A, B) ∈ Eα , then the edges (r1, r2) ∈ A×B of G, induce a subgraph of G that is either a complete bipartite graph,

a half graph, or a doubled half graph.
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Fig. 7. The modified adjacencies of Gα , where · represents a non-edge, c represents a complete edge, and h represents a half edge.

roof. We highlight the main idea; Fig. 7 records all complete, half (and doubled half), and empty pairs. Complete bipartite
raphs occur when all pairs of rays from the respective regions form barriers; an example of this is M1 and Q 3 – all pairs
f such rays are separating b from t .
Half edges occur when the position of the rays around the circle determine whether or not the corresponding pair

orms a block. As an example, consider P1 and Q 1 – here, depending on whether rays have an intersection below the pq
ine or not, they may form a barrier or not. That this forms a half graph is easily seen, since if a ray in Q 1 forms a barrier
ith a P1 ray, it will also form a barrier (from t) with all steeper P1 rays. Doubled half graphs occur similarly, with the

M rays (as these are double in the construction.) □

With Lemma 16 in hand, we will refer to edges of Gα as either complete edges (for complete bipartite subgraphs of G)
or half edges (for both half subgraphs and doubled half subgraphs of G), and we will refer to the subgraph of Gα induced
by the complete edges as Gc

α , while the subgraph induced by the half edges is Gh
α .

Fig. 7 shows a modified adjacency matrix of Gα , indicating complete edges with a c, half edges with an h, and non-edges
with a dot.

With the next lemma we connect these edge labelings to vertex covers; in any vertex cover of our barrier graph G, at
least one end of each complete edge of Gα is included as a set in the cover. What this means is that vertex covers of G
can be viewed as extensions of vertex covers of the auxiliary graph Gc

α by taking the union of the sets in the cover of Gc
α

nd adding rays appearing in the ends of edges of Gh
α .

emma 17. Let C be a vertex cover of G, and let (A, B) ∈ Eα be a complete edge. Then either A ⊆ C or B ⊆ C.

Proof. Suppose A ̸⊆ C . Then ∃x ∈ A \ C . x is adjacent to every element of B since (A, B) is complete, so B ⊆ C , because C
is a vertex cover of the edges of G. □

In light of Lemma 17, we can bound the size of all vertex covers of G below by beginning with vertex covers of Gc
α

and showing that any extension to a vertex cover of G includes at least 6m − O(1) rays in total. Moreover, we need only
show that this is the case for minimum vertex covers of G.

The only vertex covers of G that do not immediately satisfy the target lower bound of 3
4n − O(1) = 6m − O(1) are

hus those that extend vertex covers of Gc
α with weight less than 6m − O(1); without loss of generality, we may extend

inimal covers of Gc
α . For such a minimal cover C c of Gc

α , the rays we add to get a minimum vertex cover of G are in the
omplement V c

α \ C c , which is a maximal independent set in Gc
α .

For any α there are 5 maximal independent sets in Gc
α with weight more than 2m + O(1), which means their

omplements, vertex covers of Gc
α , have weight less than 6m − O(1). This was verified by an exhaustive enumeration of

he vertex covers of this graph using the igraph package in R. Code is available at https://github.com/Kirkules/extremal_
roblems_ray_sensors. These independent sets of Gc

α are pictured in Fig. 10.
In the next lemma we show that a minimum vertex cover of G cannot take too few vertices from both sides of a half

dge (see Fig. 9).

emma 18. Fix t (and thus α) and a vertex cover C of the barrier graph G. If (M t , B) is a half edge of Gα (for any B ∈ Vα), then
B ∩ C | ≥ (1 − ϵ)|B| − O(1), where ϵ depends on B.

roof. The doubled half graph between M t and B labels M t as {m1, . . . ,m|Mt |}, where i < j H⇒ NB(mi) ⊆ NB(mj). (In
ur notation, N (m ) is the neighborhood of m in B.)
B i i
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Let r be the largest index so that mr ̸∈ C . Since the rays in M t are paired so that pairs have the same neighborhood,
i.e. NB(m2i−1) = NB(m2i) for each i.

Because each consecutive pair has a neighborhood larger by 1 than the last, and because r may be the smaller index
of its pair, degB(mr ) ≥

r
2 − 1. (We subtract 1 because the first pair, m1 and m2, may have no neighbors in B, depending

n α.)
Since C is a cover of all edges in G and mr ̸∈ C , we have that NB(mr ) ⊆ C . This means that |B ∩ C | ≥ degB(mr ) ≥

r
2 −1,

and we may write:

|B ∩ C | ≥
r
2

− 1

=
1
2
(r + 1) −

3
2

=
|M t

|

2
−

|M t
|

2
+

1
2
(r + 1) −

3
2

= |B| −
|M t

|

2

(
|M t

| − (r + 1)
|M t |

)
−

3
2

= |B| − |B|ϵ −
3
2

= (1 − ϵ)|B| − O(1),

where ϵ =

(
|Mt

|−(r+1)
|Mt |

)
, and where we have made use of the fact that |B| =

|Mt
|

2 since the only half edges adjacent to M t

onnect it to sets with exactly half as many rays. □

For a vertex cover C of G, this ϵ may be thought of as the fraction of M t included in C due to this particular half edge.
hat this means is that |M t

∩ C | ≥ ϵ|M t
| − 1.

Moreover, applying the lemma to an M t adjacent to two half edges could yield both an ϵ1 and an ϵ2, marking fractions
f M t included in the cover C from each side of the ordered list of rays in M t (there are only two such orderings of the
ays because the order comes from viewing the anchors of rays clockwise or counterclockwise around the unit circle). In
ther words, when M t is adjacent to two half edges, |M t

∩ C | ≥ (ϵ1 + ϵ2)|M t
| − 2.

Lemma 18 is the final tool we need to prove Theorem 14.

roof of Theorem 14 (R2(n) =
3
4n − O(1)).

The only vertex covers of Gc with total weight below 3
4n− O(1) are the complements in G of the five subgraphs of Gh

α

pictured in Fig. 10, as discussed after Lemma 17. So, if a vertex cover of G is to have weight smaller than 3
4n − O(1), it

ust extend one of these subgraphs’ complements by adding enough vertices of the subgraph itself to become a cover.
e therefore show that each such extension leading to a minimum vertex cover must still have total weight at least

3
4n − O(1) = 6m − O(1).

These subgraphs are labeled S(a), S(b), S(c), S(d), and S(e), where each S(·) = (V(·), E(·)), and we address extending in
each case separately. However, arguments for all cases are structured similarly: first we note the total weight of the
complement of S(·) (i.e. the rays already in the cover of G before extending), and then we use Lemma 18 to bound below
the number of rays that must be added from S(·) to make a vertex cover of G, based on the edges appearing in S(·).

(a) : Vα \ V(a) is a vertex cover of Gc
α with weight |Vα \ V(a)| = |P4

| + |Q 1
| + |Q 3

| + |M1
| + |M3

| + |M4
| =

m [(1 − α) + α + α + 2α + 2α + 2(1 − α)] = (3 + 3α)m − O(1).
Any vertex cover of G with no rays in M2 must include all rays in Q 2, P2, and Q 4 except for up to 3, since each
of these sets is the neighborhood of some ray of M2 (except at most one ray each). In this case, the weight of the
extended vertex cover is (3 + 3α)m + |Q 2

| + |P2
| + |Q 4

| = (3 + 3α)m + 3(1 − α)m − O(1) = 6m − O(1).
If instead C is a vertex cover of G with at least one ray in M2, then as in Fig. 8, those rays in M2 anchored further
clockwise have more neighbors in Q 2 and Q 4, and simultaneously have fewer neighbors in P2. So the ordering of M2

in the half edge with P2 is opposite the ordering in the half edges with Q 2 and Q 4.
By Lemma 18, then, there are 0 ≤ ϵ1, ϵ2 ≤ 1 so that |M2

∩ C | ≥ (ϵ1 + ϵ2)|M2
| − 2 and |

(
P2

∪ Q 2
∪ Q 4

)
∩ C | ≥

(1 − ϵ1)|P2
| + (1 − ϵ2)(|Q 2

| + |Q 4
|).

Therefore, the number of additional rays required to get a vertex cover of G is at least

|(M2
∪ P2

∪ Q 2
∪ Q 4) ∩ C |

≥ (ϵ1 + ϵ2)|M2
| − 2 + (1 − ϵ1)|P2

| + (1 − ϵ2)(|Q 2
| + |Q 4

|)
≥ (ϵ1 + ϵ2) · 2(1 − α)m + (1 − ϵ1) · (1 − α)m + (1 − ϵ2) · 2(1 − α)m − O(1)
≥ (3 + ϵ1)(1 − α)m − O(1)
≥ (3 − 3α)m − O(1),

and so the size of a vertex cover extending V \ V is at least (3 + 3α)m + (3 − 3α)m − O(1) = 6m − O(1).
α (a)
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(b) : The complement of S(b) is a vertex cover of Gc
α satisfying:

|Vα \ V(b)| = |P4
| + |Q 1

| + |Q 2
| + |Q 4

| + |M1
| + |M2

| + |M4
|

= (7 − 4α)m − O(1),

Note that if α ≤ 1/4, then |Vα \ V(b)| ≥ 6m − O(1) and this case is done.
A vertex cover of G with no rays from M3 must include all rays in P1, P3, and Q 3, which together have weight
3αm ≥ (4α − 1)m since α ≤ 1. In this case, the extended vertex cover has weight at least 6m − O(1).
So suppose C is a vertex cover of G taking at least one ray of M3. Rays of M3 anchored more counterclockwise have
more neighbors in Q 3 and fewer in P1 and P3. By Lemma 18, there are 0 ≤ ϵ1, ϵ2 ≤ 1 so that |M3

∩ C | ≥ (ϵ1+ϵ2)|M3
|

while |(Q 3
∪ P1

∪ P3) ∩ C | ≥ (1 − ϵ1)|Q 3
| + (1 − ϵ2)(|P1

| + |P3
|).

|(M3
∪ P3

∪ Q 3
∪ P1) ∩ C |

≥ (ϵℓ + ϵr )|M3
| + (1 − ϵℓ)(|P1

| + |P3
|) + (1 − ϵr )|Q 3

|

= [(ϵℓ + ϵr )(2α) + (1 − ϵℓ)(α + α) + (1 − ϵr )α]m − O(1)
= (3 + ϵr )αm − O(1)
≥ (4α − 1)m − O(1),

which again means the extended vertex cover has weight at least (7 − 4α)m + (4α − 1)m − O(1) = 6m − O(1).
(c) : |Vα \ V(c)| = |P2

|+|P4
|+|Q 1

|+|M2
|+|M3

|+|M4
| = [(1−α)+(1−α)+α+2(1−α)+2α+2(1−α)]m = (6−3α)m−O(1),

so the goal is to show any vertex cover C of G extending the complement of S(c) takes more than 3αm−O(1) vertices
from S(c), because (6 − 3α)m − 3αm − O(1) = 6m − O(1).
A vertex cover of G with no rays from M1 must take all of P1, P3, and Q 1, totaling at least 3αm − O(1) additional
rays.
If instead (again applying Lemma 18) at least (ϵ1 + ϵ2)|M1

| − 2 rays are taken from M1, then at least (1 − ϵ1)|Q 1
| +

(1 − ϵ2)(|P1
| + |P3

|) rays are taken from Q 1, P1, and P3, giving that

|(M1
∪ P1

∪ P3
∪ Q 1) ∩ C |

≥ (ϵℓ + ϵr )|M1
| + (1 − ϵℓ)(|P1

| + |P3
|) + (1 − ϵr )|Q 1

|

= [(ϵℓ + ϵr )(2α) + (1 − ϵℓ)(α + α) + (1 − ϵr )(α)]m − O(1)
= (3 + ϵr )αm − O(1)
≥ 3αm − O(1),

and so the extended cover contains at least (6 − 3α)m + 3αm − O(1) = 6m − O(1) rays.
(d) : |Vα \ V(d)| = |P2

| + |P4
| + |Q 1

| + |Q 3
| + |M3

| + |M4
| = 4m − O(1).

Since S(d) has two connected components with any edges (one component with M1 and one with M2), we can address
them independently.
A cover with no rays from M1 must include all rays in both P1 and P3, totaling 2αm−O(1). If instead it takes ϵ|M1

|−1
rays from M1 as in Lemma 18, then the contribution from this connected component is ϵ|M1

|+ (1−ϵ)(|P1
|+|P3

|) =

2ϵαm + (1 − ϵ)(α + α)m − O(1) = 2αm − O(1). Hence, vertex covers must take at least 2αm − O(1) rays from this
component.
Similarly, a cover with no rays from M2 must include both Q 2 and Q 4, totaling 2(1 − α)m − O(1). Instead taking
ϵ|M2

|− 1 from M2 means the contribution from this component is ϵ|M2
|+ (1− ϵ)(|Q 2

|+ |Q 4
|) = 2(1−α)m−O(1),

and the contribution to any vertex cover from this component is at least 2(1 − α)m − O(1).
The two components together thus contribute at least 2m − O(1) rays to any vertex cover of G, and thus any cover
extending Vα \ V(d) contains at least 4m + 2m − O(1) = 6m − O(1) rays.

(e) : |Vα \ V(e)| = |P1
| + |P2

| + |P3
| + |Q 3

| + |M1
| + |M2

| + |M3
| = (3 + 4α)m − O(1).

A vertex cover of G with nothing from M4 takes all of P4,Q 2, and Q 4, which have a combined weight of (3−3α)m ≥

(3 − 4α)m − O(1).
Taking instead (ϵ1 + ϵ2)|M4

| rays from M4 in the cover C of G, we have that |(M4
∪ P4

∪ Q 2
∪ Q 4) ∩ C | ≥ (ϵ1 +

ϵ2)|M4
| + (1 − ϵ1)(|Q 2

| + |Q 4
|) + (1 − ϵ2)|P4

| = [(3 + ϵ2) − ϵ2α]m, which is at least (3 − 4α)m since 0 ≤ ϵ2 ≤ 1.
But (3 + 4α)m + (3 − 4α)m − O(1) ≥ 6m − O(1).

Finally, because every vertex cover of G extends a vertex cover of Gc
α , and because (as we have just shown) every

extension of such a cover to a cover of G contains at least 6m − O(1) elements of G, it follows that every vertex cover of
G has at least 6m − O(1) =

3
4n − O(1) vertices in it. Therefore, 3

4n − O(1) = R2(n). □

. Conclusions and future work

A set P of k points in the plane is ‘‘protected’’ by a set of n rays (or lines, or segments), if every point of P belongs
o a bounded region. In this setting, we investigated two questions: (1) what number r (n) of rays are always sufficient
k
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Fig. 8. Rays Q 2
i ∈ Q 2 that are counterclockwise from M2

j ∈ M2 form a barrier between b and t and between a and b (left), whereas rays Q 2
i′ that

are clockwise from M2
j do not (right). This is what makes the edge (Q 2,M2) in Gα a half graph, which is doubled because each M2

j is paired with
another ray with the exact same barrier graph adjacencies.

Fig. 9. Gα with half edges shown as solid blue lines, complete edges shown as dashed black lines, and relative vertex weights visualized by vertex
radius.

to remove so that each of the k points resides in an unbounded region, and (2) what number Rk(n) of rays are always
ufficient to remove so that all k points reside in the same unbounded region. In our derivations, we also considered the
ases when the rays are replaced by lines or by segments.
We provided complete answers for the case k = 2 for both questions, and provided asymptotically tight answers for

uestion 1 when k = 3 and for k = 4 when the points are in convex position.
The obvious next step in the study of rk(n) and Rk(n) is to extend the results presented to larger values of k. Both of

hese present challenges that require new insights.
We conjecture that, for points in convex position and k ≥ 5:

rck (n) =
k

k + 1
n + O(1)

We leave this, as well as the problem of deriving sharp bounds for rk(n) when k ≥ 4 and for Rk(n) when k ≥ 3, as
open problems worthy of further investigation.

Appendix 5. The exact value of r2(n)

Consider a set of lines L and a point p in the plane. The set of n = |L| rays anchored at p and each perpendicular to a
different line of L intersects any circle centered at p in n points. We call this set of locations around any circle centered
at p the ray circle for p with respect L, and is written p⃝ since the set of line L is usually understood from context.

The locations on p⃝ are identified with the rays themselves and with the corresponding lines, and also with the angle
from some fixed direction pointing away from p, usually in the direction of the positive x-axis, because their relative
ocations are what is important, rather than their absolute locations.
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Fig. 10. The subgraphs of Gh
α whose vertices are maximal independent sets in Gc

α , and that correspond to subgraphs of G that need to be covered
for the proof of Lemma 17. Call these subgraphs S(a), S(b), S(c), S(d) , and S(e) .

The location of a ray anchored at p witnessing an exposing set E({p}) ⊆ L is the center of an open semicircle on p⃝

containing the locations of all lines in E({p}), and thus we may refer to a witness arc or semicircle for p rather than a
witness ray.

Theorem 19. r2(n) =
⌊ 2

3 (n − 1)
⌋

roof. The upper bound provided by Theorem 8 can easily be tightened to match this; one merely sharpens the two upper
ounds to n − i and i − 1 + ⌊

1
2 (n − i)⌋ instead of n − i and i + (n − i)/2. For the matching lower bound, we provide a

onstruction of n = 3t + 1 lines with exposing sets no smaller than 2t when t ≥ 1.
Fix n = 3t + 1 for t ≥ 1 and fix points p and q at (−1, 0) and (1, 0) respectively. Let α =

π
n+1 . Place a set of n lines

= {ℓi}
n
i=1 as follows:

• The clockwise angle between ℓi and the negative x-axis is αi
• If i ≡ 0 (mod 3), then ℓi passes through (−2, 0), which is to the left of p
• If i ≡ 1 (mod 3), then ℓi passes through the origin
• If i ≡ 2 (mod 3), then ℓi passes through (2, 0), which is to the right of q

n other words, as the angles increase, we alternate placing ℓi between p and q, to the right of q, and to the left of p.
Let E = {ℓi ∈ L : i ≡ 0 (mod 3) or i ≡ 2 (mod 3)}, and I = {ℓi ∈ L : i ≡ 1 (mod 3)}. I is the set of internal lines,

.e. lines passing between p and q, and E = L\ I is the set of external lines. Note that the locations on p⃝ and q⃝ for external
ines are the same, and for internal lines are opposite, because rays anchored at p and q point in opposite directions to
e perpendicular to a line between them. See Fig. 11 to see an example the arrangement of locations on the ray circles
p and q⃝.

Let X ⊆ L be an exposing set witnessed by arcs Ap and Aq on p⃝ and q⃝, respectively. We will show that |X | ≥ 2t by
howing that the smallest number of locations from L on p⃝ and q⃝ contained in Ap and Aq (and thus the smallest number
f witnessed lines) is 2t .
First, note that the relative position of p and q means that all locations for I are on the rightmost semicircle of p⃝ and

n the leftmost semicircle of q⃝. Consequently, together the left semicircle of p⃝ and the right semicircle of q⃝ witness no
internal lines and all external lines, for a total of 2t . Moreover, we may assume that Ap covers at least as much of the left
semicircle as Aq does, since otherwise swapping their locations preserves the number of external locations they contain
and may reduce the number of internal locations.
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Fig. 11. The locations on ray circles for p and q (right), and how they look when overlaid (left).

If it is not just the left semicircle of p⃝, Ap must have one endpoint on the right and one endpoint on the left of p⃝.
etween the endpoint on the right and the nearest endpoint of the left semicircle are some number of interior locations,
hich is at least as large as the number of exterior locations in the same interval. This is due to the alternating construction
nd the fact that the locations on the right closest to the endpoints of the left semicircle are interior locations. So, if the left
emicircle contains m fewer internal locations than Ap, it contains no more than m more external locations, and therefore
ontains at most as many locations as Ap. By a symmetrical argument, the right semicircle of q⃝ contains no more locations
han Aq.

But this means that Ap and Aq witness no fewer lines than the left semicircle of p⃝ together with the right semicircle
f q⃝, which witness 2t lines (all the external ones).
Therefore every choice of arcs on p⃝ and q⃝, and thus every set of witness rays anchored at p and at q, witnesses at

east 2t lines.
So, when n = 3t +1 and t ≥ 1 there exists a set of lines (our construction) with no exposing sets smaller than 2t , and

e have that r2(3t + 1) ≥ 2t and also that r2(3t + 4) ≥ 2t + 2. Because these match our upper bound, in fact

r2(3t + 1) = 2t and r2(3t + 4) = 2t + 2 (1)

Because 0 ≤ r2(i+ 1)− r2(i) ≤ 1 (Lemma 4), and since our upper bound gives that r2(3t + 2) ≤
⌊ 2

3 (3t + 2 − 1)
⌋

= 2t ,
n fact

r2(3t + 2) = 2t (2)

s well.
But Eqs. (1) and (2) together with Lemma 4 mean that r2(3t + 3) = 2t + 1, for otherwise the jump from 2t to 2t + 2

ould be too large either between n = 3t + 2 and n = 3t + 3, or between n = 3t + 3 and n = 3t + 4.
These observations together yield r2(n) =

⌊ 2
3 (n − 1)

⌋
for n ≥ 4. □
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