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Abstract
It is shown that whenever the edges of a connected simple graph on n vertices are
colored with n − 1 colors appearing so that no cycle in G is rainbow, there must be
a monochromatic edge cut in G. From this it follows that such colorings of G can be
represented, or ‘encoded,’ by full binary trees with n leaves, with vertices labeled by
subsets of V (G), such that the leaf labels are singletons, the label of each non-leaf is
the union of the labels of its children, and each label set induces a connected subgraph
of G. It is also shown that n − 1 is the largest integer for which the main theorem
holds, for each n, although for some graphs a certain strengthening of the hypothesis
makes the theorem conclusion true with n − 1 replaced by n − 2.
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1 Introduction

Given an edge-colored graph G, a subgraph of G is rainbow if no two different edges
of the subgraph bear the same coloring. An edge coloring of G is rainbow-cycle-
forbidding (RCF, for short) if no cycle in G is rainbow with respect to the coloring.
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Note that if G is an RCF-colored multigraph, then necessarily G is loopless, and for
distinct vertices u, v ∈ V (G), all edges with ends u and v have the same color.

A simple observation (noted, for instance, in [1]) is that if a coloring of a connected
n-vertex graphG is RCF, thenG contains atmost n−1 colors. Indeed, if a coloring ofG
contains n colors, then the graph induced by taking one edge of each color necessarily
contains a cycle, and this is certainly rainbow.More generally, the pigeonhole principle
implies that an RCF edge colored graph G with c components contains at most n − c
colors. On the other hand, as we describe in the next section, it is not difficult to
construct RCF colorings with this maximum number of colorings for any graph G.
Following [1–3], we will call an RCF edge coloring of a graph G on n vertices with c
components in which the maximum number, n − c, of colors appears a JL-coloring1

of G.
When the edge-colored graph G is the complete graph Kn , as occurs frequently

in the Ramsey/anti-Ramsey/mixed Ramsey hotbed where this study first arose, then
RCF colorings are exactly the colorings which avoid rainbow K3’s (well known, but a
proof appears in [2]). These RCF colorings of a complete graph are known as Gallai
colorings, and JL-colorings of Kn are Gallai colorings with exactly n − 1 colors
appearing.

JL-colorings of Kn turn out to be particularly nice. The color maximality forces
a strong structural property on the colorings; they can all be formed by a recursive
‘standard construction’ which we describe in the next section. This, in turn, gives a
bijection between JL-colorings of Kn and certain labeled full binary trees. These results
can be derived by a characterization of Gallai colorings from [4], but a self-contained
(and rather laborious) inductive proof appears in [2]. Adaptations of the proof from
[2] show that similar structure theorems – in particular that every JL-coloring comes
from the same ‘standard construction’ – also hold for complete bipartite graphs (cf.
[3]) and complete multipartite graphs (cf. [1]).

The main result of this paper, Theorem 2, is that such a structure theorem for JL-
colorings actually holds for any finite connected graph G. That is, every JL-coloring
of every finite connected graph is constructed via the same ‘standard construction’
described in the next section. This result subsumes the results of [1–3], and moreover
our proof of the more general result is significantly shorter than the proofs in these
papers.

The key to the proof asserts the existence of a monochromatic cut in JL-colored
graphs, or stated in the contrapositive, that an edge-colored graph using exactly n − 1
colors without a monochromatic cut cannot be rainbow cycle free. It is a natural
question, regarding the strength of our result, whether similar results hold when fewer
colors are used in the RCF coloring. This turns out not to be true even in the case of
RCF colorings with n − 2 colors. We show, however, that in the case of the complete
graph that the ‘bad’ examples, that is RCF colorings using n − 2 colors and without
a monochromatic cut, can be completely characterized.

One may ask whether similar structural results may be possible with rainbow-
structure free graphs. For instance, in [5] the authors studied the question of

1 The reason for the terminology is that one of the co-authors was first introduced to the topic of RCF edge
colorings by Jenö Lehel.
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maximizing the number of colors in an edge coloring of a planar graph without any
rainbow faces. While (in a non-tree) having a rainbow face implies a rainbow cycle
the converse is not true, and they constructed graphs which require more than n colors
to force a rainbow face, with the exact number depending on structural properties
of the resulting graph. On the other hand, in some classes of planar graphs (such as
chordal planar graphs, for instance) a rainbow cycle does imply the existence of a
rainbow face, so our results apply directly. It would be an interesting question to study
structural properties of rainbow-face free graphs.

One of the referees has called our attention to the resemblance between our Standard
Construction of JL-colorings and the formation ofGomory-Hu trees. The tree structure
thatwegenerate,which capturesmonochromatic edge cuts in the graph, bears a passing
similarity to Gomory-Hu trees which are of importance in combinatorial optimization.
TheGomory-Hu trees capture, instead, theminimumweight edge cuts between source-
destination pairs. Structurally, however, the trees are rather different (for instance in
the Gomory-Hu trees, the edge weights are crucial, and the vertices of the tree are
vertices of the graph – and in our case, the interior vertices of the trees are actually
subsets of vertices) and the relationship seems to be a rather superficial one.

Finally, we note that this work ties nicely into a literature on bipartite decompo-
sitions of graphs. The structure theorems for JL colorings proved in [1–3] and the
present work show that JL colorings provide a decomposition of the edges of graphs
into bipartite graphs. Indeed, the main result of [2] implies that JL colorings of Kn

are equivalent to certain decompositions of the edge set of Kn into n − 1 complete
bipartite graphs. Decomposing graphs into bipartite graphs has a long history. In [6],
Graham and Pollak famously proved that at least n − 1 complete bipartite graphs are
required to decompose the edges of Kn . The JL-colorings of Kn form some (but, inter-
estingly, not all) such decompositions. In more recent work, the authors of [7–9] have
studied similar questions in random graphs. The results on JL colorings (including
the main result of this paper), complement these results on decompositions into com-
plete bipartite graphs, by showing that JL colorings provide particularly nice recursive
decompositions of graphs into n−1 (not necessarily complete) bipartite graphs, whose
iterative removal leaves connected subgraphs.

The remainder of this paper is organized as follows: in the next sectionwe introduce
some preliminaries and the ‘standard construction’ of JL-colorings. In Sect. 3we prove
the main theorem, and in Sect. 4 we prove our sharpness results.

2 Preliminaries and the Standard Construction

We begin with a brief note. Although our goal is a result about simple graphs, the
statements continue to hold in the case of multigraphs and the proofs are easier in
this setting. Thus, throughout this paper ‘graph’ will mean ‘multigraph’; loops and
multiple edges are allowed. It will be useful to remember that if a graph G has an RCF
coloring, then G has no loops and multiple edges in G with the same end vertices must
all bear the same color.
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Now, we provide a bit of notation and a well known definition. If A, B are non-
empty sets partitioning V (G), then the set of edges of G with one end in A and one
end in B, denoted [A, B], is an edge cut in G.

Lemma 1 Suppose the edges of G are colored, [A, B] is a monochromatic edge cut in
G with this coloring, and the coloring restricted to G[A] and G[B], the subgraphs of
G induced by A and B, respectively, is RCF. Then the coloring on G is RCF.

Proof There are no rainbow cycles in G[A] ∪ G[B], and any cycle with at least one
vertex in A and at least one vertex in B must have at least two different edges in [A, B].
Therefore there are no rainbow cycles in G. ��

The last result of this section complements our earlier observation and the con-
struction contained in its proof is the main topic of this paper.

Theorem 1 If G is a loopless connected graph on n vertices, then there is an RC F
edge coloring of G with n − 1 colors appearing.

Proof Let T be a spanning tree in G, and color the n−1 edges of T with n−1 different
colors. These will be the colors appearing in the final coloring.

Choose an edge uv ∈ E(T ). Suppose that green is the color of uv. The vertices
in G are naturally partitioned into vertex sets A and B (which we will call ‘shores’)
by the choice of uv; that is, A is the set of vertices of G connected to u by a path in
T −uv, and B is the set of vertices of G connected to v by a path in T −uv. Let every
edge in the edge cut [A, B] be colored green.

Since T [A], T [B] are spanning trees in G[A],G[B], respectively, both G[A] and
G[B] are connected loopless graphs, and each already has a rainbow spanning tree
installed.

If T [A] has at least one edge (i.e. if |A| > 1), iterate the procedure just described
with G, T replaced by G[A], T [A], and proceed similarly with B. Continue until it is
impossible to continue. The assumption that G is loopless guarantees every edge will
be colored.

By induction on n we can conclude that the resulting edge colorings of G[A],G[B]
with |A| − 1, |B| − 1 colors, respectively, are RCF, and therefore the resulting edge
coloring of G with n − 1 colors is RCF by Lemma 1. ��

The role of the spanning tree T in the proof above makes it plain that n − 1 colors
appear, and that G[A] and G[B] are connected. Once it is agreed that V (G) can be
partitioned into non-empty sets A and B such that G[A] and G[B] are connected
(assuming G is connected), it is easy to see that every RCF edge coloring of a loopless
connected graph G on n vertices, with n −1 colors appearing, obtained by the method
in this proof is also achievable by the following procedure, which does not mention
spanning trees; and, conversely, every instance of the following can be carried out
using a spanning tree as in the proof of Theorem 1.
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The Standard Construction of RCF edge colorings, with n − 1 colors appearing,
of a connected loopless multigraph G on n vertices is defined as follows:

1. If n > 1, find an edge cut [A, B] in G such that G[A] and G[B] are connected.
Color the edges of [A, B] with a color that will not be used again.

2. If |A| = 1 there are no edges to color in G[A]. If |A| > 1, iterate step 1 on G[A],
and the same for G[B] if |B| > 1. At each step, pick colors such that the color set
to appear on G[A] is disjoint from that on G[B], and neither can contain the color
on [A, B]. Continue until all edges are colored.

Every coloring obtained by the standard construction can be ‘encoded’ by a full
binary tree with vertices labeled by subsets of V (G), as described in the abstract. The
root of the tree will be labeled V (G) and its ‘children’ will be labeled A and B, the
shore sets of the first edge cut. We note that for a general graph (unlike for Kn) the full
binary tree in this encoding is not necessarily unique, either as a labeled or unlabeled
object. For instance, for the path Pn the unique JL-coloring can be encoded by every
full binary tree with n leaves, properly labeled. This can be seen by taking an ordered
full binary tree with n leaves, labeling the leaves left-to-right with elements of the
set {v1, . . . , vn}, and taking the label of a parent to be the union of the labels of its
children. On the other hand, for the star, K1,n , while there is a unique isomorphism
class of tree arising in such an encoding, there are n! different labelings of this tree
that encode the (again, unique) JL-coloring. In general, the labeled full binary tree
representation will not be unique, as there may be more than one monochromatic edge
cut.

We end this section with an example of such an encoding of a JL-coloring (Figs. 1,
2).

Example:

v1

v2

v3

v4

v5

v6

v7

Fig. 1 An RCF coloring of a connected simple graph G on seven vertices with six different edge colors
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V (G)

{v1, v2, v3, v4} {v5, v6, v7}

{v1, v2} {v3, v4}

{v1} {v3} {v4}

{v6}

{v5, v7}

{v5} {v7}{v2}

Fig. 2 An encoding of the coloring in Fig. 1

3 TheMain Result

The main purpose of the present section is to prove the following theorem.

Theorem 2 All JL-colorings of finite connected graphs are achievable by the standard
construction.

Suppose that G is a graph on n vertices and c components, and f : E(G) →
{1, . . . , k} is an edge coloring of G such that each color 1, . . . , k appears (i.e., f is
surjective). The slack of f is s( f ) = n − c − k.

If S ⊆ E(G) and j ∈ {1, . . . , k}, we will say that the color j is dedicated to S if
and only if f −1( j) ⊆ S. When S is the set of edges incident to a vertex v ∈ V (G),
we will say that a color dedicated to S is dedicated to v.

Lemma 2 Let G and f be as above.

(i) If f is a RCF coloring, then s( f ) ≥ 0, with equality if and only if f is a
JL-coloring.

(ii) A color j ∈ {1, . . . , k} can be dedicated to at most two different vertices; further,
j is dedicated to two different vertices if and only if j appears only on the edges
between the two.

Proof Claim (i) follows from our observation that G must be colored with at most
n − c colors in order to avoid rainbow cycles, and claim (ii) is straightforward. ��
Lemma 3 Suppose that G is a graph on n vertices with c components , f is an edge
coloring of G, S ⊆ E(G), G ′ = G − S has c′ = c + x components, and S has d
colors dedicated to it. If f restricted to G ′ is RCF, then x ≤ s( f ) + d.

Proof Let k be the number of colors appearing on the edges of G. Then k′ = k − d
colors appear on the edges of G ′. Let s′ denote the slack of the restriction of f to G ′.
Then by Lemma 2 (i), if f restricted to G ′ is RCF, we have 0 ≤ s′ = n − c′ − k′ =
n − (c + x) − (k − d) = s( f ) + d − x . ��
Corollary 1 Suppose that G is a connected graph with a JL-coloring, and [A, B] is an
edge cut in G. Then there is at least one color dedicated to [A, B].
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Proof Let n = |V (G)|, f be the JL coloring of E(G), and S = [A, B], then the terms
x and s( f ) in Lemma 3 satisfy s( f ) = n − (n − 1) − 1 = 0 and x ≥ 1, because S is
an edge cut in a connected graph. Therefore, by Lemma 3, d ≥ x − s( f ) ≥ 1. ��
Corollary 2 In every JL-coloring of a loopless connected graph G on n > 1 vertices,
for each v ∈ V (G) some color is dedicated to v.

Proof Since n > 1, for each v ∈ V (G) the set of edges incident to v is an edge cut,
[{v} , V (G)\ {v}]. ��
Corollary 3 If G is a JL-colored connected simple graph on n > 1 vertices, then at
least one color appears exactly once in G.

Proof Each of the n vertices of G has a color dedicated to it and there are only n − 1
colors appearing. Therefore some color must be dedicated to two different vertices.
The conclusion follows from Lemma 2 and the assumption that G is simple. ��
Theorem 3 Suppose that G is a finite connected graph with a JL-coloring f which
admits a monochromatic edge cut [A, B]. Then G[A],G[B] are connected, the restric-
tions of f to each of G[A],G[B] are JL-colorings, the color sets on G[A],G[B] are
disjoint, and neither contains the single color on [A, B].
Proof Let S = [A, B], n = |V (G)|, and G ′ = G − S. Let c be the number of
components of G, c′ = c+x be the number of components of G ′, and d be the number
of colors dedicated to S. Then c = 1, because G is connected, and c′ = c + x ≥ 2
because S is an edge cut. Therefore, x ≥ 1.

Since f is a JL-coloring, s( f ) = 0. Therefore by Lemma 3, 1 ≤ x ≤ s( f )+d = d.
By the assumption that [A, B] is monochromatic and Corollary 1, d = 1. By the
inequality above, it follows that x = 1, so c′ = c + x = 1 + 1 = 2. From this we
conclude that G[A] and G[B] are connected.

Because the one color on S is dedicated to S, it does not appear in G[A] ∪ G[B].
Let the sets of colors appearing in the restrictions of f to G[A] and G[B] be C(A)
and C(B), respectively. Then |C(A) ∪ C(B)| = n − 2, and |C(A)| ≤ |A| − 1,
|C(B)| ≤ |B|−1, because the colorings onG[A] andG[B] areRCF. Since |A|+|B| =
n, from these facts we conclude that |C(A)| = |A| − 1, |C(B)| = |B| − 1, and
C(A) ∩ C(B) = ∅. Therefore, G[A] and G[B] are JL-colored, with disjoint color
sets. ��

Theorem 3 implies that if for every JL-coloring of every finite connected graph G,
with |V (G)| > 1, there must be a monochromatic edge cut in G, then JL-colorings of
such graphs are all obtainable by the standard construction, and are therefore repre-
sentable by vertex-labeled binary trees, as described in the abstract.

Theorem 4 If G is a finite connected graph on n > 1 vertices with a JL-coloring, then
there is a monochromatic edge cut in G.

Proof Let G be a counterexample to the claim of the theorem with minimum
n + |E(G)|. So G has a JL-coloring which admits no monochromatic edge cut. Then
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G must be loopless, because the coloring is RCF, and must have no multiple edges
between vertices—otherwise, the simple graph obtained by collapsing multiple edges
into simple edges with the color borne by those multiple edges would be a counterex-
ample with the same number of vertices and fewer edges.

Since G is connected and simple on n > 1 vertices, and JL-colored, by Corollary 3
there is an edge e = uv ∈ E(G) bearing a color—let us call it red—which appears only
on e. Let G∗ = G/e, the result of contracting e. (The edge e disappears and the vertices
u and v merge into a new vertexw which is incident in G∗ to any edge of G, except e,
whichwas incident to either u or v.) Let each edge ofG∗ bear the color that it bore inG.
The number of colors on G∗ is one less than n −1, the number of colors on G, because
the color red was dedicated to {e}. Also, |V (G∗)| = n − 1. Since we can suppose that
n > 2,wehaven−1 > 1.ClearlyG∗ is connected. IfG∗ isRCF, thenG∗ is JL-colored,
connected on more than one vertex, and |V (G∗)| + |E(G∗)| < |V (G)| + |E(G)|. It
would then follow that there is a monochromatic edge cut [A∗, B∗] in G∗. But then
there is a monochromatic cut [A, B] in G: if, without loss of generality, w ∈ A∗, take
A = (A∗\ {w}) ∪ {u, v} and B = B∗.

The proof will be over if we show that there are no rainbow cycles in G∗. Since
there are no rainbow cycles in G, the only cycles in G∗ that might be rainbow must
contain the vertex w. Let C∗ be a rainbow cycle in G∗ containing w; let x, y be the
neighbors of w on the cycle. The possibilities are:

(i) x = y and C∗ is a double edge arising from the edges xu, xv in G. But then
G[{u, v, x}] is a rainbow C3 in G.

(ii) x �= y and the edges xw, yw on C∗ arise from edges xu, yv (or xv, yu) in
G. But then we have a rainbow cycle in G with all the edges of C∗, letting xu
replace xw and yv replace yw, together with e.

(iii) x �= y and the edges xw, yw arise from edges xu, yu (or xv, yv) in G; then the
edges of C∗ define a rainbow cycle in G.

��
Proof of Theorem 2 This follows immediately by combining Theorem 3 and 4. ��

Finally, we note that the contrapositive of Theorem 4 is interesting in its own right.

Corollary 4 Suppose G is an n − 1-edge colored graph on n vertices without a
monochromatic cut. Then G contains a rainbow cycle.

4 Sharpness Results

For the rest of this paper, it will be more convenient to think of the contrapositive of
Theorem 4, stated as Corollary 4. If G is connected and edge colored with |V (G)|−1
colors and there is no monochromatic edge cut, then there must be a rainbow cycle.
The remainder of this paper deals with the sharpness of this result; if the number of
colors appearing is less than |V (G)| − 1 might the conclusion hold, and, if not, what
strengthening of the hypothesis will force the conclusion?
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Fig. 3 A robustly colored K4 using |V (G)| − 2 = 2 colors

With reference to a coloring of E(G), we say that G is robustly colored if V (G)

cannot be partitioned into two non-empty parts X , X̄ so that [X , X̄ ] is monochromatic.
We observe that K4 can be robustly 2-colored without a rainbow cycle, by taking

the two color classes to be edge disjoint spanning trees. Therefore we cannot relax the
|V (G)| − 1 requirement without additional restrictions (Fig. 3).

First, we show that for all n ≥ 4 there are robust n − 2 colorings of Kn avoiding
rainbow cycles. The main result of this section shows that all such colorings arise from
this coloring of K4 via a construction which we call the cloning construction.

Suppose that n ≥ 4 and Kn is robustly colored with exactly n − 2 colors appearing
so that there are no rainbow cycles in Kn . Let Kn+1 be formed as follows: pick any
arbitrary vertex v and clone it—if we call the cloned vertex w, then for all vertices
x ∈ V (Kn) with x �= v, give the edge wx the same color that appeared on vx . Give
the edge vw a color not appearing in Kn .

Exactly n − 2 + 1 = (n + 1) − 2 colors appear on Kn+1. The single edge bearing
the new color cannot be an edge cut in Kn+1, because n ≥ 4; therefore, if there is a
monochromatic edge cut [A, B] in Kn+1, v andw must be on the same side of the cut.
Without loss of generality, let v,w ∈ A. But then [A\ {w} , B] is a monochromatic
edge cut in Kn . Therefore the edge coloring of Kn+1 is robust.

Suppose C is a rainbow cycle in Kn+1. It would necessarily have to contain w. If
v /∈ V (C), then (V (C)\ {w})∪{v} is the vertex set of a rainbow cycle in Kn . So both v
and w appear on C . Let x ∈ V (Kn)\ {v} be a neighbor of w on C . If vx ∈ E(C) then
C is not rainbow. Therefore vx is a chord of C , of the same color as wx . It follows
that one of the cycles in C ∪ vx is a rainbow cycle in Kn . Thus, no such C exists.

Next, we show that every robust edge coloring of Kn with n − 2 colors that avoids
rainbow cycles can be created by the cloning construction.

Theorem 5 If Kn is edge colored with n −2 colors avoiding monochromatic cuts with
n > 4 and each color appears at least twice, then there is a rainbow cycle.

Proof Let G = Kn be edge colored with n − 2 colors, where each color appears at
least twice so that there are no monochromatic edge cuts. Suppose also that there are
no rainbow cycles.

We claim that there is no isolated edge in G of any color. That is, each edge is
adjacent to another edge of the same color. Suppose, to the contrary, that ww1 ∈
E(G) is colored red, and neither w nor w1 is incident to a red edge other than ww1.
Contract ww1—let w2 be the new vertex obtained by merging w and w1—to obtain
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G ′ = G/ww1, a robustly edge colored graph on n − 1 vertices, with n − 2 colors
appearing. If the coloring of G ′ forbids rainbow cycles then G ′ is JL-colored, which
implies that the coloring of G ′ is not robust after all.

Suppose G ′ contains a rainbow cycle C ′. If C ′ either contains no red edge, or does
not pass through w2, then there is a rainbow cycle in G. Therefore, C ′ contains w2
and does contain a red edge, say xy, x, y ∈ V (G)\ {w,w1}, by the assumption that
ww1 is isolated from other red edges. This also implies that the cycle C in G obtained
by ‘opening’ w2 into ww1 is of length at least 4. Further, at least one of the edges
wx, wy, w1x, w1y is a chord of C which creates, with C , two cycles, at least one of
which is rainbow. This establishes that the edge ww1 which is not adjacent to another
edge of G bearing its color cannot exist.

We also note there exists an induced subgraph H = Kn−1 on n − 1 vertices that
has all n − 2 colors appearing on the edges. If not, then for every vertex y ∈ V (G)

we have that there is at least one color dedicated to y. If any color is dedicated to both
y1 and y2 for some y1, y2 ∈ V (G) with y1 �= y2, then that color appears on only one
edge. Since we assume every colors appears at least twice, then all of these dedicated
colors must be distinct. This is impossible since we have n vertices and n − 2 colors.

Let v be the vertex in G missing from H . If H is not JL-colored, then there is a
rainbow cycle in H and thus inG. So, wemay assume H is JL-colored. ByCorollary 3,
we know that some color appears exactly once. Call this color green and say that it
appears on the edge xy.

Then, without loss of generality, xv is green since there is no isolated edge. For
every x ′ ∈ V (G)\ {v, x, y} the edge from v to x ′ is either the same color as xx ′ or it
is green; otherwise we have a rainbow K3.

Moreover, there is a monochromatic cut [X ,Y ] in H (by Theorem 4 since H is
JL-colored) with x and y in the same part. If x and y were in different parts then
the monochromatic cut would be green, but |V (G)\ {v} | ≥ 4, and green supposedly
appears only on xy, among edges of G − v. Say x, y ∈ X and the edges in [X ,Y ] are
colored red. The edges from v to Y must be red or green (otherwise we have a rainbow
K3). Also, at least one edge must be green or [X ∪{v} ,Y ] would be a monochromatic
cut. Since no edge in the subgraph induced by Y is green or red by Theorem 3, this
implies all edges from v to Y are green. This also implies all v to X edges are red or
green. The proof is finished after the following observations.

If |Y | = 1, then |X | ≥ 3. Then for z ∈ X with z �= x, y we have vz is colored
green. (If it were red, then vzx would be a rainbow K3). This forces vy to be green;
otherwise, because yz is neither red nor green, if vy were red then vyz would be a
rainbow K3. But then [{v} , X ∪ Y ] is a monochromatic cut, because z ∈ X\ {x, y}
was arbitrary.

If |Y | ≥ 2 then the subgraph induced by Y is JL-colored and therefore admits a
color that appears only on one edge in Y ; this color is neither red nor green. This color
must appear on an edge incident to v, because there is no isolated edge in G of any
color. But, this color cannot appear on an edge incident to v since all such edges are
red or green. ��
Corollary 5 For n > 4, every robust edge coloring of Kn with n −2 colors that avoids
rainbow cycles is created by the cloning construction.
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Fig. 4 A connected graph on 6 vertices with 4 colors in which every color appears at least twice, there is
no monochromatic cut and there is no rainbow cycle

Proof By Theorem 5 we now know that in all robust edge colorings of Kn with n > 4
using n −2 colors in which we avoid rainbow cycles, at least one color appears exactly
once. Pick some edge where its assigned color appears only on that edge; call that
edge uv. For all x ∈ V (Kn)with x �= u, v, if the color on xu is different than the color
on xv we have a rainbow K3. So we can regard the coloring as arising from an RCF
robust edge coloring of Kn − u with n − 3 colors by the cloning construction—here
u is a ‘clone’ of v. ��

One may extend the idea of the cloning construction to general graphs—begin
with an RCF edge coloring of G with n − 2 colors appearing created by the cloning
construction. Let x ∈ V (G). We may extend to a graph on n + 1 vertices by partially
cloning x : introduce a new vertex v and add the edge zv for some, but not necessarily
all, vertices z ∈ V (G)\ {v}. Color each added edge zv with the color on zx , and let the
new edge vx bear a new color. This creates a robustly colored graph on n +1 vertices,
uses n − 1 colors and avoids rainbow cycles. One may then ask if all robustly colored
connected graphs on n vertices with n ≥ 4 using n − 2 colors and avoiding rainbow
cycles are a result of this cloning construction; i.e., can the results of Theorem 5 be
extended to all connected graphs G on n vertices? Unfortunately, such a hope is false
and we end this paper with a counterexample given in Fig. 4.
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