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Routing number of dense and expanding graphs

Paul Horn
∗
and Adam Purcilly

Consider a connected graph G, with a pebble placed on each vertex
of G. The routing number, rt(G), of G is the minimum number of
steps needed to route any permutation on the vertices of G, where
a step consists of selecting a matching in the graph and swapping
the pebbles on the endpoints of each edge. Alon, Chung, and Gra-
ham [SIAM J. Discrete Math., 7 (1994), pp. 516–530.] introduced
this parameter, and (among other results) gave a bound based on
the spectral gap for general graphs. The bound they obtain is poly-
logarithmic for graphs with a sufficiently strong spectral gap. In
this paper, we use spectral properties and probablistic methods to
investigate when this upper bound can be improved to be constant
depending on the gap and the vertex degrees.
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1. Introduction

Let G = (V,E) be a connected simple graph with n vertices. Alon, Chung
and Graham introduced the notion of the routing number of G, behind which
is the following simple process: imagine a pebble on each vertex of the graph
labeled with the vertex it sits on, and let π be an arbitrary permutation in
SV . The goal, then, is to move the pebbles according to π; that is, to move
the pebble labeled v to π(v). In any given step, a (not necessarily maximal)
matching is selected in the graph and the pebbles at the endpoints are
interchanged. The routing number of G for the permutation π, denoted by
rt(G, π), is the minimum number of steps needed to route all of the pebbles
to their desired vertex as determined by π. Finally, the routing number of
the graph G is

rt(G) = max
π∈SV

rt(G, π).

Classes of graphs for which the routing number is known include com-
plete graphs, Kn,n, paths, cycles, and stars (see [1], [5]). In particular,
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rt(Kn) = 2, rt(Kn,n) = 4, and rt(Pn) = n, where Pn is an n-vertex
path. Additionally, there are a number of other classes of graphs for which
bounds on the routing number are known. In [1], Alon, Chung, and Gra-
ham gave preliminary bounds for trees, general complete bipartite graphs,
Cartesian products, hypercubes, and grids. For any tree T , Zhang showed
in [7] that rt(T ) ≤ 3n

2 + O(log n), confirming a conjecture made by Alon,
Chung, and Graham. In [5], Li, Lu, and Yang improved the bounds on gen-
eral complete bipartite graphs and hypercubes. Specifically, they showed
that n + 1 ≤ rt(Qn) ≤ 2n − 2 using a computer search to prove that
rt(Q3) = 4, then applying the bound of [1] for Cartesian products of graphs.
Alon, Chung, and Graham conjectured that rt(Qn) ∼ αn, and while the
above bounds show that α ∈ [1, 2], they conjecture that the correct value
of α is closer to 1 than to 2. However, finding more precise asymptotics
for the routing number of the hypercube is still an open and interesting
question.

The motivation for our paper is the following result of Alon, Chung, and
Graham.

Theorem ([1]). For a d-regular graph G, rt(G) ≤ O
(

1
(1−σ)2 log

2 n
)
, where

σ = maxi �=1 |1− λi(L)| is the spectral gap of the normalized Laplacian.

We briefly note that this result was originally stated in terms of the
second eigenvalue of the adjacency matrix for so-called (n, d, λ)-graphs; that
is d-regular graphs with second adjacency eigenvalue λ, for which σ = λ

d .
We state the result in terms of σ, however, to give a clearer comparison to
our own results that in some cases apply to irregular graphs, for which the
normalized Laplacian is more appropriate.

Our main results improve the upper bound of this result of Alon, Chung,
Graham in the case where σ is small. In particular, among other results, we
prove the following.

Theorem 1. For all k > 0 and C > 0, there exists Nk,C ∈ N such that for

any regular graph on n ≥ Nk,C vertices with degree d ≥ exp
(

C logn
log logn

)
, and

σ = k · d−1/2 < 1
3 ,

log(rt(G)) = O

(
log n

log d

)
.

This result improves the Alon, Chung and Graham result throughout its
range on d. However, the improvement is clearest when d is polynomial in n,
in which case it gives the following constant bound on the routing number
and hence improves the Alon, Chung and Graham result by a factor of
log2(n).
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Corollary 1. For all k > 0 and ε > 0, there exist Nk,ε ∈ N and Ck,ε ∈ N

such that for any regular graph G on n ≥ Nk,ε vertices with degree d = nε

and σ = kd−1/2 < 1
3 , rt(G) ≤ Ck,ε.

At their heart, the strategy of our proofs is similar to that of Alon,
Chung, and Graham: we use the fact that permutations can be written as
the product of two permutations of order two and build disjoint paths be-
tween vertices involved in a transposition to route pebbles along. However,
instead of using random walks to find paths, we will build paths between
vertices more directly using information about the spectrum of the normal-
ized Laplacian. To accomplish this, we will use a random partitioning of the
transpositions to select a collection of transpositions to be routed simulta-
neously, and Hall’s theorem for hypergraphs [2] to select disjoint paths. As a
result, we will get an upper bound for the routing number dependent upon
the length of the paths and the number of partite sets.

Before we prove our main result, we begin with an easier case that will
demonstrate the basis of our proof idea.

2. Warm-up: extremely dense graphs

As a starting point, we ask what bounds one can get on the routing number
by density alone? If the minimum degree is at least half of the vertices, then
between any two vertices there is some overlap in the neighborhoods of the
vertices. More specifically, if we take any transposition in the decomposition
of a permutation, their neighborhoods share a nonempty intersection, which
allows us to route this transposition through a three-vertex path. The larger
this minimum degree, the more of these transpositions we will be able to
route simultaneously because this minimum overlap will be larger.

As noted in the introduction, any permutation in Sn can be split into a
product of two permutations of order two; that is, two permutations where
the cycle structure consists entirely of transpositions. This is implicit in the
work of Alon, Chung, and Graham in showing that rt(Kn) = 2 and we
observe that it can easily be directly verified for cyclic permutations, and
follows immediately from this. When proving upper bounds for the routing
number of a graph, it is common to rewrite the arbitrary permutation as
this product of two permutations of order two.

Theorem 2. Let ε > 0. For a graph G with minimum degree δ =
(
1
2 + ε

)
n,

rt(G) ≤ 9
ε .

Remark: Up to the constant 9, rt(G) = Ω
(
1
ε

)
is best possible. Consider a

graph with vertex set V = A ∪ B ∪ C, where A and B have size
(
1
2 − ε

)
n



332 Paul Horn and Adam Purcilly

and C has size 2εn, and every vertex in A is adjacent to each vertex in
A ∪ C, every vertex in B is adjacent to each vertex in B ∪ C, and every
vertex in C is also adjacent to each other vertex in C. Then the minimum
degree of this graph is

(
1
2 + ε

)
n. However, if a permutation took each vertex

in A and swapped it with a vertex in B, then at each step only 2εn vertices
from A or B could be moved into C, which is necessary to route them to
their target. Thus, Ω

(
1
ε

)
steps are required to move all vertices in A and B

through C.

Proof. Let G be a graph with minimum degree δ =
(
1
2 + ε

)
n for some ε > 0

and let π be a permutation on the vertices. Then π = π2π1 for some permu-
tations π1, π2 ∈ SV of order 2. To route the vertices according to π1, write
π1 as the product of disjoint transpositions and order the transpositions
arbitrarily. Now, select the first εn

3 of these transpositions. For each trans-
position (v, v′), v and v′ have at least εn common neighbors, meaning that
at least εn

3 of these common neighbors are not in any of the transpositions in
this selection. Thus, for each transposition (v, v′) we select a middle vertex x
that is adjacent to both v and v′, is not in any of the selected transpositions,
and also has not been selected as the middle vertex for any other transpo-
sition in this selection. Hence, we can simultaneously route each of these
εn transpositions through their corresponding selected vertex x, returning
the pebble initially on x back to x, in three steps because vxv′ is a path
of length 3. Since π1 has at most n

2 disjoint transpositions, we must repeat
this process at most n

2 ÷ εn
3 = 3

2ε times to route all of the vertices according
to π1. Consequently, we can route all vertices according to π1 in 9

2ε steps.
Similarly, all vertices can be routed according to π2 in 9

2ε steps. Therefore,
the pebbles on the vertices of G can be routed according to π in 9

ε steps, so
by the arbitrary selection of π ∈ SV , rt(G) ≤ 9

ε .

This is the best that one can obtain by minimum degree alone. Indeed
once δ < n

2 , then the graph need not even be connected. Thus, such a naive
approach is insufficient, in general, to ensure that the graph has constant
routing number. Our techniques for this will involve techniques from spectral
graph theory, which we introduce in the next section.

3. Spectral graph theory prerequisites

In order to guarantee a constant routing number for graphs with degree cn,
where c is some constant less than 1

2 , we will need to impose additional
conditions on our graph. To do this, we will use tools from spectral graph
theory to help generalize our results.
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The normalized Laplacian of a graph G is the n× n matrix given by

L(u, v) =

⎧⎪⎪⎨
⎪⎪⎩
1 if u = v and deg(v) > 0

− 1√
deg(u) deg(v)

if u ∼ v

0 otherwise.

Alternatively, the normalized Laplacian can be defined as

L = I −D−1/2AD−1/2,

where D is the diagonal degree matrix of G and A is the adjacency matrix
of G. For more on the normalized Laplacian, see [3]. We will denote the
eigenvalues of L by 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. Note that λ2 > 0 iff G is
connected and λn = 2 iff G is bipartite. The spectral gap of L is given by
σ = max{|1−λ2|, |1−λn|}. Thus, σ < 1 if G is connected and non-bipartite.

The spectral gap, in a sense, measures the randomness of the edge dis-
tribution. In order to make this precise, we introduce the volume of a set of
vertices. For X ⊂ V (G), the volume of X is

Vol(X) =
∑
v∈X

deg(v).

With this in hand, we recall the following fundamental result on the edge
distribution of a graph with some spectral gap.

Lemma 1 (Expander Mixing Lemma, [3]). Let λ1 ≤ λ2 ≤ · · ·λn be the
eigenvalues of the normalized Laplacian of G and let σ = max{|1− λ2|, |1−
λn|}. Then for subsets of vertices X,Y , the number of edges e(X,Y ) with
one vertex in X and the other vertex in Y is bounded by∣∣∣∣e(X,Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ
√

Vol(X)Vol(Y )

and ∣∣∣∣e(X,Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ

√
Vol(X)Vol(Y ).

As a corollary to the Expander Mixing Lemma, we quantify vertex ex-
pansion in a graph in the following sense.

Corollary 2. Let G be a graph and let X be a subset of the vertices of G. If
N(X) denotes the set of vertices adjacent to at least one vertex of X, then
Vol(N(X)) ≥ min

{
1
2Vol(G), 1

4σ2Vol(X)
}
.
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Proof. Let G be a graph and let X be a subset of the vertices of G. By the
Expander Mixing Lemma,

Vol(X) = e(X,N(X)) ≤ Vol(X)Vol(N(X))

Vol(G)
+ σ
√

Vol(X)Vol(N(X)).

Then
1

2
Vol(X) ≤ Vol(X)Vol(N(X))

Vol(G)
or

1

2
Vol(X) ≤ σ

√
Vol(X)Vol(N(X)).

Therefore, Vol(N(X)) ≥ 1
2Vol(G) or Vol(N(X)) ≥ 1

4σ2Vol(X). Thus

Vol(N(X)) ≥ min

{
1

2
Vol(G),

1

4σ2
Vol(X)

}
.

4. Graphs with linear degree

In order to guarantee a constant routing number for graphs with minimum
degree cn, where c is some constant less than 1

2 , we will need to take a slightly
different approach. Instead of relying on the neighborhoods of two vertices
to overlap, we will use the Expander Mixing Lemma to guarantee that there
are many edges between the neighborhoods of any two vertices. Notice that
in the following theorem, in order to compensate for reducing the minimum
degree, we need to add a condition on σ. This is a theme throughout this
paper: in order to weaken the degree condition, we will need to strengthen
the condition on σ, therefore bringing more structure to the graph.

Theorem 3. Fix 0 < c < 1. Let G be a graph with minimum degree at least
δ = cn, with σ < c2. Then

rt(G) ≤ 16

c2(c2 − σ)
.

Proof. Let G be a graph with minimum degree δ = cn for some c > 0 and
with σ < c2. Let π be a permutation of V (G). Then π = π2π1 for some
π1, π2 ∈ SV of order 2, meaning that each of π1 and π2 can be written as a
product of disjoint transpositions. Let (v, v′) be a transposition in π1 or π2.
Let N(v) be the neighborhood of v and let N(v′) be the neighborhood of v′.
Since deg(v) ≥ cn and deg(v′) ≥ cn, |N(v)| ≥ cn and |N(v′)| ≥ cn and in
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turn, Vol(N(v)) ≥ (cn)2 and Vol(N(v′)) ≥ (cn)2.
Let

f (Vol(N(v))) =
Vol(N(v))Vol(N(v′))

Vol(G)
− σ
√

Vol(N(v))Vol(N(v′)).

Then

f ′ (Vol(N(v))) =
Vol(N(v′))

Vol(G)
− σ
√

Vol(N(v′))

2
√

Vol(N(v))

=
√

Vol(N(v′))

(√
Vol(N(v′))

Vol(G)
− σ

2
√

Vol(N(v))

)

>
√

Vol(N(v′))

(√
Vol(N(v′))

Vol(G)
− c2n2

2Vol(G)
√

Vol(N(v))

)

≥
√

Vol(N(v′))

(√
Vol(N(v′))

Vol(G)
−
√

Vol(N(v))Vol(N(v′))

2Vol(G)
√

Vol(N(v′))

)

> 0.

Thus, f is increasing as a function of Vol(N(v)) and, by symmetry, as a
function of Vol(N(v′)). Hence, since Vol(N(v)) ≥ (cn)2 and Vol(N(v′)) ≥
(cn)2,

e(N(v), N(v′)) ≥ Vol(N(v))Vol(N(v′))

Vol(G)
− σ
√

Vol(N(v))Vol(N(v′))

≥ (cn)4

Vol(G)
− σ(cn)2

= (cn)2
(

(cn)2

Vol(G)
− σ

)
≥ (cn)2(c2 − σ).

Let

ε =
c2(c2 − σ)

4
.

Take a collection of the first εn transpositions in π1. Then there are 2εn
vertices in this collection. We will say that an edge is unused if one of its
vertices is either in the collection or is incident to an edge that has already
been assigned. Also, define N(v) to be the set of vertices that are adjacent
to v. Thus, for the first transposition (v1, v

′
1) of the collection, there are at
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most 2εn2 ≤ 1
2c

2n2(c2 − σ) edges between N(v1) and N(v′1) used of the at
least (cn)2(c2 − σ) edges that must be present. Select one of the unused
edges to pair with this transposition. For the next transposition (v2, v

′
2),

there are at most (2εn + 2)n used edges between N(v2) and N(v′2). Since
(2εn+2)n < 4εn2 ≤ (cn)2(c2−σ), an unused edge between N(v2) and N(v′2)
can be selected to pair with this transposition. Proceeding inductively, for
each i ≤ εn, there are at most (2εn+ 2i− 2)n < 4εn2 ≤ (cn)2(c2 − σ) used
edges betweenN(vi) andN(v′i). Thus, an unused edge can be selected to pair
with the transposition (vi, v

′
i). Since the selected paths between each vi and

v′i are disjoint, we can route each of the transpositions (vi, v
′
i) simultaneously

in four steps, leaving the two middle vertices in each path back in their
original positions.

Since there are at most n
2 transpositions in π1, the above process must

be repeated at most 1
2ε times to route all of the transpositions in π1. Since

each collection of εn transpositions routes in four steps, it will take at most
2
ε steps to route all of the vertices according to π1. By performing the same
process on π2, it will also take at most 2

ε steps to route all of the vertices
according to π2. Therefore,

rt(G) ≤ 4

ε
=

16

c2(c2 − σ)
.

5. Graphs with sublinear degree

If we desire a constant routing number, our goal is to route a positive pro-
portion of the transpositions simultaneously. Unless these transpositions are
spread out, this will be impossible because there could be too much overlap
in the neighborhoods of these transpositions that we are seeking to route.
For example, if we attempted to route a collection of transpositions includ-
ing a vertex and all of its neighbors simultaneously, we would not be able
to. While in the previous proof, we ordered the transpositions arbitrarily,
we will now need to select the collections of transpositions more carefully.
In order to do this, we will require regularity of the graph in order to better
control the iterated neighborhoods of a vertex.

5.1. Preliminaries

We will now partition the transpositions randomly. To do this, we will use
Talagrand’s inequality, which allows us to quantify the likelihood that a
random variable is close to its mean given certain conditions.



Routing number of dense and expanding graphs 337

Theorem ([6]). Let c > 0, r ≥ 0, and d be given and let the non-negative
measurable function g on the product space Ω =

∏
iΩi satisfy the following

two conditions, for each x ∈ Ω: (a) changing any coordinate xj changes the
value of g(x) by at most c; and (b) if g(x) = s then there is a set of at most
rs+ d coordinates that certify that g(x) ≥ s. Let X1, . . . , Xn be independent
random variables, where Xi takes values in Ωi; let X = (X1, . . . , Xn) and
let g(X) have mean μ. Then for each t ≥ 0,

P(g(X)− μ ≥ t) ≤ exp

(
− t2

2c2(rμ+ d+ rt)

)

and

P(g(X)− μ ≤ −t) ≤ exp

(
− t2

2c2(rμ+ d+ t/3c)

)
.

We use Talagrand’s inequality in the lemma that follows to provide more
structure to the interactions between the neighborhoods of each vertex and
the partition of transpositions that is used to route a number of the transpo-
sitions simultaneously. Specifically, this lemma states that we can partition
a collection of disjoint transpositions so that most of the vertices that have
a path of length j from any fixed vertex are not in any single part of the
partition.

Lemma 2. Fix C > 0. There exists NC ∈ N such that for all n ≥ NC , if G is

a d-regular graph on n vertices with d ≥ exp
(
C logn

log logn

)
, T is a collection of

disjoint transpositions of the vertices, and c ≥ exp
(
− C logn

2 log logn

)
, then there

exists a partition X1, . . . , X4/c of T so that both of the following hold.

1. |Xi| ≤ nc
4 for all i ∈ {1, . . . , 4c}.

2. Let Nj(v) = {u ∈ V (G) : there is a path of length j from u to v}. For
any v ∈ V (G), i ∈

{
1, . . . , 4c

}
, and j ∈ {1, . . . , n}, at most c|Nj(v)|

vertices in Nj(v) are in transpositions of Xi.

Remark: In the regime we care about, c will be significantly larger than the
the minimum asserted here – in the (most important) case that the minimum
degree is a polynomial in n, for instace, c is a constant not depending on

n. Even when d is of the form exp
(

logn
log logn

)
, c will be poly-logarithmic in

1/ log n.

Proof. Create a partitionX1, . . . , X4/c of T by, for each transposition (τ1, τ2),
placing it in a part from X1, . . . , X4/c uniformly at random. Then E(|Xi|) =
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|T | · c
4 ≤ nc

8 . Since |Xi| has a binomial distribution with p = c
4 , σ(|Xi|) =√

n
2 · c

4

(
1− c

4

)
=

√
nc(4−c)

32 . Thus, by Hoeffding’s inequality, if |T | = n
2 ,

P

(
|Xi| ≥

nc

4

)
= P

(
|Xi| ≥

( c
4
+

c

4

) n

2

)
≤ exp

(
−2
( c
4

)2
· n
2

)

= exp

(
−c2n

16

)
.

If |T | < n
2 , then Hoeffding’s inequality [4] would give a smaller upper bound.

Thus, P
(
|Xi| ≥ nc

4

)
≤ exp

(
− c2n

16

)
for each i ∈ {1, . . . , 4/c}.

Now, fix j ∈ {1, . . . , n}. Define hj(v,Xi) to be the number of vertices in

Nj(v) that are also in transpositions of Xi. First, note that by changing the

placement of a single transposition, hj(v,Xi) changes by at most 2. Second,

hj is 1-certifiable because if partXi is selected for s transpositions containing

a neighbor of v, hj(v,Xi) ≥ s. Third, note that E(hj(v,Xi)) ≤ c·|Nj(v)|
4 .

Hence, by Talagrand’s inequality,

P (hj(v,Xi) ≤ c · |Nj(v)|) = P

(
hj(v,Xi) ≥

3c|Nj(v)|
4

+
c|Nj(v)|

4

)

≤ P

(
hj(v,Xi)− E(hj(v,Xi) ≥

3c|Nj(v)|
4

)

≤ exp

⎛
⎜⎝−

(
3c|Nj(v)|

4

)2
2(2)2

(
E(hj(v,Xi)) +

3c|Nj(v)|
4

)
⎞
⎟⎠

≤ exp

(
− 9

128
c|Nj(v)|

)
.

Note that |Nj(v)| ≥ d − 1 for any v ∈ V (G) and any j ∈ {1, . . . , n}.
The probability that |Xi| ≥ nc

4 or h(v,Xi) ≥ cd for any v ∈ V (G) and any

i ∈ {1, . . . , 4c} is at most

4/c∑
i=1

P

(
|Xi| ≥

nc

4

)
+

∑
v∈V (G)

i∈{1,...,4/c}
j∈{1,...,n}

P(hj(v,Xi) ≥ c|Nj(v)|)



Routing number of dense and expanding graphs 339

=

4/c∑
i=1

exp

(
c2n

16

)
+

∑
v∈V (G)

i∈{1,...,4/c}
j∈{1,...,q}

exp

(
− 9

128
c|Nj(v)|

)

≤ 4

c
exp

(
−c2n

16

)
+

4n2

c
exp

(
− 9

128
c(d− 1)

)
< 1

for sufficiently large n, where here we use the fact that our bounds on c and d
to ensure that the exponent in the second exponential is tending to negative
infinity. Therefore, there exists such a partition X1, . . . , X4/c of T .

Once we have this partition, our goal will be to build paths between
the vertices of the transpositions. For each part of the partition, we want to
find a collection of disjoint paths through which we will be able to route all
of the transpositions simultaneously. In order to do that, we will use Hall’s
theorem for hypergraphs, stated below.

Theorem ([2]). Let A be a family of n-uniform hypergraphs. A sufficient
condition for the existence of a system of disjoint representatives of A is
that for every B ⊆ A, there exists a matching in

⋃
B of size greater than

n(|B| − 1).

First, we use Lemma 2 to partition the disjoint collection of transpo-
sitions that comprise π1 into parts (Xi) satisfying the conclusions of the
lemma. Our goal is to route the transpositions of a given part Xi simultane-
ously. In this direction, we select a positive integer z sufficiently large to guar-
antee many paths. For a particular i and for each transposition (vj , v

′
j) ∈ Xi,

build a hypergraph Γ(vj ,v′
j)
with vertex set V (G), where there exists a hyper-

edge {u1, . . . , uz−2} ∈ E
(
Γ(vj ,v′

j)

)
if and only if vj , u1, . . . , uz−2, v

′
j is a path

from vj to v′j and none of u1, . . . , uz−2 are in any transposition of Xi. This
yields that Γ(vj ,v′

j)
is a (z − 2)-uniform hypergraph for each (vj , v

′
j) ∈ Xi.

Our goal is to find a system of disjoint representatives for A = {Γ(vj ,v′
j)
:

vj , v
′
j ∈ Xi}, because this would give us a collection of z-vertex paths through

which we can simultaneously route each transposition of Xi. By Hall’s the-
orem for hypergraphs, there exists such a system if for each B ⊆ A, there
exists a matching in

⋃
B of size greater than (z − 2)(|B| − 1). Verifying this

condition is equivalent to fixing a subset T of transpositions, then finding a
collection of vertex-disjoint paths joining the vertices of a transposition in
T with size (z − 2)(|T | − 1).
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5.2. Proofs of results

We begin with a theorem whose proof has a similar flavor to our main theo-
rem in that it uses the random partition of transpositions and Hall’s theorem
for hypergraphs as described above, but has a stronger degree condition,
which in turn will give us a better bound. This degree condition also allows
us to use paths of length four through which to route the transpositions of
our permutation.

Theorem 4. Fix 0 < c < 1
6 . Then there exist an Nc ∈ N so that the

following holds: Let G be a d-regular graph on n ≥ Nc vertices. Suppose

σ < d(1−6c)2

n . Then rt(G) ≤ 32
c .

Remark: The c here can technically depend in a mild way on n (as per the
statement of Lemma 2), however it cannot be too small – the point is that if
σ is too large, then we lose sufficient control on the (iterated) neighborhoods
to apply our techniques. In general, σ being small yields the best results,
and in general σ is of order at least 1√

d
. The requirement in this result is in

terms of σ = O( dn) – and this becomes problematic once d = o(n2/3), and
hence this result is really interesting only for graphs with degree d = nε for
some ε ≥ 2

3 .

Proof. Let G be a d-regular graph where d = nε. Consider a permutation π
of the vertices. Then π = π2π1 for some π1, π2 ∈ SV of order two. Thus, π1
and π2 can each be written as a product of disjoint transpositions.

Let T = {(v, v′) ∈ π1}, the collection of all transpositions in π1. By
Lemma 2, there exists a partition X1, . . . , X4/c in which each part Xi has
size at most nc

4 and no vertex v has more than cd of its neighbors in Xi. To
route the transpositions of Xi simultaneously, we will show that we can find
disjoint paths between τ1 and τ2 for each (τ1, τ2) ∈ Xi.

For a particular i and for each transposition (vj , v
′
j) ∈ Xi, build a

hypergraph Γ(vj ,v′
j)

with vertex set V (G), where there exists a hyperedge

{u1, u2} ∈ E
(
Γ(vj ,v′

j)

)
if and only if vj , u1, u2, v

′
j is a path from vj to v′j

and neither u1 nor u2 are vertices in transpositions of Xi. This yields that
Γ(vj ,v′

j)
is a 2-uniform hypergraph for each (vj , v

′
j) ∈ Xi. While a 2-uniform

hypergraph is, of course, simply a graph, we state Γ(vj ,v′
j)

as a hypergraph
to more easily use Hall’s theorem for hypergraphs. Our goal is to find a sys-
tem of disjoint representatives for A = {Γ(vj ,v′

j)
: vj , v

′
j ∈ Xi}, because this

would give us a collection of disjoint paths of length four (including vj and
v′j , the vertices in the transposition) through which we can simultaneously
route each transposition of Xi. By Hall’s theorem for hypergraphs, there
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exists such a system if for each B ⊆ A, there exists a matching in
⋃

B of
size greater than 2(|B| − 1). Verifying this condition is equivalent to fixing
a subset T of transpositions, then finding a collection with size 2(|T | − 1) of
vertex-disjoint paths, where each path joins the vertices of some transposi-
tion in T .

Let T ⊆ Xi, let t = |T |, and let N(T ) =
⋃

v∈(v,v′)∈T N(v). Fix max-

imum matching in
⋃

(v,v′)∈T Γ(v,v′). Hall’s condition is satisfied for this T
unless, this matching has cardinality less than 2t; we assume, by way of
contradiction, that the matching has size less than 2t. Then this matching
saturates fewer than 4t vertices. For convenience when counting, we will say
that a vertex u is used if u is in this maximum matching or if there exists
u′ such that (u, u′) ∈ Xi. Recall that for each vertex v in a transposition of
T , there are at most cd neighbors in Xi, meaning that |N(T ) ∩Xi| ≤ 2tcd.
Furthermore, each of the 4t vertices in the matching is adjacent to at most
cd vertices in transpositions of Xi. Hence, the total number of unused ver-
tices in N(T ) must be at least 2td− 2tcd− 4tcd = 2td− 6tcd. Consequently,
the average number of unused neighbors per transposition of T is at least
2d − 6cd. Hence, there exists some transposition (v, v′) ∈ T such that the
total unused neighbors of v and v′ is at least 2d− 6cd.

Since v has at most d unused vertices in its neighborhood and the sum
of unused neighbors of v and the unused neighbors of v′ is at least 2d− 6cd,
v′ has at least d − 6cd unused neighbors. Similarly, v must also have at
least d − 6cd unused neighbors. Thus, if V is the set of unused neighbors
of v and V ′ is the set of unused neighbors of v′, Vol(V ) ≥ d(d − 6cd) and
Vol(V ′) ≥ d(d− 6cd). Hence, by the Expander Mixing Lemma,

e(V, V ′) ≥ Vol(V )Vol(V ′)

Vol(G)
− σ
√

Vol(V )Vol(V ′)

≥ d2(d− 6cd)2

nd
− σd2

= d2
(
d(1− 6c)2

n
− σ

)
.

Now, since σ < d(1−6c)2

n , e(V, V ′) > 0, which implies that there is an edge
between an unused neighbor of v and an unused neighbor of v′. Consequently,
there exists an edge in Γ(v,v′) that is not in the matching. Therefore, this
contradicts the maximality of the matching.

As a result, there exists a matching of size at least 2t, meaning that by
Hall’s theorem for hypergraphs we can select a collection of disjoint edges
{{u1, u2} ∈ E(G)} so that for each transposition (v, v′) in Xi, there exists an
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edge {u1, u2} in this collection such that v, u1, u2, v
′ is a path. This implies we

can route all of the transpositions ofXi through these disjoint paths simulta-
neously in 4 steps, returning the pebbles on u1 and u2 to their prior positions.

Since there are 4
c cells in this partition of T , it will take at most 16

c steps
to route all transpositions of the permutation π1. By subsequently repeating
this process for the transpositions of π2, it will take at most 32

c steps to route
all of the vertices according to the permutation π. Therefore, rt(G) ≤ 32

c .

Notice that in this proof, the paths that we built between v and v′ for a
transposition (v, v′) ∈ Xi only contained four vertices. By extending these
paths, we can weaken the restriction on the degree of the graph. However,
this gives us a weaker result on the routing number, as the paths through
which the transpositions are routed will be longer.

Theorem 1. For all k > 0, C > 0, there exists Nk,C ∈ N such that for any

regular graph G on n ≥ Nk,C vertices with degree d ≥ exp
(

C logn
log logn

)
and

σ = kd−1/2 < 1
3 , rt(G) ≤ (8z5 + 8z2)(2k)z, where z is the least even integer

such that

z ≥
2 log

(
n
4k2

)
log
(

d
4k2

) + 2.

Remark: In the introduction, this result was stated as log(rt(G)) =

O
(
logn
log d

)
. Note that if rt(G) ≤ (8z5 + 8z2)(2k)z, then for some constant C,

log(rt(G)) = log(8z5 + 8z2) + Cz

= O(z)

= O

(
2 log

(
n
4k2

)
log
(

d
4k2

) + 2

)

= O

(
log n

log d

)
.

Corollary 1. For all k > 0 and ε > 0, there exist Nk,ε ∈ N and Ck,ε ∈ N

such that for any regular graph G on n ≥ Nk,ε vertices with degree d = nε

and σ = kd−1/2 < 1
3 , rt(G) ≤ Ck,ε.

Since log(rt(G)) = O
(
logn
log d

)
by Theorem 1, log(rt(G)) = O

(
1
ε

)
when

d = nε.

Proof of Theorem 1. Let G be a d-regular graph with d > exp
(

C logn
log logn

)
and

σ = kd−1/2 < 1
3 . Consider a permutation π of the vertices. Then π = π2π1
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for some π1, π2 ∈ SV of order two. Thus, π1 and π2 can each be written as a
product of disjoint transpositions. Let z be the least even integer such that

z ≥
2 log

(
n
4k2

)
log
(

d
4k2

) + 2

and let

c =
1

�(z − 1)(1 + z3)(4k2)z/2�
.

We note that c here is (at least) polylogarithmic in 1
logn – this follows

from the computation in the remark above and our assumption that d ≥
exp
(

C logn
log logn

)
. In particular, it satisfies the necessary lower bound for c in

Lemma 2.
Let T = {(v, v′) ∈ π1}, the collection of transpositions in π1. Then by

Lemma 2, there exists a partition X1, . . . , X4/c in which each part Xi has
size at most nc

4 and for each j ∈ {1, . . . , z}, no vertex x ∈ V (G) has more
than cdj vertices in its jth neighborhood that are also in transpositions of
Xi for any i. Fix i ∈ {1, . . . , 4/c}. For each transposition (vj , v

′
j) ∈ Xi, build

a hypergraph Γ(vj ,v′
j)

with vertex set V (G), where there exists a hyperedge

{u1, . . . , uz−2} ∈ E
(
Γ(vj ,v′

j)

)
if and only if vj , u1, . . . , uz−2, v

′
j is a path from

vj to v′j and uk is not in a transposition of Xi for all k ∈ {1, . . . , z−2}. This
yields that Γ(vj ,v′

j)
is a (z − 2)-uniform hypergraph for each (vj , v

′
j) ∈ Xi.

Our goal is to find a system of disjoint representatives for A = {Γ(vj ,v′
j)
:

vj , v
′
j ∈ Xi}, because this would give us a collection of disjoint z-vertex

paths through which we can simultaneously route each transposition of Xi.
By Hall’s theorem for hypergraphs, there exists such a system if for each
B ⊆ A, there exists a matching in

⋃
B of size greater than (z − 2)(|B| − 1).

Verifying this condition is equivalent to fixing a subset T of transpositions,
then finding a collection of vertex-disjoint paths with size (z − 2)(|T | − 1),
each of which join the vertices of a transposition in T .

Let T ⊆ Xi and let t = |T |. Fix a maximum matching in
⋃

(v,v′)∈T Γ(v,v′).
Hall’s condition is satisfied for this T unless this matching has size less than
zt; we assume, by way of contradiction, that the matching has size less than
zt. Give each vertex a distance j away from a vertex in any transposition of
T a weight of dz−j . To count the weight used by the paths in this matching,
first note that there are fewer than z2t vertices in the matching. For each
vertex x in the matching and for each j ∈ {1, . . . , z}, there are at most cdj

paths of length j connecting x to a vertex in a transposition ofXi. From each
of these paths, x gets weight cdz−j . Thus, even if all of these paths connected
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x to a vertex in a transposition in T , x would get weight at most (cdj)(cdz−j)

from being in the jth neighborhood of vertices in transpositions of T . Thus,

summing over all j ∈ {1, . . . , z}, each vertex in the matching has weight at

most zc2dz. Hence, the total weight used by vertices in the matching is at

most z3tc2dz. Therefore, there exists a permutation (v, v′) ∈ T that uses

weight at most z3c2dz.

For notational purposes, define N(v) to be the neighborhood of v and

defineN∗(v) ⊆ N(v) to be the set of all unused vertices inN(v). Then, define

N2(v) to be the neighborhood of N∗(v) and define N∗
2 (v) ⊆ N2(v) to be the

set of all unused vertices in N2(v). Proceed inductively in this way, defining

Nm(v) to be the neighborhood of N∗
m−1(v) and defining N∗

m(v) ⊆ Nm(v) to

be the set of all unused vertices of Nm(v).

To prove that there exists a path of unused vertices joining the vertices

of a transposition in T , thus contradicting the maximality of the matching,

we will prove the following lemma.

Lemma 3. In this case,

Vol(N∗
m(v))

≥ min

⎧⎪⎪⎨
⎪⎪⎩

dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

,

(
1

2
− z2c

8

)
Vol(G)

⎫⎪⎪⎬
⎪⎪⎭

for all m ≤ z
2 .

We leave the inductive proof of this lemma until after the proof of the

main theorem. The crux of this lemma is that it implies by regularity that

|N∗
z/2−1(v)| ≥

(
1
2 − z2

c

)
n or

|N∗
z/2−1(v)| ≥

dz/2−1

(
1− (c+ z3c2)

z/2−1∑
i=1

(4k2)i−1

)

(4k2)z/2−2
.

In the latter case, since c < 1
(z−1)(1+z3)(4k2)(z−1)/2 ,

1− (c+ z3c2)

z/2−1∑
i=1

(4k2)i−1 ≥ 1− (c+ z3c2)
(z
2
− 1
)
(4k2)z/2−1 ≥ 1

2
.
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Furthermore, since z ≥ 2 log( n

4k2 )
log( d

4k2 )
+ 2,

z − 2

2
log

(
d

4k2

)
≥ log

( n

4k2

)
,

meaning that (
d

4k2

)z/2−1

≥ n

4k2
,

which finally implies that

dz/2−1

2(4k2)z/2−2
≥ n

2
.

Thus,

|N∗
z/2−1(v)| ≥

dz/2−1

(
1− (c+ z3c2)

z/2−1∑
i=1

(4k2)i−1

)

(4k2)z/2−2

≥ dz/2−1

2(4k2)z/2−2

≥ n

2
.

Therefore, in either case |N∗
z/2−1(v)| ≥

(
1
2 − z2

c

)
n. By an identical ar-

gument, the same is true for N∗
z/2−1(v

′).
Note that this implies that

Vol
(
N∗

z/2−1(v)
)
≤
(
1

2
− z2c

8

)
Vol(G) <

1

2
Vol(G)

and

Vol
(
N∗

z/2−1(v
′)
)
<

1

2
Vol(G).

By the Expander Mixing Lemma, then,

e
(
N∗

z/2−1(v), N
∗
z/2−1(v

′)
)
≥

Vol
(
N∗

z/2−1(v)
)
Vol
(
N∗

z/2−1(v
′)
)

Vol(G)

− σ

√
Vol
(
N∗

z/2−1(v)
)
Vol
(
N∗

z/2−1(v
′)
)
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≥ 1

4
Vol(G)− σ

√
1

4
[Vol(G)]2

=

(
1

4
− 1

2
σ

)
Vol(G)

> 0

because σ < 1
3 . This implies that there is an edge between N∗

z/2−1(v) and

N∗
z/2−1(v

′). Since these two sets are constructed by building paths of unused

vertices in each iterated neighborhood of v and v′, respectively, this means
that there exists a (z−2)-vertex path of unused vertices that can be extended
to a path between v and v′, which contradicts the maximality of the matching
on T . Therefore, there exists a matching that saturates Xi.

Since there is a matching that saturates Xi, there exist disjoint z-vertex
paths such that for each transposition (v, v′) ∈ Xi, one of these paths con-
nects v and v′. Because these paths are all disjoint, each transposition can
be routed along these paths simultaneously, returning all pebbles not on v or
v′ to their prior location, in z steps. Since there are 4

c parts of the partition,
the permutation, π1 can be routed in 4z

c steps. By repeating this process
for π2, we can route the permutation π on G in 8z

c steps. Therefore, by the
arbitrary selection of π,

rt(G) ≤ 8z

c

= 8z
⌈
(z − 1)(1 + z3)(4k2)z/2

⌉
≤ (8z5 + 8z2)(4k2)z/2.

We now return to prove the lemma that we omitted from the main proof.

Lemma 3. For all m ≤ z
2 ,

Vol(N∗
m(v))

≥ min

⎧⎪⎪⎨
⎪⎪⎩

dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

,

(
1

2
− z2c

8

)
Vol(G)

⎫⎪⎪⎬
⎪⎪⎭ .

Proof of Lemma 3. We will prove this by induction. For m = 1, note that
|N1(v)| = d. By construction of Xi, there are at most cd vertices in N(v)
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that are also in transpositions of Xi. Furthermore, the total used weight

of the transposition (v, v′) is at most z3c2dz, meaning that there must be

used weight at most z3c2dz in N(v). However, each vertex in N(v) that has

positive weight must have weight at least dz−1. Thus, there must be at most

z3c2d vertices of N(v) used by the paths already in the matching. Hence,

there are at least d(1 − (c + z3c2)) unused vertices in N(v), which implies

that Vol(N∗
1 (v)) ≥ d2(1− (c+ z3c2)). This proves the base case.

Now suppose as an induction hypothesis that

Vol(N∗
m−1(v))

≥ min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dm
(
1− (c+ z3c2)

m−1∑
i=1

(4k2)i−1

)
(4k2)m−2

,

(
1

2
− z2c

8

)
Vol(G)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

We will prove the induction through the following series of three claims.

Claim 1. If Vol(Nm(v)) ≥ 1
2Vol(G), then Vol(N∗

m(v)) ≥
(
1
2 − z2c

8

)
Vol(G).

Proof of Claim 1. Since each path contains z vertices and the maximum

matching in question contains less than zt such paths, there are at most z2t

vertices in the matching. Thus, since t = |T |, where T ⊆ Xi and |Xi| ≤ cn
8 ,

there are at most z2cn
8 used vertices in |Xi|. Hence, because Vol(Nm(v)) ≥

1
2Vol(G) implies that |Nm(v)| ≥ 1

2n, we get that |N∗
m(v)| ≥

(
1
2 − z2c

8

)
n.

Therefore,

Vol(N∗
m(v)) ≥

(
1

2
− z2c

8

)
Vol(G).

Claim 2. If Vol(N∗
m−1(v)) ≥

(
1
2 − z2c

8

)
Vol(G), then Vol(Nm(v)) ≥

1
2Vol(G).

Proof of Claim 2. By Lemma 2, Vol(Nm(v)) ≥ 1
2Vol(G) or Vol(Nm(v)) ≥

Vol(N∗
m−1(v))
4σ2 . However, note that since c = 1

�(z−1)(1+z3)(4k2)z/2� < 4−8σ
z2 as

σ < 1
3 ,

Vol(N∗
m−1(v))

4σ2
≥

1
2 − z2c

8

4σ2
Vol(G)
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>
1
2 − z2

8
4−8σ
z2

4σ2
Vol(G)

=
1

4σ
Vol(G)

>
3

4
Vol(G).

As a result, Vol(Nm(v))) ≥ 1
2Vol(G) in either case.

Claim 3. If

Vol(N∗
m−1(v)) ≥

dm
(
1− (c+ z3c2)

m−1∑
i=1

(4k2)i−1

)
(4k2)m−2

,

then Vol(Nm(v)) ≥ 1
2Vol(G) or

Vol(N∗
m−1(v)) ≥

dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

Proof of Claim 3. By Lemma 2, Vol(Nm(v)) ≥ 1
2Vol(G) or

Vol(Nm(v)) ≥
Vol(N∗

m−1(v1))

4σ2

≥
dm
(
1− (c+ z3c2)

m−1∑
i=1

(4k2)i−1

)
(4k2)m−24σ2

=

dm+1

(
1− (c+ z3c2)

m−1∑
i=1

(4k2)i−1

)
(4k2)m−1

.

By the construction of Xi, there are at most cdm vertices in Nm(v) that
are also in transpositions of Xi. Furthermore, there must be used weight
at most z3c2dz in Nm(v). However, each vertex in Nm(v) that has positive
weight must have weight at least dz−m. Thus, there must be at most z3c2dm

vertices of Nm(v) used by paths already in the matching. Hence,

|N∗
m(v1)| ≥

dm
(
1− (c+ z3c2)

m−1∑
i=1

(4k2)i−1

)
(4k2)m−1

− z3cdm − cdm
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=

dm
(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

.

Therefore,

Vol(N∗
m(v)) ≥

dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

.

As a result of these three claims, we have shown that for all m ≤ z
2 ,

Vol(N∗
m(v))

≥ min

⎧⎪⎪⎨
⎪⎪⎩

dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

,

(
1

2
− z2c

8

)
Vol(G)

⎫⎪⎪⎬
⎪⎪⎭ .
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