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Abstract. Using graphs to model pairwise relationships between entities is a ubiquitous framework
for studying complex systems and data. Simplicial complexes extend this dyadic model of
graphs to polyadic relationships and have emerged as a model for multinode relationships
occurring in many complex systems. For instance, biological interactions occur between
sets of molecules and communication systems include group messages that are not pairwise
interactions. While Laplacian dynamics have been intensely studied for graphs, correspond-
ing notions of Laplacian dynamics beyond the node-space have so far remained largely
unexplored for simplicial complexes. In particular, diffusion processes such as random walks
and their relationship to the graph Laplacian---which underpin many methods of network
analysis, including centrality measures, community detection, and contagion models---lack
a proper correspondence for general simplicial complexes.

Focusing on coupling between edges, we generalize the relationship between the normal-
ized graph Laplacian and random walks on graphs by devising an appropriate normalization
for the Hodge Laplacian---the generalization of the graph Laplacian for simplicial complexes---
and relate this to a random walk on edges. Importantly, these random walks are intimately
connected to the topology of the simplicial complex, just as random walks on graphs are
related to the topology of the graph. This serves as a foundational step toward incorporating
Laplacian-based analytics for higher-order interactions. We demonstrate how to use these
dynamics for data analytics that extract information about the edge-space of a simplicial
complex that complements and extends graph-based analysis. Specifically, we use our
normalized Hodge Laplacian to derive spectral embeddings for examining trajectory data of
ocean drifters near Madagascar and also develop a generalization of personalized PageRank
for the edge-space of simplicial complexes to analyze a book copurchasing dataset.
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1. Introduction. Markov chains and diffusion are staples of applied mathemat-
ics [19,26,70,87]. Any time-homogeneous finite state Markov chain can be interpreted
as a random walk on a graph: the states of the Markov chain are the nodes of the
graph, and transitions occur between connected nodes via an appropriately weighted
edge. This close relationship between Markov chains and graphs has led to a broad
adoption of diffusion-based algorithms in network science [87], with applications to
ranking connected objects [59], analyzing disease spreading [111], and respondent-
driven sampling [112]. Key to the success of many such algorithms is the link between
random walks and (the spectral theory of) the graph Laplacian [37,38,87], a matrix
that encodes the structure of a graph and has intimate connections to discrete potential
theory and harmonic analysis [18]. Indeed, there is well-developed theory relating
topological properties of graphs to features of the graph Laplacian and thus to random
walks and diffusion processes [18,37,38]. For instance, spectral properties of the graph
Laplacian are related to expansion, diameter, distance between subsets, and the mixing
time of random walks, among others [37, 38]. Thus, analyzing the properties of a
random walk on a network (i.e., graph), or alternatively the graph Laplacian, can
reveal fundamental properties about the system under investigation.

As network-based system models have become almost ubiquitous across scientific
domains [20,93], graphs and their Laplacians feature prominently in many analysis
tasks [9, 12, 40, 64, 87, 89]. However, graphs are in fact special cases of more general
mathematical objects called simplicial complexes (SCs),1 and the graph Laplacian
is a special case of the Hodge Laplacian that appears in algebraic topology [85].
We give a formal definition of SCs later, but an intuitive description of an SC is a
generalization of a graph whose edge-set can contain subsets of any number of nodes
(more specifically, a hypergraph with certain properties). Since SCs can describe richer
sets of relationships than a graph, SCs are increasingly used to analyze systems and
data (see subsection 1.1).

In this paper, we introduce a certain normalized Hodge Laplacian matrix and
show how it relates to random walks on SCs, with an overarching goal of developing
data analyses that respect additional aspects of the topology of the data. A primary
motivation for this study of diffusion on SCs is to facilitate the translation of the
large toolbox of network science for graphs to SCs. To make our results concrete,
we present our work in the language of linear algebra and focus on devising random
walks on ``1-simplices,"" which may be thought of as edges. Stated differently, our
results provide tools for the analysis of signals defined in the edge-space of an SC (or
graph) that complement the typical node-based analysis conducted for graphs. In
particular, we present tools that enable us to extract the relative importance of edges
and edge-signals with respect to the higher-order topological properties of the SC.
We contrast our methodology with other notions of edge-based random walks such as
those based on line graphs [1, 47] and consider how higher-order interactions lead to
certain difficulties in formulating a diffusion model that are absent in the theory of
random walks on graphs [91,108].

We describe two applications to illustrate our ideas, which show how our method-
ology incorporates higher-order topology of the data into the analysis.

In our first application, we develop embeddings of edge flows and trajectory data
as a higher-order generalization of diffusion maps [40] and Laplacian eigenmaps [9].
Similar to the embedding of the nodes of a graph into a Euclidean space, this embedding
provides us with an effective low-dimensional representation of edges and trajectories

1Formally, we use abstract simplicial complexes, but we drop ``abstract"" for easier reading.
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in a vector space. This vector space representation can then be used to gain further
insights into the observed flows. Here we illustrate how the embedding can be used to
differentiate types of trajectories, but other data analysis and machine learning tasks
may be addressed with these techniques as well.

Our second application is a variant of (personalized) PageRank [59] for 1-simplices
(edges in a graph). Here we demonstrate how our tools enable us to analyze the ``role""
certain edges play with respect to the global topology of the SC. We point out how
these tools may be seen as extensions of ideas from graph signal processing, typically
concerned with signals on nodes, to the space of signals defined on edges. Indeed, we
demonstrate how our analysis is complementary to node-based analysis and how our
tools can highlight, e.g., how much an edge is part of the cycle-space of the SC.

1.1. Additional Background and Motivation.

Networks as Models for Complex Systems. Many complex systems are natu-
rally modeled by graphs [93]. Due to the broad scope of this modeling paradigm,
the analysis of systems as networks by means of graph-theoretic tools has been
tremendously successful, with applications in biological, technological, and social
systems [2,20,93,95,120]. However, graph-based representations of complex systems
have some limitations. Specifically, graphs encode pairwise relationships between
entities via edges, but do not account for (simultaneous) interactions between more
than two nodes, which can be crucial for the ensuing dynamics of a system [12, 63].
For instance, biochemical reactions often involve more than two species in a reac-
tion [77]; sensors record collections of interactions at a given time [42,56, 121]; people
communicate in small groups with group chat messaging; and individuals form teams
or exert peer pressure [25,75]. Nondyadic interactions have in fact long been an object
of study in the social sciences. For instance, structural balance theory implies that
three-way relationships in social networks will evolve according to colloquial rules
such as ``the friend of a friend is my friend"" and ``the enemy of my enemy is my
friend"" [30,86,124].

Modeling Higher-Order Interactions. There are several modeling frameworks
for nondyadic, higher-order interactions, such as SCs [66,85], set systems [14], hyper-
graphs [22], and affiliation graphs [48]. Here we focus on SCs, which, in contrast to
generic hypergraphs, have special algebraic structure that makes them a core object of
study in applied (algebraic) topology [29,55]. Such algebraic structure is accompanied
by analogues of the graph Laplacian for SCs, namely, the Hodge Laplacian, which will
be a principal object of our study.

Related Work. Simplicial complex models have been successful in developing
new insights into biological data [32, 92], structural and functional connectivity in the
brain [57,58,104], coverage of sensor networks [42,56,90,121], signal processing [8,115],
mobility analysis [54], and robotics [105]. Simplicial models have further been studied
from a geometric perspective [17], in terms of epidemic spreading [69], or in the
context of extensions of random graph models [41,73,125]. Nevertheless, in contrast
to graph-based methods, the analysis of higher-order interaction data using SCs is still
nascent, even though the formal use of tools from algebraic topology for the analysis of
networks had already been discussed in the 1950s in the context of electrical network
and circuit theory [107,109,110]. Also, Eckmann's seminal work introduced the ideas
underpinning the Hodge Laplacian in 1944 [45]. That being said, little is known about
the spectral properties of Hodge Laplacians and how they relate to dynamics on the
underlying SCs. Specifically, notions such as random walks and diffusion processes on
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SCs have remained barely explored and even then mainly from the perspective of pure
mathematics [68,91,100,108]. Preliminary research elucidating spectral connections
includes spectral sparsification of SCs [97], embeddedness of edges in the cycle-space
of a graph [114], the analysis of flows on graphs and discretized domains [54, 115], and
the spectral theory of hypermatrices, tensors, and hypergraphs [11, 12, 33, 53, 106,126].

1.2. Outline and Notation. We first briefly review SCs and Hodge Laplacians in
section 2. Then, in section 3, we discuss our normalized variant of the Hodge Laplacian
and how it can be related to models for diffusion processes on SCs in the edge-space,
and we analyze its spectral properties. Section 4 describes how SCs can be constructed
from data and discusses computational aspects of our formalism. Finally, sections 5
and 6 outline trajectory embeddings and simplicial PageRank as two applications of
our random walk model on SCs.

Notation. Matrices and vectors are denoted by bold-faced fonts (\bfitA ,\bfitx ). Their
entries will be denoted by indexed letters (such as Ai,j , xi), or for clarity as (\bfitA )i,j . All
vectors are assumed to be column vectors. Scalar quantities are denoted by lowercase
letters such as a, b. We use 1 to denote the vector of all ones, and \bfitI to denote the
identity matrix. We use | \bfitA | to denote the matrix whose elements are given by the
absolute values of the entries of \bfitA . We further denote the positive and negative
parts of a real-valued matrix by \bfitA + := max(\bfitA ,0) and \bfitA  - := max( - \bfitA ,0), where
the maximum is applied elementwise. For a vector \bfitx , the matrix diag(\bfitx ) denotes the
diagonal matrix whose (diagonal) entries are given by the components of the vector
\bfitx . For square matrices \bfitA ,\bfitB , we use diag(\bfitA ,\bfitB ) to denote a block-diagonal matrix
in which the matrices \bfitA ,\bfitB form the diagonal blocks (and the remaining entries are
zero). Sets are denoted by calligraphic letters such as \scrS , except for the real numbers,
which we denote by \BbbR .

2. A Short Review of Graphs, Simplicial Complexes, and Laplacians. We
briefly review some ideas from graph theory and algebraic topology. Our exposi-
tion is geared toward readers with an understanding of graphs and matrices and is
similar to the more detailed exposition by Lim [85].

2.1. Graphs and the Graph Laplacian. An undirected graph \scrG consists of a set
of vertices \scrV with cardinality | \scrV | = n0 and a set of edges \scrE , where each edge is an
unordered pair of nodes. For convenience, we identify the nodes with the integers
1, . . . , n0. The structure of a graph can be encoded in an adjacency matrix \bfitA with
entries Ai,j = 1 if i is connected to j via an edge, and Ai,j = 0 otherwise. As we
consider undirected graphs here, \bfitA = \bfitA \top . A connected component is a maximal set
of nodes \scrV c such that there exists a sequence of edges in the graph via which every
node in \scrV c can be reached from every other node in \scrV c. The degree of a node i is
the number of edges containing i. Accordingly, we can define the matrix of degrees
as \bfitD := diag(\bfitA 1), where diag(\bfitx ) is the diagonal matrix with the entries of \bfitx on the
diagonal. The graph Laplacian matrix \bfitL 0 = \bfitD  - \bfitA is an algebraic description of a
graph, whose spectral properties reveal a number of important topological properties
of the graph [23,37,38,89,118].

2.2. Simplicial Complexes. Let \scrV be a finite set of vertices. A k-simplex \scrS k is
a subset of \scrV of cardinality k + 1 (we do not allow \scrS k to be a multiset, i.e., there are
no repeated elements in \scrS k). An SC \scrX is a set of simplices with the property that if
\scrS \in \scrX , then all subsets of \scrS are also in \scrX .
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Fig. 2.1 Simplicial complexes and graphs. (A) Schematic of an SC with a prescribed orientation.
This is the running example of an SC in the text. Shaded areas correspond to the 2-simplices
\{ 1, 2, 3\} and \{ 2, 3, 4\} . An edge flow c along the paths 2 \rightarrow 6 \rightarrow 5 \rightarrow 4 and 1 \rightarrow 3 as well
as its corresponding vector representation are depicted in blue. (B) Schematic of a graph,
corresponding to the 1-skeleton of the SC in (A). There are no k-simplices with k > 1 in
the graph.

Example 1. Analogous to a graph, the vertices of \scrX in Figure 2.1A correspond
to ``nodes"" \{ 1, . . . , 7\} and the 1-simplices to ``edges."" The 2-simplices \{ 1, 2, 3\} and
\{ 2, 3, 4\} are depicted by filled triangles.

A graph, while typically defined via two sets (vertices and edges), may be in-
terpreted as an SC in which all simplices have cardinality at most 2 (Figure 2.1B).
An SC can thus be understood as a generalization of a graph encoding higher-order
relationships between vertices. To emphasize this connection, we will call the collection
of 1-simplices in an SC \scrX the edges of \scrX .

A face of a simplex \scrS k is a subset of \scrS k with cardinality k, i.e., with one element
of \scrS k omitted. If \scrS k - 1 is a face of simplex \scrS k, \scrS k is called a coface of \scrS k - 1.

Example 1 (continued). In Figure 2.1A, \{ 1, 2\} , \{ 2, 3\} , and \{ 1, 3\} are faces of
\{ 1, 2, 3\} . Similarly, \{ 2, 3, 4\} is a coface of \{ 2, 3\} , \{ 3, 4\} , and \{ 2, 4\} .

Two k-simplices in an SC \scrX are upper adjacent if they are both faces of the same
(k + 1)-simplex and are lower adjacent if both have a common face. For any \scrS \in \scrX ,
we define its degree, denoted by deg(\scrS ), to be the number of cofaces of \scrS . We use \scrX k

to denote the subset of k-simplices in \scrX .

Example 1 (continued). In Figure 2.1A, the simplices \{ 3, 4\} and \{ 2, 4\} are upper
adjacent, but \{ 2, 6\} and \{ 5, 6\} are not. The simplices \{ 3, 4\} and \{ 2, 4\} are lower
adjacent, as are \{ 2, 6\} and \{ 5, 6\} .

2.3. Oriented Simplicial Complexes and Function Spaces on Simplicial Com-
plexes. While the definition of SCs is based on sets, in order to facilitate computations,
we need to define an orientation for each simplex, which we do by fixing an ordering
of its vertices. The choice of orientation is a matter for bookkeeping: just as we need
to define a node-labeling to represent a graph with an adjacency matrix, we need to
define orientations to perform appropriate numerical computations for SCs.2

2For the expert, there is a small subtlety here. Strictly speaking, orientations are essential because
we are concerned with signals defined on SCs represented by vectors with field coefficients in \BbbR . If we
were to use (binary) field coefficients in \BbbZ /2, we would not have to define orientations. However, there
is no relevant Hodge theory associated to this case. For applications to data, real-valued coefficients
are essential to represent signals on edges and will be our focus.
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Formally, an orientation of a k-simplex \scrS k (k > 0) is an equivalence class of
orderings of its vertices, where two orderings are equivalent if they differ by an even
permutation. For simplicity, we choose the reference orientation of the simplices
induced by the ordering of the vertex labels \{ [i0, . . . , ik] : i0 < \cdot \cdot \cdot < ik\} .

Example 1 (continued). In Figure 2.1A, edges and triangles are oriented by
arrows on the simplices. In this example, the ordered simplices [2, 3, 4] and [3, 4, 2]
correspond to an equivalent orientation, whereas [1, 2] and [2, 1] do not.

A node (0-simplex) can have only one orientation. Hence, issues of orientation do
not commonly arise in graph-theoretic settings. An exception is graph-flow problems, in
which orientations are defined for edges as above to keep track of the flows appropriately:
each flow has a magnitude and a sign to indicate whether the direction of the flow is
aligned or antialigned with the chosen reference orientation.

Given a reference orientation for each simplex, for each k we can define the
finite-dimensional vector space \scrC k with coefficients in \BbbR whose basis elements are the
oriented simplices ski . An element ck \in \scrC k is called a k-chain and may be thought of
as a formal linear combination of these basis elements ck =

\sum 
i \gamma is

k
i . Thus, we can

represent each element in \scrC k by a vector \bfitc = (\gamma 1, . . . , \gamma nk
)\top , where nk = | \scrX k| is the

number of k-simplices in the SC (Figure 2.1). Note that \scrC k is isomorphic to \BbbR nk , so
we may think of a k-chain as a vector in \BbbR nk .

Example 1 (continued). In Figure 2.1A, the blue vector is the representation of
the 1-chain \bfitc = (0, 1, 0, 0, 1, 0, - 2, 0, - 2, 0)\top .

We make one further provision for the construction of \scrC k---a change of the ori-
entation of the basis element ski is defined to correspond to a change in the sign of
the coefficient \gamma i. Hence, if we ``flip"" a basis element ski to its opposite orientation, we
have to multiply the corresponding coefficient \gamma i by  - 1. Finally, we endow each space
\scrC k with the standard \ell 2 inner product \langle \bfitc 1, \bfitc 2\rangle = \bfitc \top 1 \bfitc 2, and thus give \scrC k the structure
of a finite-dimensional Hilbert space.

An alternative interpretation of the above construction is in terms of the space
\scrC k of cochains, which is the linear space of all alternating functions f : \scrC k \rightarrow \BbbR (for a
more detailed discussion, see Lim [85]).3 Since \scrC k and \scrC k have the same dimension,
and there is a canonical isomorphism between the spaces of chains \scrC k and cochains \scrC k,
we will treat these two interpretations interchangeably in what follows even though
their interpretation can be different.

The reader not familiar with these constructions may simply consider the above
spaces in terms of their vector representations. For instance, the space \scrC 1 can be
interpreted as the space of edge flows, which are commonly encountered in graph theory.
Any vector \bfitf representing such a flow assigns one scalar value to each edge in the graph,
where a negative value indicates that the flow is in the opposite direction with respect
to the chosen reference orientation of the edge. To illustrate the abovementioned
duality of chains and cochains for the edge-space, think of electrical circuits with unit
resistances. In this context, we may think of \scrC 1 as the space of edge-currents, and \scrC 1
as the space of edge-voltages, which encode exactly the same information.

Example 1 (continued). The 1-chain \bfitc = (0, 1, 0, 0, 1, 0, - 2, 0, - 2, 0)\top in Fig-
ure 2.1A can by duality also be thought of as a cochain \bfitf , or simply as the union of an
edge flow on 2 \rightarrow 6 \rightarrow 5 \rightarrow 4 and an edge flow on 1 \rightarrow 3. Due to the edge orientations,

3Strictly speaking, the space \scrC k of cochains corresponds to the dual space of \scrC k.

D
ow

nl
oa

de
d 

09
/2

2/
23

 to
 1

30
.2

53
.2

9.
10

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

360 M. T. SCHAUB, A. R. BENSON, P. HORN, G. LIPPNER, AND A. JADBABAIE

1 2

3

[1, 2, 3]

[1, 2]

[2, 3][1, 3] \partial 2

[1, 2]

[2, 3][1, 3]

[1, 2, 3]
\partial 2

[2, 3] - [1, 3] + [1, 2]

Fig. 2.2 Illustration of the action of a boundary operator on a 2-simplex. The boundary operator
maps the 2-simplex to a linear combination of its faces, respecting the orientation. For
simplicity, we choose a basis for \scrC k such that \{ sk = [i0, . . . , ik] : i0 < \cdot \cdot \cdot < ik\} . Note that
within the space of chains (see text),  - [1, 3] = [3, 1], which shows that the above boundary
operator gives rise to a cycle \partial 2([1, 2, 3]) = [1, 2]+ [2, 3]+ [3, 1] for which \partial 1(\partial 2([1, 2, 3])) = 0.

some entries of \bfitc are negative, corresponding to a flow in the opposite direction to the
reference orientation.

An alternative way to think about the space of alternating functions on edges \scrC 1

is to identify it with the set of antisymmetric matrices (\bfitA =  - \bfitA \top ), whose sparsity
pattern is consistent with the edges present (Ai,j = Aj,i = 0, if \{ i, j\} /\in \scrX 2). As
Ai,j =  - Aj,i, this representation simultaneously encodes both edge orientation [i, j]
and [j, i] (with opposite signs, as desired). In what follows, we use the more compact
description in terms of vectors, but the reader might find it insightful to keep the
above picture in mind.

2.4. Boundary and Coboundary Maps. Given the spaces of chains \scrC k defined
above, we define the linear boundary maps \partial k : \scrC k \rightarrow \scrC k - 1 by their action on the
basis elements as follows:

\partial k([i0, . . . , ik]) =

k\sum 
j=0

( - 1)j [i0, . . . , ij - 1, ij+1, . . . , ik].

These operators map any chain to a sum of its boundary components, i.e., the simplices
lower adjacent to the k-chain considered, with the appropriate orientation (Figure 2.2).
We thus call im(\partial k) the space of (k  - 1)-boundaries, where im(\cdot ) denotes the image of
an operator. It is not difficult to show that if we build a cyclic chain ck \in \scrC k whose
start- and end-points are identical, then \partial kck = 0; and similarly, any ck such that
\partial kck = 0 must correspond to a cycle. Thus, we call ker(\partial k) the space of k-cycles.

The boundary operators are linear maps between finite-dimensional vector spaces.
After choosing a basis, each of these operators can be represented by a matrix, thereby
enabling us to perform computations based on these objects. We will denote the
matrix representation of the boundary operators \partial k by \bfitB k (see [85,90,121] for further
discussion on how to construct these matrices).

Example 1 (continued). Consider again the SC in Figure 2.1. In this case, the
boundary maps \bfitB 1 (rows indexed by nodes, columns indexed by edges) and \bfitB 2 (rows
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indexed by edges, columns indexed by 2-simplices) are

\bfitB 1 =

[1, 2] [1, 3] [2, 3] [2, 4] [2, 6] [3, 4] [4, 5] [4, 7] [5, 6] [5, 7]

1  - 1  - 1 0 0 0 0 0 0 0 0
2 1 0  - 1  - 1  - 1 0 0 0 0 0
3 0 1 1 0 0  - 1 0 0 0 0
4 0 0 0 1 0 1  - 1  - 1 0 0
5 0 0 0 0 0 0 1 0  - 1  - 1
6 0 0 0 0 1 0 0 0 1 0
7 0 0 0 0 0 0 0 1 0 1

, \bfitB 2 =

[1, 2, 3] [2, 3, 4]

[1, 2] 1 0
[1, 3]  - 1 0
[2, 3] 1 1
[2, 4] 0  - 1
[2, 6] 0 0
[3, 4] 0 1
[4, 5] 0 0
[4, 7] 0 0
[5, 6] 0 0
[5, 7] 0 0

.

The matrix \bfitB 1 is the node-to-edge incidence matrix from algebraic graph theory.
Likewise, the higher-order boundary maps induce matrices \bfitB i that can be interpreted
as higher-order incidence matrices between simplices and their (co)faces.

Note that for each boundary map there exists a coboundary map \partial \top 
k : \scrC k \rightarrow \scrC k+1,

which is simply the adjoint of the boundary map. The matrix representation of the
coboundary operator \partial \top 

k is \bfitB \top 
k .

2.5. Hodge Laplacians. From the sequences of boundary maps, one can define
a hierarchy of Laplacian operators for the SC \scrX . Using our matrix representations
discussed above, the kth combinatorial Hodge Laplacian is

(2.1) \bfitL k = \bfitB \top 
k \bfitB k +\bfitB k+1\bfitB 

\top 
k+1.

The standard combinatorial graph Laplacian is a special case of the above and
corresponds to \bfitL 0 = \bfitB 1\bfitB 

\top 
1 (as \bfitB 0 = 0). The matrix \bfitL 1, which is also referred

to simply as the (Hodge) 1-Laplacian, is the primary focus of this paper.
As solutions to the Laplace equation (\Delta \bfitx = 0) are called harmonic functions,

and \bfitL k may be interpreted as a discretized version of the Laplace equation [85],
elements \bfith \in ker(\bfitL k) are called harmonic (functions). These harmonic functions also
carry a specific topological meaning. From the definitions of the boundary maps,
we can compute that \partial k - 1 \circ \partial k = 0. Thus, the adjoint of this map is also zero, i.e.,
\partial \top 
k \circ \partial \top 

k - 1 = 0. These equations encapsulate the natural idea that the ``boundary
of a boundary"" is empty. In matrix terms, this annihilation of the boundary maps
translates into \bfitB k\bfitB k+1 = 0 and \bfitB \top 

i+1\bfitB 
\top 
i = 0.

Furthermore, since \partial k \circ \partial k+1 = 0, im(\partial k+1) is a subspace of ker(\partial k). This leads to
the definition of the homology vector spaces of \scrX over \BbbR as those elements in the null
space ker(\partial k) which are not in the image im(\partial k+1):

(2.2) \scrH k := \scrH (\scrX ,\BbbR ) = ker(\partial k)
\big/ 
im(\partial k+1).

Intuitively, the homology \scrH k may be interpreted as accounting for the number of
k-dimensional ``holes"" in the SC \scrX . More precisely, elements of \scrH k correspond to
k-cycles that are not induced by a k-boundary. The number of k-dimensional holes in
the SC is the so-called the kth Betti number. It can be shown that this corresponds
precisely to the dimension of the null space of the kth Hodge Laplacian ker(\bfitL k) [85].

2.6. The Hodge Decomposition. The combinatorial Hodge Laplacian is a sum
of two positive semidefinite operators, so any \bfith \in ker(\bfitL k) fulfills \bfith \in ker(\bfitB k) and
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\bfith \in ker(\bfitB \top 
k+1). This implies that the nonzero elements in ker(\bfitL k) are representatives

of the nontrivial equivalence classes in the kth homology.
The space \scrC k is isomorphic to \BbbR nk within our chosen representation, which can

be represented by ker(\bfitL k) \oplus im(\bfitL T
k ) = ker(\bfitL k) \oplus im(\bfitL k), where \oplus denotes the

union of orthogonal subspaces with respect to the standard inner product. Clearly,
im(\bfitL k) \subseteq im(\bfitB T

k ) \cup im(\bfitB k+1). Moreover, as im(\bfitB k+1) \subset ker(\bfitB T
k ) in our case, we

have that im(\bfitL k) \subseteq im(\bfitB T
k )\oplus im(\bfitB k+1). Since the dimension of im(\bfitB T

k )\oplus im(\bfitB k+1)
cannot exceed the dimension of im(\bfitL k), these subspaces must be equal, and we can
decompose Ck as follows:

(2.3) \scrC k \simeq \BbbR nk = im(\bfitB k+1)\oplus im(\bfitB \top 
k )\oplus ker(\bfitL k).

Equation (2.3) is called the Hodge decomposition. Later, we discuss how the Hodge
decomposition for \scrC 1 can provide additional insights into the data.

3. Diffusion Processes on Simplicial Complexes. In this section, we outline
our model for diffusion processes on SCs that accounts for topological features. For
simplicity, we focus on 1-simplices, i.e., diffusion between edges.

Diffusion Processes on Graphs. To understand the complications of defining a
diffusion process on an SC, let us revisit a random walk on a graph, a prototypical
model for a diffusion process on a graph. A (standard, unbiased) random walk on a
graph with adjacency matrix \bfitA can be described by the following transition rule:

(3.1) \bfitp t+1 = \bfitA \bfitD  - 1\bfitp t = (\bfitI  - \bfitL 0\bfitD 
 - 1)\bfitp t.

Here the ith component of the vector \bfitp t denotes the probability of finding a random
walker at node i at time t, and \bfitp 0 corresponds to an initial distribution of the walker.

There are two important features of this formulation. First, the transition matrix
of the random walk is directly related to a normalized Hodge Laplacian, namely,
\bfscrL 0 = \bfitL 0\bfitD 

 - 1 is the so-called random walk Laplacian. There is thus a close relationship
between the topological features of the graph and the random walk, as the harmonic
functions of \bfscrL 0 are directly related to the connected components of the graph. Second,
the state space and the transitions of the random walker are determined by the graph.
The nodes are the states of the random walker and transitions occur over the edges.

3.1. Beyond Graphs: Keeping Track of Orientations. When extending the con-
cept of a random walk to SCs, a mismatch between the two features discussed above
becomes apparent if we go beyond the node-space. On the one hand, we may define a
random walk on the edges, where the edges themselves are defined as the states of the
Markov process. To define such a process we could use the line graph [1,47] or other
``dual graph"" constructions [97]. However, we would be abandoning the connection to
algebraic topology and the Hodge Laplacian, as the Laplacian of the line graph is not
directly related to the Hodge Laplacian of the SC. The properties of a random walk
on the line graph will therefore not be informative about the topology of the SC.

On the other hand, we face a different issues if we define a random walk based
on the \bfitL 1 Laplacian formally analogous to (3.1). The Laplacian \bfitL 1 has nontrivial
patterns of positive and negative entries that depend on the edge orientations. Hence,
the \bfitL 1 Laplacian is not obviously related to a transition matrix of a Markov chain. We
do not face this issue with the \bfitL 0 Laplacian because orientation is trivial for vertices.

Can a ``normalized"" variant of the \bfitL 1 Laplacian be related to a random walk? It
turns out that we can indeed construct an edge-based diffusion process that is tied to
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BA

Edge View

initial position

initial position

Lifted space

upper adjacent walk

lower adjacent walk

foff rwrr aww rdrr backwaww rdrr

C

Fig. 3.1 Illustration of lifted simplicial complex. (A) We may think of the lifted complex as an
augmented complex in which each original edge is represented in both possible orientations.
(B) Alternatively, we may interpret each oriented edge [i, j] in the original complex as giving
rise to two states [i, j] and [j, i] on a graph with 2n1 vertices. (C) Starting from [1, 2],
there are lower adjacent connections ``forward"" and ``backward,"" as well as upper adjacent
connections (see text).

the topology of the original complex. However, we have to consider a random walk in
a higher-dimensional, lifted state space. Our idea is that instead of considering how
\bfitL 1 acts on an edge flow \bfitf in the original space, we view its action as an equivalent
sequence of three operations: first, we lift \bfitf into a higher-dimensional space; second,
we act on it via a linear operator; and third, we project the result back down to the
original state space. Once we understand these actions, we can normalize the linear
transformation in the lifted space such that it corresponds to a diffusion. This leads
to the definition of a normalized Hodge Laplacian, to which we can assign a meaning
in terms of a random walk in a lifted space.

Decomposing the action of the Hodge Laplacian \bfitL 1 in the above manner (lift,
apply, project) enables us to disentangle the orientation of a flow and the magnitude of
the flow. The magnitude of each component indicates the volume of the flow, whereas
the sign of the variable indicates the direction of the flow, which can be aligned or
antialigned with our chosen reference orientation. As we will see, the magnitude of
the flow can be related to a probability, whereas the information about the direction
of the flow is a matter of accounting for a reference orientation.

3.2. Lifting of Edge Flows and Matrix Operators. In what follows, we describe
how the action of the \bfitL 1 Laplacian on any cochain vector \bfitf (edge flow) can be
understood from the point of view of a higher-dimensional, lifted state space. We
consider a lifting of an edge flow \bfitf \in \scrC 1 into a larger space \scrD 1 in which both possible
orientations for each edge are present (see Figure 3.1). Since there are two possible
orientations for each edge, | \scrD 1| = 2| \scrC 1| . As an edge flow in \scrC 1 corresponds to an
alternating function, there is a natural inclusion map V : \scrC 1 \rightarrow \scrD 1 which maps any
edge flow into \scrD 1 by explicitly representing both edge directions. We choose the basis
elements of \scrD 1 such that the matrix representation of V is

(3.2) \bfitV =

\biggl( 
+\bfitI n1

 - \bfitI n1

\biggr) 
\in \BbbR 2n1\times n1 ,

where \bfitI n1
is the identity matrix of dimension n1 = | \scrC 1| .
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Example 1 (continued). Consider the edge flow \bfitf = (0, 1, 0, 0, 1, 0, - 2, 0, - 2, 0)\top 

in Figure 2.1A. The lifted edge flow is simply \widehat \bfitf = \bfitV \bfitf = (\bfitf \top , - \bfitf \top )\top . For instance,\widehat \bfitf has an entry 1 for edge [2, 6] and  - 1 for the (now added) reverse edge [6, 2].

The lifting operator has the property that \bfitV \top \bfitV = 2\bfitI n1
. Thus, the Moore--Penrose

pseudoinverse of \bfitV is \bfitV \dagger = 1
2\bfitV 

\top . Furthermore, it is easy to see that \bfitV \bfitV \top = \bfitI 2n1
 - \Sigma ,

where \Sigma is the permutation matrix that maps the original basis simplices to their
counterparts with switched orientation:

(3.3) \Sigma =

\biggl( 
0 \bfitI n1

\bfitI n1
0

\biggr) 
.

Having defined a lifting for an edge flow, we now need to define an appropriate
notion for a lifting of a matrix operator.

Definition 3.1 (lifting of a matrix). We say that a matrix \bfitN \in \BbbR 2nk\times 2nk is a
lifting of a matrix \bfitM \in \BbbR nk\times nk if the following condition holds:

(3.4) \bfitV \top \bfitN = \bfitM \bfitV \top .

This definition implies that if a matrix \bfitM has a lifting \bfitN , then by multiplying
from the right with \bfitV , \bfitM = 1

2\bfitV 
\top \bfitN \bfitV = \bfitV \dagger \bfitN \bfitV . Hence, the action of multiplying

by \bfitM can be interpreted in terms of a lifting, followed by a linear transformation,
and finally a projection into the original lower-dimensional space (we use the term
``projection"" here to refer to a mapping into a lower-dimensional space).

We now consider a lifting of the combinatorial Hodge Laplacian \bfitL 1. To state our
results compactly we define the following matrices:

(3.5) \widehat \bfitB 1 := \bfitB 1\bfitV 
\top =

\bigl( 
\bfitB 1  - \bfitB 1

\bigr) 
and \widehat \bfitB 2 := \bfitV \bfitB 2 =

\biggl( 
\bfitB 2

 - \bfitB 2

\biggr) 
.

We will, moreover, make use of the positive part \widehat \bfitB +
i and the negative part \widehat \bfitB  - 

i of
these matrices. In the following we use the notation \widehat \cdot to indicate objects that are
related to the lifted space. Note that such objects may not always be liftings of
matrices (consider, e.g., \widehat \bfitB 1).

Lemma 3.2 (lifting of the \bfitL 1 Hodge Laplacian). The negative of the Hodge

Laplacian \bfitL 1 = \bfitB \top 
1 \bfitB 1 +\bfitB 2\bfitB 

\top 
2 has a lifting \widehat \bfitA = \widehat \bfitA l + \widehat \bfitA u with

\widehat \bfitA l = ( \widehat \bfitB  - 
1 )\top \widehat \bfitB +

1 + ( \widehat \bfitB +
1 )

\top \widehat \bfitB  - 
1 and \widehat \bfitA u = \widehat \bfitB +

2 (
\widehat \bfitB  - 
2 )\top + \widehat \bfitB  - 

2 ( \widehat \bfitB +
2 )

\top .

Let us unpack this result before proving it. We can see immediately that \widehat \bfitA is
symmetric. Next, for any matrix \bfitM , we have that ( - \bfitM ) - = \bfitM +; ( - \bfitM )+ = \bfitM  - ;

and \bfitM + and \bfitM  - are nonnegative. Thus, \widehat \bfitA is also nonnegative and can be interpreted
as the (weighted) adjacency matrix of an undirected graph with 2n1 nodes. More

specifically, \widehat \bfitA l describes connections between lower adjacent edges and is composed of

(( \widehat \bfitB  - 
1 )\top \widehat \bfitB +

1 )[i,j],[k,l] =

\Biggl\{ 
1 if l = i,

0 otherwise,
(( \widehat \bfitB +

1 )
\top \widehat \bfitB  - 

1 )[i,j],[k,l] =

\Biggl\{ 
1 if k = j,

0 otherwise.

The first matrix describes a forward walk respecting the edge orientation, where the
target node l of the first edge [k, l] has to match with source node i of the second edge
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[i, j]. The second matrix describes a backward walk in the opposite direction, where
the source node k of the first edge [k, l] has to match with the target node j of the
second edge [i, j] (see Figure 3.1).

Likewise, \widehat \bfitA u describes connections between upper adjacent edges with a joint
triangular coface. Using the symbol \nsim to denote that two edges have a different
orientation relative to a joint coface, we can write

( \widehat \bfitA u)[i,j],[k,l] =

\Biggl\{ 
1 if [k, l] \nsim [i, j],

0 otherwise.
(3.6)

Example 2. Consider Figure 3.1. In the lifted space \scrD 1, the lower adjacent
forward connections of [1, 2] are [2, 1] and [2, 3]; the lower adjacent backward connections
are [2, 1] and [3, 1]. The upper adjacent connections of [1, 2] with opposite orientation
are [2, 1], [3, 2], and [1, 3].

To conclude this section, we prove Lemma 3.2.

Proof. Since ( - \bfitM ) - = \bfitM + and ( - \bfitM )+ = \bfitM  - , for \widehat \bfitA l we have that\widehat \bfitB  - 
1 \bfitV = (\bfitB 1, - \bfitB 1)

 - \bfitV =  - \bfitB 1, \widehat \bfitB +
1 \bfitV = (\bfitB 1, - \bfitB 1)

+ \bfitV = \bfitB 1, \widehat \bfitB +
1 \Sigma = \widehat \bfitB  - 

1 .

Using the transposes of the first two equalities as well as the third equality,

\bfitV \top \widehat \bfitA l =  - \bfitB \top 
1
\widehat \bfitB +
1 +\bfitB \top 

1
\widehat \bfitB  - 
1 =  - \bfitB \top 

1
\widehat \bfitB +
1 (\bfitI  - \Sigma ) =  - \bfitB \top 

1
\widehat \bfitB +
1 \bfitV \bfitV \top =  - \bfitB \top 

1 \bfitB 1\bfitV 
\top .

By analogous arguments for \widehat \bfitA u, we obtain

\bfitV \top \widehat \bfitA u = \bfitB 2( \widehat \bfitB  - 
2 )\top  - \bfitB 2( \widehat \bfitB +

2 )
\top =  - \bfitB 2( \widehat \bfitB +

2 )
\top (\bfitI  - \Sigma ) =  - \bfitB 2\bfitB 

\top 
2 \bfitV \top .

The lemma follows by combining these two results.

3.3. The Normalized Hodge 1-Laplacian and Edge-Space Random Walks.
Motivated by our lifting result in Lemma 3.2, we now define a normalized Hodge
Laplacian for the edge-space and show that its action can be related to a random walk
on a lifted complex. There is some flexibility here, however, as multiple operators
in the lifted space \scrD 1 will correspond to the same projected matrix. Likewise, there
are multiple types of random walks we could define in the lifted space by assigning
different weights to the various transitions, leading to different notions of a normal-
ized Laplacian operator. The normalized Hodge Laplacian we consider here is of a
``standard form"" [62, 68] and admits a (normalized) Hodge decomposition, which is
of interest for our applications. A systematic exploration of further normalization
schemes and their respective advantages is an interesting avenue for future research.

Definition 3.3 (normalized Hodge 1-Laplacian \bfscrL 1). Consider an SC \scrX whose
boundary operators can be represented by the matrices \bfitB 1 and \bfitB 2. The normalized
Hodge 1-Laplacian matrix is then defined by

(3.7) \bfscrL 1 = \bfitD 2\bfitB 
\top 
1 \bfitD  - 1

1 \bfitB 1 +\bfitB 2\bfitD 3\bfitB 
\top 
2 \bfitD  - 1

2 ,

where \bfitD 2 is the diagonal matrix of (adjusted) degrees of each edge,

(3.8) \bfitD 2 = max(diag(| \bfitB 2| 1), \bfitI ) \Leftarrow \Rightarrow (\bfitD 2)[i,j],[i,j] = max\{ deg([i, j]), 1\} ,

\bfitD 1 = 2 \cdot diag(| \bfitB 1| \bfitD 21) is a diagonal matrix of weighted degrees of the nodes (with the
weight of an edge equal to the maximum of 1 and the number of cofaces of the edge),
and \bfitD 3 = 1

3\bfitI .
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In the above definition, the matrix \bfitD 2 defines a weighting of the edges according
to their degree, where the elementwise maximum in \bfitD 2 ensures that the normalized
Hodge Laplacian is well-defined (i.e., the edge weight of an existing edge is at least
1). The matrix \bfitD 1 encodes twice the weighted degree of the nodes according to the
weights of the incident edges, and \bfitD 3 gives a weighting of 1/3 to each triangular face.
Recall that in the standard case of graphs, the Hodge Laplacian is

\bfitL 0 = 0\top 
1 01 +\bfitB 1\bfitB 

\top 
1 = \bfitB 1\bfitB 

\top 
1 ,

and the normalized (random walk) version is

\bfscrL 0 = \bfitB 1
\widetilde \bfitD 3\bfitB 

\top 
1
\widetilde \bfitD  - 1
2 ,

with \widetilde \bfitD 3 = \bfitI and \widetilde \bfitD 2 = max(diag(| \bfitB 1| 1), \bfitI ). Note how \widetilde \bfitD 2 and \bfitD 2 have exactly the

same functional form, but are based on \bfitB 1 and \bfitB 2, respectively. Similarly, both \widetilde \bfitD 3

and \bfitD 3 are simple scalings.
The key difference between the normalized random walk Laplacian and the nor-

malized Hodge 1-Laplacian is that the latter contains both an upper-adjacent and
a lower-adjacent term. The following result shows that this normalized Hodge 1-
Laplacian has a meaningful connection to random walks. Specifically, the matrix is
related to a random walk in the lifted space of edges.

Theorem 3.4 (stochastic lifting of the normalized Hodge 1-Laplacian). The ma-

trix  - \bfscrL 1/2 has a stochastic lifting, i.e., there exists a column stochastic matrix \widehat \bfitP 
such that  - 1

2\bfscrL 1\bfitV 
\top = \bfitV \top \widehat \bfitP . Specifically, \widehat \bfitP := 1

2\bfitP lower+
1
2\bfitP upper, where \bfitP lower is the

transition matrix of a random walk determined by the lower-adjacent connections and
\bfitP upper is the transition matrix of a random walk determined by the upper-adjacent con-
nections. The transition matrix \bfitP lower is defined by a ``forward walk"" and a ``backward
walk"" component moving in the orientation of the edges or against it, respectively:

\bfitP lower :=
1

2
(\bfitP lower,forward + \bfitP lower,backward) ,(3.9)

\bfitP lower,forward = \bfitM fdiag(\bfitM f1)
 - 1,(3.10)

\bfitP lower,backward = \bfitM bdiag(\bfitM b1)
 - 1,(3.11)

where \bfitM f = \widehat \bfitD 2( \widehat \bfitB  - 
1 )\top \widehat \bfitB +

1 and \bfitM b = \widehat \bfitD 2( \widehat \bfitB +
1 )

\top \widehat \bfitB  - 
1 are (weighted) lower-adjacency

matrices corresponding to forward and backward walks along the edges (see Lemma 3.2)

and \widehat \bfitD 2 = diag(\bfitD 2,\bfitD 2). The transition matrix \bfitP upper describes a random walk along
upper-adjacent faces as follows:

\bfitP upper = \widehat \bfitA u
\widehat \bfitD  - 1
4 +

1

2

\biggl( 
\bfitI \bfitI 
\bfitI \bfitI 

\biggr) \widehat \bfitD 5,(3.12)

where \widehat \bfitA u = \widehat \bfitB +
2 (

\widehat \bfitB  - 
2 )

\top + \widehat \bfitB  - 
2 (

\widehat \bfitB +
2 )

\top is the matrix of upper-adjacent connections as

defined in Lemma 3.2 and \widehat \bfitD 4 is a diagonal matrix:

(3.13) ( \widehat \bfitD 4)[i,j],[i,j] =

\Biggl\{ 
1 if deg([i, j]) = 0,

3 \cdot deg([i, j]) otherwise.

Here \widehat \bfitD 5 is the diagonal matrix selecting all edges with no upper-adjacent faces:

(3.14) ( \widehat \bfitD 5)[i,j],[i,j] =

\Biggl\{ 
1 if deg([i, j]) = 0,

0 otherwise.
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Proof. The proof closely follows our lifting result above and is in the appendix.

The random walk described by \widehat \bfitP can be described in words as follows. With
a probability of 0.5 each, we take a step via either the upper- or the lower-adjacent
connection. If we take a step via the lower-adjacent connections (via the nodes), then
with probability of 0.5 each we move either along or against the chosen edge orientation.
In either case, the transition probability to a target edge is then proportional to the
upper degree of the target edge, which corresponds to the ``weight"" of that edge. If we
take a step via the upper-adjacent connection, there are two cases. If the edge has
no upper-adjacent face, then the random walk will stay at the same oriented edge
or change orientation with equal probability 0.5. If the edge has an upper-adjacent
face, then a walker on edge [i, j] will transition uniformly to an upper-adjacent edge
[k, l] \nsim [i, j] with different orientation relative to their shared face. Stated differently,
the walker performs an unbiased random walk on the lifted graph with adjacency
matrix \widehat \bfitA u, unless there is no upper-adjacent connection, in which case the walker will
either stay put or move to the edge with reverse orientation.

Finally, there exists an interesting link between the construction of the normalized
Hodge 1-Laplacian here and previous research that considered certain relationships
between Hodge Laplacians and differences of random walks on SCs (with absorbing
states) [91, 108]. As the projection operator computes a difference between the two
possible orientations of an edge in the lifted space, an idea for future work would be
to explore this connection in more detail.

Spectral Properties. The ideas underpinning Theorem 3.4 enable us to derive
the following results, which have consequences for the spectral properties of \bfscrL 1.

Corollary 3.5. Define the matrix \bfitZ =  - \bfscrL 1/2 and the matrix \widehat \bfitP as in Theo-
rem 3.4. Then the following identities hold:

1. \bfitZ \bfitV \top = \bfitV \top \widehat \bfitP ,
2. \bfitZ = \bfitV \dagger \widehat \bfitP \bfitV , and
3. \bfitV \bfitZ = \bfitV \bfitV \dagger \widehat \bfitP \bfitV = \widehat \bfitP \bfitV .

Proof. The first two relations are a simple restatement of Theorem 3.4. The last
equality can be shown analogously to Theorem 3.4 and is omitted for brevity.

Corollary 3.6. Consider the (lifted) space \scrD 1 of edge flows (cf. subsection 3.2).

The subspace of alternating functions span(\bfitV ) \subset \scrD 1 is an invariant subspace of \widehat \bfitP .

Consequently, the spectrum of \bfitZ is contained in the spectrum of \widehat \bfitP , i.e., \lambda (\bfitZ ) \subset \lambda ( \widehat \bfitP ).
Furthermore, any eigenvector \bfitx of \bfitZ with eigenvalue \lambda corresponds to an eigenvector
of \widehat \bfitP of the form \bfity = \bfitV \bfitx with the same eigenvalue.

Proof. The first claim follows immediately from \widehat \bfitP \bfitV = \bfitV \bfitZ . The latter parts
follow by using the identities established in Corollary 3.5 to compute \widehat \bfitP \bfity = \widehat \bfitP \bfitV \bfitx =
\bfitV \bfitZ \bfitx = \lambda \bfitV \bfitx , which holds for any eigenvector \bfitx of \bfitZ .

The above result implies that, like the normalized graph Laplacian, the spectrum
of \bfscrL 1 has a bounded support.

3.4. Normalized Hodge Decompositions. Similar to the Hodge 1-Laplacian,
the eigenvectors of the normalized Hodge 1-Laplacian \bfscrL 1 associated to the eigenvalue
\lambda = 0 of \bfscrL and the induced eigenvectors of \widehat \bfitP are associated with scaled harmonic func-
tions. In fact, we can obtain the following normalized (weighted) Hodge decomposition
from our normalized Hodge 1-Laplacian:

(3.15) \BbbR n1 = im(\bfitB 2)\oplus \bfitD  - 1
2

im(\bfitD 2\bfitB 
\top 
1 )\oplus \bfitD  - 1

2
ker(\bfscrL 1),
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where \oplus \bfitD  - 1
2

denotes the union of orthogonal subspaces with respect to the inner

product \langle \bfitx ,\bfity \rangle \bfitD  - 1
2

= \bfitx \top \bfitD  - 1
2 \bfity . Comparing (2.3) with (3.15), it should be apparent

that there is an isomorphism between the respective subspaces of the standard and
the normalized Hodge Laplacians, and thus a correspondence between the harmonic
functions associated with \bfitL 1 and \bfscrL 1. If we consider a symmetrized version of \bfscrL 1

given by \bfscrL s
1 = \bfitD 

 - 1/2
2 \bfscrL 1\bfitD 

1/2
2 , the corresponding Hodge decomposition again holds

with respect to the standard inner product:

(3.16) \BbbR n1 = im(\bfitD 
 - 1/2
2 \bfitB 2)\oplus im(\bfitD 

1/2
2 \bfitB \top 

1 )\oplus ker(\bfscrL s
1).

We will use this normalized Hodge decomposition in our application examples (see
also subsection 4.3 for further discussion).

In addition to the eigenvectors associated to zero eigenvalues, which have a clear
interpretation in terms of harmonic functions (homology), we can provide further
insights on the remaining eigenvectors. We state our results in terms of \bfscrL s

1. However,
these results can be reformulated in terms of the left and right eigenvectors of \bfscrL 1.

In particular, if \bfscrL s
1\bfitu = \lambda \bfitu , then \bfscrL 1\bfitu R = \lambda \bfitu R with \bfitu R = \bfitD 

1/2
2 \bfitu , and similarly

\bfitu \top 
L = \bfitu \top \bfitD 

 - 1/2
2 for the left eigenvectors of \bfscrL 1.

Theorem 3.7. Consider the matrices

(3.17) \bfitG 1 = \bfitD 
 - 1/2
1 \bfitB 1\bfitD 2\bfitB 

\top 
1 \bfitD 

 - 1/2
1 and \bfitG 2 = \bfitD 

1/2
3 \bfitB \top 

2 \bfitD  - 1
2 \bfitB 2\bfitD 

1/2
3 .

Then the following statements hold:
1. Every eigenvector \bfitu of \bfitG 1 with eigenvalue \lambda has a corresponding eigenvector

of \bfscrL s
1 of the form \bfitv = \bfitD 

1/2
2 \bfitB \top 

1 \bfitD 
 - 1/2
1 \bfitu with eigenvalue \lambda .

2. Every eigenvector \bfitu of \bfitG 2 with eigenvalue \lambda has a corresponding eigenvector

of \bfscrL s
1 of the form \bfitv = \bfitD 

 - 1/2
2 \bfitB 2\bfitD 

1/2
3 \bfitu with eigenvalue \lambda .

The matrix \bfitG 1 \in \BbbR n0\times n0 involves only lower-adjacent couplings of the edges and
has the form of a weighted graph Laplacian (recall that the the standard graph Lapla-
cian is \bfitL 0 = \bfitB 1\bfitB 

T
1 ). Similarly, \bfitG 2 \in \BbbR n2\times n2 is completely determined by weighted

upper-adjacent couplings of edges. In both cases, the corresponding eigenvectors
of \bfscrL s

1 can be understood in terms of the Hodge decomposition above (see (3.16)).
In particular, the above result shows that eigenvectors of \bfitG 1 or \bfitG 2 with near-zero
eigenvalues correspond to eigenvectors of \bfscrL s

1 with near-zero eigenvalues (i.e., nearly
harmonic functions).

Proof. Recall that \bfscrL s
1 is defined as

(3.18) \bfscrL s
1 = \bfitD 

1/2
2 \bfitB \top 

1 \bfitD  - 1
1 \bfitB 1\bfitD 

1/2
2 +\bfitD 

 - 1/2
2 \bfitB 2\bfitD 3\bfitB 

\top 
2 \bfitD 

 - 1/2
2 .

Let \bfitG 1\bfitu = \lambda \bfitu and \bfitv = \bfitD 
1/2
2 \bfitB \top 

1 \bfitD 
 - 1/2
1 \bfitu . Then

\bfscrL s
1\bfitv = \bfitD 

1/2
2 \bfitB \top 

1 \bfitD  - 1
1 \bfitB 1\bfitD 

1/2
2 \bfitv = \bfitD 

1/2
2 \bfitB \top 

1 \bfitD  - 1
1 \bfitB 1\bfitD 2\bfitB 

\top 
1 \bfitD 

 - 1/2
1 \bfitu 

= \bfitD 
1/2
2 \bfitB \top 

1 \bfitD 
 - 1/2
1 \bfitG 1\bfitu = \lambda \bfitD 

1/2
2 \bfitB \top 

1 \bfitD 
 - 1/2
1 \bfitu = \lambda \bfitv .

The proof of the second statement is analogous.

4. Constructing Simplicial Complexes and Computation. Before delving into
applications, we first discuss computational aspects of our diffusion framework. Com-
putational costs associated with higher-order interactions are larger than those of
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graph-based techniques, but often not prohibitively so. SCs built from data typically
induce sparse (co)boundary matrices. Once the SC is constructed, the computations
boil down to sparse matrix-vector products, where the sparsity is linear in the number
of elements of the SC. This holds when we move to even higher order Hodge Laplacians,
although the size of the SC can grow.

4.1. Constructing Simplicial Complexes from Data. We have thus far assumed
that we are given an SC. However, an SC \scrX is typically derived from data in some
manner. There are several ways this is done in practice:

1. The original data is a collection of sets \scrS , and we induce \scrX from elements
of \scrS . For example, \scrX could be induced by all sets in \scrS with cardinality at
most three. Alternatively, we could also include size-3 subsets of sets in \scrS 
containing more than three elements. This practice has been used when, for
example, the elements of \scrS are sets of authors on scientific publications [103]
or sets of tags annotating questions on Stack Overflow [10].

2. The original data is a point cloud in a metric space, and we use geometric
methods to construct, e.g., a Vietoris--Rips complex or a \v Cech complex. This
is standard practice in persistent homology [29], where the data might be a
time series of synaptic firings in a brain [57] or a set of images [84].

3. The data is a graph, and \scrX is the clique complex, where 2-simplices are the
3-cliques in the graph. The 0- and 1-simplices are given by the graph [72,85].

The first case is a ``top-down"" construction of the SC, while the second case is a
``bottom-up"" approach. The third case is somewhere in between---the graph structure
imposes the 1-skeleton, and the 1-skeleton contains all of the information for the SC.

The computational complexity of constructing the SC differs in each case. When
the data is already a collection of sets, one might only need to process sets one by one.
For the case where the data is a point cloud, finding fast algorithms for constructing
SCs (or sequences of SCs) is an active area of research [31,34,43,67,98,127]. Likewise,
enumerating triangles in a graph to construct a clique complex is a well-studied

problem [35, 82]. In the worst case, the running time is O(n
3/2
1 ), where n1 is the

number of edges (1-simplices). However, practical algorithms are typically faster on
real-world graph data exhibiting common structural properties [15,82].

4.2. Solving \bfscrL 1 Systems and the Cost of Matrix-Vector Multiplication. Now
suppose we have constructed an SC with a maximum simplex size of three. Computa-
tionally, our applications will solve systems and compute eigenvectors of matrices that
involve the normalized Hodge Laplacian. In typical data applications (including those
we study later), the SC induces a sparsely representable normalized Hodge Laplacian.
Often, approximate solutions are sufficient for data analysis, so iterative methods are
a natural choice in our computations. The driving factor in the running time of the
computation (ignoring issues of conditioning) is the cost of a matrix-vector product of
the normalized Hodge Laplacian.

Recall that the normalized Hodge 1-Laplacian is

\bfscrL 1 = \bfitD 2\bfitB 
\top 
1 \bfitD  - 1

1 \bfitB 1 +\bfitB 2\bfitD 3\bfitB 
\top 
2 \bfitD  - 1

2 ,

where the matrices \bfitD i are simple diagonal matrices that can be directly computed
from \bfitB 1 and \bfitB 2 with a single matrix vector product. Suppose we have constructed
\bfitB 1 and \bfitB 2. Then the cost of applying the matrix \bfscrL 1 to a vector involves a matrix
vector product with the diagonal matrices \bfitD i (a simple scaling), and the matrices \bfitB \top 

2 ,
\bfitB 2, \bfitB 1, and \bfitB \top 

1 . These incidence matrices have O(n1 + n2), O(n1 + n2), O(n0 + n1),
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and O(n0 + n1) nonzeros,
4 respectively, where n0 is the number of 0-simplices (nodes),

n1 is the number of 1-simplices (edges), and n2 is the number of 2-simplices (filled
triangles). Putting everything together, we can compute a matrix-vector product of
the normalized Hodge Laplacian in time O(n0 + n1 + n2) = O(| \scrX | ), i.e., linear time in
the size of the data. We note that there is also a growing literature on fast solvers for
Laplacian systems [123] with some results for Hodge 1-Laplacians [39].

The other major computational component for applications is the Hodge decom-
position of edge flows, which we discuss next.

4.3. Computation and Interpretation of the Hodge Decomposition for Edge
Flows. As discussed in subsection 2.6 the Hodge decomposition is an orthogonal
decomposition of a vector space. We use the normalized decomposition in (3.16) to
provide additional insights into our upcoming applications. The normalized Hodge
decomposition of a vector \bfitc \in \BbbR n1 (an edge flow) is

\bfitc = \bfitg \oplus \bfitr \oplus \bfith , where \bfitg = \bfitD 
1/2
2 \bfitB \top 

1 \bfitp , \bfitr = \bfitD 
 - 1/2
2 \bfitB 2\bfitw , \bfscrL s

1\bfith = 0.(4.1)

Since the decomposition is orthogonal, computing the decomposition boils down
to solving least squares problems:

min
\bfitp 

\| \bfitD 1/2
2 \bfitB \top 

1 \bfitp  - \bfitc \| 2, min
\bfitw 

\| \bfitD  - 1/2
2 \bfitB 2\bfitw  - \bfitc \| 2.(4.2)

One must exercise a bit of caution here. Although these least squares problems are

typically overdetermined, \bfitD 
1/2
2 \bfitB \top 

1 and \bfitD 
 - 1/2
2 \bfitB 2 are rank-deficient exactly when

ker(\bfscrL s
1) is nontrivial (or, equivalently, ker(\bfitL 1) is nontrivial), i.e., when the SC has

a nontrivial first cohomology group \scrH 1. For our purposes, we do not actually need
to recover \bfitp or \bfitw ; we only need the residuals of the least squares problems. Let

\bfite p = \bfitD 
1/2
2 \bfitB \top 

1 \bfitp \ast  - \bfitc and \bfite w = \bfitD 
 - 1/2
2 \bfitB 2\bfitw 

\ast  - \bfitc be the residual error vectors for the
least squares problems in (4.2) (with any minimizers \bfitp \ast and \bfitw \ast ). Then the Hodge
decomposition is given as follows:

\bfitg = \bfite p + \bfitc = \bfitD 
1/2
2 \bfitB \top 

1 \bfitp \ast , \bfitr = \bfite w + \bfitc = \bfitD 
 - 1/2
2 \bfitB 2\bfitw 

\ast , \bfith = \bfitc  - \bfitg  - \bfitr .(4.3)

As discussed above, both \bfitB 1 and \bfitB 2 are sparse, and an approximate solution is
often satisfactory. Thus, appropriate numerical methods for minimum-length linear
least squares problems are iterative solvers such as LSQR [99] and LSMR [49], which
produce sequences of residual error vectors. The running time and computational
complexity of these algorithms is largely driven by the sparsity of the matrices. If the
SC is small enough, then one could first compute the Moore--Penrose pseudoinverses
and then compute the projections; in this case, the computational complexity is
dominated by the cost of computing the pseudoinverse, which is O(n1n

2
0 + n2n

2
1).

The components of the Hodge decomposition for edge flows are related to notions

from vector calculus [85]. The vector \bfitg is the projection of \bfitc into im(\bfitD 
1/2
2 \bfitB \top 

1 ),
which is a weighted cut-space of the edges [61,64,114], i.e., the linear combinations
of weighted edge vectors that disconnect the network. Equivalently, \bfitg is a weighted

gradient flow---the ``unweighted"" flow \bfitD 
 - 1/2
2 \bfitg has no cyclic component, meaning

that the sum of its flow along any cyclic path in the complex is zero, taking into

4We use O(\cdot ) notation here to emphasize that the number of nonzero entries scales linearly in the
size of the simplices, even though the exact number of nonzeros could be given. For instance, the
matrix \bfitB 1 has exactly 2n1 nonzero entries.
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curl flow harmonic flowgradient flowedge flow

=

Fig. 4.1 Standard (unnormalized/unweighted) Hodge decomposition (2.3) of the edge flow in the
example from Figure 2.1. The edge flow can be decomposed into orthogonal gradient, curl,
and harmonic flows. Gradient flows around cycles sum to zero; curl flows are comprised of
net flows around 2-simplices; and harmonic flows sum to zero around 2-simplices but are
nonzero along longer cycles. Decomposing edge flows with the Hodge decomposition provides
additional insights for data analysis applications. While the unnormalized decomposition is
illustrative, in practice, we use the normalized Hodge decomposition (3.16).

account the orientations of the edges (Figure 4.1, second from left). The vector \bfitr is

the projection of \bfitc into im(\bfitD 
 - 1/2
2 \bfitB 2), which consists of all weighted flows that can

be composed of local circulations along any 3-node simplex, i.e., weighted circulations
around filled triangles (the unweighted version is in Figure 4.1, second from right).
Indeed, the operator \bfitB 2 is a discrete analogue of the familiar notion of a curl in vector
calculus [85]. A high projection into the curl subspace thus corresponds to a flow that
is mostly composed of local circulations. Finally, the harmonic component \bfith \in ker(\bfscrL s

1)
corresponds to a weighted version of a global circulation that does not sum to zero
around every cyclic path but is also inexpressible as a linear combination of curl flows
(the unweighted case is in Figure 4.1, far right). A flow with a high projection into the
harmonic subspace is thus associated with global cycles within the edge-space that
can be directly related to the homology of the SC.

5. Application I: Edge Flow and Trajectory Embeddings. The graph Laplacian
with its connection to diffusion processes, harmonic analysis, and algebraic topology
has been employed in many learning tasks, including manifold learning, dimensionality
reduction, graph clustering, and graph signal processing [9,40,87,96]. Underpinning
these methods is the spectral structure of the Laplacian. Eigenvectors associated
with zero eigenvalues are associated with the zeroth homology group of the graph,
corresponding to connected components. Eigenvectors with eigenvalues close to zero
correspond to nearly disconnected components (clusters), as can be quantified by
the celebrated Cheeger inequality. By assessing the spectral properties of the graph
Laplacian we can thus obtain an approximate notion of the topology, which embodies
many spectral embedding and clustering techniques [9, 40]. In the following, we
translate these ideas to the context of the Hodge 1-Laplacian by considering spectral
embeddings of edges and flows.

5.1. Synthetic Data Example. We introduce our ideas with a synthetic example.
Consider a flow \bfitf defined on the edges of an SC as depicted in Figure 5.1A. The
underlying SC was constructed by (i) drawing 400 random points in the unit square;
(ii) generating a triangular lattice via Delaunay triangulation; (iii) eliminating edges
inside two predefined regions; and (iv) defining all triangles to be faces. As depicted
in Figure 5.1A, the SC \scrX has two ``holes."" Accordingly, the (normalized) Hodge
Laplacian has exactly two zero eigenvalues. As depicted in Figures 5.1B and 5.1C,
these eigenvalues can be associated to two harmonic functions \bfith 1 and \bfith 2 that encircle
the two holes in the SC. To avoid differentiating between left and right eigenvectors, we
use the symmetrized Laplacian \bfscrL s

1 here and in the remainder of this section, although
all results can be translated to \bfscrL using the spectral relationships from subsection 3.4.
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A B C

harmonic flow harmonic flow

D E F

(F)

(E)

lill nii ear log-scalelog-scale

Fig. 5.1 Embedding of edge flows. (A) A flow on an SC with two ``holes,"" constructed as described in
the text. Arrows indicate the direction of the flow on each edge; the magnitude is proportional
to the width of the edge. (B)--(C) Harmonic functions \bfith 1 and \bfith 2 of the symmetric normalized
Hodge 1-Laplacian \bfscrL s

1 of the underlying SC. Edge directions correspond to the orientation
induced by each harmonic function. Gray arrows indicate how the harmonic flows encircle
the two holes. (D) Projection of each edge flow f[i,j] (depicted in Figure 5.1A) onto the
harmonic functions. (E)--(F) Projection of the edge flow onto the harmonic functions \bfith 1

(E) and \bfith 2 (F). Red indicates a positive projection, blue a negative projection. The arrow
direction is the same as in (A).

Edge Flow Embeddings. Following ideas from Laplacian eigenmaps [9] and diffu-
sion maps [40] for the embedding of nodes of a graph, consider the spectral decom-
position of the symmetric normalized Hodge 1-Laplacian \bfscrL s

1 = \bfitU \Lambda \bfitU \top . Here, \bfitU =
(\bfitu 1, . . . ,\bfitu n1

) is the matrix containing the eigenvectors of \bfscrL s
1 and \Lambda = diag(\lambda 1, . . . , \lambda n1

)
is the diagonal matrix of eigenvalues, where we assume that the eigenvalues have been
ordered in increasing magnitude 0 \leq \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n1

. For a Laplacian \bfscrL s
1 with

k zero eigenvalues, we define \bfitH := (\bfitu 1, . . . ,\bfitu k) to be the matrix collecting all the
harmonic functions associated to \bfscrL s

1.
5

Let us denote the indicator vector of a positive flow on the positively oriented
edge e = [i, j] by \bfite , i.e., \bfite [i,j] = 1, and 0 otherwise. We now define the harmonic
embedding of an edge e via the mapping

(5.1) e \mapsto \rightarrow \bfitl e = \bfitH \top \bfite \in \BbbR k.

The embedding measures how a unit flow along the oriented edge [i, j] projects into
the harmonic subspace, i.e., how much it contributes to the global circular flows
represented by the harmonic functions in terms of an inner product. The reference
orientation of the edge is important in that a positive projection coordinate indicates
that the edge is aligned with the harmonic function; a negative coordinate signifies
that the orientations are not aligned.

5Note that if \lambda = 0 is a degenerate eigenvalue, the eigenvectors are only defined up to a unitary
transformation and hence not unique; however, the subspace of harmonic functions is unique.

D
ow

nl
oa

de
d 

09
/2

2/
23

 to
 1

30
.2

53
.2

9.
10

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANDOM WALKS AND THE NORMALIZED HODGE 1-LAPLACIAN 373

A B

Fig. 5.2 Embedding of trajectories. (A) A set of nine trajectories, defined on the SC in Figure 5.1.
Arrows indicate the direction of the flow on each edge. (B) Projection of each of the shown
trajectories onto the harmonic eigenvectors of \bfscrL s

1.

Figure 5.1A shows a flow \bfitf on the SC. For each edge e = [i, j], we construct the
weighted indicator vector \bfitf [i,j] = f([i, j])\bfite whose value is the amount of flow on the
edge relative to the chosen reference orientation. We then compute the projection
of this vector into the harmonic subspace \bfitl f = \bfitH \top \bfitf [i,j]. Figure 5.1D shows the
embedding for each edge in the SC with respect to the two harmonic flows of the SC
(Figures 5.1B and 5.1C). Edges with a positive projection onto \bfith 1 = \bfitu 1 are primarily
aligned with flows that encircle the lower hole in the complex in the counterclockwise
direction (red edges) and edges with a negative projection (blue edges) contribute to
clockwise rotations (Figure 5.1E). An analogous argument holds, mutatis mutandis,
for the second coordinate corresponding to the projection onto \bfith 2 (Figure 5.1F). We
emphasize that our explanation is geometric, but the extracted features derive solely
from the topological information encoded in the SC.

We could use embedding coordinates other than the harmonic ones. For instance,
we may choose to project into the curl subspace or the gradient subspace, thereby
revealing complementary information, such as how much the edge is aligned with the
cut-space. Alternatively, similar to Laplacian eigenmaps [9], we may project onto the
first k\prime eigenvectors of \bfscrL s

1, where k\prime may be different from the size of the harmonic
subspace. Such a procedure would also account for contributions of an edge into parts
of the gradient and the curl subspaces, namely, those associated with small eigenvalues
(i.e., near-harmonic functions [90]).

Trajectory Embeddings. Inspired by Gosh et al. [54], we now consider the embed-
ding of ``trajectories"" of flow vectors \bfitf defined on contiguous edges into the harmonic
space. Figure 5.2A displays the same SC as above with a set of nine trajectories.
Each of these trajectories is represented by a vector \bfitf with entries f[i,j] = 1 if [i, j]
is part of the trajectory; f[i,j] =  - 1 if [j, i] is part of the trajectory; and f[i,j] = 0,
otherwise. Figure 5.2B shows the embedding of the complete flow vector along with
its ``temporal evolution"" (dashed lines) in the embedding space, where we update
the embedding one edge at a time, leading to a trajectory in embedding space. The
embedding differentiates the topological properties of the trajectories. For example,
the red, orange, and green trajectories traverse the lower left obstacle aligned with \bfith 1.
Consequently, they have a similar embedding. Similarly, the brown, pink, and violet
trajectories are clustered together in the embedding space, as are the cyan, gray, and
olive green trajectories, reflecting their similarity in terms of their projections onto
the harmonic subspace.
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5.2. Analysis of Ocean Drifter Data. The above idea of trajectory embeddings
can be used for a number of tasks in data analysis, similar to node embeddings [9,
40]. This includes clustering trajectories according to their relative positions in the
embedding space, definitions of similarity scores between trajectories (even if they
have different lengths), and filtering noisy trajectories [115].

The type of data for which these embeddings can be useful includes any type of
flow on some discrete (or discretized) domain. For instance, this could be trajectories
measured in two-dimensional physical space. To construct an SC from such data
we can, e.g., discretize such a flow on a hexagonal grid and choose each hexagonal
cell to correspond to a node. An edge is then defined if the number of trajectories
crossing from one cell to another exceeds a certain threshold; and a face is defined if
sufficiently many trajectories pass through all three neighboring cells. A missing face
thus corresponds to an obstacle through which little flow passes.

This style of trajectory analysis was recently used to analyze mobility data with
differential forms [54]. In contrast to this work, our formalism depends only on the
construction of the SC. Therefore, our methodology is not limited to planar SCs, even
though we use planar examples for easy visualization. Indeed, trajectory data collected
in applications often has no explicit geometry, but may be understood as a sequence
of nodes on an SC (or graph), e.g., moving from one webpage to another [13]. The
construction of SCs from such data is a modeling problem, where edges and faces can
be chosen as a function of the observed flow pattern. For example, we may create a face
from a triangle of nodes if there is enough cyclic flow within this triangle, or we may
choose to assign weights to faces to regularize certain aspects of the data [62, Chapter
4]. The success of such methods will be context-dependent and contingent on whether
the SC model provides a useful interpretation of the data.

We now apply our harmonic embedding technique for analyzing data from the
Global Ocean Drifter Program available at the AOML/NOAA Drifter Data Assembly
Center.6 This data has been analyzed for detecting Lagrangian coherent structures [52],
where it was shown that certain flow structures (ocean current) stay coherent over time.
While the entire dataset spans several decades of measurements, we focus on data from
January 2011--June 2018 and limit ourselves to buoys that were active for at least three
months within that time period. We construct trajectories by considering the location
information of every buoy every 12 hours. As buoys may fail to record a position, there
are trajectories with missing data. In these cases, we split the trajectories into multiple
contiguous trajectories. For our analysis, we examine trajectories around Madagascar
with a latitude ylat \in [ - 30, - 10] and longitude xlong \in [39, 55] (Figure 5.3). This
results in 400 total trajectories.

To construct an SC, we first transform the data into Euclidean coordinates via an
area-preserving (Lambert) projection. We discretize Euclidean space using a hexagonal
grid as shown in Figure 5.3A, with the width of the hexagon equal to 1.66\circ (latitude).
Each hexagon corresponds to a node, and we add an edge between two such nodes if
there is a nonzero net flow from one hexagon to its adjacent neighbors. We consider
all triangles (3-cliques) in this graph to be faces of the SC. The Laplacian \bfscrL s

1 of the
resulting SC has a two-dimensional harmonic space. Each dimension of this space
corresponds to an ``obstacle"" of the flow.

Finally, we discretize each trajectory by rounding its positional coordinates to
the nearest hexagon and consider the resulting sequence of edges that the trajectory
traverses in the SC. Figures 5.3B and 5.3C show the results of projecting each trajectory

6http://www.aoml.noaa.gov/envids/gld/
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A B C

Fig. 5.3 Harmonic embeddings of ocean drifter trajectories. (A) Visualization of buoy trajectory data
around Madagascar. Trajectories are discretized by a hexagonal grid shown in the background.
(B) Projection of the discretized trajectories onto the first harmonic flow. Trajectories
encircling Madagascar in a clockwise direction have a strongly negative projection (blue), and
trajectories encircling in a counterclockwise direction have a positive projection (red). (C)
Projection of the individual trajectories onto the second harmonic flow, which corresponds to
an almost local circulation near Southwest Madagascar. Only a small number of trajectories
have a large projection onto this flow.

into the harmonic subspace of \bfscrL s
1, where we color the original trajectories according to

the projection score. Figure 5.3B shows that the first harmonic function captures the
effect of Madagascar as an island. Specifically, the first harmonic function separates
the south equatorial current arriving at East of Madagascar into (i) the current flowing
toward the north of Madagascar and (ii) the East Madagascar current which flows
southwards. The second harmonic function corresponds to a more localized feature
(Figure 5.3C) caused by a loopy current near Southwest Madagascar. Accordingly,
most trajectories have a small projection onto this space.

6. Application II: PageRank on Simplicial Complexes. Centrality measures,
initially conceptualized to quantify the social power of individuals within social net-
works [21,24,50,51,74], are an important network analysis tool. For instance, centrality
measures have been used to identify pivotal elements in infrastructure networks [3, 28]
and to target critical nodes in epidemic spreading processes on networks [76,102]. One
of the most widely adopted centrality measures is PageRank, which can be interpreted
in terms of a random walk on a graph [27]. Initially introduced as a ranking mechanism
for hyperlinked webpages, PageRank has been extensively used and studied in other
contexts [16,59,81]. For example, (personalized) PageRank has been used for graph
clustering, community detection, and semisupervised learning [6, 59,60,79,113].

Analogous to the situation of graphs, we would like to assess the importance
of certain simplices within an SC, i.e., extend the theory of centrality measures for
graphs. One could use simple notions such as the degree of a simplex, but extending
other notions of centrality to SCs is nontrivial [46]. Here we leverage the connection
of PageRank to random walks to derive a PageRank measure from the \bfscrL 1 Laplacian
that extracts the topological importance of edges in an SC.

6.1. Background: (Personalized) PageRank on Graphs. Following Gleich [59],
we adopt the following definition of PageRank.

Definition 6.1 (PageRank on graphs [59]). Let \bfitP be a column-stochastic matrix,
\bfitmu a stochastic column vector with 1\top \bfitmu = 1, and \alpha \in (0, 1) a teleportation parameter.
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The PageRank vector \bfitpi is the solution to the following linear system:

(6.1) (\bfitI  - \alpha \bfitP )\bfitpi = (1 - \alpha )\bfitmu .

The PageRank vector \bfitpi is the stationary distribution of a random walker on a
graph who at each step makes transitions according to \bfitP with probability \alpha , and with
probability 1 - \alpha teleports to a random node according to the probability distribution
\bfitmu . The factor 1 - \alpha facilitates the random walk interpretation but is often omitted as
it is simply multiplicative scaling [59].

There are two common types of PageRank [59]. In standard PageRank [27], the
teleportation distribution is uniform (\bfitmu = 1/n0) and the PageRank vector \bfitpi is used to
rank nodes. In ``personalized"" PageRank, \bfitmu is an indicator vector on a node i, so with
probability 1 - \alpha we restart our random walk process at i. The resulting PageRank
vector \bfitpi can be interpreted as the influence node i exerts on others: the jth entry of
\bfitpi is large if i is well connected to j. One can thus find nodes tightly coupled to i, a
feature that can be employed for local community detection [6,79] and graph-based
semisupervised learning [60].

6.2. PageRank Vectors on Simplicial Complexes. To generalize PageRank to

SCs, we consider the problem on the lifted random walk matrix \widehat \bfitP from Theorem 3.4:

(6.2) (\bfitI  - \alpha \widehat \bfitP )\widehat \bfitpi = (1 - \alpha )\bfitmu .

As we are interested in the subspace of alternating functions within the lifted space,
we project the resulting PageRank vector back into \scrC 1. Specifically, the vector \bfitV \top \widehat \bfitpi 
gives the simplicial PageRank value on oriented edges. We solve for this vector

(6.3) (1 - \alpha )\bfitV \top \bfitmu = \bfitV \top (\bfitI  - \alpha \widehat \bfitP )\widehat \bfitpi =
\Bigl( 
\bfitV \top +

\alpha 

2
\bfscrL 1\bfitV 

\top 
\Bigr) \widehat \bfitpi =

\Bigl( 
\bfitI +

\alpha 

2
\bfscrL 1

\Bigr) 
\bfitV \top \widehat \bfitpi ,

where we used part (1) of Corollary 3.5 in the second equality. Hence, we can compute

the projected PageRank vector using \bfscrL 1 and never have to construct \widehat \bfitP .
Equivalently, for \beta = 2/\alpha , we can write the system for \bfitV \top \widehat \bfitpi as

(6.4) \bfitV \top \widehat \bfitpi = (\beta  - 2)(\beta \bfitI +\bfscrL 1)
 - 1\bfitV \top \bfitmu .

It is insightful to compare the projected PageRank vector in (6.4) with the graph-based
PageRank once more. Note that we can rewrite Definition 6.1 as

\bfitpi = (1 - \alpha )(\bfitI  - \alpha \bfitP ) - 1\bfitmu =
(1 - \alpha )

\alpha 

\biggl( 
1

\alpha 
\bfitI  - \bfitP 

\biggr)  - 1

\bfitmu = \beta 0(\beta 0\bfitI +\bfscrL 0)
 - 1\bfitmu ,(6.5)

where \beta 0 = 1/\alpha  - 1. There is a striking similarity between graph-based PageRank and
the projected simplicial PageRank introduced here. Indeed, (6.5) suggests a definition
of simplicial PageRank similar to (6.4) on purely notational grounds. However, based
on Theorem 3.4, we know that there is a relationship to a random walk, albeit in a
lifted state space. While (6.4) is interpretable in terms of a random walk only for
\beta \in (2,\infty ), the inverse (\beta \bfitI +\bfscrL 1)

 - 1 remains well-defined for smaller positive values of
\beta , as (\beta \bfitI +\bfscrL 1) is positive definite (\bfscrL 1 is similar to the positive semidefinite matrix
\bfscrL s

1, so \bfscrL 1 is positive semidefinite). We may thus choose to ignore the multiplicative
scaling \beta  - 2, leading to a generalized form of a PageRank vector. These two variants
are summarized in the following definition.
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Definition 6.2 (PageRank and generalized PageRank vectors for edges in SCs).
Let \scrX be an SC with normalized Hodge 1-Laplacian \bfscrL 1, \bfitx be a vector of the form
\bfitx = \bfitV \top \bfitmu , where \bfitmu \in \BbbR 2n1 is a probability vector, and \beta \in (2,\infty ). The PageRank
vector \bfitpi 1 of the edges is then defined as the solution to the linear system

(6.6) (\beta \bfitI +\bfscrL 1)\bfitpi 1 = (\beta  - 2)\bfitx .

The generalized PageRank vector (for any \kappa \in \BbbR +) is the solution of the linear system

(6.7) (\kappa \bfitI +\bfscrL 1)\bfitpi 
g
1 = \bfitx .

Since \bfitpi 1 corresponds to a projection of a diffusion in a lifted space, the PageRank
is effectively a smoothed out version of a distribution \bfitmu in the lifted space \scrD 1 and
thus measures how a starting distribution \bfitmu will be shaped by the structure of the
SC. Similar to the graph case, certain oriented edges will attract more probability
in this process and will in this sense be deemed more important. A key difference is
the projection step, which again emphasizes the importance of the orientation. The
absolute value of entry [i, j] in \bfitpi 1 will be high if there is a large difference in the
probability of being at edge [i, j] in the lifted space as compared to [j, i].

Simplicial PageRank Interpretation as a Filter for Edge-Space Signals. To
provide further intuition for the above measures, we interpret \bfitx as a signal defined
in the edge-space, similar to our discussion on edge and trajectory embeddings in
section 5. We discuss this issue in terms of the generalized PageRank vector \bfitpi g

1 . For
any such signal \bfitx , the PageRank vector corresponds to a transformation of this signal
\bfitx according to the generalized PageRank operator (\kappa \bfitI +\bfscrL 1)

 - 1
for some \kappa > 0. To

understand how this multiplication acts on \bfitx , write the spectral decomposition of the
Hodge Laplacian as \bfscrL 1 = \bfitU R\Lambda \bfitU \top 

L , where \bfitU R and \bfitU L are the matrices containing
the right and left eigenvectors of \bfscrL 1, respectively. From our discussion at the end
of subsection 3.4, we further know that \bfitU R = \bfitD 2\bfitU L. The generalized PageRank
operator acts as a filter on the signal \bfitx by projecting \bfitx onto the spectral coordinates of
the Laplacian, scaling according to a shifted version of the spectrum (the eigenvalues
of \bfscrL 1 are shifted by \kappa ), and projecting back on the SC:

(6.8) \bfitpi 1 = (\kappa \bfitI +\bfscrL 1)
 - 1

\bfitx = \bfitU R (\kappa \bfitI +\Lambda )
 - 1

\bfitU \top 
L \bfitx = \bfitU R (\kappa \bfitI +\Lambda )

 - 1
\bfitU \top 

R\bfitD  - 1
2 \bfitx .

Thus, there is a close relationship to the embeddings discussed above. However, in
contrast to the harmonic embedding, all eigenvectors (modulated by their eigenvalue)
are taken into account in the PageRank filtering operation. This type of filtering is
analogous to the filtering of signals defined on the nodes of a graph as considered in
graph signal processing [96]. The PageRank operator may thus be understood as a
filter for edge signals. Recent research provides additional filtering perspectives [8,115]
with connections to discrete exterior calculus [62,71].

Edge Orientations and Personalized Simplicial PageRank. As the projection
leading to simplicial PageRank corresponds to a difference of two probabilities, there
is no guarantee that a PageRank vector \bfitpi 1 has only positive entries. In light of our
previous discussions on edge orientation, this again relates to the issue of defining a
reference orientation for edges.

We can flip the reference orientation of an edge with a negative entry to obtain a
positive PageRank vector entry. The operation of flipping the orientation of an edge
can be cast as a gauge transformation or signature-similarity transformation [5] of the
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normalized Hodge 1-Laplacian. Let \Theta n1\times n1
= diag(\theta 1, . . . , \theta n1

) be a diagonal matrix
with \theta i = 1 for all edges whose orientation is to remain fixed, and \theta i =  - 1 for those
edges whose orientation we would like to reverse. Then \bfscrL \prime 

1 = \Theta \bfscrL 1\Theta describes the
normalized Hodge 1-Laplacian corresponding to the SC with the new edge orientations
(\Theta defines a similarity transformation, so the spectral properties of \bfscrL 1 are unaffected;
we have merely changed the coordinate system in which flows are measured). Using
this transformation, we obtain the following generalized PageRank vector:

(6.9) \bfitpi g
1 = \Theta (\kappa \bfitI +\bfscrL 1)

 - 1
\Theta \bfitx .

We claim that if \bfitx is an indicator vector, then \Theta can be chosen to make \bfitpi g
1 nonnegative.

To see this, if \bfitx is an indicator vector \bfite [i,j], it will pick out one column of (\kappa \bfitI +\bfscrL 1)
 - 1

,
which through the action of \Theta can immediately be made nonnegative on all entries
except at index [i, j]. Since (\kappa \bfitI +\bfscrL 1)

 - 1
is positive definite, the diagonal entry at

index [i, j] will be positive. Hence, just as with personalized PageRank on graphs, if \bfitx 
is an indicator vector on edge [i, j], we may interpret the absolute values of the entries
of \bfitpi g

1 in terms of the influence edge [i, j] exerts on the edges in the SC. For data
that does not induce a natural orientation of the edges (in contrast to our previous
examples) we may thus simply use the elementwise absolute value of this ``personalized""
PageRank vector as an influence measure between the edges.

While this trick of redefining the orientations of the edges also applies if \bfitx is not
an indicator vector, the situation is a bit more complicated. Since the PageRank
operator acts linearly on \bfitx , we can decompose any vector \bfitx into a weighted sum of
unit vectors. For each of these unit vectors we can assess the induced PageRank vector
in terms of its absolute value. However, due to differences in the sign patterns of the
columns of (\kappa \bfitI +\bfscrL 1)

 - 1
the sum of these induced ``absolute"" (personalized) PageRank

vectors is not the same as the absolute value of the PageRank vector associated to \bfitx ,
rendering the above interpretation in terms of the influence of the individual edges
difficult. In what follows, we will thus concentrate on personalized PageRank vectors
with a teleportation vector \bfitx localized on a particular edge [i, j]. We denote such a
personalized PageRank vector by \bfitpi 1([i, j]), or \bfitpi 

g
1([i, j]) for generalized PageRank.

Synthetic Data Example. To illustrate our ideas, we again start with a synthetic
example (Figure 6.1A). We construct an SC that consists of four groups of eight nodes
(cliques) in a ring configuration, which is connected to a larger clique of 30 nodes.
All triangles (3-cliques) in the graph are faces in the SC. Figure 6.1 visualizes three
generalized personalized PageRank vectors for \kappa = 0.001. For the edge in Figure 6.1B
located in the large clique, the generalized PageRank vector is effectively localized
on the edge itself. Moreover, the magnitudes of the entries of the vector are small,
indicating that its influence within the space of edges is small. The edge in Figure 6.1C
corresponds to the ``bridge"" between the large clique and the ring of small cliques
on the right-hand side. While the generalized PageRank vector is also concentrated
on a few edges, the magnitudes of its components are substantially larger (since we
are using the generalized PageRank, the entries can be substantially larger than 1).
Finally, for one of the cycle edges (Figure 6.1D), we see a different picture. In this
case, the generalized PageRank vector is also of a large magnitude, but most of the
influence of this edge is concentrated on edges around the cycle.

6.3. Decomposing and Aggregating Simplicial PageRank Vectors via the Nor-
malized Hodge Decomposition. By considering again the spectral properties of the
normalized Hodge 1-Laplacian \bfscrL 1, we see that this behavior is a consequence of the
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A B

C D

Fig. 6.1 Example analysis of a network using generalized PageRank vectors. (A) SC constructed
from a graph containing five large cliques. Each triangle (3-clique) in the graph corresponds
to 2-simplices, as indicated by the gray shading. (B)--(D) Generalized personalized PageRank
vectors of three edges within different locations of the complex (\kappa = 0.001). The color and
the edge-width (the thicker the edge, the larger the PageRank) indicate the magnitude of
the component of the PageRank vector on the respective edge. The PageRank vector in (B)
is localized and has small magnitude. The vector in (C) is almost localized but has large
magnitude. Finally, the vector in (D) is not localized and has strong components around
the cyclic structure.

Table 6.1 Norms of components given by the normalized Hodge decomposition (4.1) for the general-
ized PageRank vectors in Figure 6.1.

\| \bfitpi g
1\| grad \| \bfitpi g

1\| curl \| \bfitpi g
1\| harm

``Bulk"" edge Figure 6.1B 0.50 2.70 0
``Bridge"" edge Figure 6.1C 707.85 0 0
``Cycle"" edge Figure 6.1D 265.14 0 518.15

topological setup of the SC. As discussed above, the eigenvectors associated to the
zero eigenvalues of \bfscrL 1 correspond to harmonic functions on the complex, which are
associated with the cycles in the graph not induced by 2-simplices. As the PageRank
vector is computed via a shifted inverse of \bfscrL 1, edges that have a significant projection
into the null space of \bfscrL 1 will result in a PageRank vector with a strong harmonic
(cyclic) component. To better understand the importance of the edges, it is insightful
to consider the decomposition of the PageRank vectors in terms of the normalized
Hodge decomposition.

We can use the normalized Hodge decomposition from (4.1) to compute the
projections of the above-computed PageRank vectors onto the gradient, curl, and
harmonic subspaces. This gives a more nuanced picture of the contributions of
PageRank vectors (Table 6.1). The edge in Figure 6.1B actually has no harmonic
part, and the curl and gradient components largely cancel each other out, apart from
the flow on the edge itself. The edge in Figure 6.1C lies in the weighted cut-space.
The norm of its corresponding gradient projection is large, and its harmonic and curl
projections are zero. Finally, the edge in Figure 6.1D is part of a harmonic cycle in
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A B

Fig. 6.2 Analyzing edges via norms of personalized PageRank vectors. (A) The 2-norm of the
personalized PageRank vector associated to each edge. (B) We can alternatively highlight
the importance of an edge with respect to the homology of the SC by considering the 2-norm
of the projection of each PageRank vector into the harmonic space.

the SC; consequently, the norm of the PageRank vector projected into the harmonic
subspace is high.

Instead of decomposing the personalized PageRank vectors associated with each
edge, we can assess the importance of an edge within an SC in an aggregated fashion
with the 2-norm of the vector, or the 2-norm of any of the projections given by the
normalized Hodge decomposition. Figure 6.2 illustrates this procedure (\beta = 2.5). In
these diagrams, the value along an edge corresponds to the 2-norm of the personalized
PageRank vector corresponding to the edge (Figure 6.2A) or to the 2-norm of the
harmonic component of the personalized PageRank vector (Figure 6.2B).

Let us remark here that these are clearly not the only ways to extract a ``relevance
score"" of the edges from the computed PageRank vectors, and investigating other
functions will be an interesting objective for future work.

6.4. Analysis of Political Book Copurchasing Data. We now analyze a dataset
of political book corecommendations. The dataset records the copurchasing of 105
political books---as indicated by the ``customers who bought this book also bought
these other books"" feature on Amazon---around the time of the 2004 presidential
election in the USA. The data was collected by Krebs [80]7 and subsequently analyzed
by Newman [94]. Newman categorized the books by hand according to their political
alignment into three groups: ``liberal"" (43 books), ``conservative"" (49 books), and
books with bipartisan and centrist views or no clear alignment (13 books), which
we refer to as ``neutral."" Although the data has been analyzed as a network, the
edges represent frequent copurchasing of books by the same buyers, and thus the data
has an implicit simplicial structure (multiple books are bought together, forming a
simplex). To construct an SC, we filled each triangle (3-clique) in the data to form a
2-simplex. Figure 6.3A visualizes this SC, where gray shading indicates the simplices.
As already observed by Newman [94], there is a marked community structure, which is
commensurate with the political alignment of the books. There are two main clusters
corresponding to liberal and conservative books, along with a smaller group of books
that act as bridges between these two clusters.

To further analyze the importance of the copurchasing with respect to the homology
of the complex, we compute the ``harmonic PageRank values"" of the edges, which
correspond to the 2-norm of the harmonic projection of the personalized PageRank
score of each edge (\beta = 2.5). Consistent with its importance for the homology, these
values highlight edges that act as connectors around ``holes,"" which indicate books

7http://vlado.fmf.uni-lj.si/pub/networks/data/cite/polBooks.paj
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Fig. 6.3 Book copurchasing analysis with simplicial PageRank. (A) The copurchasing of 105 political
books---categorized as ``liberal,"" ``conservative,"" or ``neutral""---can be abstracted as an SC
(gray areas are copurchasing simplices). (B) Harmonic PageRank values of edges. We
identify a set of 18 edges with a high harmonic PageRank value (threshold indicated by
dashed red arrow). (C) Visualization of all edges with their respective harmonic PageRank
values.

that are never bought together as a set (Figure 6.3). The ranking on edges induced
by these harmonic PageRank values is robust with respect to the parameter \beta : the
Spearman rank correlation coefficient \rho between the obtained PageRank vectors for
\beta \in (2.05, 2.67) (corresponding to a teleportation parameter \alpha \in (0.75, 0.975)) has a
mean of 0.78, providing evidence for the consistency of the ranking.

Figure 6.3C shows that even with the separation into political clusters, there are
still several edges with high harmonic PageRank within each cluster. Indeed, the edge
with the largest aggregated harmonic PageRank corresponds to a connection between
two conservative books. To investigate this aspect further, we plotted the histogram
of the aggregated harmonic PageRank and identified a tail of 18 copurchases with
a harmonic PageRank greater than 0.4 (Figure 6.3B). Out of the 18 edges with the
highest harmonic score, 15 are between books of the same category. Edges in the
conservative cluster with a high harmonic PageRank are more prevalent: 9 of the 18
highest aggregated harmonic centrality edges connect conservative books. Thus, there
appear to be ``gaps"" in the space of political opinions even within political clusters,
indicating a fragmentation of opinions.

Importantly, this information revealed by simplicial PageRank is complementary
to standard node-space PageRank (Figure 6.4). We computed the PageRank \bfitpi of
the nodes in the graph and assigned each edge (i) the sum or (ii) the difference of
the PageRank of its incident nodes. We also compute the PageRank \bfitpi from the line
graph corresponding to the copurchasing network. In all cases, we used the standard
teleportation parameter \alpha = 0.85. As can be seen from Figure 6.4, all of these
PageRank scores on edges are essentially uncorrelated to the simplicial (harmonic)
PageRank, highlighting that we extract a different kind of topological information
from the data than what one could find with existing methodologies.

7. Discussion. The connection between Markov chains, diffusions, and random
walks on graphs has led to the successful analysis of complex systems and networks
within applied mathematics. However, as we are faced with increasingly complex and
diverse datasets, some limitations of traditional graph-based models have come to the
fore. Researchers have thus employed richer modeling frameworks---such as multiplex
networks, graphons, and simplicial complexes (SCs)---and investigated extensions of
graph-based methods such as extensions of centrality measures [7, 46,117].

SCs and other tools from algebraic and computational topology are promising in
this pursuit of extending dyadic network models to account for polyadic interactions

D
ow

nl
oa

de
d 

09
/2

2/
23

 to
 1

30
.2

53
.2

9.
10

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

382 M. T. SCHAUB, A. R. BENSON, P. HORN, G. LIPPNER, AND A. JADBABAIE

C

0.00 0.05 0.10 0.15
0.001

0.002

0.003

0.004

harmonic PageRank

N
od

e 
P

a
ge

R
an

k 
(li

ne
-g

ra
ph

)

0.00 0.05 0.10 0.15
-0.02

-0.01

0.00

0.01

harmonic PageRank

N
od

e 
P

a
ge

R
an

k 
(d

iff
er

en
ce

)

0.00 0.05 0.10 0.15
0.01

0.02

0.03

0.04

0.05

harmonic PageRank

N
od

e 
P

a
ge

R
an

k 
(s

um
)

Fig. 6.4 Comparison of simplicial PageRank and graph-based PageRank. The scatter plots compare
the harmonic PageRank (see text) with various edge scores constructed from standard
graph-based PageRank. (A) Edge scores are the sums of the graph-based PageRank scores
of the incident nodes; the Spearman rank correlation is \rho = 0.04. (B) Edge scores are
the differences of the graph-based PageRank of the incident nodes; the Spearman rank
correlation is \rho =  - 0.08. (C) Edge scores come from graph-based PageRank on the line
graph; the Spearman rank correlation is \rho = 0.08.

between groups of nodes, seeing success in a number of applications [32, 42,56, 58,92,
104, 121]. However, topological tools have been mostly employed in static contexts,
though some works have explored links to dynamical processes on networks [122].
Here we have introduced a normalized Hodge Laplacian operator that enables us to
define a diffusion processes on SCs in a principled manner, respecting the topological
properties of the complex. In particular, we have focused on diffusion processes in
the edge-space with applications in embedding edge trajectory data and simplicial
extensions of PageRank for edge importance.

A number of avenues present themselves for future research. There are many
variants of random walks we may want to explore and compare to their graph-based
counterparts [87]. In particular, a better understanding of how higher-order topological
features impact on convergence, mixing, and other random walk properties is of interest
in this context. Another direction is to explore the translation of further random walk
tools for SCs. We have focused on diffusion-based embeddings and centrality measures.
However, random walks have also been employed in many other learning tasks [87].
We expect that enriching such tools through the lens of SCs will be fruitful.

Finally, there is a rich history connecting random walks on graphs to connectivity
and near zeroth-order homology, often formalized through ideas from spectral graph
theory such as the discrete Cheeger inequality and isoperimetric inequality [4, 36,78,
83,88,116]. For example, personalized PageRank---when viewed as an algorithm for
local clustering for graphs---finds low conductance sets, formalized via a local Cheeger
inequality [6], which provides credence for our personalized polyadic walks. A major
open research direction is a clean generalization of these concepts to SCs. There
are a number of connections between the spectra of matrices (such as the Hodge
Laplacian) associated with SCs and notions of expansion [44,65,97,101,119]. However,
some types of higher-order Cheeger-like inequalities are impossible due to torsion that
may be present in the homology of SCs that is not present in graphs [119]. Properly
incorporating near-harmonic components into data analysis remains a challenge, but
our framework provides a starting point.

Appendix A. Proof of Theorem 3.4. Recall that the normalized Hodge
1-Laplacian is defined as

\bfscrL 1 = \bfitD 2\bfitB 
\top 
1 \bfitD  - 1

1 \bfitB 1 +\bfitB 2\bfitD 3\bfitB 
\top 
2 \bfitD  - 1

2 .
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Our goal is to show that  - \bfscrL 1\bfitV 
\top = 2\bfitV \top \widehat \bfitP , where \widehat \bfitP is defined in Theorem 3.4. We

will prove this result in three steps. First, we show that

(A.1)  - (\bfitD 2\bfitB 
\top 
1 \bfitD  - 1

1 \bfitB 1)\bfitV 
\top = \bfitV \top 1

2

\bigl( 
\bfitM fdiag(\bfitM f1)

 - 1 +\bfitM bdiag(\bfitM b1)
 - 1

\bigr) 
\underbrace{}  \underbrace{}  

\bfitP lower

,

where

\bfitM f = \widehat \bfitD 2( \widehat \bfitB  - 
1 )\top \widehat \bfitB +

1 and \bfitM b = \widehat \bfitD 2( \widehat \bfitB +
1 )

\top \widehat \bfitB  - 
1(A.2)

are weighted lower-adjacency matrices corresponding to forward and backward walks
along the edges (see Theorem 3.4) and \widehat \bfitD 2 = diag(\bfitD 2,\bfitD 2).

Second, we prove that

(A.3)  - (\bfitB 2\bfitD 3\bfitB 
\top 
2 \bfitD  - 1

2 )\bfitV \top = \bfitV \top 
\biggl( \widehat \bfitA u

\widehat \bfitD  - 1
4 +

1

2

\biggl( 
\bfitI \bfitI 
\bfitI \bfitI 

\biggr) \widehat \bfitD 5

\biggr) 
\underbrace{}  \underbrace{}  

\bfitP upper

,

where \widehat \bfitA u = \widehat \bfitB +
2 ( \widehat \bfitB  - 

2 )\top + \widehat \bfitB  - 
2 ( \widehat \bfitB +

2 )\top is the matrix of upper-adjacent connections and\widehat \bfitD 4 and \widehat \bfitD 5 are as defined in Theorem 3.4.
Finally, we prove that \widehat \bfitP = 1

2 (\bfitP lower + \bfitP upper) is indeed a stochastic matrix.

Preliminary Results. Before embarking on the proof, let us recall some useful
facts and develop some lemmas. For any matrix \bfitM ,

\bfitM = \bfitM +  - \bfitM  - , ( - \bfitM ) - = \bfitM +, ( - \bfitM )+ = \bfitM  - .(A.4)

From some algebra,

\bfitV \bfitV \top = \bfitI 2n1
 - \Sigma ,(A.5)

\Sigma \Sigma = \bfitI 2n1
,(A.6) \widehat \bfitB 1 := \bfitB 1\bfitV 
\top =

\bigl( 
\bfitB 1  - \bfitB 1

\bigr) 
= \widehat \bfitB +

1  - \widehat \bfitB  - 
1 ,(A.7) \widehat \bfitB  - 

1 \Sigma = \widehat \bfitB +
1 and \widehat \bfitB  - 

1 = \widehat \bfitB +
1 \Sigma ,(A.8)

\bfitB 1\bfitV 
\top = \widehat \bfitB +

1 \bfitV \bfitV \top ,(A.9)

\bfitB 1 = \widehat \bfitB +
1 \bfitV =  - \widehat \bfitB  - 

1 \bfitV ,(A.10) \widehat \bfitB 2 := \bfitV \bfitB 2 =
\bigl( 
\bfitB 2  - \bfitB 2

\bigr) \top 
= \widehat \bfitB +

2  - \widehat \bfitB  - 
2 ,(A.11) \widehat \bfitB +

2 = \Sigma \widehat \bfitB  - 
2 and \Sigma \widehat \bfitB +

2 = \widehat \bfitB  - 
2 ,(A.12)

\bfitV \bfitB 2 = \bfitV \bfitV \top \widehat \bfitB +
2 ,(A.13)

\bfitB 2 = \bfitV \top \widehat \bfitB +
2 =  - \bfitV \top \widehat \bfitB  - 

2 .(A.14)

Now, define the normalizing factors of the forward and backward walks using
lower-adjacency relationships as follows:

\bfitQ f = diag(1\top \bfitM f ) and \bfitQ b = diag(1\top \bfitM b).

Lemma A.1. \bfitQ f\Sigma = \Sigma \bfitQ b.
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Proof. The diagonal entries of \bfitQ f are given by the vector

\bfitq \top 
f := 1\top \bfitM f = 1\top \widehat \bfitD 2( \widehat \bfitB  - 

1 )\top \widehat \bfitB +
1

= 1\top \widehat \bfitD 2\Sigma \Sigma ( \widehat \bfitB  - 
1 )\top \widehat \bfitB +

1

= 1\top \widehat \bfitD 2\Sigma ( \widehat \bfitB  - 
1 )\top \widehat \bfitB +

1

= 1\top \widehat \bfitD 2( \widehat \bfitB +
1 )

\top \widehat \bfitB +
1

= 1\top 
\biggl( 
\bfitD 2 0
0 \bfitD 2

\biggr) \biggl( 
(\bfitB +

1 )
\top \bfitB +

1 (\bfitB +
1 )

\top \bfitB  - 
1

(\bfitB  - 
1 )\top \bfitB +

1 (\bfitB  - 
1 )\top \bfitB  - 

1

\biggr) 
= 1\top \bigl( 

\bfitD 2| \bfitB 1| \top \bfitB +
1 \bfitD 2| \bfitB 1| \top (\bfitB  - 

1 )
\bigr) 
.

The first line follows the definition of \bfitQ f ; the second line uses (A.6); the third line

follows from 1\top \widehat \bfitD 2\Sigma = 1\top \widehat \bfitD 2; the fourth line uses (A.8); and the fifth and sixth lines
follows from expanding notation. Similarly, the diagonal entries of \bfitQ b are given by

\bfitq \top 
b := 1\top \bfitM b = 1\top \widehat \bfitD 2( \widehat \bfitB +

1 )
\top \widehat \bfitB  - 

1

= 1\top \widehat \bfitD 2\Sigma \Sigma ( \widehat \bfitB +
1 )

\top \widehat \bfitB  - 
1

= 1\top \widehat \bfitD 2\Sigma ( \widehat \bfitB +
1 )

\top \widehat \bfitB  - 
1

= 1\top \widehat \bfitD 2( \widehat \bfitB  - 
1 )\top \widehat \bfitB  - 

1

= 1\top 
\biggl( 
\bfitD 2 0
0 \bfitD 2

\biggr) \biggl( 
(\bfitB  - 

1 )\top \bfitB  - 
1 (\bfitB  - 

1 )\top \bfitB +
1

(\bfitB +
1 )

\top \bfitB  - 
1 (\bfitB +

1 )
\top \bfitB  - 

1

\biggr) 
= 1\top \bigl( 

\bfitD 2| \bfitB 1| \top \bfitB  - 
1 \bfitD 2| \bfitB 1| \top \bfitB +

1

\bigr) 
= \bfitq \top 

f \Sigma .

The lemma then follows by considering how the permutation \Sigma acts on the diagonal
matrices \bfitQ f and \bfitQ b.

Lemma A.2. \bfitD  - 1
1

\widehat \bfitB +
1 = 1

2
\widehat \bfitB +
1 \bfitQ 

 - 1
f .

Proof. By definition, \widehat \bfitB +
1 =

\bigl( 
\bfitB +

1 \bfitB  - 
1

\bigr) 
is an indicator matrix with a single entry

equal to 1 per column. More specifically, \bfitB +
1 picks out the target nodes of the oriented

edges and \bfitB  - 
1 picks out the source nodes:

(\bfitB +
1 )[i],[j,k] =

\Biggl\{ 
1 if i = k,

0 otherwise,
(\bfitB  - 

1 )[i],[j,k] =

\Biggl\{ 
1 if i = j,

0 otherwise.

Recall that \bfitD 1 = 2 \cdot diag(\bfita ), where \bfita = | \bfitB 1| \bfitD 21. Thus,\bigl[ 
\bfitD  - 1

1 \bfitB +
1

\bigr] 
[i],[j,k]

=

\Biggl\{ 
1

2aii
if i = k,

0 otherwise,

\bigl[ 
\bfitD  - 1

1 \bfitB  - 
1

\bigr] 
[i],[j,k]

=

\Biggl\{ 
1

2aii
if i = j,

0 otherwise.

From the proof of Lemma A.1,

\bfitQ f = diag

\biggl( 
\bfitQ f,1

\bfitQ f,2

\biggr) 
= diag

\biggl( 
(\bfitB +

1 )
\top \bfita 

(\bfitB  - 
1 )\top \bfita 

\biggr) 
.

Row [j, k] of (\bfitB +
1 )

\top equals \bfite \top k and row [j, k] of (\bfitB  - 
1 )\top equals \bfite \top j . Thus,\biggl[ 

1

2
\bfitB +

1 \bfitQ 
 - 1
f,1

\biggr] 
[i],[j,k]

=

\Biggl\{ 
1

2akk
if i = k,

0 otherwise,

\biggl[ 
1

2
\bfitB  - 

1 \bfitQ  - 1
f,2

\biggr] 
[i],[j,k]

=

\Biggl\{ 
1

2ajj
if i = j,

0 otherwise.

Since the case statements hold when i = k (first block) or i = j (second block), we get
the desired equality.
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Proof of (A.1). We now prove the first part of Theorem 3.4, i.e., (A.1).

Proof.

 - 2[\bfitD 2\bfitB 
\top 
1 \bfitD  - 1

1 \bfitB 1]\bfitV 
\top =  - 2\bfitD 2\bfitB 

\top 
1 \bfitD  - 1

1
\widehat \bfitB +
1 \bfitV \bfitV \top (A.9)

=  - \bfitD 2\bfitB 
\top 
1
\widehat \bfitB +
1 \bfitQ 

 - 1
f \bfitV \bfitV \top (Lemma A.2)

=  - \bfitD 2\bfitB 
\top 
1
\widehat \bfitB +
1 \bfitQ 

 - 1
f (\bfitI  - \Sigma ) (A.5)

=  - \bfitD 2\bfitB 
\top 
1
\widehat \bfitB +
1 \bfitQ 

 - 1
f +\bfitD 2\bfitB 

\top 
1
\widehat \bfitB +
1 \bfitQ 

 - 1
f \Sigma (expansion)

=  - \bfitD 2\bfitB 
\top 
1
\widehat \bfitB +
1 \bfitQ 

 - 1
f +\bfitD 2\bfitB 

\top 
1
\widehat \bfitB  - 
1 \Sigma \bfitQ  - 1

f \Sigma (A.8)

=  - \bfitD 2\bfitB 
\top 
1
\widehat \bfitB +
1 \bfitQ 

 - 1
f +\bfitD 2\bfitB 

\top 
1
\widehat \bfitB  - 
1 \bfitQ  - 1

b \Sigma \Sigma (Lemma A.1)

=  - \bfitD 2\bfitB 
\top 
1
\widehat \bfitB +
1 \bfitQ 

 - 1
f +\bfitD 2\bfitB 

\top 
1
\widehat \bfitB  - 
1 \bfitQ  - 1

b (A.6)

= \bfitD 2\bfitV 
\top ( \widehat \bfitB  - 

1 )\top \widehat \bfitB +
1 \bfitQ 

 - 1
f +\bfitD 2\bfitV 

\top ( \widehat \bfitB +
1 )

\top \widehat \bfitB  - 
1 \bfitQ  - 1

b (A.10)

= \bfitV \top \widehat \bfitD 2( \widehat \bfitB  - 
1 )\top \widehat \bfitB +

1 \bfitQ 
 - 1
f + \bfitV \top \widehat \bfitD 2( \widehat \bfitB +

1 )
\top \widehat \bfitB  - 

1 \bfitQ  - 1
b

= \bfitV \top 
\Bigl( 
\bfitM f\bfitQ 

 - 1
f +\bfitM b\bfitQ 

 - 1
b

\Bigr) 
(by definition).

Note again that \bfitM f\bfitQ 
 - 1
f and \bfitM b\bfitQ 

 - 1
b are simply transition matrices of random walks

on graphs with weighted adjacency matrices \bfitM f and \bfitM b; accordingly, any convex
combination is also a valid transition matrix.

Proof of (A.3). Finally, we prove the second part of Theorem 3.4, i.e., (A.3).

Proof. First, observe that

\bfitV \top 
\biggl( 
\bfitI \bfitI 
\bfitI \bfitI 

\biggr) \widehat \bfitD 5 = 0 \widehat \bfitD 5 = 0,

which implies that the contribution to our projection of the walks that correspond to
edges without an upper-adjacent face is zero. Hence, it suffices to show that

 - (\bfitB 2\bfitD 3\bfitB 
\top 
2 \bfitD  - 1

2 )\bfitV \top = \bfitV \top \widehat \bfitA u
\widehat \bfitD  - 1
4 .

We then have that

\bfitV \top \widehat \bfitA u = \bfitV \top 
\Bigl[ \widehat \bfitB +

2 (
\widehat \bfitB  - 
2 )\top + \widehat \bfitB  - 

2 ( \widehat \bfitB +
2 )

\top 
\Bigr] 

(definition of \widehat \bfitA u)

= \bfitB 2( \widehat \bfitB  - 
2 )\top  - \bfitB 2( \widehat \bfitB +

2 )
\top (A.14)

=  - \bfitB 2

\Bigl[ 
( \widehat \bfitB +

2 )
\top  - ( \widehat \bfitB  - 

2 )\top 
\Bigr] 

=  - \bfitB 2( \widehat \bfitB +
2 )

\top (\bfitI  - \Sigma ) (A.12)

=  - \bfitB 2( \widehat \bfitB +
2 )

\top \bfitV \bfitV \top (A.5)

=  - \bfitB 2\bfitB 
\top 
2 \bfitV \top (A.13).

Since \bfitD 3 is simply a scaling by 1/3,

\bfitV \top \widehat \bfitA u
\widehat \bfitD  - 1
4 =  - \bfitB 2\bfitD 3\bfitB 

\top 
2 \bfitV \top (3 \cdot \widehat \bfitD  - 1

4 )

=  - \bfitB 2\bfitD 3\bfitB 
\top 
2 \bfitV \top \widehat \bfitD  - 1

2

=  - \bfitB 2\bfitD 3\bfitB 
\top 
2 \bfitD  - 1

2 \bfitV \top .
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In the second equality, we used the fact that if deg([i, j]) = 0, then the corresponding
column of \bfitB 2\bfitD 3\bfitB 

\top 
2 will be zero.

Stochasticity of \widehat \bfitP . The matrix \bfitP lower is column stochastic by construction. The
last item we need to show is that \bfitP upper is also column stochastic, so that we indeed
have a stochastic lifting of the normalized Hodge 1-Laplacian. Recall that

\bfitP upper = \widehat \bfitA u
\widehat \bfitD  - 1
4 +

1

2

\biggl( 
\bfitI \bfitI 
\bfitI \bfitI 

\biggr) \widehat \bfitD 5

=
\Bigl[ \widehat \bfitB +

2 (
\widehat \bfitB  - 
2 )\top + \widehat \bfitB  - 

2 ( \widehat \bfitB +
2 )

\top 
\Bigr] \widehat \bfitD  - 1

4 +
1

2

\biggl( 
\bfitI \bfitI 
\bfitI \bfitI 

\biggr) \widehat \bfitD 5.

When deg([i, j]) = 0, the corresponding column of \widehat \bfitA u is zero and \widehat \bfitD 5 picks out a
column of the stacked identity matrices, which is stochastic when multiplied by 1/2.

When deg([i, j]) > 0, the corresponding column of \widehat \bfitA u has nonzero entries for exactly
those edges that have a different orientation relative to each coface of [i, j] (each coface
results in three entries; see (3.6)). Thus, the column sum is exactly 3 \cdot deg([i, j]), so
scaling by \widehat \bfitD  - 1

4 makes the matrix stochastic.
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