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Abstract There are infinite sequences of graphs {Gn} where |Gn| = n such that
the minimal dominating sets for H × Gi fall into predictable patterns, in light
of which γ(Gn × H) may be nearly linear in n; the coefficient of linearity may
be regarded as the average density of the dominating set in the H-fibers of the
product. The specific cases where the sequence {Gn} consists of cycles or path is
explored in detail, and the domination density of the Grötzsch graph is calculated.
For more general sequences {Gn}, the conditions under which this density exists
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1 Introduction

The domination number of a product of graphs has been subject to considerable
investigation, much of it based on a the following well-known conjecture:

Conjecture 1 (Vizing[6]) For finite graphs G and H, γ(G�H) ≥ γ(G)γ(H).

Vizing’s conjecture is known to be true for several families of possible G and
H; among other partial results, it has been established that Vizing’s conjecture is
true if either G or H is a cycle or a tree[3].

Explicit values for γ(G�H) have also been found in several cases, particularly
the grid graphs Pm�Pn where m ≤ 11[1,2]. These computations shed light on
several notable facts about grid domination: on the interior of the grid, a perfect
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domination of using 1
5 of the vertices is feasible, but on the edges and corners of

the grids, as many as 1
4 of the vertices may be necessary, yielding the extremely

straightforward bounds:
mn

5
< γ(Pm�Pn) ≤ mn

4

A more revelatory result of the explicit studies of products of arbitrary paths with
the specific path graphs P1, . . . , P11 is that an optimal dominating set is produced
by repetition of specific “building blocks”; for instance, an optimal domination of
P7�Pn is constructed by repeating a choice of 10 dominating vertices within a
7× 6 block over and over again, so that γ(P7�Pn) ≈ 10 · n6 .

In this work we will explore the inevitability of such building blocks in finding
minimal dominating sets for families of the form G�Pn and present a graph pa-
rameter of significant utility in approximating the domination numbers of products
of graphs and arbitrarily large paths.

2 Existence of domination density

As noted in the prior studies of Jacobson and Kinch [2], Chang, Clark and Hare [1],
and Rubalcaba and Slater [5], optimal dominating sets of graph products G�Pn
for sufficiently large n consist, in many cases, of a periodically repeating selection
of vertices in the fibers corresponding to the central section of Pn, with atypical
and aperiodic behavior occurring only on those fibers within a short distance of
the path’s endpoints. In light of this behavior, since the length of the sections
of atypical behavior is small proportional to n, one may observe that for several
choices of G, it is the case that γ(G�Pn) = kn+o(n) for some k; this specific value
k can be determined by observing the limiting behavior, and may be thought of
as the per-fiber density of vertices necessary for domination of a stack:

Definition 1 The quantity γ(G) = limn→∞
γ(G�Pn)

n is called the stack domination

density of G.

Although it is not yet apparent that this limit will converge for all G, we will
see later that this quantity does always exist, but will begin by noting that this
parameter can be equally well approached with large cycles instead of large paths.

Proposition 1 limn→∞
γ(G�Pn)

n and limn→∞
γ(G�Cn)

n either both converge or both

diverge, and are equal if they converge.

Proof Since any dominating set of G�Pn dominates G�Cn, we know γ(G�Pn) ≥
γ(G�Cn); furthermore, any dominating set of Cn+1 can be modified to produce
a dominating set of Pn by removing a single fiber and selecting the correspond-
ing dominating vertices from that fiber in both of its neighbors, so γ(G�Pn) ≤
γ(G�Cn+1) + |G|. Thus,

γ(G�Cn)

n
≤ γ(G�Pn)

n
≤
(

n

n+ 1

) γ(G�Cn)

n
+
|G|
n

Since as n → ∞, n
n+1 → 1 and |G|

n → 0, it is clear that the limits supremum

and infimum of γ(G�Cn)
n and γ(G�Pn)

n are equal; thus, the limits themselves are
identical in existence and, when extant, value.
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Cycle products are somewhat easier to work with in demonstrating the ex-
istence and value of the above limit, since they are, in many cases, free of the
aperiodic effects exhibited by the endpoints of paths, and we may in fact use the
periodicity of cycles to place an upper bound on the stack domination density.

Proposition 2 For any positive integers m and k, γ(G�Ckm) ≤ kγ(G�Cm); fur-

thermore, for any positive integer n, γ(G�Cn) ≤
⌊
n
m

⌋
γ(G�Cm) +m|G|.

Proof Let the sets of vertices of a minimal dominating set from consecutive fibers
of G�Cm be denoted S1, S2, . . . , Sm, so that

∑m
i=1 |Si| = γ(G�Cm)

If the fibers of G�Ckm are sequentially denoted by G1, G2, . . . , Gkm, we may
select vertices in fiber Gi corresponding to Sj where i ≡ j mod n; this selection of
vertices is a dominating set, since by the construction of Si, the set Si−1 ∪N(Si)∪
Si+1 (where indices are reduced modulo k) is guaranteed to cover the vertices of any
fiber Gi. It can easily be seen that this selection criterion utilizes each residue class
i on k fibers, so this process selects a dominating set of

∑m
i=1 k|Si| = kγ(G�Cm)

vertices.

If m | n, then the above result shows that γ(G�Cn) ≤ n
mγ(G�Cm). If n is

not divisible by m, however, the above procedure as written does not guarantee
a dominating set: the fibers Gb n

m cm+1, . . . , Gn might not be satisfactorily covered.
This collection of fibers contains no more than n−b nmc ≤ m copies of G, so a simple
guarantee of domination can be produced by choosing every vertex of these fibers,
adding no more than m|G| vertices to our dominating set, providing a dominating
set of size

⌊
n
m

⌋
γ(G�Cm) +m|G|.

Corollary 1 For any positive integer m,

lim sup
n→∞

γ(G�Cn)

n
≤ γ(G�Cm)

m

Proof Using the bound on γ(G�Cn) in Proposition 2:

lim sup
n→∞

γ(G�Cn)

n
≤ lim sup

n→∞

⌊
n
m

⌋
γ(G�Cm) +m|G|

n
=
γ(G�Cm)

m

A finite cycle product thus yields an upper bound on the limiting domination
density; however, we may also find lower bounds dependent on finite cycle products
to produce an equality. To prove this result, we will consider the sequential aspects
of a dominating set on an given G�Cn. If we establish an ordering among the fibers
G1, G2, . . . , Gn, and adopt the indexing convention that G0 = Gn and Gn+1 = G1,
then based on selection of a dominating set on G�Cn, every fiber’s vertices can
be partitioned into three classes; we call a vertex of Gi dominating if it is in the
dominating set, pre-dominated if it is not in the dominating set but is dominated
by some element of the dominating set in Gi or Gi− 1, and post-dominated if it
is neither of the above (and thus must be dominated by some element of the
dominating set in Gi+1). We shall call this partition of the vertices of G the profile

of the fiber Gi.
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Proposition 3 For a dominating set S on G�Cn, if the fibers Gi and Gj have the

same profile, for i < j, then the restriction of the dominating set S onto Gi+1, Gi+2, . . . , Gj
is in a one-to-one correspondence with a dominating set on G�Cj−i; likewise, the re-

striction onto Gj+1, . . . , Gn, G1, . . . , Gi is in a one-to-one correspondence with a dom-

inating set on G�Cn−j+i.

Proof If we map the dominating set on these fibers onto the associated fibers
G′1, G

′
2, . . . , G

′
j−i fromG�Cj−i, it is clear that every vertex on the fibersG′2, . . . , G

′
j−i−1

is dominated by its neighbors; in addition, clearly by definition, all the vertices
previously profiled as dominating or pre-dominated in Gj are dominated in G′j−i,
and all fibers profiled as dominating or post-dominated in Gi+1 are dominated
in G′1. However, we may also exhibit that the post-dominated vertices of Gj are
dominated in G′j−i, since they are in the dominating profile of Gj+1, which is also
the set of dominating vertices in Gi+1’s associated fiber G′1; likewise, Gi+1’s pre-
dominated vertices are dominating vertices of Gi, and thus appear as dominating
in Gj ’s profile, and must thus be vertices selected as dominating in G′j−i, where
they dominate the associated vertices in G′1.

The analogous result on the cycle section Gj+1, . . . , Gn, G1, . . . , Gi can easily
be shown by relabeling the vertices.

Thus, we know that if a dominating set on G�Cn repeats the same profile on
separate fibers, then the sequence of dominating vertices between the repetitions
corresponds to a dominating set on a smaller product G�Cm. Since there are only
3|G| distinct profiles, if n is very large, such a repetition is inevitable.

Theorem 1 For any finite graph G, if k = minm≤3|G|
γ(G�Cm)

m , then γ(G�Cn) ≥
k(n− 3|G|).

Proof We shall prove this result by induction on n; if n ≤ 3|G|, this result is trivial.
For n > 3|G|, let us index the fibers of G�Cn sequentially as G1, . . . , Gn and
consider some dominating set S on these fibers, which induces a profile for each
fiber. The existence of only 3|G| different profiles guarantees that two elements
of {G1, . . . , G3|G|+1} have the same profile; w.l.o.g. we may assume they are G1

and Gi for some i ≤ 3|G|. By Proposition 3, we know that the restrictions of S to
G1 ∪ · · · ∪Gi−1 and Gi ∪ · · · ∪Gn are respectively in one-to-one correspondence to
dominating sets on G�Ci−1 and G�Cn−i+1. Thus, using the definition of k and
the inductive hypothesis, we can see that:

|S| ≥ γ(G�Ci−1) + γ(G�Cn−i+1)

≥ (i− 1)k +
[
k(n− i+ 1− 3|G|)

]
= k(n− 3|G|)

Corollary 2 For any finite graph G, γ(G) exists and is equal to minm≤3|G|
γ(G�Cm)

m .

Proof By Corollary 1, we know that lim supn→∞
γ(G�Cn)

n ≤ minm≤3|G|
γ(G�Cm)

m ;
using the lower bound just discovered, we can show that the limit infimum is
bounded below by the same quantity, guaranteeing equality of the limits:

lim inf
n→∞

γ(G�Cn)

n
≥ lim inf

n→∞

minm≤3|G|
γ(G�Cm)

m (n− 3|G|)

n
= min
m≤3|G|

γ(G�Cm)

m
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The stack-domination parameter thus not only exists, but is rational and can
be determined by inspection of a finite number of finite graphs. Experimental
results suggest that the investigation threshold of considering all cycles of fewer
than 3|G| vertices is, except in the unusual case where G consists of a single vertex,
far higher than is actually necessary, since of the 3|G| possible profiles, there are
many which would be unlikely to arise in construction of a minimal dominating
set.

3 Known bounds and values

It is fairly easy to find upper bounds on stack domination numbers through explicit
constructions; there are two simple constructions of a dominating set for G�Pn:
one might either select a minimal dominating set S of G and consider the set
S×V (Pn), or likewise we might select a minimal dominating set S of Pn, which will
have cardinality

⌈
n
3

⌉
, and consider the set V (G)× S. Thus γ(G�Pn) ≤ min(γ(G) ·

n, |G| ·
⌈
n
3

⌉
), so

γ(G) ≤ min

(
γ(G),

|G|
3

)
Both of these upper bounds can be seen to be sharp in specific cases: the empty
graph Kc

m is such that Kc
m�Pn is a product of m disjoint paths, each of which

must be dominated independently, so γ(Kc
m) = m

3 ; similarly, Km�Pn for large n
can only be dominated by a set such that each fiber either contains a dominating
vertex or each fiber has neighboring fibers with m or more dominating vertices;
with m > 3, this guarantees an average of 1 vertex per fiber, so γ(Km) = 1.

The best-known and most generally effective lower bound on domination num-
ber of graph products is Vizing’s Conjecture, which has been proven true in the
case of paths and cycles[3,2], so γ(G�Pn) ≥ γ(G)γ(Pn) and thus

γ(G) ≥ γ(G)

3

so we may be certain that the stack domination density is comparable in magnitude
to the domination number, since 1

3γ(G) ≤ γ(G) ≤ γ(G).

Specific graph products have been investigated by other researchers, and their
results can be phrased in terms of domination density. The established formulas for
domination numbers of grids Pm�Pn where m ≤ 11[1,2] can be processed to given
stack domination densities for paths of length not exceeding 11; in keeping with our
previous observations about grids, the values of γ(Pm) are rational and increase in
m and lies in the interval [m4 ,

m
5 ); the denominators of the stack domination number

and the lengths of the representative patterns are quite small, ranging from 4 to
26, lending greater weight to the previous assertion that stack domination numbers
can be ascertained using paths and cycles of length far less than the previously
developed bound of 3|G|.

Another stack domination number can be determined from the work of Rubal-
caba and Slater[5], who determined that the domination number of products of
the Petersen graph with Pn is 2n. It is this result which motivated the following
investigation.
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Fig. 1 Eight-vertex dominating set for G̈�C4

4 Stack domination density of the Grötzsch graph

An eight-vertex dominating set for G̈�C4 is illustrated in Figure 1, which suffices
to show that γ(G̈) ≤ 2. We shall show by investigation of the number of dominating
vertices in each fiber that dom(G̈�Cn) ≥ 2n, and thus that γ(G̈) is exactly 2.

For a dominating set S of G̈�Cn in which the fibers are labeled sequentially
as G̈1, . . . , G̈n, let us partition S into the sets Si = S ∩ V (G̈i) of representatives in
each fiber, and produce the finite integer sequence a1, . . . , an by letting ai = |Si|.
The aforementioned goal, then, is equivalent to demonstrating that

∑n
i=1 ai ≥ 2n,

or alternatively that the average value of the sequence is 2. We shall achieve this
goal through partition of the sequence into sections each of which is guaranteed
to have an average value of 2.

Two easy observations will be used repeatedly to shed significant light on our
analysis of this sequence’s terms: if ai = 1, then ai−1 + ai+1 ≥ 5, and if ai = 0,
then ai−1 + ai+1 ≥ 11, adhering here and henceforth to the cyclic convention that
a0 = an and an+1 = a1. These statements follow clearly since any vertices of
G̈i not dominated by elements of Si must appear in Si−1 or Si+1 in order to be
dominated; a single vertex in Si will leave at least 5 vertices of its associated fiber
undominated, and no vertices in Si will leave all 11 vertices undominated.

If every ai > 2, then clearly
∑n
i=1 ai ≥ 2n so we shall assume to the contrary

that some ai ≤ 1, so ai−1+ai+1 ≥ 5, and thus we are guaranteed that either ai−1 or
ai+1 is at least 3; applying the appropriate automorphism on Cn, we may without
loss of generality presume that a0 < 1 and an ≥ 3. Having guaranteed certain
conditions on each end of our condition, we can perform the following algorithm
to divide the sequence into subsequences:

1. Let i be the smallest index not yet assigned to a subsequence.
2. If ai = 0 and ai+1 < 4, construct the new subsequence {ai−1, ai, ai+1}.
3. Otherwise, determine the least j such that ai + ai+1 + · · ·+ aj ≥ 2(i − j + 1)

and construct the new subsequence {ai, . . . , aj}.

This procedure, if it can be performed, will clearly bring us very close to the
goal: the subsequences constructed will each have an average of at least 2, and they
will be very nearly a partition of the original sequence: they cover the sequence,
and will overlap only on those ai where ai+1 = 0 and ai+2 < 4. It is thus only
necessary to show that the procedure described in step 3 is actually possible, and
that the overlapping sections of this near-partition do not obstruct conclusions
drawn from adding up the sums on each subsequence.
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Fig. 2 Dominating and undominated vertices in fibers corresponding to (ai, ai+1, ai+2) =
(1, 2, 1)

Proposition 4 For the sequence a1, . . . , an defined as above, for any i ≤ n such that if

ai = 0, then ai+1 ≥ 4, there is a j ≤ i ≤ n such that ai+ai+1 + · · ·+aj ≥ 2(i−j+1).

Proof Most of the possible values of ai may in fact be trivially shown to satisfy
this criterion. If ai = 0, then our construction requires that ai+1 ≥ 4, so j = i+ 1
satisfies the above condition. If ai ≥ 2, then j = i satisfies the above condition.

If ai = 1, we may note that i < n, since an is guaranteed to be at least 3.
There are several possibilities for ai+1, many of which again show our desired
result immediately: if ai+1 ≥ 3, then clearly j = i+1 suffices; if ai+1 = 1, then our
prior observation guarantees that ai+2 ≥ 5− ai = 4, so j = i+ 2 will suffice, since
ai+ai+1 +ai+2 ≥ 1+1+4 = 6; likewise, if ai+1 = 0, we know ai+2 ≥ 11−ai = 10,
so j = i+ 2 will again suffice.

Thus, the only values which are not trivial with regard to determining a value
of j are when ai = 1 and ai+1 = 2; we know in this case that i + 1 < n, since
an ≥ 3, so we may consider ai+2. As above, a modestly large value immediately
yields a satisfactory value of j: if ai+2 ≥ 3, then j = i + 2 suffices. Also, as
above, a very small value of ai+2 will force ai+3 to be large: if ai+2 = 0, then
ai+3 ≥ 11− ai+2 = 10, so j = i+ 3 would suffice.

Eliminating the remaining cases of subsequences beginning with 1, 2, 2 and
1, 2, 1, unfortunately, cannot be done solely with consideration of the sequence’s
terms, but will rely on investigation of the underlying choices of Si.

The easier case is 1, 2, 1: the 2-vertex set dominating all but 2 vertices of the
Grötzsch graph is unique up to automorphism, so Si+1 is determined as seen
in Figure 2, and furthermore Si and Si+2 will also be uniquely determined as
consisting of the two uncovered vertices; this leaves 4 vertices of G̈ uncovered, so
ai+3 must be at least 4, and thus j = i+ 3 will suffice.

Lastly, we must consider cases in which (ai, ai+1, ai+2) = (1, 2, 2). The sequence
ai+1, ai+2, . . . , an cannot have 2 as every entry, since an ≥ 3; we thus may consider
the first non-2 value in this sequence to be ak. Depending on the value of ak we
can determine a satisfactory value of j in any of a number of ways. If ak ≥ 3,
then j = k will suffice, since the average of a sequence consisting of a single 1,
multiple 2s, and a value of at least 3 will be at least 2. If ak = 0, then j = k + 1
will suffice, since then then ak+1 ≥ 11− ak−1 = 9. Finally, if ak = 1, we will need
to consider more deeply its possible predecessors and successors: we know that
ak+1 ≥ 5− ak−1 = 3. If ak+1 ≥ 4, we shall have a satisfactory result in j = k + 1,
but the sequence (1, 2, 2, . . . , 2, 1, 3) is slightly short of meeting our average-value
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Fig. 3 Backtracks of dominating sets on fibers corresponding to (ak−1, ak, ak+1) = (2, 1, 3)

criterion. Fortunately, the subsequence (2, 1, 3) is extremely restrictive in possible
configurations: in order for a fiber with a single dominating vertex to be dominated
with only five vertices in the neighboring fibers, the only two possible choices of
dominating vertices are those depicted in the final three fibers of the two rows of
Figure 3. We know these must be preceded by zero or more fibers with at most
two dominating vertices and one fiber with one dominating vertex in order to fit
the given sequence template (1, 2, 2, . . . , 2, 1, 3). However, the predecessor of each
fiber with 2 vertices is completely determined: two vertices are left uncovered on
the fiber ak, which must be covered by two dominating vertices in ak−1; such
lack of choice continues as we determine dominating sets of size 2 for each fiber
working backwards from ak, until, as seen in both cases illustrated in Figure 3,
a dominating set of size 3 becomes an inevitable necessity. Thus, the sequence
(1, 2, 2, . . . , 2, 1, 3) cannot actually occur.

Thus, we are guaranteed to be able to cover the sequence a1, . . . , an with these
subsequences, since at the end of each step in the aforementioned algorithm, the
first j terms of the sequence have been assigned to at least one subsequence, with
j increasing with each repetition until j = n. We can thus be certain that every
vertex is covered by a subsequence and that each subsequence has an average of at
least 2; however, since the subsequences are not a partition, we cannot guarantee
that the sum of the sequence is the sum of the individual subsequences, and must
be cautious with regard to the overlap.

Theorem 2 For the sequence a1, . . . , an defined as above,
∑n
i=1 ai ≥ 2n, and thus

γ(G̈�Cn) ≥ 2n.

Proof Using the above-described subsequence-determining algorithm, let us pro-
duce subsequences S1, S2, . . . Sq resulting from step 3 of the algorithm, and T1, T2, . . . , Tr
resulting from step 2. By construction, each Si contains only indices greater than
those already considered, and thus do not overlap a previously determined sub-
sequence, except when Sq and T1 both contain an; by contrast, each Ti is guar-
anteed overlap with either a previously determined subsequence Ski , or in the
case T1 = (an, a1, a2), with the later-determined subsequence Sq. Let us denote
Ti = (aji−1, aji , aji+1), and consider for each Ti the associated Ski which overlaps
it in the term aji−1. By construction of Ti, we know aji = 0 and aji+1 ≤ 3, so
aji−1 ≥ 11−aji+1 ≥ 8; however, the argument in Proposition 4 demonstrates that
in order for an interval Ski to have an average term value of 2, it is only necessary
that aji−1 ≥ 4, so we can guarantee an excess of at least 4 in each Ski ; in addition,
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since each Ti is guaranteed to have a sum of 11 over an interval of length 3, each Ti
provides an excess of 5 beyond what is guaranteed. Since there are p subsequences
Ti, there are p associated overlapping Ski , so if the sums of every sequence are
added up, then the p terms of the form aji−1 appear twice, and p of the sequences
are guaranteed to provide an excess value of 4 beyond the guaranteed 2 per term.
Thus:

p∑
i=1

∑
ak∈Ti

ak +

q∑
i=1

∑
ak∈Si

ak =
n∑
i=1

ai +

p∑
i=1

aji−1

p∑
i=1

∑
ak∈Ti

ak +

q∑
i=1

∑
ak∈Si

ak ≥ 2(n+ p) + 5p+ 4p = 2n+ 11p

Since each aji−1 cannot exceed 11, we see that

n∑
i=1

ai =

p∑
i=1

∑
ak∈Ti

ak +

q∑
i=1

∑
ak∈Si

ak −
p∑
i=1

aji−1 ≥ 2n

5 Generalized stack-structures

The work above explores the density of minimal dominating sets for H�Pn, with
density referring to the number of dominating vertices per copy of H. One clear
generalization of this concept is to describe different adjacency rules among the n
copies of H. Maintaining the Cartesian product as a construction mechanism, this
goal can be achieved by using a different underlying graph than Pn:

Definition 2 For a family of graphs Gn with |Gn| = n, the quantity γGn(H) =

limn→∞
γ(H�Gn)

n is called the generalized stack domination density of H with stack
topology Gn.

Illuminating and interesting choices of Gn, however, are elusive. There are
several families of graphs Gn for which the generalized stack domination density
does not exist: obviously, it does not exist when limn→∞

γ(Gn)
n does not converge,

and such examples can be found even if we restrict Gn to be a chain of induced
subgraphs of a tree. However, even convergence of limn→∞

γ(Gn)
n , although it

guarantees the existence of γGn(K1), does not guarantee that γGn(H) exists for
all H.

In addition to the many graphs for which γGn(H) does not exist, there are sev-
eral for which γGn(H) exists but is trivial: specifically, for a family in which the

growth of γ(Gn) is sublinear in n, it is clear that γGn(H) ≤ limn→∞
|H|γ(Gn)

n =

|H| limn→∞
γ(Gn)
n = 0. This will obviously eliminate from consideration such fami-

lies as complete graphs, complete k-partite graphs, and the random graphs G(n, p)
for p = ω( 1

n ). Indeed, one of the earliest results of probabilistic combinatorics
is that any graph G with minimum degree δ contains a dominating set of size
at most n (1+log δ)

δ . This implies that for any family Gn with growing minimum

degree, γGn(H) = 0 for all graphs H.
In light of this trivialization of many promising leads, we might find it more

effective to probe a modification of the domination density which is less likely to
result in a zero quotient.
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Definition 3 The modified stack domination density of H with stack topology Gn
is given by

γ̂Gn(H) = lim
n→∞

γ(H�Gn)

γ(Gn)

This will allow for more interesting analysis of the case of topologies with
sublinear γ(Gn), since the ratio above will not necessarily tend towards zero. In
fact, assuming the truth of Vizing’s Conjecture would indicate that γ̂Gn(H) ≥
γ(H), which is guaranteed to be nonzero for |H| ≥ 1; we can additionally bound
γ̂Gn trivially above by |H|. Note, however, that even the existence of bounds on the
modified stack domination density does not guarantee that it exists. However, the
following theorem demonstrates that the above limit converges, and specifically to
its upper bound, for most families Gn of increasing minimum degree.

Theorem 3 Let p(n) be a function such that p(n) < 1
2 and np(n) → ∞ as n → ∞.

Let Gn be a family of random graphs such that Gn ∈ G(n, p(n)). Then for every graph

H,

lim
n→∞

γ(Gn ×H)

γ(Gn)
= |H|

a.s., and thus a.s. γ̂Gn(H) = |H|.

Proof Let d = np(n), and let ` = log 1
1−p(n)

(n). Since np(n) = ω(1), note that

` = o(n). For convenience, we write p = p(n) for the remainder of the proof.
We let t = max{` log(d)2, log3(n)}, and define k = log 1

1−p
(t). We say that the

graph Gn is easily dominated if there is exists a set of vertices on Gn with size
` − k which leaves no more that t/2 vertices uncovered. Let An denote the event
that Gn is easily dominated. We now estimate P(An).

Let X denote a set on ` − k vertices, and let u(X) denote the set of vertices
left uncovered by X. Then

E[|u(X)|] = (n− |X|)(1− p)|X|

= (1− o(1))n(1− p)`−k

= (1− o(1))t.

Note that |u(X)| is the sum of independent random variables. Standard Cher-
noff bounds give that

P
(
u(X) ≤ 1

2
t

)
≤ exp(−Ω(t)).

Then

P(An) ≤

(
n

`− k

)
exp(−Ω(t))

≤

(
n

`

)
exp(−Ω(t))

≤
(
en

`

)`
exp(−Ω(t))

≤ exp
(
`
(
1 + log(

n

`
)
)
−Ω(t)

)
= exp(−Ω(t)).
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In order to justify the last equality, we must argue that log(n` ) = o(t). If ` =

o(log2(n)), then this holds as t ≥ log3(n) by definition. However, note that ` =
Ω(log2(n)) implies that p = o(1). Using this fact, we have

` =
log(n)

− log(1− p)
=

log(n)

p(1 + o(1))

But in particular this implies that n/` = (1+o(1))d/ log(n), and hence the desired
result as t ≥ ` log2(d).

Finally, we note that

∞∑
n=1

P(An) = exp(−Ω(t)) ≤ exp(− log3(n)) <∞.

Since the graphsGn are independent, the Borel-Cantelli lemma implies that P({An i.o.}) =
0. Therefore only a finite number of Gn are easily dominated with probability one.

Suppose Gn is not easily dominated, and n is large enough so that log2(d) >
3|H|. Let S be a smallest dominating set of Gn × H. A simple upper bound on
domination number tells us that |S| ≤ |H|γ(Gn).

For some x ∈ H, let Vx denote the fiber of x in Gn×H. We claim that the S has
at least `− k representatives in the fiber Vx; in other words, that |S ∩ Vx| ≥ `− k.

Suppose this claim is false. Since Gn is not easily dominatable, there are at
least t

2 vertices in Vx which are not dominated by the vertices in S ∩ Vx. For a
vertex u ∈ Vx which is not dominated by a vertex in S ∩ Vx, it must be dominated
by another vertex in its fiber over Gn. But there must be t

2 ≥
1
2 ` log2(d) > 3

2 |H|`
such vertices, a contradiction.

Since this is true of all X we have the following bound:

|H|(`− k) ≤ γ(Gn ×H).

On the other hand we would like to claim that γ(Gn) = (1 + o(1))`. Let X
denote the set of ` + log(`) vertices {v1, . . . , v`}. Then the expected number of
vertices not covered by X is

E[|u(X)|] = (n− |X|)(1− p)`+log(`)

≤ 1

log(n)
.

Due to the small expectation; we must be somewhat careful in our application of
the Chernoff bounds. We apply the following Chernoff bounds; see e.g. [4]

Lemma 1 For any t,

P(|BIN(n, p)− np| > t.) < 2e−((1+ t
np ) ln(1+ t

np )− t
np )np.

Applying this lemma with t = log(n)
log log log(n) we get that

P
(
|u(X)| > 2 log(n)

log log log(n)

)
< 2 exp

(
−Ω(

log(n) log log(n)

log log log(n)
)

)
.
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Since X ∪ u(X) is an independent set, this implies that the domination number

of Gn is at most ` + log(`) + 2 log(n)
log log log(n) = (1 − o(1))` with probability at least

1− 2 exp(−Ω( log(n) log log(n)
log log log(n) )). Since

∑
n

exp

(
−Ω

(
log(n) log log(n)

log log log(n)

))
<∞,

the Borel-Cantelli lemma implies that all but finitely many Gn have domination
number (1 + o(1))` as desired.

Thus the following bounds on γ(Gn ×H) emerge:

|H|(`− k) ≤ γ(Gn ×H) ≤ |H|γ(Gn) = (1 + o(1))`|H|. (1)

Since this holds for all sufficiently large n; we have that γ(Gn×H)
γ(Gn) → H as

desired.

Another family where stack domination has yielded to exploration is in the
realm of regular graphs, since if the graphs Gn are d-regular, there is a guarantee
that each element of a fiber covers its d neighbors within the fiber. We may take a
particular interest in the case where the dominating set is a perfect or near-perfect
cover; that is, the dominating set has size of approximately n

d :

Definition 4 A family of graphs {Gn} in which each graph Gn is d-regular with
|Gn| = n is asymptotically perfectly coverable if Gn has a dominating set of size
(1 + o(1)) n

d+1 .

Theorem 4 Suppose {Gn} is a family of regular asymptotically perfectly coverable

graphs where |Gn| = n, limn→∞ d =∞, and H is any fixed graph. Then

γ̂Gn(H) = lim
n→∞

γ(Gn ×H)

γ(Gn)
= |H|

Proof Let S be a smallest dominating set of Gn×H. On one hand, |S| ≤ |H|γ(Gn).
On the other hand, note that every vertex in S covers at most d+ |H| vertices of
Gn ×H, so that

|H|γ(Gn) ≥ |S| = γ(Gn ×H) ≥ |H|n
d+ |H|

Thus, since γ(Gn) = (1 + o(1)) n
d+1 ,

|H| ≥ γ(Gn ×H)

γ(Gn)
≥ |H|n
γ(Gn)(d+ |H|)

= |H| d+ 1

(1 + o(1)(d+ |H|)
.

Since limn→∞ d =∞, the upper and lower bounds on γ(Gn×H)
γ(Gn) will both converge

on |H| as n→∞.

Returning to the unmodified generalized stack domination density, one prop-
erty of paths and cycles which is sufficient to ensure that stack dominaiton density
exists is self-similarity; a path can be constructed by adding one edge between two
shorter paths, and even a cycle can be constructed from smaller cycles by the
removal of two edges and the addition of two edges. We formalize this by consid-
ering a family of graphs constructable from smaller graphs in the same family by
altering a sublinear set of edges.
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Definition 5 For two graphs G and H on the same vertex set, the symmetric

difference |G4H| is equal to the minimum number of edge removals and edge
additions to G which yield H. A sequence of graphs {Gn} is (C, ε)-additive if |Gn| =
n and for all 0 ≤ k ≤ n, |Gn4(Gk ∪Gn−k)| ≤ Cn1−ε. {Gn} is additive if it is (C, ε)-
additive for some C and ε > 0.

Note specifically that the family of paths is (1, 1)-additive, and the family of
cycles is (4, 1)-additive. There are several more exotic families of graphs which are
additive: for instance, for constant k, the Harary graphs Hk,n are (C, 1)-additive,
where C is determined by k; likewise, for any fixed graph H and chosen vertices
u and v thereof, the family of graphs Gn formed from b n|H|c copies of H with the

remaining vertices placed in another component, and with each graph’s copy of v
attached to its successor’s copy of u is (C, 1)-additive, with C determined by H.
When ε < 1, we may even consider graphs in which the number of edge modifica-
tions used to convert Gn−k ∪ Gk to Gn is nonconstant in n: an example of such
a graph family is the construction in which Gn contains one vertex shared among
b
√
n− 1c cycles of length b

√
n− 1c+1, with the remaining vertices assembled into

a path; this graph requires a constant multiple of
√
n edge-modifications to build

Gn from two earlier graphs in the sequence.
Additivity guarantees certain bounds on domination number of graph products,

and from there it can be shown that the generalized stack domination number on
an additive family Gn exists.

Lemma 2 If {Gn} is a (C, ε)-additive sequence of graphs and H is a fixed graph then

for any k < n,

|γ(Gn ×H)− (γ(Gk ×H) + γ(Gn−k ×H))| ≤ 2C|H|n1−ε = O(n1−ε)

Proof Let X denote the set of endpoints of edges in the symmetric difference
between Gn and Gk ∪Gn−k. By additivity, |X| ≤ 2Cn1−ε.

Consider a minimal set S of vertices dominating (Gk ∪Gn−k) ×H. Since this
by construction consists of the disconnected subgraphs Gk × H and Gn−k × H,
it follows that |S| = γ(Gk × H) + γ(Gn−k × H). Then it is easy to show that
S ∪ (X × V (H)) is a dominating set of Gn; since every vertex of (Gk ∪Gn−k)×H
is dominated by S, each vertex u of Gn×H is either adjacent to a vertex of S and
thus dominated, or is incident on an edge of (Gk ∪ Gn−k) × H not appearing in
Gn×H; that is to say, in the fiber containing u, there is an edge in Gk ∪Gn−k not
in Gn, so u lies in the set of vertices X of this particular fiber; thus, in the graph
as a whole, u lies in X × V (H) and is thus included in our dominating set. Since
S ∪ (X × V (H)) dominates Gn, it follows that

γ(Gn) ≤ γ(Gk ×H) + γ(Gn−k ×H) + |H|2Cn1−ε

An identical argument can be used to show that if T is a minimal dominating
set for Gn ×H, then T ∪ (X × V (H)) dominates (Gk ∪Gn−k)×H, so

γ(Gk ×H) + γ(Gn−k ×H) ≤ dim(Gn ×H) + |H|2Cn1−ε

and thus the result follows.

Based on these limitations in variation on domination density among particular
values of n, we can show that the limit on domination density in fact exists.
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Theorem 5 If {Gn} is an additive sequence of graphs, and H is an arbitrary graph

then

γGn(H) = lim
n→∞

γ(Gn ×H)

n

exists.

Proof Let

Θ = lim sup
n→∞

γ(Gn ×H)

n
and θ = lim inf

n→∞
γ(Gn ×H)

n
.

Suppose Θ > θ; then let us define Θ − θ = 6δ > 0.
Definitionally there must be arbitrarily large values of n such that γ(Gn×H)

n lies

within δ of Θ, and arbitrarily large values of m such that γ(Gm×H)
m lies within δ of

θ, so we may choose two subsequences {Gni} and {Gmi} such that 2ni < mi < ni+1

satisfying:

γ(Gni ×H)

ni
> Θ − δ = θ + 5δ and

γ(Gmi ×H)

mi
< θ + δ.

Let `i = blog2(mi/ni)c − 1. Note that `i ≥ 0 since mi > 2ni.
Now we claim that γ(G2`ini

×H) = 2`iγ(Gni ×H) +O(min
−ε
i ). This assertion

can be straightforwardly demonstrated by repeated application of Lemma 2, which
shows that γ(G2n ×H) = 2γ(Gn ×H) +O((2n)1−ε), so

γ(G2`ini
×H) = 2`iγ(Gni ×H) +

`i∑
j=1

O(2`i−j(2jni)
1−ε)

= 2`iγ(Gni ×H) +O

 `i∑
j=1

2`ini
nεi

2−εj


= 2`iγ(Gni ×H) +O

(
mi

nεi

)
Our final line makes use of the convergence of the geometric series

∑∞
j=1 2−εj and

the observation that mi
4 ≤ 2`ini ≤ mi

2 by the definition of `i.

If we let ri = 2`i , we may use the above decomposition of γ(Grini × H) as
follows.

γ(Gmi ×H) = γ(Grini ×H) + γ(Gmi−rini ×H) +O(m1−ε
i )

= riγ(Gni ×H) + γ(Gmi−rini ×H) +O(mi/n
ε
i),

since m1−ε
i = O(min

−ε
i ). Dividing by mi gives the following relationship among

densities in finite stacks:

γ(Gmi ×H)

mi
=
rini
mi
· γ(Gni ×H)

ni
+
mi − rini

mi
· γ(Gmi−rini ×H)

mi − rini
+O(1/nεi).

Thus

γ(Gmi−rini) ×H
mi − rini

=
mi

mi − rini
·γ(Gmi ×H)

mi
− rini
mi − rini

·γ(Gni ×H)

ni
+O

(
mi

(mi − rini)nεi

)
.
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By the construction of the subsequences {ni} and {mi}, we know that γ(Gmi ×
H)/mi ≤ θ+δ and γ(Gni ×H)/ni ≥ θ+5δ. By the definition of ri,

mi
4 ≤ rini ≤

mi
2

so rini
mi−rini

≥ 1
3 and thus

γ(Gmi−rini ×H)

mi − rini
≤ mi

mi − rini
(θ + δ)− rini

mi − rini
(θ + 5δ) +O(1/nεi)

≤
(
mi − rini
mi − rini

)
(θ + δ)− rini

mi − rini
(4δ) +O(1/nεi)

≤ θ + δ − 4

3
δ + o(1) = θ − δ

3
+ o(1).

This is a contradiction resulting from our supposition Θ 6= θ, as mi − rini →∞ as
i→∞ so this produces an infinite sequence of graphs Gmi−rini such that

γ(Gmi−rini ×H)

mi − rini
≤ θ − δ

3

and hence contradicts the fact that θ = lim infn→∞
γ(Gn×H)

n . Therefore Θ = θ,
and since the limits supremum and infimum are equal, the limit exists.

6 Open Questions

Theorem 5 is a generalization in part of Corollary 2, since paths and cycles are
themselves additive graph families, but for underlying additive Gn in general, the
stronger result of Corollary 2 which asserts that the stack domination density
γGn(H) is equal to some particular γ(Gn×H)

Gn
may not be true; it has not yet even

been guaranteed that γGn(H) is rational for additive Gn, although no additive
sequence yielding an irrational domination density has yet been found. It thus
remains to be discovered whether additive graph families must yield rational dom-
ination densities, and, even more critically, whether such a rational domination
density will be achieved by a particular graph Gn in the familty.

In addition, the results of Theorem 3 leave open the possible properties of
sparse random graphs; while this theorem addresses random graph families of
increasing minimum degree, it leaves open the question of how this result might be
extended to random graph families in which np(n) does not tend towards infinity.

References

1. Chang, T.Y., Clark, W.E., Hare, E.O.: Domination numbers of complete grid graphs. I.
Ars Combin. 38, 97–111 (1994)

2. Jacobson, M.S., Kinch, L.F.: On the domination number of products of graphs. I. Ars
Combin. 18, 33–44 (1984)

3. Jacobson, M.S., Kinch, L.F.: On the domination of the products of graphs. II.
Trees. J. Graph Theory 10(1), 97–106 (1986). DOI 10.1002/jgt.3190100112. URL
http://dx.doi.org/10.1002/jgt.3190100112

4. Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method. Springer (2002)
5. Rubalcaba, R., Slater, P.J.: Efficient cartesian product layer domination. In: 22nd Cum-

berland Conference on Combinatorics, Graph Theory and Computing (2009)
6. Vizing, V.G.: Some unsolved problems in graph theory. Uspehi Mat. Nauk 23(6 (144)),

117–134 (1968)


