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Abstract

A total dominating set in a graph G is a set of vertices of G such that every vertex
is adjacent to a vertex of the set. The total domination number γt(G) is the minimum
cardinality of a dominating set in G. In this paper, we study the following open problem
posed by Yeo [J. Graph Theory 55 (2007), 325–337]. For each ∆ ≥ 3, find the smallest
value, r∆, such that for every connected graph G with each component of order at least 3,
of order n, sizem, total domination number γt, and bounded maximum degree ∆, satisfies
m ≤ 1

2 (∆ + r∆)(n− γt). The first author [J. Graph Theory 49 (2005), 285–290] showed
that r∆ ≤ ∆ for all ∆ ≥ 3. Yeo [J. Graph Theory 55 (2007), 325–337] significantly
improved this result and showed that 0.1 ln(∆) < r∆ ≤ 2

√
∆ for all ∆ ≥ 3, and posed

as an open problem to determine “whether r∆ grows proportionally with ln(∆) or
√
∆

or some completely different function.” In this paper, we determine the growth of r∆,
and show that r∆ is asymptotically ln(∆) and likewise determine the asymptotics of the
analogous constant for standard domination.
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1 Introduction

In this paper we continue the study of a linear Vizing-like relations relating the size (the
number of edges) of a graph and the (total) domination number, the order (the number of
vertices), and given bounded maximum degree.

A dominating set of a graph G is a set S of vertices of G such that every vertex not in
S has a neighbor in S, where two vertices are neighbors in G if they are adjacent. The
domination number of G, denoted by γ(G), is the minimum cardinality of a dominating set.
A total dominating set, abbreviated TD-set, of a graph G is a set S of vertices of G such
that every vertex has a neighbor in S, where two vertices are neighbors in G if they are
adjacent. The total domination number of G, denoted by γt(G), is the minimum cardinality
of a TD-set in G. For fundamentals of total domination theory in graphs we refer the reader
to the book [14]. A thorough treatise on domination in graphs can be found in [9, 10, 11].

For notation and graph theory terminology, we in general follow [9, 10, 11, 14]. Specifically,
let G be a graph with vertex set V (G) and edge set E(G). The open neighborhood NG(v)
of a vertex v in G is the set of vertices adjacent to v, while the closed neighborhood of v
is the set NG[v] = {v} ∪ NG(v). For a set D ⊆ V (G), its open neighborhood is the set
NG(D) = ∪v∈DNG(v), and its closed neighborhood is the set NG[D] = NG(D) ∪ D. We
denote the degree of v in G by degG(v) = |NG(v)|. The minimum and maximum degrees in
G are denoted by δ(G) and ∆(G), respectively. An isolated vertex in G is a vertex of degree 0
in G. A graph is isolate-free if it contains no isolated vertex. For k ≥ 1 an integer, we use
the standard notation [k] = {1, . . . , k}.

In this paper, we consider the following two open problems (that we will discuss in more
detail in Section 2).

Problem 1 For each ∆ ≥ 3, find the smallest value, c∆, such that for every connected
graph G of order n, size m, domination number γ(G) = γ, and bounded maximum degree
∆(G) ≤ ∆,

m ≤
(
∆+ c∆

2

)
n−

(
∆+ c∆ + 2

2

)
γ.

Problem 2 For each ∆ ≥ 3, find the smallest value, r∆, such that for every connected
graph G of order n ≥ 3, size m, total domination number γt, and bounded maximum degree
∆(G) ≤ ∆,

m ≤ 1

2
(∆ + r∆)(n− γt).

The best known lower and upper bounds (prior to this paper) to date on c∆ and r∆ for
every ∆ ≥ 3 are given by Rautenbach [18] and Yeo [24], and are summarized below.

Theorem 1 ([18, 24]) For all ∆ ≥ 3, we have 0.05 ln(∆) < c∆ ≤ ∆.
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Theorem 2 ([24]) For all ∆ ≥ 3, we have 0.1 ln(∆) < r∆ ≤ 2
√
∆.

As remarked by Yeo [24], “we do not have a guess if r∆ actually grows proportionally with
ln(∆) or

√
∆ or some completely different function.”

In this paper we completely determine the asymptotic behavior of r∆ and c∆.

Theorem 3
r∆ = (1 + o(1)) ln∆,

where the o(1) term tends to zero as ∆ → ∞.

Theorem 4
c∆ = (1 + o(1)) ln∆,

where the o(1) term tends to zero as ∆ → ∞.

The proof of these theorems is split into two parts. First we prove an upper bound for r∆;
cf. Theorem 14 in Section 3. We observe that this, in turn, almost immediately provides an
upper bound for c∆. The key ingredient in this direction is a new upper bound for the total
domination number of a graph, in the vein of the classical probabilistic bound but relating
the domination number to the maximum degree and size of a graph instead of the minimum
degree.

Finally, in Section 4, we prove the lower bounds on c∆ and r∆ needed to prove the theorem.
Here, the main ingredient is a lower bound for the domination number of random regular
graphs. While the domination number of random regular graphs has been heavily studied,
see eg. [6, 15], it seems that most of this effort has gone into regular graphs of small degree,
especially cubic graphs, and in improving the upper bound. We could not find the precise
result we needed – establishing the asymptotic sharpness of the classical probabilistic bound
– in the literature, so we provide a complete proof here.

In the next section, we provide some more background and discussion along with a few
important results we use, before turning to the proof.

2 Background and preliminaries

In 1965 Vizing [22] proved a classical result bounding the size m of a graph in terms of its
order n and domination number γ.

Theorem 5 ([22]) If G is a graph of order n and size m with domination number γ(G) =
γ ≥ 1, then m ≤ 1

2(n− γ) (n− γ + 2).
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Vizing [22] constructed an infinite family of graphs achieving equality in the bound of
Theorem 5. However, these graphs are disconnected and have maximum degree ∆ = n− γ.
In 1991 Sanchis [19] improved the bound of Theorem 5 slightly, as did Fulman [7] in 1994.
In a breakthrough paper in 1999 Rautenbach [18] showed that if the graph is isolate-free,
then the square dependence on n and γ in Vizing’s result in Theorem 5 turns into a linear
dependence on n, γ, and bounded maximum degree ∆.

Theorem 6 ([18]) If G is an isolate-free graph of order n, size m, domination number γ,
and maximum degree ∆(G) ≤ ∆, where ∆ ≥ 3, then

m ≤ ∆n− (∆ + 1)γ.

Rautenbach’s [18] result stated in Theorem 6 attracted considerable attention, and gave rise
to the open problem which is formally stated as Problem 1 in Section 1. Theorem 6, due to
Rautenbach, implies that c∆ ≤ ∆, but it was initially suspected that c∆ might be constant –
perhaps even bounded by 3. Yeo [24], however, established the lower bound c∆ > 0.05 ln(∆).
These results of Rautenbach and Yeo, summarized earlier in Theorem 1, are the best known
lower and upper bounds to date on c∆ for every ∆ ≥ 3.

Shifting our attention to Vizing-like relations between the size and the total domination
number of a graph of given order, in 2004 Dankelmann, Domke, Goddard, Grobler, Hattingh,
and Swart [5] established the following result.

Theorem 7 ([5]) If G is an isolate-free graph having order n, size m, and total domination
number γt(G) = γt ≥ 2, then

m ≤


(
n−γt+2

2

)
+ γt

2 − 1 if γt is even,(
n−γt+1

2

)
+ γt

2 + 1
2 if γt is odd.

As shown in [5], the bound in Theorem 7 is tight. However the extremal graphs that
achieve equality in the bound have the property that they are disconnected and that their
edges are very unevenly distributed in the sense that the minimum and maximum degrees
differ greatly. In 2004 Sanchis [20] improved the bound of Theorem 7 slightly in the case
when the graph G is connected and has total domination number at least 5.

Theorem 8 ([20]) If G is a connected graph with order n, size m, and total domination
number γt(G) = γt ≥ 5, then

m ≤
(
n− γt + 1

2

)
+
⌊γt
2

⌋
.

The degrees in graphs that achieve equality in the improved bound of Sanchis in Theorem 7
are also very unevenly distributed. In 2005 Henning [12] and in 2007 Shan, Kang, and
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Henning [21] established a linear Vizing-like theorem relating the size of a graph and its
order, total domination number, and bounded maximum degree. Their results showed that
the square dependence on n and γt in Theorem 7 and Theorem 8 improves to a linear
dependence on n, γt, and bounded maximum degree ∆.

Theorem 9 ([12, 21]) Let G be a graph of order n, size m, total domination number γt, and
bounded maximum degree ∆(G) ≤ ∆, where ∆ ≥ 3. If every component of G has order at
least 3, then m ≤ ∆(n− γt).

The connected graphs that achieve equality in the upper bound of Theorem 9 were char-
acterized in 2013 by Henning and Joubert [13]. As a consequence of their characterization,
if the bounded maximum degree ∆ ≥ 4, then we have strict inequality in the upper bound
of Theorem 9. A natural problem is to improve the upper bound in Theorem 9 for bounded
maximum degree ∆ ≥ 4. This problem is formally stated as Problem 2 in Section 1.

By Theorem 9, we have r∆ ≤ ∆ for all ∆ ≥ 3. As shown in [12], r∆ = ∆ in the special
case when ∆ = 3, that is, r3 = 3. However, the exact value of r∆ has yet to be determined
for any value of ∆ ≥ 4. In 2007, Yeo [24] strengthened the upper bound r∆ ≤ ∆ with an
ingenious proof that uses the interplay between total domination in graphs and transversals in
hypergraphs. Moreover, Yeo [24] established a non-trivial lower bound on r∆. These results
of Yeo, which we summarize below, are the best known lower and upper bounds (prior to
this paper) on r∆ for every ∆ ≥ 3.

Theorem 10 ([24]) For all ∆ ≥ 3,

0.1 ln(∆)

1− 0.1 ln(∆)
∆

< r∆ ≤ max{3, 2
√
∆}.

As an immediate consequence of Theorem 9, we have the slightly weaker, but simpler,
bound on r∆ given in Theorem 2.

In order to prove Theorem 3 and 4, and completely settle the asymptotics of r∆ and c∆,
we recall a few other important ingredients.

First, we shall need the following upper bound on the domination number of an isolate-free
graph due to Ore [17] in 1962, and the upper bound on the total domination of a connected
graph of order at least 3 due to Cockayne, Dawes, and Hedetniemi [4] in 1980.

Theorem 11 ([17]) If G is an isolate-free graph of order n, then γ(G) ≤ 1
2n.

Theorem 12 ([4]) If G is a connected graph of order n ≥ 3, then γt(G) ≤ 2
3n.

Finally, we recall the following classical bound on the domination number (found, eg. in
Alon and Spencer [2].)
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Theorem 13 ([2]) If G is a graph of order n with minimum degree δ ≥ 2, then

γ(G) ≤
(
1 + ln(δ + 1)

δ + 1

)
n.

While this bound is not an ingredient in our proofs per se, both it and the simple modifi-
cation that

γt(G) ≤
(
1 + ln(δ)

δ

)
n,

are, in a sense, central to both our upper and lower bounds. Indeed, for the upper bound we
prove (cf. Lemma 3 in Section 3) a modification that allows use of the maximum degree ∆
instead of the minimum degree δ, that gains power when G has relatively close to ∆n/2
edges.

The lower bounds for c∆ and r∆ rely on the asymptotic optimality of this bound. It has
long been known – indeed, it is remarked upon in Alon and Spencer [2] – that this bound
is asymptotically optimal as δ → ∞. Thematically it is related to, and even follows from, a
lower bound on the transversal number of uniform hypergraphs established by Alon in [1].
In our case, it is especially important that there are regular graphs for which this is optimal.
While the asymptotic optimality of this bound for random regular graphs is likely known
by some experts in random graphs, it seems less known to experts in domination theory
and does not seem to appear in the literature. For instance Yeo, in [24], used the results
of [1] to construct regular bipartite graphs whose domination number is bounded below,
to establish his lower bound in Theorem 10. His method is unable to obtain the optimal
constant, however, necessitating the improvement in this paper.

3 Upper bounding r∆ and c∆

In this section we prove the following upper bound on r∆.

Theorem 14 For all ∆ ≥ 3,

r∆ ≤ ∆(6 + ln(∆))

∆− ln(∆)− 1
= (1 + o(1)) ln(∆).

A simple observation shows that c∆ ≤ r∆ + 2, and hence we have.

Theorem 15 For all ∆ ≥ 3, we have c∆ ≤ (1 + o(1)) ln(∆).

In order to prove Theorem 14, we first present three preliminary lemmas. We shall need
the following convexity bound.

Lemma 1 For real number a, where 0 < a < 1, and real numbers x and y where x ≥ y,

ax + ay < ax+1 + ay−1.
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Proof. Since 0 < a < 1 and x ≥ y, we note that 1− a > 0 and ax − ay−1 < 0. Hence,

ax + ay − ax+1 − ay−1 = ax(1− a)− ay−1(1− a) = (1− a)(ax − ay−1) < 0,

and so ax + ay < ax+1 + ay−1, as desired. 2

In order to apply Lemma 1 judiciously, we make the following observation.

Lemma 2 If G is a connected graph of order n ≥ 3, size m, and bounded maximum degree
∆(G) ≤ ∆, then

2m = ∆n∆ + n1 + εd∗,

for some nonnegative integers n1, n∆ and d∗ satisfying n = n1 + n∆ + ε and 2 ≤ d∗ ≤ ∆− 1
and where ε ∈ {0, 1}.

Proof. This follows immediately starting with the degree sequence of G, thought of as a list
of integers. So long as there are two numbers both less than ∆ and greater than 1 in the
sequence, increase the larger one by one and decrease the smaller. This process terminates
with the desired sequence. 2

As a remark, we highlight that the resulting sequence (∆, . . . ,∆, d∗, 1, . . . , 1) generated in
the proof of Lemma 2 that contains n∆ ∆’s and n1 1’s, is not necessarily the degree sequence
of G – indeed, it need not even be graphical.

We are now in a position to present our key lemma, which establishes an upper bound on
the total domination of a graph in terms of the maximum degree and size.

Lemma 3 If G is a connected graph of order n ≥ 3, size m, and bounded maximum degree
∆(G) ≤ ∆, then

γt(G) ≤ (n1 + ε) +

(
1 + ln(∆)

∆

)
n∆,

where n1, n∆ and ε are nonnegative integers satisfying the statement of Lemma 2.

Proof. Let G be a connected graph of order n ≥ 3, size m, and bounded maximum degree
∆(G) ≤ ∆ and vertex set V = V (G). Let R be a random subset of vertices of G, where a
vertex is chosen to be in R with probability p and independently of the choice for any other
vertex, where

p =
ln(∆)

∆
.

We note that 0 < p < 1 and 0 < 1− p < 1. Let S be the set of vertices in G that have no
neighbor in R, that is,

S = {v ∈ V : NG(v) ∩R = ∅}.
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For each vertex v ∈ S, let v′ be an arbitrary neighbor of v in G, and let

S′ =
⋃
v∈S

{v′},

and so |S′| ≤ |S|. The set R ∪ S′ is a TD-set of G. The expected value of |R| is

E(|R|) = np = (n1 + n∆ + ε)p.

The random variable |S| can be written as the sum of n indicator random variables Xv(S)
for each v ∈ V , where Xv(S) = 1 if v ∈ S and Xv(S) = 0 otherwise. For each vertex v ∈ V ,
the expected value of Xv(S) is the probability that its neighbors are not in R; that is,

E(Xv(S)) = (1− p)deg(v).

Let G have degree sequence d1, d2 . . . , dn, and so 1 ≤ di ≤ ∆ for all i ∈ [n]. By linearity of
expectation, we have

E(|S|) ≤
∑
v∈V

E(Xv(S)) =

n∑
i=1

(1− p)di .

As observed earlier, 0 ≤ 1− p ≤ 1. As shown in the proof of Lemma 2, we can write

n∑
i=1

di = ∆n∆ + n1 + d∗ε,

where n = n1 + n∆ + ε and 1 ≤ d∗ ≤ ∆− 1 and where ε ∈ {0, 1}. By repeated applications
of Lemma 1, we have

n∑
i=1

(1− p)di ≤ n∆(1− p)∆ + n1(1− p) + ε(1− p)d
∗

≤ n∆(1− p)∆ + n1(1− p) + ε(1− p)

= n∆(1− p)∆ + (n1 + ε)(1− p).

Using the inequality 1 − x ≤ e−x for x ∈ R, we therefore have by linearity of expectation
that

E(|R ∪ S′|) = E(|R|) + E(|S′|)
≤ E(|R|) + E(|S|)
≤ (n1 + n∆ + ε)p+ (n1 + ε)(1− p) + n∆(1− p)∆

= (n1 + ε) + n∆p+ n∆(1− p)∆

≤ (n1 + ε) + n∆p+ n∆e
−p∆

= (n1 + ε) +
n∆ ln(∆)

∆
+

n∆

∆

= (n1 + ε) +

(
1 + ln(∆)

∆

)
n∆.
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Since expectation is an average value, there is a set R and an associated set S′ such that
R ∪ S′ is a TD-set in G and

|R|+ |S′| ≤ (n1 + ε) +

(
1 + ln(∆)

∆

)
n∆.

Since γt(G) ≤ |R|+ |S′|, this completes the proof of Lemma 3. 2

We are now in a position to present a proof of our first main result, namely Theorem 14.
Recall its statement.

Theorem 14 For all ∆ ≥ 3,

r∆ ≤ ∆(6 + ln(∆))

∆− ln(∆)− 1
= (1 + o(1)) ln(∆).

Proof of Theorem 14. Let G be a connected graph of order n ≥ 3, size m, and bounded
maximum degree ∆(G) ≤ ∆ where ∆ ≥ 3 is fixed, and let γt(G) = γt. By Lemma 2,
2m = ∆n∆+n1+εd∗ for some nonnegative integers n1, n∆ and d∗ satisfying n = n1+n∆+ε
and 2 ≤ d∗ ≤ ∆−1 and where ε ∈ {0, 1}. We note that n1 = n−n∆− ε ≤ n−n∆. Moreover
since d∗ < ∆ and ε ∈ {0, 1}, we can write 2m = ∆n∆ + n1 + εd∗ ≤ ∆(n∆ + ϵ) + n1. This
yields the following claim.

Claim 1 The following inequalities hold.

(a) 2m ≤ ∆(n∆ + ϵ) + n1, where n = n1 + n∆ + ε and ε ∈ {0, 1}.
(b) n1 ≤ n− n∆.

We first consider the case when n∆ is relatively large with respect to the order n. In what
follows, let

Φ(∆) =
∆(6 + ln(∆))

∆− ln(∆)− 1
.

Claim 2 If n∆ ≥ 1
3n, then 2m ≤ (∆ + Φ(∆))(n− γt) holds.

Proof. Suppose that n∆ ≥ 1
3n. By Claim 1(a), 2m ≤ ∆(n∆+ ϵ)+n1, where n = n1+n∆+ε

and ε ∈ {0, 1}. Hence in this case when n∆ ≥ 1
3n, we note that ∆ε ≤ ∆ ≤ n ≤ 3n∆.

Moreover by Claim 1(b), this case yields n1 ≤ n− n∆ ≤ 2n∆. By Lemma 3, we have

(∆ + Φ(∆))(n− γt) ≥ (∆ + Φ(∆))
(
n− (n1 + ε)−

(
1+ln(∆)

∆

)
n∆

)
= (∆+ Φ(∆))

(
n∆ −

(
1+ln(∆)

∆

)
n∆

)
= ∆n∆ +Φ(∆)n∆ − (1 + ln(∆))n∆ −

(
1+ln(∆)

∆

)
Φ(∆)n∆.

Therefore the following holds.
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2m ≤ (∆ + Φ(∆))(n− γt)
⇑

∆(n∆ + ϵ) + n1 ≤ ∆n∆ +Φ(∆)n∆ − (1 + ln(∆))n∆ −
(
1 + ln(∆)

∆

)
Φ(∆)n∆

⇕

∆ε+ n1 + (1 + ln(∆))n∆ ≤
(
∆− 1− ln(∆)

∆

)
Φ(∆)n∆

⇑

3n∆ + 2n∆ + (1 + ln(∆))n∆ ≤
(
∆− 1− ln(∆)

∆

)
Φ(∆)n∆

⇕

5 + (1 + ln(∆)) ≤
(
∆− 1− ln(∆)

∆

)
Φ(∆)

⇕
∆(6 + ln(∆))

∆− ln(∆)− 1
≤ Φ(∆).

Hence the inequality 2m ≤ (∆+Φ(∆))(n−γt) holds since by definition Φ(∆) = ∆(6+ln(∆))
∆−ln(∆)−1 .

This completes the proof of Claim 2. (2)

Next we consider the case when n∆ is relatively small with respect to the order n.

Claim 3 If n∆ ≤ 1
3n, then 2m ≤ (∆ + Φ(∆))(n− γt) holds.

Proof. Suppose that n∆ ≤ 1
3n. By Theorem 12, we have γt ≤ 2

3n, and so n− γt ≥ 1
3n. Thus

in this case

(∆ + Φ(∆))(n− γt) ≥
1

3
∆n+

1

3
Φ(∆)n.

By Claim 1(a), 2m ≤ ∆(n∆+ϵ)+n1, where n = n1+n∆+ε and ε ∈ {0, 1}. By supposition,
n∆ ≤ 1

3n. Since ε ≤ 1, we note that ∆ε ≤ ∆. Moreover, trivially n1 ≤ n and ∆ ≤ n. These
observations imply that 2m ≤ ∆(n∆ + ϵ) + n1 ≤ 1

3∆n +∆ + n ≤ 1
3∆n + 2n. Note that for

∆ ≥ 2, we have Φ(∆) > 6+ ln(∆) > 6, and so 1
3Φ(∆)n > 2n. Combining these, we have that

(∆ + Φ(∆))(n− γt) ≥
1

3
∆n+

1

3
Φ(∆)n ≥ 1

3
∆n+ 2n ≥ 2m,

as desired. (2)

By Claim 2 and Claim 3, the inequality 2m ≤ (∆ + Φ(∆))(n − γt) holds, implying that
r∆ ≤ Φ(∆). This completes the proof of Theorem 14. 2

Finally, we observe that our upper bound for r∆ immediately implies a similar upper bound
for c∆.

Lemma 4 For all ∆ ≥ 3, c∆ ≤ r∆ + 2.
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Proof. Let G be a connected graph of order n ≥ 3, size m, and bounded maximum degree
∆(G) ≤ ∆ where ∆ ≥ 3 is fixed. Let γ(G) = γ and γt(G) = γt. By Ore’s Theorem 11, we
have γ ≤ 1

2n, and so γ ≤ n− γ. By definition, γ ≤ γt. By definition of r∆, we therefore have

2m ≤ (∆ + r∆)(n− γt)

≤ (∆ + r∆)(n− γ)

= (∆ + r∆ + 2− 2)(n− γ)

= (∆ + r∆ + 2)(n− γ)− 2(n− γ)

≤ (∆ + r∆ + 2)(n− γ)− 2γ

= (∆+ r∆ + 2)n− (∆ + r∆ + 4)γ.

Hence we have shown that

m ≤
(
∆+ r∆ + 2

2

)
n−

(
∆+ r∆ + 4

2

)
γ,

implying that c∆ ≤ r∆ + 2. 2

4 Lower bounding r∆ and c∆

In this section, we prove lower bounds for r∆ and c∆. Combining this with the upper bounds
obtained in Theorem 14 and Lemma 4, respectively, completes the proof of Theorems 3 and 4.

The key to the lower bounds is a lower bound for the domination number of random regular
graphs. As commented above, this bound is similar to known bounds, but we could not find
the version we need in the literature.

Theorem 16 There exists a positive integer ∆0 so that the following holds: Let ∆0 be a
positive integer, and let ∆ ≥ ∆0 and let

ϵ =
4 ln(ln(∆))

ln(∆)
.

If G is a uniformly random ∆-regular graph of order n, then

lim
n→∞
n even

Pr

(
γ(G) <

⌊
(1− ϵ)

ln(∆)

∆
n

⌋)
= 0.

Proof. While uniformly sampling ∆-regular graphs can be challenging, a number of simple
models of random ∆-regular graphs are known to be contiguous to the uniform model, that
is, events which hold with probability tending to 0 or 1 (as n → ∞) in one do the same in the
other. For fixed ∆ on an even number of vertices, one of these models (see Jansen [16], and
also Bollobás [3] and Wormald [23]) is to take the union of ∆ independent perfect matchings
and it is this which we use. Thus it suffices to prove the following claim.
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Claim 4 If G is a random graph of order n that is the union of ∆ independently random
chosen perfect matchings, then

γ(G) ≥
⌊
(1− ϵ)

ln(∆)

∆
n

⌋
with probability tending to 1.

Proof. Let M1,M2, . . . ,M∆ be uniformly chosen perfect matchings on vertex set V (G) =
{v1, v2, . . . , vn} for some even n. Fix a set X ⊆ V (G) of size

t =

⌊
(1− ϵ)

ln(∆)

∆
n

⌋
− 1.

We estimate the probability that X is a dominating set. Let Di denote the event that
vertex vi is dominated by X. For a given matching Mj ,

Pr(vi’s neighbor in Mj is not in X) =
(n− 1)− t

n
.

Since G is the union of ∆ independent matchings, we infer that

Pr(Di) = 1−
(
(n− 1)− t

n

)∆

if vi ̸∈ X.

Furthermore the events Di are negatively correlated; and in particular,

Pr(Di |
⋂
j<i

Dj) ≤ Pr(Di).

This follows simply as if vertices v1, . . . , vi−1 are already known to be dominated by X,
there are fewer potential matching edges available to dominate vi. All this implies that the
probability that X is a dominating set is bounded by
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Pr

(
n⋂
i

Di

)
=

∏
i:vi ̸∈X

Pr

Di

∣∣ ⋂
j<i

Dj


≤

(
1−

(
1− t+ 1

n

)∆
)n−t

≤

(
1−

(
1− (1− ϵ)

ln(∆)

∆

)∆
)n−t

≤

(
1− exp

(
−(1− ϵ) ln(∆)

1− (1− ϵ) ln(∆)
∆

))n−t

(1)

≤ exp

(
−
(
∆

− (1−ϵ)
1−(1−ϵ) ln(∆)/∆

)
(n− t)

)
(2)

≤ exp

(
−∆ϵ−O(

ln(∆)
∆

)

∆
(n− t)

)
(3)

≤ exp

−∆
3
ln(ln(∆))
ln(∆)

∆
(n− t)

 (4)

= exp

(
−(ln(∆))3

∆
(n− t)

)
.

Here in the third inequality, namely Inequality (1), we use the real number inequality

1− x ≥ e−
x

1−x

which is valid for 0 < x < 1. In the fourth inequality, namely Inequality (2), we use the real
number inequality 1 + x ≤ ex which is valid for all real x, where in our case we take

x =
−(1− ϵ)

1− (1− ϵ)
(
ln(∆)
∆

) ,
and so (

1− ex ln(∆)
)n

= (1−∆x)n ≤
(
e−∆x)n

= e−(∆x)n.

In the second to last inequality, namely Inequality (3), we expand the geometric series

1

1− (1− ϵ)
(
ln(∆)
∆

) = 1 +O

(
ln(∆)

∆

)
.

Finally, in the last inequality, namely Inequality (4), we use the fact that for ∆ sufficiently
large we can infer that the term

O

(
ln(∆)

∆

)
≤ ln(ln(∆))

ln(∆)
,
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and so, by our choice of ϵ = 4 ln(ln(∆))
ln(∆) this yields

ϵ−O

(
ln(∆)

∆

)
≥ 4 ln(ln(∆))

ln(∆)
− ln(ln(∆))

ln(∆)
=

3 ln(ln(∆))

ln(∆)
.

Using the entropy bound (see, eg. [8]),(
n

αn

)
≤
∑
i≤αn

(
n

i

)
≤ exp

(
n

(
α ln

(
1

α

)
+ (1− α) ln

(
1

1− α

)))
,

which is valid for α < 1
2 , the expected number of dominating sets of size t, then, is bounded

above by (
n

t

)
exp

(
−(ln(∆))3

∆
(n− t)

)
≤ exp (n×Ψ(∆)) , (5)

where

Ψ(∆) =
ln(∆)

∆
ln

(
∆

ln(∆)

)
+

(
∆− ln(∆)

∆

)
ln

(
∆

∆− ln(∆)

)
+

(ln∆)3

∆
· t
n
− (ln∆)3

∆
. (6)

Now, note that
ln(∆)

∆
ln

(
∆

ln(∆)

)
≤ (ln(∆))2

∆
.

Likewise,

ln

(
∆

∆− ln(∆)

)
= ln

(
1 +

ln(∆)

∆− ln(∆)

)
≤ ln(∆)

∆− ln(∆)
,

so that (
∆− ln(∆)

∆

)
ln

(
∆

∆− ln(∆)

)
≤ ln(∆)

∆
.

Finally note
(ln∆)3

∆
· t
n
≤ (ln∆)4

∆2
.

The above inequalities yields the following upper bound on Ψ(∆), as introduced in (6),

Ψ(∆) ≤ (ln(∆))2

∆
+

ln(∆)

∆
+

(ln(∆))4

∆2
− (ln∆)3

∆
. (7)

Therefore, by Inequality (5), we infer that for ∆ sufficiently large the expected number of
dominating sets of size t is bounded above by

exp

(
n

(
(ln(∆))2

∆
+

ln(∆)

∆
+

(ln(∆))4

∆2
− (ln∆)3

∆

))
. (8)

For ∆ sufficiently large, the exponent in (8) is negative, implying that the expected number
of dominating sets of size t tends to 0 as n goes to infinity. As this expectation is an upper
bound for the probability that there is a dominating set of size t, this implies that

Pr (γ(G) ≤ t) → 0

14



as n → ∞. Hence, asymptotically almost surely we have

γ(G) > t,

which completes the proof of Claim 4, and therefore of Theorem 16. 2

Remark: The fact that Theorem 16 compares the domination number of a random regular
number to ln∆

∆ as opposed to ln(∆+1)
∆+1 may seem surprising in light of the probabilistic upper

bound; this is explained as ∣∣∣∣ ln(∆)

∆
− ln(∆ + 1)

∆ + 1

∣∣∣∣ = O

(
ln(∆)

∆2

)
,

so that the difference is absorbed into the error term, and we have expressed a preference for
the cleaner statement.

From here, we finally establish the lower bounds for c∆ and r∆.

Lemma 5

r∆ ≥ (1− o(1)) ln(∆) and

c∆ ≥ (1− o(1)) ln(∆).

Proof. We prove the result for c∆. The result for r∆ follows identically, noting that γt(G) ≥
γ(G) for every graph G. Computationally, the bound for r∆ is technically slightly simpler

because of the missing ‘+2’ in the definition. For ∆ sufficiently large and for ϵ = 4 ln(ln(∆))
ln(∆) ,

per Theorem 16 there exist ∆-regular graphs G of arbitrarily large order n, with

γ = γ(G) ≥ (1− ϵ)
ln∆

∆
n− 1 = (1− o(1))

ln∆

∆
n.

By the definition of c∆,

2m = ∆n ≤ (∆ + c∆)n− (∆ + c∆ + 2)γ.

≤ ∆n+ c∆n− (∆γ + c∆γ + 2γ) .

Solving for c∆ yields

c∆ ≥ ∆γ + 2γ

n− γ
.

Now, observing that ∆γ = (1− o(1)) ln(∆)n, while n− γ = (1− o(1))n and 2γ = o(n) as
∆ → ∞ finishes the result. 2
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5 Future Work

While we completely settled the asymptotics for these types of linear Vizing-like relations
for the domination number and total domination number in this paper, some interesting
questions remain. Perhaps the most interesting is the following: for other natural domination

parameters γ′, do there exist constants cγ
′

∆ , independent of n, so that

2m ≤ (∆ + cγ
′

∆)(n− γ′)

for all n vertex graphs of size m, and if so what are the asymptotics? We note that in some
cases, e.g. for connected versions of domination, the parameter need not be defined at all.
For domination parameters which are more restrictive than the standard domination number

and total domination number, one expects that cγ
′

∆ may be much larger than logarithmic.
For instance, taking γ′ = i where i = i(G) denotes the independent domination number of
G (which is the minimum cardinality of a dominating set in G that is also independent), the
example of G = K∆,∆ of order n and i(G) = n

2 shows that in this case ci∆ ≥ ∆.

More interesting, perhaps, are domination parameters that are weaker than standard dom-
ination; that is parameters so that γ′ ≤ γ. It was initially speculated that r∆ and c∆ might
be bounded (perhaps even by 3) before logarithmic lower bounds were established by Yeo.

Are there natural domination parameters where cγ
′

∆ is bounded?

One candidate is the distance 2-domination number, γ2(G), which is the domination num-
ber of the square of G. This is particularly interesting because the probabilistic upper bound
(and likewise any natural analogue of Lemma 3) does not improve much for general graphs
as the degrees in G2 need not differ significantly from degrees in G. On the other hand,
random-like graphs, as prove the sharpness of the upper bound for the standard domina-
tion number, expand locally in such a way that they do not provide sharpness examples for
distance 2-domination. For a ∆-regular random graph, the degrees in G2 are close to ∆2

and hence the distance 2-domination number is O
( ln(∆)

∆2

)
n which yields no non-trivial lower

bound on cγ2∆ . Thus we end with the following open question that we have yet to settle.

Question 1 Is it true that if γ2(G) denotes the distance 2-domination number of G, then

cγ2∆ = O(1)?
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