
Algorithmica (2022) 84:124–149
https://doi.org/10.1007/s00453-021-00886-9

Approximating Dynamic Weighted Vertex Cover with Soft
Capacities

Hao-Ting Wei1 ·Wing-Kai Hon2 · Paul Horn3 · Chung-Shou Liao1 ·
Kunihiko Sadakane4

Received: 10 November 2020 / Accepted: 10 October 2021 / Published online: 16 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
This study considers the soft capacitated vertex cover problem in a dynamic setting.
This problem generalizes the dynamic model of the vertex cover problem, which
has been intensively studied in recent years. Given a dynamically changing vertex-
weighted graph G = (V , E), which allows edge insertions and edge deletions, the
goal is to design a data structure that maintains an approximate minimum vertex cover
while satisfying the capacity constraint of each vertex. That is, when picking a copy
of a vertex v in the cover, the number of v’s incident edges covered by the copy
is up to a given capacity of v. We extend Bhattacharya et al.’s work [SODA’15 and
ICALP’15] to obtain a deterministic primal-dual algorithm formaintaining a constant-
factor approximate minimum capacitated vertex cover with O(log n/ε) amortized

This work was partially supported by NSA Young Investigator Grant H98230-15-1-0258, Simons
Collaboration Grant #525039, and MOST Taiwan Grants 105-2628-E-007-010-MY3 and
109-2634-F-007-018.

B Chung-Shou Liao
csliao@ie.nthu.edu.tw

Hao-Ting Wei
s104034526@m104.nthu.edu.tw

Wing-Kai Hon
wkhon@cs.nthu.edu.tw

Paul Horn
paul.horn@du.edu

Kunihiko Sadakane
sada@mist.i.u-tokyo.ac.jp

1 Department of Industrial Engineering and Engineering Management, National Tsing Hua
University, Hsinchu 30013, Taiwan

2 Department of Computer Science, National Tsing Hua University, Hsinchu 30013, Taiwan

3 Department of Mathematics, University of Denver, Denver, USA

4 Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00886-9&domain=pdf

Algorithmica (2022) 84:124–149 125

update time, where n is the number of vertices in the graph. The algorithm can be
extended to (1) a more general model in which each edge is associated with a non-
uniform and unsplittable demand, and (2) the more general capacitated set cover
problem.

Keywords Dynamic algorithm · Vertex cover · Approximation algorithm

1 Introduction

Dynamic algorithms have received fast-growing attention in the past decades, espe-
cially for some classical combinatorial optimization problems such as connectivity
[1,10,13,15], routing [2,8,21,22], vertex cover and maximum matching [3–6,16–20].
This paper focuses on the fully dynamicmodel for the vertex cover problem, which has
been intensively studied in recent years. Given a vertex-weighted graph G = (V , E),
here we called the weight on each vertex as cost to avoid abusing this term in the fol-
lowing section. Such a graph is constantly updated due to a sequence of edge insertions
and edge deletions, where the objective is tomaintain a subset of vertices S ⊆ V at any
given time, such that every edge is incident to at least one vertex in S and the total cost
of S is minimized. We consider a generalization of the problem, where each vertex is
associated with a given capacity. When picking a copy of a vertex v in the multiset
S, the number of its incident edges that can be covered by such a copy is bounded by
v’s given capacity. The objective is to find a soft capacitated weighted vertex cover S
with minimum cost, i.e.

∑
v∈S cvxv is minimized, as well as an assignment of edges

such that the number of edges assigned to a vertex v in S is at most kvxv , where cv

is the cost of v, kv is the capacity of v, and xv is the number of selected copies of
v in S. Assume there is no bound on xv . The static model of this generalization is
the so-called soft capacitated vertex cover problem, introduced by Guha et al. [11],
whereas if each xv is associated with a bound, it is called the hard capacitated vertex
cover problem, introduced by Chuzhoy and Naor [9].
Prior work For the vertex cover problem in a dynamic setting, Ivkovic and Lloyd [14]
presented the pioneering work wherein their fully dynamic algorithm maintains a 2-
approximation factor to vertex cover with O((n+m)0.7072) update time, where n is the
number of vertices and m is the number of edges. Onak and Rubinfeld [17] designed
a randomized data structure that maintains a large constant approximation ratio with
O(log2 n) amortized update time in expectation; this is the first result that achieves a
constant approximation factor with polylogarithmic update time. Baswana et al. [3]
designed another randomized data structurewhich improves the approximation ratio to
two, and simultaneously improved the amortized update time to O(log n). Recently,
Solomon [20] gave the currently best randomized algorithm, which maintains a 2-
approximate vertex cover with O(1) amortized update time.

For deterministic data structures, Onak and Rubinfeld [17] presented a data struc-
ture that maintains an O(log n)-approximation algorithm with O(log2 n) amortized
update time. Bhattacharya et al. [6] proposed the first deterministic data structure that
maintains a constant ratio, precisely, a (2 + ε)-approximation to vertex cover with
polylogarithmic O(log n/ε2) amortized updated time. Existing work also considered

123

126 Algorithmica (2022) 84:124–149

the worst-case update time. Neiman and Solomon [16] provided a 2-approximation
dynamic algorithm with O(

√
m) worst-case update time. Peleg and Solomon [18]

improved the worst-case update time to O(γ /ε2), where γ is the arboricity of the input
graph.Very recently, Bhattacharya et al. [4] extended their hierarchical data structure to
achieve the currently best worst-case update time of O(poly(1/ε) · log3 n)1. Note that
the above studies only discussed the unweighted vertex cover problem, the objective
of which is to find a vertex cover with minimum cardinality.

Consider the dynamic (weighted) set cover problem. In the statics setting, given
a universe U of n elements and a family F of m sets. Each set is associated with
non-negative costs. The objective is to find a subfamily of sets S ∈ F of minimum
cost that covers U . The dynamic set cover problem follows a sequence of element
insertions and deletions, the objective is to maintain a subfamily of sets S ∈ F at any
given time, such that the union of S covers the elements that we seen so far.

Bhattacharya et al. [7] used a hierarchical data structure similar to that reported in
[6], and and presented an algorithmwith O(f 2)-approximation ratio and O(f log(n+
m)) amortized updated time, where f is the maximum frequency of an element. Very
recently, Gupta et al. [12] improved the amortized update time to O(f 2), albeit the
dynamic algorithm achieves a higher approximation ratio of O(f 3). They also offered
another O(log n)-approximation dynamic algorithm in O(f log n) amortized update
time. Bhattacharya et al. [5] simultaneously derived the same outcome with O(f 3)-
approximation ratio and O(f 2) amortized update time for the unweighted set cover
problem. Table 1 presents a summary of the above results.
OurContribution In this studywe investigate the soft capacitated vertex cover problem
in the dynamic setting, where there is no bound on the number of copies of each
vertex that can be selected. We refer to the primal-dual technique reported in [11],
and present the first deterministic algorithm for this problem, which can maintain
an O(1)-approximate minimum capacitated (weighted) vertex cover with O(log n/ε)

amortized update time. The algorithm can be extended to a more general model in
which each edge is associated with a given demand, and the demand has to be assigned
to an incident vertex. That is, the demand of each edge is non-uniform and unsplittable.
Also, it can be extended to solve themore general capacitated set cover problem,where
the input graph is a hyper-graph, and each edge may connect to multiple vertices.

The proposed dynamic mechanism builds on Bhattacharya et al.’s (α, β)-partition
structure [6,7], but a careful adaptation has to be made to cope with the newly
introduced capacity constraint. In dynamic vertex cover [6], the authors considered
dynamically maintaining the dual problem of the relaxed vertex cover, that is, the
fractional matching problem. They partitioned all of the vertices into different levels
and designed a weight function for the fractional matching problem.

Briefly, applying the fractional matching technique in Bhattacharya et al.’s algo-
rithm cannot directly lead to a constant approximation ratio in the capacitated vertex
cover problem. The crux of our result is the re-design of a key parameter, weight
function of a vertex, in the dual model. Details are shown in the next section.

1 We thank the original author of [4] for clarifying the dependency of ε in the update time.

123

Algorithmica (2022) 84:124–149 127

Ta
bl
e
1

Su
m
m
ar
y
of

re
su
lts

fo
ru

nw
ei
gh
te
d
(r
es
p.
w
ei
gh
te
d)

m
in
im

um
ve
rt
ex

co
ve
r(
U
M
V
C
(r
es
p.
W
M
V
C
))
,u
nw

ei
gh
te
d
(r
es
p.
w
ei
gh
te
d)

m
in
im

um
se
tc
ov
er
(U

M
SC

(r
es
p.

W
M
SC

))
,w

he
re

f
is
th
e
m
ax
im

um
fr
eq
ue
nc
y
of

an
el
em

en
t,
an
d
w
ei
gh
te
d
m
in
im

um
ca
pa
ci
ta
te
d
ve
rt
ex

(r
es
p.

se
t)
co
ve
r
(W

M
C
V
C
(r
es
p.

W
M
C
SC

))

Pr
ob

le
m

A
pp

ro
x.

U
pd

at
e
tim

e
D
at
a

R
ef
er
en
ce
s

G
ua
ra
nt
ee

St
ru
ct
ur
e

U
M
V
C

O
(1

)
O

(l
og

2
n)

am
or
tiz
ed

R
an
do
m
iz
ed

ST
O
C
’1
0
[1
7]

U
M
V
C

2
O

(l
og

n)
am

or
tiz
ed

R
an
do
m
iz
ed

SI
C
O
M
P’
15

[3
]

U
M
V
C

2
O

(1
)
am

or
tiz

ed
R
an
do

m
iz
ed

FO
C
S’
16

[2
0]

U
M
V
C

2
O

(√ m
)
w
or
st
-c
as
e

D
et
er
m
in
is
tic

TA
L
G
’1
6
[1
6]

U
M
V
C

2
+

ε
O

(l
og

n/
ε
2
)
am

or
tiz
ed

D
et
er
m
in
is
tic

SO
D
A
’1
5
[6
]

U
M
V
C

2
+

ε
O

(γ
/
ε
2
)
w
or
st
-c
as
e

D
et
er
m
in
is
tic

SO
D
A
’1
6
[1
8]

U
M
V
C

2
+

ε
O

(
po

ly
(1

/
ε
)
·lo

g3
n)

w
or
st
-c
as
e

D
et
er
m
in
is
tic

SO
D
A
’1
7
[4
]

U
M
SC

O
(
f3

)
O

(
f2

)
am

or
tiz
ed

D
et
er
m
in
is
tic

IP
C
O
’1
7
[5
]

W
M
SC

O
(
f2

)
O

(
f
lo
g(
n

+
m

))
am

or
tiz
ed

D
et
er
m
in
is
tic

IC
A
L
P’
15

[7
]

W
M
SC

O
(
f3

)
O

(
f2

)
am

or
tiz
ed

D
et
er
m
in
is
tic

ST
O
C
’1
7
[1
2]

O
(l
og

n)
O

(
f
lo
g
n)

am
or
tiz
ed

W
M
C
V
C

O
(1

)
O

(l
og

n/
ε
)
am

or
tiz
ed

D
et
er
m
in
is
tic

T
hi
s
pa
pe
r

W
M
C
SC

O
(
f2

)
O

(
f
lo
g(
n

+
m

))
am

or
tiz
ed

D
et
er
m
in
is
tic

T
hi
s
pa
pe
r

123

128 Algorithmica (2022) 84:124–149

1.1 Overview of Our Technique

First, we recall the mathematical model of the capacitated vertex cover problemwhich
was first introduced by Guha et al. [11]. In this model, yev serves as a binary variable
that indicates whether an edge e is covered by a vertex v. Let Nv be the set of incident
edges of v, kv and cv be the capacity and the cost of a vertex v, respectively. Let xv

be the number of selected copies of a vertex v. An integer program (IP) model of the
problem can be formulated as follows (the minimization program on the left):

Min
∑

v cv xv

s.t yev + yeu ≥ 1, ∀e = (u, v) ∈ E
kv xv − ∑

e∈Nv
yev ≥ 0, ∀v ∈ V

xv ≥ yev, ∀v ∈ e, ∀e ∈ E
yev ∈ {0, 1}, ∀v ∈ e, ∀e ∈ E
xv ∈ N, ∀v ∈ V

Max
∑

e∈E πe

s.t kvqv + ∑
e∈Nv

lev ≤ cv, ∀v ∈ V
qv + lev ≥ πe, ∀v ∈ e, ∀e ∈ E
qv ≥ 0, ∀v ∈ V
lev ≥ 0, ∀v ∈ e, ∀e ∈ E
πe ≥ 0, ∀e ∈ E

If we allow a relaxation of the above primal form, i.e., dropping the integrality
constraints, its dual problem yields a maximization problem. The linear program for
the dual can be formulated as shown in the above (the maximization program on the
right; also see [11]). One may consider this as a variant of the packing problem, where
we want to pack a value of πe for each edge e, so that the sum of the packed values is
maximized. Packing of e is limited by the sum of qv and lev , where qv is the global
ability of a vertex v emitted to v’s incident edges, and lev is the local ability of v

distributed to its incident edge e.
In this study, we incorporate the above IP model with its LP relaxation for capaci-

tated vertex cover into the dynamic mechanism proposed Bhattacharya et al.’s [6,7].
They devised the weight function of a vertex (in the dual model). Based on the weight
function, we can select a subset of vertices that obtains a feasible vertex cover. They
also allowed a flexible range for weight function to quickly adjust the solution for
dynamic updates while preserving its approximation quality. Due to the additional
capacity constraint in our problem, a new weight function is obviously required.
Technical Challenges There are two major differences between our algorithm and
Bhattacharya et al.’s [6,7]. First, the capacity constraint in the primal problem leads
to the two variables qv and lev in the dual problem in which we have to balance
their values when approaching cv to maximize the dual objective. By contrast, the
previous work considered one dual variable lev without the restriction on the coverage
of a vertex. We thus re-design weight function of a vertex to specifically consider the
capacitated scenario. Yet, even with the new definition of weight function, there is
still a second challenge on how to approximate the solution within a constant factor
in the dynamic environment. In order to achieve polylogarithmic amortized update
time, Bhattacharya et al.’s fractional matching approach assigns the value of all v’s
incident edges to v, which, however, may result in a non-constant h, hidden in the
approximation ratio, where h is the largest number of copies selected in the cover.
We observe that we cannot remove h from the approximation guarantee based on the
(α, β)-partition structure if we just select the minimum value of α, as it is done in
(Bhattacharya et al. [6,7]). The key insight is that we show a bound on the value of α,

123

Algorithmica (2022) 84:124–149 129

which restricts the updates of the dynamic mechanism. With the help of this insight,
we are able to revise the setting of α to derive a constant approximation ratio, while
maintaining the O(log n/ε) update time.

2 Level Scheme and Its Key Property

The core of Bhattacharya et al.’s (α, β)-partition structure [6,7]) is a level scheme
[17] that is used to maintain a feasible solution in their dual problem. In this section,
we demonstrate (in a different way from the original papers) how this scheme can be
applied to our dual problem, and describe the key property that the scheme guarantees.

A level scheme is an assignment � : V → {0, 1, . . . , L} such that every vertex
v ∈ V has a level �(v). Let cmin and cmax denote the minimum and maximum costs of
a vertex, respectively. For our case, we set L = 	logβ(nμα/cmin)
 for some α, β > 1
and μ > cmax. Based on �, each edge (u, v) is also associated with a level �(u, v),
where �(u, v) = max{�(u), �(v)}. An edge is assigned to the higher-level endpoint,
and ties are broken arbitrarily if both endpoints have the same level. Conceptually,
based on the level status of the vertices, the level scheme transforms an undirected
graph into a directed structure. Each edge (u, v) has a weight w(u, v) according to
its level, such that w(u, v) = μβ−�(u,v). Each vertex v also has a weight Wv , which
is defined based on the incident edges of v and their corresponding levels. Before
giving details on Wv , we first define some notations. Let Nv = {u | (u, v) ∈ E}
be the set of vertices adjacent to v (i.e., the neighbors of v). Let Nv(i) denote the
set of level-i neighbors of v, and Nv(i, j) denote the set of v’s neighbors whose
levels are in the range [i, j]. That is, Nv(i) = {u | (u, v) ∈ E ∧ �(u) = i} and
Nv(i, j) = {u | (u, v) ∈ E ∧ �(u) ∈ [i, j]}. The degree of a vertex v is denoted by
Dv = |Nv|. Similarly, we define Dv(i) = |Nv(i)| and Dv(i, j) = |Nv(i, j)|. Finally,
we use δ(v) to denote the set of edges assigned to a vertex v. Now, the weight Wv of
a vertex v is defined as follows:

• Case 1 Dv(0, �(v)) > kv:

Wv = kvμβ−�(v) +
∑

i>�(v)

min{kv, Dv(i)}μβ−i

• Case 2 Dv(0, �(v)) ≤ kv:

Wv = Dv(0, �(v))μβ−�(v) +
∑

i>�(v)

min{kv, Dv(i)}μβ−i

The intuition behind this weight function refers to the primal-dual algorithm proposed
by Guha et al. [11], where by the capacity constraint, in each iteration, a vertex can
increase its dual value by atmost kv edges, nomatter howmany incident edges it has.By
a similar idea,we considerwhether the number of level-i neighbors of v, 0 ≤ i ≤ �(v),
is larger than the capacity of v, and use it to define theweight of a vertex v. Note that the
total weight of the edges that are assigned to v or incident to v can contribute at most

123

130 Algorithmica (2022) 84:124–149

kvw(u, v) to Wv , which is different from the [6,7]. (In Bhattacharya et al. [6,7], since
they do not need to consider the capacity constraint, the weight of a vertex is simply the
sumof theweights of all its incident edges; that is,Wv = ∑

u∈N (v) w(u, v).)Moreover,
our proposed weight function provides a relationship between the weights of different
levels, which plays an essential role when we consider the dynamic setting. Briefly,
the weight of a vertex has two components: one that is dependent on the incident
edges with level �(v), and the other that is dependent on the remaining incident edges.
For convenience, we call the former component Internalv and the latter component as
Externalv . Moreover, we have:

Externalv ≤ kv

∑

i>�(v)

μβ−i ≤ (1/(β − 1))kvμβ−�(v).

In general, an arbitrary level scheme cannot be used to solve our problem. What we
need is a valid level scheme, which is defined as follows.

Definition 1 A level scheme is valid if Wv ≤ cv , for every vertex v.

Lemma 1 Let V0 denote the set of level-0 vertices in a valid level scheme. Then, V \V0
forms a vertex cover of G.

Proof Consider any edge (u, v) ∈ E . We claim that at least one of its endpoints must
be in V \ V0. Suppose that the claim is false which implies that �(u) = �(v) = 0 and
w(u, v) = μ > cmax. Since w(u, v) appears in Internalv , we have Wv ≥ w(u, v).
As a result, cv ≥ Wv ≥ μ > cmax, which leads to a contradiction. The claim thus
follows, and so does the lemma.

�
The above lemma implies that no edge is assigned to any level-0 vertex. In our

mechanism, we will maintain a valid level scheme, based on which each vertex in
V \ V0 picks enough copies to cover all the edges assigned to it; this forms a valid
capacitated vertex cover.

Next, we define the notion of tightness, which is used to measure how good a valid
level scheme performs.

Definition 2 A valid level scheme with an associated edge assignment is ε-tight if for
every vertex v with |δ(v)| > 0, Wv ∈ (cv/ε, cv].
Lemma 2 Given an ε-tight valid level scheme, we can obtain an ε(2(β/(β −1))+1)-
approximate solution to the weighted minimum capacitated vertex cover (WMCVC)
problem.

Proof First, we fix an arbitrary edge assignment that is consistent with the given valid
level scheme. For each vertex v with |δ(v)| > 0, we pick 	|δ(v)|/kv
 copies to cover
all the |δ(v)| edges assigned to it. To analyze the total cost of this capacitated vertex
cover, we relate it to the value

∑
e πe of a certain feasible solution of the dual problem,

whose corresponding values of qv and lev are as follows:

For every vertex v:

123

Algorithmica (2022) 84:124–149 131

• if 	|δ(v)|/kv
 > 1: qv = μβ−�(v), and lev = 0;
• if 	|δ(v)|/kv
 ≤ 1: qv = μ

∑
i |Dv(i)>kv

β−i ,

lev = 0 if Dv(�(e)) > kv , and lev = μβ−�(e) otherwise.
For every edge e: πe = μβ−�(e).

It is easy to verify that the above choices of qv , lev , and πe give a feasible solution to
the dual problem.

For the total cost of our solution, we separate the analysis into two parts, based on
the multiplicity of the vertex:

• Case 1 	|δ(v)|/kv
 > 1: In this case, the external component of Wv is at most
1/(β − 1) of the internal component, so Wv ≤ (β/(β − 1))kvqv . Then, the cost
of all copies of v is:

	|δ(v)|/kv
 · cv ≤ 	|δ(v)|/kv
 · ε · Wv

≤ 2 · |δ(v)|
kv

· ε · (β/(β − 1))kvqv = 2ε(β/(β − 1)) ·
∑

e∈δ(v)

πe.

• Case 2 	|δ(v)|/kv
 = 1: In this case, we pick one copy of vertex v, whose cost is:

cv ≤ ε · Wv ≤ ε ·
∑

e∼v

πe = ε ·
⎛

⎝
∑

e∈δ(v)

πe +
∑

e/∈δ(v), e∼v

πe

⎞

⎠ ,

where e ∼ v denotes e is an edge incident to v.

In summary, the total cost is bounded by

∑

v

⎛

⎝max{ε, 2ε(β/(β − 1))}
∑

e∈δ(v)

πe + ε
∑

e/∈δ(v), e∼v

πe

⎞

⎠

=
∑

v

⎛

⎝2ε(β/(β − 1))
∑

e∈δ(v)

πe + ε
∑

e/∈δ(v), e∼v

πe

⎞

⎠

= ε(2(β/(β − 1)) + 1)
∑

e

πe

≤ ε(2(β/(β − 1)) + 1) · OPT ,

where OPT denotes the optimal solution of the dual problem, which is also a lower
bound of the cost of any weighted capacitated vertex cover. �

The next section discusses how to dynamically maintain an ε-tight level scheme,
for some constant factor ε and with amortized O(log n/ε) update time. Before that,
we show a greedy approach to get a (β + 1)-tight level scheme to the static problem
as a warm up.

First, we have the following definition.

123

132 Algorithmica (2022) 84:124–149

Definition 3 A valid level scheme λ is improvable if some vertex can drop its level to
get another level schemeλ′ such thatλ′ is valid; otherwise, we sayλ is non-improvable.

Lemma 3 If a valid level scheme λ is non-improvable, then λ is (β + 1)-tight.

Proof Toprove this lemma,we compare theweightWv of a vertex vwhen its level is set
to i and i + 1, respectively (while the level of every other vertex remains unchanged).
• Case 1 Dv(0, i) < kv and Dv(0, i + 1) < kv:

Wv(i + 1) = Dv(0, i + 1)μβ−(i+1) +
∑

j>i+1

min{kv, Dv(j)}μβ− j ;

Wv(i) = Dv(0, i)μβ−(i) + Dv(i + 1)μβ−(i+1) +
∑

j>i+1

min{kv, Dv(j)}μβ− j

≤ βWv(i + 1);
• Case 2 Dv(0, i + 1) ≥ kv:

Wv(i + 1) = kvμβ−(i+1) +
∑

j>i+1

min{kv, Dv(j)}μβ− j ;

Wv(i) = min{Dv(0, i), kv}μβ−(i) + min{kv, Dv(i + 1)}μβ−(i+1)

+
∑

j>i+1

min{kv, Dv(j)}μβ− j

≤ (β + 1)Wv(i + 1);

In both cases, the weight Wv(i) is at most (β + 1) times of Wv(i + 1). Thus, if
a vertex cannot drop its level, either its current level is 0, or by doing so we have
Wv(�(v) − 1) > cv; the latter implies that the current value of Wv = Wv(�(v)) is
larger than cv/(β + 1). Thus, if no vertex can drop its level, then the level scheme is
(β + 1)-tight. �

If we set the level of every vertex to L initially, it is easy to check that by our choice
of L as 	logβ(nμα/cmin)
, such a level scheme is valid. Next, we examine each vertex
one by one, and drop its level as much as possible while the scheme remains valid.
In the end, we will obtain a non-improvable scheme, so that by the above lemma,
the scheme is (β + 1)-tight. This implies a (β + 1)(2(β/(β − 1)) + 1)-approximate
solution for the WMCVC problem.

3 Maintaining an˛(ˇ+ 1)-tight Level Scheme Dynamically

In this section, we present our O(1)-approximation algorithm for the WMCVC
problem, with amortized O(log n) update time for each edge insertion and edge dele-
tion. We first state an invariant that is maintained throughout by our algorithm, and
show how the latter is done. Next, we analyze the time required to maintain the invari-
ant with the potential method, and show that our proposed method can be updated
efficiently as desired. Similar to [6,7], we allow a flexible range for the weight of a
vertex,Wv , by a multiplicative constant α so that we can obtain an O(log n) amortized
update time. See Fig. 1 for an illustration of the overall framework.

Let c∗
v be cv/α(β + 1). The invariant that we maintain is as follows.

123

Algorithmica (2022) 84:124–149 133

Fig. 1 Framework of Sect. 3

Invariant 1 (1) For every vertex v ∈ V \ V0, it holds that c∗
v ≤ Wv ≤ cv , and (2) for

every vertex v ∈ V0, it holds that Wv ≤ cv .

By maintaining the above invariant, we will automatically obtain an α(β +1)-tight
valid scheme. As mentioned, we will choose a value for α in order to remove h from
the approximation ratio, where h is the largest number of copies selected in the cover.
In particular, we will set α = (2β + 1)/β + 2ε, where 0 < ε < 1 to balance the
update time, and β = 2.43 to minimize the approximation ratio, so that we achieve
the following theorem.

Theorem 2 There exists a dynamic level scheme λ which can achieve a constant
approximation ratio (≈ 36) for the WMCVC problem with O(log n/ε) amortized
update time.

The remainder of this section is devoted to proving Theorem 2.

3.1 The Algorithm: Handling Insertion or Deletion of an Edge

We now show how to maintain the invariant under edge insertions and deletions. A
vertex is called dirty if it violates Invariant 1, and clean otherwise. Initially, the graph
is empty, so that every vertex is clean and is at level zero.

Assume that at the time instant just prior to the t th update, all vertices are clean.
When the t th update takes place, which either inserts or deletes an edge e = (u, v), we
need to adjust the weights of u and v accordingly. Due to this adjustment, the vertices
u, or v, or both may become dirty. To recover from this, we call the procedure Fix.
The pseudo code of the update algorithm (Algorithm 1) appears in the next page.

The proposed algorithm ensures that Invariant 1 is maintained after each update, so
that the dynamic scheme is α(β + 1)-tight as desired. To complete the discussion, as
well as the proof of Theorem 2, it remains to show that each update can be performed
efficiently, in amortized O(log n) time.

123

134 Algorithmica (2022) 84:124–149

Algorithm 1
1: if an edge e = (u, v) has been inserted then
2: Set �(e) = max {�(u), �(v)} and set w(u, v) = μβ−�(e)

3: Update Wu and Wv

4: else if an edge e = (u, v) has been deleted then
5: Update Wu and Wv

6: end if
7: Run procedure Fix

procedure Fix:
1: while there exists a dirty vertex v do
2: if Wv > cv then
3: Increment the level of v by setting �(v) ← �(v) + 1
4: Update Wv and Wu for all affected v’s neighboring vertices u
5: else if Wv < c∗

v and �(v) > 0 then
6: Decrement the level of v by setting �(v) ← �(v) − 1
7: Update Wv and Wu for all affected v’s neighboring vertices u
8: end if
9: end while

3.2 Time Complexity

Each update involves two steps, namely the adjustment of weights of the endpoints,
and the running of procedure Fix. We now give the time complexity analysis, where
the main idea is to prove the following two facts: (Fact 1) the amortized time of the
adjustment step is O(log n), and (Fact 2) the amortized time of the procedure Fix is
zero, irrespective of the number of vertices or edges that are affected during this step.
Once the above two facts are proven, the time complexity analysis follows.

We use the standard potential method in our amortized analysis. Imagine that we
have a bank account B. Initially, the graph is empty, and the bank account B has no
potential. For each adjustment step during an edge insertion or deletion, we deposit
some potential into the bank account B; after that, we use the potential in B to pay for
the time of the procedure Fix.

Following the definition of [7], we say a vertex v ∈ V is active if its degree in G is
non-zero, and passive otherwise. Now, the value of B is set by the following formula:

B = 1

ε
·

(
∑

e∈E
φ(e) +

∑

v∈V
ψ(v)

)

,

where 0 < ε < 1, and φ and ψ are functions defined as follows:

123

Algorithmica (2022) 84:124–149 135

φ(e) =
(

β

(β − 1)
+ ε

)

(L − �(e)).

ψ(v) =

⎧
⎪⎨

⎪⎩

β(�(v)+1)

μ(β − 1)
· max {0, α c∗

v − Wv}, if v is active.

0, otherwise.

The following lemma proves Fact 1.

Lemma 4 After the adjustment step, the potential B increases by at most O(log n/ε).

Proof We separate the discussion into two cases: edge insertion and edge deletion. Let
t be the moment where the update occurs.

– Edge InsertionThe inserted edge e generates a change of at most
(

β
(β−1) + ε

)
L in

φ(e). So, the summation
∑

φ(e) increases by at most O(log n). For each endpoint
v of e, there are two possible cases for the change in ψ(v):

– Case 1 The vertex v was passive at moment t − 1. By the definition of ψ(v),
we had ψ(v) = 0 and �(v) = 0 before the insertion of the edge e. Hence, after
the insertion of e, we have

ψ(v) = β

μ(β − 1)
· max {0, α c∗

v − Wv} ≤ β

μ(β − 1)
· α c∗

v

≤ β

μ(β − 1)
· cv <

β

β − 1
.

Therefore, the summation
∑

ψ(v) increases by at most O(1).
– Case 2 The vertex v was active at moment t − 1. In this case, the vertex v

remains active at moment t . Thus, the weightWv increases, andψ(v) can only
decrease.

In both cases, the total potential B increases by at most O(log n/ε) after an edge
insertion.

– Edge Deletion If an edge e is deleted from E , then φ(e) drops to zero, so that the
summation

∑
φ(e) decreases. In contrast, the weight Wv of each endpoint v of e

decreases by at most μβ−�(v). So, ψ(v) increases by at most

β(�(v)+1)

μ(β − 1)
· μβ−�(v) = β

β − 1
,

which is a constant. Thus, the summation
∑

ψ(v) increases by at most O(1). In
summary, the total potential B increases by at most O(1/ε) after an edge deletion.

By the above arguments, the lemma follows. �

123

136 Algorithmica (2022) 84:124–149

We now switch our attention to Fact 2. Observe that the procedure Fix performs a
series of level up and level down events. For each such event, the level of a specific
vertex v will be changed, which will then incur a change in its weight, and changes
in the weights of some of the incident edges and their endpoints. The illustration and
corresponding lemmas can refer to Fig. 1 first. Let t0 denote the moment before a level
up or a level down event, and t1 denote the moment after the weights of the edges
and vertices are updated due to this event. Let Count denote the number of times an
edge in the graph G is updated (for simplicity, we assume that in one edge update, the
weight and the assignment of the edge may be updated, and so do the weights of its
endpoints, where all these can be done in O(1) time).

For ease of notation, in the following, a superscript t in a variable denotes the
variable at moment t . For instance, Wt0

v stands for the weight Wv of v at moment t0.
Also, we use x to denote the quantity xt0 − xt1 , so that

|Count| = |Countt0 − Countt1 | = Countt1 − Countt0

represents the number of incident edges whose weights are changed between t0 and
t1.

Briefly speaking, based on the level scheme and the potential function B, we can
show:

– For each level up event, each of the affected edges e would have its φ(e)
value dropped, so that an ε fraction can pay for the weight updates of itself and
its endpoints, while the remaining fraction can be converted into the increase in
ψ(v) value.

– For each level down event, the reverse happens, where the vertex v would have its
ψ(v) value dropped, so that an ε fraction can pay for the weight updates of the
affected edges and their endpoints, while the remaining fraction can be converted
into the increase in φ(e) values of the affected edges. The α value controls the
frequency of the level down events, while trading this off with the approximation
guarantee.

Sections 3.2.1 and 3.2.2 present the details of the amortized analysis of these two
types of events, respectively. Finally, note that there is no potential input to the bank
B after the adjustment step, so that the analysis implies that the procedure Fix must
stop (as the potential in the bank is finite).

3.2.1 Amortized Time of Level Up

Let v be the vertex that undergoes the level up event, and i = �(v) denote its level at
moment t0. By our notation, B = Bt0 − Bt1 denotes the potential drop in the bank
B from moment t0 to moment t1. To show that the amortized time of a level up event
is at most zero, it is equivalent to show that B ≥ |Count|.

Recall that after a level up event, only the value of ψ(v), the values of φ(e) and
ψ(u) for an edge (u, v) may be affected. In the following, we will examine carefully
the changes in these values, and derive the desired bound for B. First, we have the
following simple lemma.

123

Algorithmica (2022) 84:124–149 137

Lemma 5 |Count| ≤ Dt0
v (0, i).

Proof When v changes from level i to i + 1, only those incident edges with levels i
will be affected.

�
The next three lemmas examine, respectively, the changes ψ(v), φ(e), and

ψ(u).

Lemma 6 ψ(v) = 0.

Proof Since v undergoes a level up event, we have Wt0
v > cv > α c∗

v , so that

ψ t0(v) = 0.

Next, we look at ψ t1(v). To begin with, we show a general relationship between
Wt0

v and Wt1
v , similar to that in the proof of Lemma 3. Let i denote the level �(v) of v

at moment t0.

• Case 1 Dt0
v (0, i) > kv

W
t0
v = Wv(i) = kv · μβ−i + min{kv, D

t0
v (i + 1)} · μβ−(i+1) +

∑

j>i+1

min{kv, D
t0
v (j)}μβ− j

W
t1
v = Wv(i + 1) = kv · μβ−(i+1) +

∑

j>i+1

min{kv, D
t0
v (j)}μβ− j

≥ 1

β + 1
W

t0
v

• Case 2 Dt0
v (0, i) ≤ kv

W
t0
v = Wv(i) = D

t0
v (0, i) · μβ−i + min{kv, D

t0
v (i + 1)} · μβ−(i+1)

+
∑

j>i+1

min{kv, D
t0
v (j)}μβ− j

W
t1
v = Wv(i + 1) = min{kv, D

t0
v (0, i + 1)} · μβ−(i+1) +

∑

j>i+1

min{kv, D
t0
v (j)}μβ− j

≥ 1

β + 1
W

t0
v

Thus, Wt1
v ≥ Wt0

v /(β + 1) > cv/(β + 1) = α c∗
v , which implies

ψ t1(v) = 0.

In summary, we have ψ(v) = 0 − 0 = 0 as desired. �
Lemma 7 For every edge e incident to v,

φ(e) =

⎧
⎪⎨

⎪⎩

(
β

(β − 1)
+ ε

)

, if �(e) ∈ [0, i].
0, otherwise.

123

138 Algorithmica (2022) 84:124–149

Proof As mentioned, only those edges that are at the level in the range [0, i] are
affected, so that

φ(u, v) = φt0(u, v) − φt1(u, v)

=
(

β

(β − 1)
+ ε

)

(L − i) −
(

β

(β − 1)
+ ε

)

(L − (i + 1))

=
(

β

(β − 1)
+ ε

)

.

�
Lemma 8 For every vertex u ∈ Nt0

v , ψ(u) ≥ −β/(β − 1).

Proof If �(u) ∈ [i + 1, L], then wt0(u, v) = wt1(u, v) and thus w(u, v) = 0, which
implies that ψ(u) = 0. The potential ψ(u) changes only when the level of vertex
u is in the range [0, i]. Without loss of generality, we assume �(u) = i and prove the
lemma by considering the relationship between ku , D

t0
u (0, i) and Dt0

u (i +1). For those
vertices u with �(u) ∈ [0, i − 1], we replace the term Dt0

u (0, i) with Dt0
u (i) while

maintaining the same result.

• Case 1Dt0
u (0, i) > ku , D

t0
u (i + 1) ≥ ku

W t0
u = Wt1

u ⇒ ψ(u) = 0.

• Case 2Dt0
u (0, i) > ku , D

t0
u (i + 1) < ku

W t1
u = Wt0

u + μβ−(i+1)

ψ(u) = β(�(u)+1)

μ(β − 1)
· μβ−(i+1) = 1

β − 1
· β�(u)−i > 0.

• Case 3Dt0
u (0, i) ≤ ku , D

t0
u (i + 1) < ku

W t1
u = Wt0

u − μ(β−i − β−(i+1))

ψ(u) = − β(�(u)+1)

μ(β − 1)
· μ(β−i − β−(i+1)) = −β(�(u)+1)

β i+1 ≥ −1.

• Case 4Dt0
u (0, i) ≤ ku , D

t0
u (i + 1) ≥ ku

W t1
u = Wt0

u − μβ−i

ψ(u) = − β(�(u)+1)

μ(β − 1)
· μβ−i = − β

β − 1
(β�(u)−i) ≥ − β

β − 1
.

�

123

Algorithmica (2022) 84:124–149 139

Based on the above lemmas, we derive the following and finish the proof for the
case of level up.

B = 1

ε
·
⎛

⎜
⎝ψ(v) +

∑

e∈E
φ(e) +

∑

u∈Nt0
v

ψ(u)

⎞

⎟
⎠

≥ 1

ε
·
(

0 +
(

β

(β − 1)
+ ε

)

Dt0
v (0, i) − β

β − 1
Dt0

v (0, i)

)

= Dt0
v (0, i) ≥ |Count|.

3.2.2 Amortized Time of Level Down

We now show that the amortized time of level down for a vertex v is at most zero.
Similar to the case of level up, we examine ψ(v), φ(e), and ψ(u), and show
that B ≥ |Count|.

Before starting the proof of the level down case, recall that we have mentioned
the parameter h at the end of the introduction, where h is the largest number of
selected copies of all the vertices. That is, h = maxv{	|δt0(v)|/kv
}. Also, we let
h′ = maxv{	Dt0

v (0, �(v))/kv
}, where h′ ≥ h, and set ξ ≥ 0 such that h′ = h + ξ .

Lemma 9 |Count| ≤ Dt0
v (0, i) < h′ · βi c∗

v

μ
.

Proof When the vertex v moves from level i to i − 1, only those edges whose levels
are at most i are affected. This shows the first part of the inequality. Also, because v

undergoes level down, we have Wt0
v < c∗

v . Then, for the latter inequality, we partition
the proof into two cases:

• Case 1 	|δt0(v)|/kv
 = 1

Wt0
v = Dt0

v (0, i) · μβ−i +
∑

j>i

min{kv, D
t0
v (j)}μβ− j

⇒ c∗
v > Dt0

v (0, i) · μβ−i

⇒ Dt0
v (0, i) <

β i c∗
v

μ
.

• Case 2 	|δt0(v)|/kv
 > 1

Wt0
v = kv · μβ−i +

∑

j>i

min{kv, D
t0
v (j)}μβ− j

⇒ c∗
v > kv · μβ−i

123

140 Algorithmica (2022) 84:124–149

⇒ h′c∗
v >

Dt0
v (0, i)

kv

· kv · μβ−i

⇒ Dt0
v (0, i) < h′ · β i c∗

v

μ
.

�
Now, we are ready to examine ψ(v), φ(e), and ψ(u), through the following

lemmas.

Lemma 10 For every vertex u ∈ Nt0
v , ψ(u) ≥ −1/(β − 1).

Proof If �(u) ∈ [i, L], then wt0(u, v) = wt1(u, v) and w(u, v) = 0, which implies
ψ(u) = 0. The changes of potentials only occur at the vertex whose level is in
the range [0, i − 1]. Without loss of generality, we assume �(u) = i − 1 and we
consider the relationship between ku , D

t0
u (0, i − 1) and Dt0

u (i). For those vertices
u and �(u) ∈ [0, i − 2], we replace the term Dt0

u (0, i − 1) with Dt0
u (i − 1) while

maintaining the same result.

• Case 1 Dt0
u (0, i − 1) ≥ ku , D

t0
u (i) > ku

W t0
u = Wt1

u ⇒ ψ(u) = 0.

• Case 2 Dt0
u (0, i − 1) ≥ ku , D

t0
u (i) ≤ ku

W t1
u = Wt0

u − μβ−i

ψ(u) = − β(�(u)+1)

μ(β − 1)
· μβ−i

= − β

β − 1
· β�(u)−i (∵ �(u) ≤ i − 1)

≥ − 1

β − 1
.

• Case 3Dt0
u (0, i − 1) < ku , D

t0
u (i) > ku

W t1
u = Wt0

u + μβ−(i−1)

⇒ ψ t0(u) > ψ t1(u) ⇒ ψ(u) > 0.

• Case 4Dt0
u (0, i − 1) < ku , D

t0
u (i) ≤ ku

W t1
u = Wt0

u + μ(β−(i−1) − β−i)

⇒ ψ t0(u) > ψ t1(u) ⇒ ψ(u) > 0.

�

123

Algorithmica (2022) 84:124–149 141

Next, we partition Nt0
v into three subsets: X , Y1 and Y2, i.e. N

t0
v = X ∪ Y1 ∪ Y2,

where

X = {u | u ∈ Nt0
v (0, i − 1)},

Y1 = {u | u ∈ Nt0
v (i)},

Y2 = {u | u ∈ Nt0
v (i + 1, L)}.

Lemma 11 For every edge (u, v) incidents to a vertex v,

φ(u, v) =

⎧
⎪⎨

⎪⎩

−
(

β

(β − 1)
+ ε

)

, if u ∈ X

0, if u ∈ Y1 ∪ Y2.

Proof Fix any vertex u ∈ Nt0
v . We consider the following two possible scenarios.

• Case 1u ∈ Y1 ∪ Y2 When the level of the vertex v decreases from i to i − 1,
�t0(u, v) = �t1(u, v) and thus φt0(u, v) = φt1(u, v), which impliesφ(u, v) = 0.

• Case 2 u ∈ X
When the level of the vertex v decreases from i to i − 1, we have �t0(u, v) = i
and �t1(u, v) = (i − 1). The following result is thus derived:

φ(u, v) =
(

β

(β − 1)
+ ε

)

(L − i) −
(

β

(β − 1)
+ ε

)

(L − i + 1)

= −
(

β

(β − 1)
+ ε

)

.

�
Next, letWt0

v = x+y1+y2, where x , y1 and y2 on the right-hand-side correspond to
the weights generated by the subsets X , Y1, Y2, respectively. So, we get the following
lemmas:

Lemma 12
∑

u∈Nt0
v

φ(u, v) ≤ −
(

β
(β−1) + ε

)
(hxβ i/μ).

Proof We consider |X | in the following two cases:

• Case 1|X | ≤ kv

x = |X | · μβ−i ⇒ |X | = xβ i

μ
≤ hxβ i/μ (∵ h ≥ 1)

• Case 2|X | > kv . Here, we may assume, without loss of generality, that y1 = 0.
Then, we have

x = kv · μβ−i

⇒ |X | = |X |
kv

· xβ
i

μ
≤

⌈
δt0(v)

kv

⌉

· xβ
i

μ
≤ h · xβ

i

μ
.

123

142 Algorithmica (2022) 84:124–149

Finally, since

∑

u∈Nt0
v

φ(u, v) = |X | · −
(

β

(β − 1)
+ ε

)

,

the lemma thus follows. �

Lemma 13 ψ(v) = (αc∗
v−x−y1−y2)· βi+1

μ(β−1)−max{0, αc∗
v−βx−y1−y2}· βi

μ(β−1) .

Proof We have Wt0
v = x + y1 + y2 < c∗

v , and we have to consider the following
relationship between x + y1 and kv · μβ−i . With the above relationship, we compute
Wt1

v by the following:

• Case 1 |X | < kv and |X + Y1| ≤ kv:

W
t0
v = Wv(i) = D

t0
v (0, i)μβ−(i) +

∑

j>i

min{kv, D
t0
v (j)}μβ− j ;

W
t1
v = Wv(i − 1) = D

t0
v (0, i − 1)μβ−(i−1) + D

t0
v (i)μβ−(i) +

∑

j>i+1

min{kv, D
t0
v (j)}μβ− j

= βx + y1 + y2;

• Case 2 |X + Y1| > kv:

W
t0
v = Wv(i) = kvμβ−(i) +

∑

j>i

min{kv, D
t0
v (j)}μβ− j ;

W
t1
v = Wv(i − 1)

= min{kv, D
t0
v (0, i − 1)}μβ−(i−1) + min{kv, D

t0
v (i)}μβ−(i) +

∑

j>i

min{kv, D
t0
v (j)}μβ− j

≤ (β + 1)x + y1 + y2;

By the above cases, we have a weight change of at least βx + y1 + y2 in Wv . The
desired bound on ψ(v) can thus be obtained by direct substitution. �

Finally, depending upon the value of αc∗
v −βx − y1 − y2, we consider two possible

scenarios, where we show that in each case, B ≥ h′ · β i c∗
v/μ. This in turn implies

B ≥ |Count| as desired.

123

Algorithmica (2022) 84:124–149 143

• Case 1αc∗
v ≤ βx + y1 + y2

ε · B =
⎛

⎜
⎝

∑

u∈Nt0
v

ψ(u) +
∑

e∈E
φ(e) + ψ(v)

⎞

⎟
⎠

≥ − 1

β − 1
· hxβ

i

μ
−

(
β

(β − 1)
+ ε

)

· hxβ
i

μ
+ (αc∗v − x − y1 − y2) · βi+1

μ(β − 1)

≥ βi

μ

(

− 1

β − 1
hc∗v −

(
β

(β − 1)
+ ε

)

hc∗v + (α − 1)β

β − 1
c∗v

)

(∵ c∗v ≥ x + y1 + y2)

= βi c∗v
μ(β − 1)

((α − 1)β − h − (β + (β − 1)ε)h)

= βi c∗v
μ

(
(α − 1)β

(β − 1)
− h

(
β + 1

β − 1
+ ε

))

if let α = β − 1

β

(

h

(
β + 1

β − 1
+ 2ε

)

+ ξε

)

+ 1

≥ εh′ · βi c∗v
μ

.

• Case 2 αc∗
v > βx + y1 + y2

ε · B =
⎛

⎜
⎝

∑

u∈Nt0
v

ψ(u) +
∑

e∈E
φ(e) + ψ(v)

⎞

⎟
⎠

≥ − 1

β − 1
· hxβ

i

μ
−

(
β

(β − 1)
+ ε

)

· hxβ
i

μ
+ (αc∗v − x − y1 − y2) · βi+1

μ(β − 1)

− (αc∗v − βx − y1 − y2) · βi

μ(β − 1)

= βi

μ(β − 1)
· (−xh − (β + (β − 1)ε)xh + α(β − 1)c∗v − (β − 1)(y1 + y2))

= βi

μ(β − 1)
· (α(β − 1)c∗v − (β + 1 + (β − 1)ε)xh − (β − 1)(y1 + y2))

≥ βi c∗v
μ

·
(

α − h

(
β + 1

β − 1
+ ε

))

if let α = β − 1

β

(

h

(
β + 1

β − 1
+ 2ε

)

+ ξε

)

+ 1

≥ εh′ · βi c∗v
μ

.

Thus, the level scheme remains α(β + 1)-tight after a level down event. However, the
value of h is bounded by n, and h appears inside α, so that the approximation ratio of
the schememay become n in theworst-case. Fortunately, with the help of the following
lemma, we can choose α carefully, which in turn improves the approximation ratio
from n to O(1).

Lemma 14 Suppose we set α ≥ β/(β − 1). By the time a level down event occurs at
v at moment t0, exactly one copy of v is selected. That is, 	|δt0(v)|/kv
 = 1.

Proof Assume to the contrary that v could decrease its level even if more than one
copy of v is selected. Since v levels down, its weight Wv must have decreased; this
can happen only in one of the following cases:

123

144 Algorithmica (2022) 84:124–149

• Case 1 An incident edge whose level is in the range [0, �(v)] is deleted. In this
case, since more than one copy of v is selected, Wv is unchanged. Thus, this case
cannot happen.

• Case 2 An incident edge whose level is in the range [�(v) + 1, L] is deleted. In
this case, the weight Wt0

v at moment t0 is less than c∗
v . On the other hand, at the

moment t ′ when v attains the current level �(v) (from level �(v) − 1), its weight
Wt ′

v was at least cv before it leveled up, and became at least cv/(β + 1) after it
leveled up.
(The reason is from the proof of Lemma 3: the weight change between consecutive
levels is at most a factor of β + 1.) This implies that:

c∗
v > Wt0

v ≥ kvμβ−�(v)

The above relation is true because v has to decrease its level at moment t0, which
implies the first inequality.
Next, the second inequality holds because more than one copy of v is selected.
Also, we have the following relation:

(β/(β − 1))kvμβ−�(v) ≥ Wt ′
v ≥ cv/(β + 1)

To see why the above is true, notice that the first inequality holds since the leftmost
term is the maximum possible value of Wv , while the second inequality holds
naturally with the non-zero level of v.
Combining the above two inequalities, we would have

cv

α(β + 1)
= c∗

v > kvμβ−�(v) ≥ cv(β − 1)

β(β + 1)
,

so that α < β/(β − 1). Which leads to a contradiction

Thus, the lemma follows. �
The above lemma states that if we choose α ≥ β/(β − 1), then level down of v

occurs only when 	|δt0(v)|/kv
 is one. Then, Case 2 inside the proof of Lemma 9 will
not occur, so thatwe can strengthenLemma9 to get |Count| ≤ Dt0

v (0, i) < β i c∗
v/μ.

Similarly, the proof of Lemma 12 can be revised, so that we can strengthen Lemma 12
by replacing h with one. On the other hand, we need α ≥ (2β + 1)/β + 2ε to satisfy
the amortized time analysis. Consequently, we set α = (2β + 1)/β + 2ε, and we can
achieve the desired bound B ≥ β i c∗

v/μ ≥ |Count|. The proof for the level down
case is complete.

3.3 Summary and Extensions

With the appropriate setting of α = (2β + 1)/β + 2ε, where 0 < ε < 1, we get
an α(β + 1)-tight level scheme. Then, by setting β = 2.43, Theorem 2 is proven so

123

Algorithmica (2022) 84:124–149 145

that we get an approximate solution of ratio close to 36 with O((log n)/ε) amortized
update time. Finally, we consider two natural extensions of the capacitated vertex
cover problem, and show how to adapt the proposed level scheme to handle these
extensions
Capacitated Set Cover Here, we consider the capacitated set cover problem which
is equivalent to the capacitated vertex cover problem in hyper-graphs. A hyper-graph
G = (V , E) has |V | = n vertices and |E | = m hyper-edges, where each hyper-edge
is incident to a set of vertices. Suppose that each hyper-edge is incident to at most f
vertices. Our target is to find a subset of vertices, each with a certain number of copies,
so that every edge in E is covered, while the total cost of the selected vertices (each
of which is weighted by the corresponding number of copies) is minimized. Here, we
treat the hyper-graph vertex cover problem as if the original vertex cover problem, and
use the same level scheme and the definition of the weight of a vertexWv . That is, the
weight Wv of a vertex v is defined as follows:

• Case 1 Dv(0, �(v)) > kv:

Wv = kvμβ−�(v) +
∑

i>�(v)

min{kv, Dv(i)}μβ−i

• Case 2 Dv(0, �(v)) ≤ kv:

Wv = Dv(0, �(v))μβ−�(v) +
∑

i>�(v)

min{kv, Dv(i)}μβ−i

We also use the same conditions for level up and level down. However, we still need
to do some adjustments for this problem. First, we re-design the number of levels, L ,
to be 	logβ(mμα/cmin)
. Next, we adjust the flexible range by multiplying it by f so
that Wv ∈ (cv/ f ε, cv]. In Lemma 2, we have proved that if there are more than kv

edges assigned to a vertex v, then every edge is accounted for at most 2(β/(β −1))πe.
But here, a hyper-edge e may be incident to at most f vertices so that the total time
for a hyper-edge is bounded by at most (2(β/(β − 1)) + (f − 1))πe instead.

By the arguments of Sect. 2, we observe that the approximation ratio comes from
(1) the flexible range of weight functionWv and (2) the total number of times an edge
is used. Since both of these terms are increased by a factor of f in the dynamic set
cover problem; thus, the approximation ratio here becomes O(f 2).

Whenwe consider the updated time in the dynamic setting, wemodify our potential
function as follows:

φ(e) =
(

β

(β − 1)
+ ε

)

(L − �(e)).

ψ(v) =

⎧
⎪⎨

⎪⎩

β(�(v)+1)

f μ(β − 1)
· max {0, f α c∗

v − Wv}, if v is active.

0, otherwise.

123

146 Algorithmica (2022) 84:124–149

From Sect. 3, we know that the update time in the dynamic vertex cover problem is
related to the number of levels in the level scheme. Here, this number will be adjusted
to O(log(m+n)). Furthermore, a hyper-edge is incident to at most f vertices (instead
of at most two vertices in the vertex cover problem). Thus, it will affect at most f
vertices when there is an edge insertion or deletion. Combining these, we can readily
show that our scheme achieves O(f log(m + n)) amortized update time.
Capacitated Vertex Cover with Non-uniform Unsplittable Demand In this part, we
consider a more general model in which each edge has an unsplittable demand. That
is, the demand of each edge must be covered by exactly one of its endpoints. We first
show that, in a static setting, with some modification, our approach in Sect. 2 already
gives an O(1)-approximate solution. First, whenwe consider the general case, we have
to revise the capacity constraint in the primal problem to kvxv −∑

e∈Nv
yevde ≥ 0, and

we also have to change the vertex constraint in the dual problem to qvde + lev ≥ πe.
To cope with these changes, we will revise the number of levels of our level scheme

to be L = 	logβ(kmaxμα/cmin)
, where kmax denotes the maximum capacity of a
vertex. Moreover, we adjust our definition of the weight Wv of a vertex as follows:

• Case 1
∑

e | e∼v,�(e)=�(v) de > kv:

Wv = kvμβ−�(v) +
∑

j | �(e)= j>�(v)

min{kv,
∑

e

de}μβ− j

• Case 2
∑

e | e∼v,�(e)=�(v) de ≤ kv:

Wv =
∑

e | e∼v,�(e)=�(v)

deμβ−�(v) +
∑

j | �(e)= j>�(v)

min{kv,
∑

e

de}μβ− j

where e ∼ v denotes e is an edge incident to v.
Due to the change of the mathematical model in both primal and dual problems, we

need a slightly different strategy from that in Sect. 2. We use the total demand of the
unassigned edges to replace the number of unassigned edges to determine the value
of qv and lev . In particular:

If 	∑e∈δ(v) de/kv
 > 1: qv = μβ−�(v), and lev = 0;
If 	∑e∈δ(v) de/kv
 ≤ 1: qv = μ

∑
i | ∑�(e)=i de ≥ kv

β−i , lev = 0 if
∑

�(e)=i de ≥
kv , and lev = de · μβ−�(e) otherwise.
For every edge e: πe = de · μβ−�(e).

Then, we use the same technique as that in Sect. 2, and it is easy to verify that the
above choices of qv , lev , and πe give a feasible solution to the dual problem. Again,
for the total cost of our solution, we separate the analysis into two parts, based on the
multiplicity of the vertex v:

• Case 1 	∑e∈δ(v) de/kv
 > 1: In this case, the external component ofWv is at most
1/(β − 1) of the internal component, so that Wv ≤ (β/(β − 1))kvqv . Then, the
cost of all copies of v is:

123

Algorithmica (2022) 84:124–149 147

⎡

⎢
⎢
⎢

∑

e∈δ(v)

de/kv

⎤

⎥
⎥
⎥

· cv ≤
⎡

⎢
⎢
⎢

∑

e∈δ(v)

de/kv

⎤

⎥
⎥
⎥

· ε · Wv

≤ 2 ·
∑

e∈δ(v) de

kv

· ε · (β/(β − 1))kvqv

= 2(β/(β − 1))ε ·
∑

e∈δ(v)

deqv = 2(β/(β − 1))ε ·
∑

e∈δ(v)

πe.

• Case 2 	∑e∈δ(v) de/kv
 = 1: In this case, we pick one copy of vertex v, whose
cost is:

cv ≤ ε · Wv

≤ ε ·
∑

e∼v

πe = ε ·
⎛

⎝
∑

e∈δ(v)

πe +
∑

e/∈δ(v), e∼v

πe

⎞

⎠ ,

As compared to the uniform demand case, every edge multiplies its demand. Yet, the
selected copies also multiply the same constant. Thus, with an analogous analysis, the
approximation ratio of the revised algorithm in this section (for non-uniform demand)
is the same for the uniform demand case.

Unfortunately, when we consider the dynamic operations, an edge insertion or
deletion may cause a vertex to adjust its level severely because the edge weight, in this
case, connects to the edge’s demand. It is open whether we can maintain a constant
approximation ratio with polylogarithmic update time for this general problem where
edges have non-uniform unsplittable demands.

However, we still present two simple approaches for this problem by combining
other techniques with the initially proposed level scheme in Sect. 2.

Thefirst approach is to partition all of the edges into log2(dmax) clusters according to
its demand (where the i th cluster contains edges with demand in the range [2i−1, 2i)),
and maintain each cluster by its own data structure. In every cluster, we set value of
α = 2((2β +1)/β +2ε). Whenever there is an edge insertion or edge deletion, we run
the proposed algorithm in the corresponding cluster. That is, only the data structure
of one cluster is updated per each edge update event. For the output, we select the
vertices, and their corresponding number of copies, in each of the clusters to cover all
the edges in that cluster. After these changes, we obtain an O(log dmax) approximation
ratio solution with O(L/ε) = O(log kmax/ε) update time, where dmax = maxe{de}
and kmax = maxv{kv}.

The second approachworks for integral demands.We view an edge ewith demand d
as d edges e1, e2, . . . , ed with uniform demand between the same endpoints. Then, we
execute the proposed level scheme. The only problem is that those edges e1, e2, . . . , ed
corresponding to the original edge e may be assigned to the different endpoints. We
simply assign all edges to the endpoint that is covering the majority of these edges,
based on the solution in the proposed level scheme.After that, the total time is increased

123

148 Algorithmica (2022) 84:124–149

by at most a factor of 2, so that we obtain an O(1)-approximate solution with the
O(dmaxL/ε) = O(dmax log kmax/ε) amortized update time.

4 Concluding Remarks

We have extended dynamic vertex cover to the more general WMCVC problem, and
developed a constant-factor dynamic approximation algorithmwith O(log n/ε) amor-
tized update time, where n is the number of the vertices. Note that, in Gupta et al.’s
very recent paper [12], their greedy algorithm with minor adaptions is also able to
work for the soft dynamic capacitated vertex cover problem. However, it only gives
a logarithmic-factor approximation algorithm with O(log n) amortized update time.
Moreover, our proposed algorithm can also be extended to solve the (soft) capacitated
set cover problem, and the soft capacitated vertex cover problem with non-uniform
unsplittable edge demand.

We conclude this paper with some open problems. First, recall that in the static
model, the soft capacitated vertex cover problem [11] can be approximated within a
factor of two and three for the uniform and non-uniform edge demand cases, respec-
tively. Here, we have shown that it is possible to design a dynamic scheme with O(1)
approximation ratio with polylogartihmic update time for the uniform edge demand
case. Thus, designing an O(1)-approximation ratio algorithm with O(log kmax), or
polylogarithmic, update time for the non-uniform edge demand case seems promis-
ing.

Moreover, it would also be of significant interest to explore whether it is possible to
derive a constant approximation ratio for theWMCVC problem under constant update
time. Also, in recent years, more studies on the worst-case update time for dynamic
algorithms have been conducted. It would be worthwhile to examine update time in
the worst-case analysis.

Acknowledgements The extended abstract of this paper has been published in Proceedings of the
21st International Conference on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX’2018). We also thank the support from National Center for High-performance Computing
(NCHC) and the Brain Research Center under the Higher Education Sprout Project.

References

1. Andersson, A., Thorup, M.: Dynamic ordered sets with exponential search trees. J. ACM 54(3), 13
(2007)

2. Archetti, C., Feillet, D.,Mor, A., Speranza,M.G.: Dynamic traveling salesman problemwith stochastic
release dates. Eur. J. Oper. Res. 280(3), 832–844 (2020)

3. Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in O(log n) update time. SIAM J.
Comput. 44(1), 88–113 (2015)

4. Bhattacharya, S., Chakrabarty, D., Henzinger,M.: Fully dynamic approximatemaximummatching and
minimum vertex cover in O(log3 n) worst case update time. In: Proceedings of the 28th ACM-SIAM
Symposium on Discrete Algorithms (SODA), Barcelona, Spain, pp. 470–489 (2017)

5. Bhattacharya, S., Chakrabarty, D., Henzinger, M.: Deterministic fully dynamic approximate vertex
cover and fractional matching in O(1) amortized update time. In: Proceedings of the 19th Conference
on Integer Programming andCombinatorial Optimization (IPCO),Waterloo, Canada, pp. 86–98 (2017)

123

Algorithmica (2022) 84:124–149 149

6. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Deterministic fully dynamic data structures for vertex
cover and matching. In: Proceedings of the 26th ACM-SIAM Symposium on Discrete Algorithms
(SODA), Philadelphia, USA, pp. 785–804 (2015)

7. Bhattacharya, S., Henzinger, M., Italiano, G.F.: Design of dynamic algorithms via primal-dual method.
In: Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), Heidelberg, Germany, vol. 2015, pp. 206–218 (2015)

8. Buriol, L.S., Resende, M.G.C., Thorup, M.: Speeding up dynamic shortest-path algorithms. Inf. J.
Comput. 20(2), 191–204 (2008)

9. Chuzhoy, J., Naor, J.: Covering problems with hard capacities. SIAM J. Comput. 36(2), 498–515
(2006)

10. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. J. ACM 51(6),
968–992 (2004)

11. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering. J. Algorithms 48(1), 257–270
(2003)

12. Gupta, A., Krishnaswamy, R., Kumar, A., Panigrahi, D.: Online and dynamic algorithms for set cover.
In: Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), Montreal, Canada,
pp. 537–550 (2017)

13. Holm, M.T.J., de Lichtenberg, K.: Poly-logarithmic deterministic fully-dynamic algorithms for con-
nectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

14. Ivkovic, Z., Lloyd, E.L.: Fully dynamic maintenance of vertex cover. In: Proceedings of the 19th
International Workshop on Graph-theoretic Concepts in Computer Science (WG), London, UK, pp.
99–111 (1994)

15. Kejlberg-Rasmussen, C., Kopelowitz, T., Pettie, S., Thorup, M.: Faster worst case deterministic
dynamic connectivity. In: Proceedings of the 24th Annual European Symposium onAlgorithms (ESA),
Aarhus, Denmark, vol. 57, pp. 1–15 (2016)

16. Neiman, O., Solomon, S.: Simple deterministic algorithms for fully dynamic maximal matching. ACM
Trans. Algorithms 12(1), 7 (2016)

17. Onak, K., Rubinfeld, R.: Maintaining a large matching and a small vertex cover. In: Proceedings of
the 42nd ACM Symposium on Theory of Computing (STOC), Cambridge, USA, pp. 457–464 (2010)

18. Peleg, D., Solomon, S.: Dynamic (1+ε)-approximate matchings: a density-sensitive approach. In:
Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), Virginia, USA,
pp. 712–729 (2016)

19. Silva, A., Aloise, D., Coelho, L.C., Rocha, C.: Heuristics for the dynamic facility location problem
with modular capacities. Eur. J. Oper. Res. 290, 435–452 (2020)

20. Solomon, S.: Fully dynamic maximal matching in constant update time. In: Proceedings of the 57th
Symposium on Foundations of Computer Science (FOCS), New Jersey, USA, pp. 325–334 (2016)

21. Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths. In: Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC), Baltimore, MD, USA, pp. 112–119
(2005)

22. Yu, G., Yang, Y.: Dynamic routing with real-time traffic information. Oper. Res. 19, 1–26 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Approximating Dynamic Weighted Vertex Cover with Soft Capacities
	Abstract
	1 Introduction
	1.1 Overview of Our Technique

	2 Level Scheme and Its Key Property
	3 Maintaining an α(β+1)-tight Level Scheme Dynamically
	3.1 The Algorithm: Handling Insertion or Deletion of an Edge
	3.2 Time Complexity
	3.2.1 Amortized Time of Level Up
	3.2.2 Amortized Time of Level Down

	3.3 Summary and Extensions

	4 Concluding Remarks
	Acknowledgements
	References

