
Understanding the Power-Performance Tradeoff
through Pareto Analysis of Live Performance Data

Junya Michanan, Rinku Dewri, Matthew J. Rutherford
Department of Computer Science, University of Denver

Denver, Colorado U.S.A.
jmichana@du.edu, {rdewri, mjr}@cs.du.edu

Abstract—Optimizing the power-performance tradeoff of a
software system is challenging as the design space is large and
live data is difficult to obtain. As a result, many power reduction
techniques are based on power models which may not represent
the full complexity of the system being analyzed. In this paper, in
contrast, we propose a process for performing a tradeoff analysis
using live power/performance data. As a case study, we conduct
an empirical evaluation of the power/performance impact of
cache configuration on embedded systems. We gather live power
consumption and execution time data for the programs in the
CHStone benchmark suite on an embedded processor with
configurable cache parameters and perform a Pareto analysis on
these data to identify the optimal cache configurations. We
observe that the optimal configurations are sparse in the design
space, are inconsistent across the benchmark, and are
counterintuitive in some cases. Our results reveal interesting,
unexpected insights motivating the need for tools and
methodologies that automate this process and operate directly on
data gathered from the systems.

Keywords—Energy; Power; Efficiency; Performance; Tradeoff;
Optimization; Cache; FPGA; Pareto

 INTRODUCTION I.
Power-performance optimization is challenging and

becoming increasingly important among modern computer
systems, especially for those that rely on battery power. The
sophistication of software applications and the increasing needs
of rich media and big data have made today’s computer
systems power-hungry, while battery standards are not keeping
pace with the demand [14]. Therefore, many researchers have
been developing optimization techniques to extend battery life
and reduce power consumption while maintaining other
performance characteristics at acceptable levels.

Many power reduction techniques are based on power
models which might not represent the full complexity of the
system being analyzed. Most computer systems are not
originally designed to support power optimization so the
onboard power monitoring systems are not included, or if
included, they are not explicitly designed to measure the power
consumption of software applications [7, 15]. Many power
models have been developed to support power optimization [4,
10, 13, 15, 16]. They are mostly intended to evaluate a specific
platform or specific technology [16]. As with all models, if
there are errors with calibration or inaccuracies in the models,
or if they are used incorrectly, the results can be skewed or
different from those based on analysis of live power

consumption data [7]. In order to avoid the use of power
models, we focus on the use of live data.

Optimization with live data is difficult: the process of
gathering and analyzing these data is tedious and understanding
conflicting performance attributes is challenging. In software
engineering, performance and power consumption are viewed
as non-functional properties. They are considered conflicting
attributes and are often traded off, making them difficult and
time consuming to optimize [6]. Many researchers point out
that high-level strategies can help in trading off the conflicting
properties and solving the multi-objective optimization
problem [6, 9]. Although their results are intuitive and feasible,
there are still many open challenges and the strategies are far
from being adopted into practice.

In this paper, as a case study, we conduct an experiment on
an embedded hardware platform that can run a wide variety of
software applications while providing live power consumption
data. We investigate one aspect of the system, the cache
system, because it has a major impact on both power
consumption and execution time, and virtually all computer
systems use caches [10]. Several other studies have shown that
the cache has a large effect on the overall system performance
and also accounts for a large amount of total energy
consumption in embedded systems; up to 50% of total energy
usage in some cases [13]. Also, there are many tunable
parameters in most cache designs [11, 13].

We select Pareto optimality as the main principle to solve
the bi-objective optimization problem because it is well-known
and has been applied in many fields, including engineering and
economics where optimal decisions need to be made in the
presence of tradeoffs between two or more conflicting
objectives [1]. Our goals are to demonstrate a detailed manual
optimization process and to convey the basic concept of power-
performance tradeoff in an energy-aware system and to
understand the impact that different cache parameters have (or
do not have) on the power/time tradeoff in order to better
understand how an automated optimization methodology for
performing this analysis might work.

We consider power consumption data (watts) for the
analysis instead of energy (joules) because we want to look at
the system’s power consumption and performance as a whole
not the specific software being executed. We consider these
properties to be independent from each other. Power
consumption and execution time are just a few of the many
performance and non-functional properties of a system [7]. Our

978-1-4799-6177-1/14/$31.00 ©2014 IEEE

goal is to observe the interactions between the system’s power
consumption and execution time as effectuated by different
cache system parameters when executing different benchmark
programs.

The contributions of this paper are threefold: (1) the
demonstration of a detailed manual process for power-
performance tradeoff analysis using Pareto optimality and how
some unexpected insights can be discovered and categorized.
(2) To provide evidence that some optimal configurations
might not be as expected when analyzing the live power
consumption data. Our test results show that the optimal
configurations can be sparse, inconsistent and in many cases
counterintuitive, making automated optimization processes
hard to implement without analysis from actual data. (3) To
provide some useful test results of FPGA cache configurations
and to demonstrate that the optimal cache configurations do
exist in the selected CHStone benchmarks.

 BACKGROUND II.
In the existing literature on power/performance tradeoffs,

proposed techniques target improvements over the base system
without using Pareto optimality. They often fail to address the
overall space of possible solutions without knowing whether
their chosen solution is optimal (where they are on the Pareto
front). Much of the research is conducted without the
understanding of the power-performance interactions at the
system level. As stated in [8], observation of a lack of Pareto
optimality is an alert to an opportunity to improve the design
that might be missed, especially when no single engineer
understands all the design dependencies. By applying the
Pareto optimality principle with all possible solutions for the
development of an efficient energy-aware system, we come up
with the following hypothesis for the experiment:

x There exists a Pareto optimal curve on a solution
space so that power and performance can be traded
off at different weights.

x If the curve is sparse, the development of the
efficient energy-aware system is difficult.

Based on our hypotheses, without a Pareto optimal analysis,
it is hard to demonstrate that an improved result is optimal. It
is possible that the reported result might in fact be suboptimal,
far from a Pareto optimal curve. In that case, the work done
could be wasted as the solutions do not encompass all the
necessary elements.

A. The FPGA Cache System
To study the cache parameters of an embedded system in

our experiment, we select an Atlys development board, a
complete, ready-to-use digital circuit development platform
based on a Xilinx Spartan-6 LX45 FPGA [2]. All of the
hardware platforms configured for the experiments are based
on Xilinx’s MicroBlaze, a FPGA soft processor core that
includes advanced architecture options like AXI or PLB
interface, Memory Management Unit (MMU), Floating-Point
Unit (FPU), instruction and data cache among other capabilities
[11]. For MicroBlaze, the AXI System Cache soft-peripheral
system used for the study is viewed as a direct-mapped L2
Cache and is highly configurable. The available cache
configuration options in the Atlys board include cache size,

cache line length, number of stream buffers, number of victims
and write-back storage policy (all options are listed in Figure
3). Note that the MicroBlaze Cache configuration parameters
are preset with some default values and the data cache write-
back storage policy is disabled by default.

B. Pareto Optimality for a Typical Power-Performance
Tradeoff
As an example of power-performance tradeoff analysis, the

design process we consider can be viewed as solving a bi-
objective optimization problem, where we seek a cache
configuration that minimizes two objectives, namely the
execution time of applications in the system, and the power
consumption of the system. Choices in configuring the system
are generated by varying multiple cache-related parameters. In
Pareto optimality, all objectives are treated equally. The
“optimal” solutions found in a Pareto analysis together form
the Pareto set or the Pareto front [17]. Solutions in the Pareto
set reflect tradeoffs in the achievement of the different
objectives. The selection of these solutions is based on the
concept of dominance—a solution is worse than another only if
it is so in all the objectives in the problem [1].

A scatter plot of the objective values corresponding to
Pareto optimal configurations (also called a Pareto curve) can
give system designers and software developers an overview of
how power and performance interact in the system. It can help
them design optimization algorithms for an efficient energy-
aware system that can handle a wide variety of power-
performance requirements. With these algorithms, an energy-
aware software system can have the ability to adapt its power
consumption behavior at different stages during program
execution. For example, when the battery level in a system is
low, applications may be forced to run at a degraded
performance level in order to induce a lower power
consumption rate. Algorithms could navigate possible choices
on the Pareto curve so that the performance of the applications
is minimally affected even with reduced power availability.

Fig. 1. A Pareto Optimal curve and clusters for typical power-performance
tradeoffs

We generally categorize the power-performance
requirements of a system into three types—performance-
favored, power-favored and balanced. The performance-
favored type is a system that demands fast execution time over

power consumption, while the power-favored type is a system
that demands low power consumption over faster execution
time. The balanced type is sought in a software system where
both power consumption and performance are deemed equally
important. Similarly, on a typical Pareto optimal curve, we can
categorize the solutions into three clusters—performance,
balanced and power (Figure 1). As can be seen in the figure,
configurations in the power cluster allow flexibility in adjusting
the performance of the applications, with no significant impact
on the power consumption. While we hypothesize that a Pareto
optimal curve will conform to this typical picture, the existence
(or non-existence) of one or more cluster types is a
characteristic of the application(s) under test. Further, a cluster
may be dense, including a large number of configurations to
choose from, while another may be sparse, with a significantly
fewer number of choices.

 RELATED WORK III.
Most related work either does not include the Pareto

optimality principle or analyzes power data derived from
power estimation models. For example, the research in [9]
focuses on high-level strategies through an approach for
mapping software design to power consumption and exploring
how high-level design decisions affect an application’s energy
usage. The results from this study show that applying design
patterns can both increase and decrease the amount of energy
used by an application; and design patterns within a category
do not impact energy usage in similar ways. While this is just
one study, the results imply that it is unlikely that impacts on
the energy usage can be precisely estimated by only
considering design-level artifacts. The research uses live power
data but focuses on reducing energy consumption based on
different software designs and does not address other non-
functional properties, the tradeoff process nor include Pareto
optimal analysis which are likely to be important in general.

Another interesting project related to our work is GISMOE
[6]. This project sets out an alternative vision for a software
development environment that can automatically generate a set
of candidate program implementations, called Pareto program
surface, with different non-functional attributes. At present,
GISMOE is a proposed high-level architecture and set of
principal features of the development environment. Although
their concept is related to our research, unlike our study, their
research is speculative rather than based on empirical evidence.
Their high-level abstractions of Pareto analysis might hide
some unexpected insights producing an inaccurate Pareto
surface. Unlike the approach proposed in GISMOE, we do not
transform or change any of the benchmark program code. We
instead focus on the cache system as that has been shown to
have impact on both the software performance and power
consumption [13]. Although our manual process of gathering
these data is tedious, the analysis results from CHStone
benchmark suite yield useful information and provide a
foundation toward efficient energy-aware systems and
GISMOE.

There is also research related to energy efficiency and
power-performance tradeoffs on the system cache [4, 10, 13].
However, the tradeoff techniques are either hardware/software
specific or require additional hardware or features built in. The

analyses are based on estimated power data using a power
model of memory access. Their main focus is for designing
optimal cache architecture and developing energy-efficient
cache hardware, not for the whole system in general. In
particular, the study in [10] is similar to ours but its main
objective is for designing power efficient cache hardware
systems. The study also does not include the Pareto optimality
in their tradeoffs and their power data for the analysis are based
on power models.

 EXPERIMENT IV.

A. Experimental Setup
To perform our experiment, we developed a custom power

monitoring and profiling tool for the Xilinx Atlys FPGA board
[2] using the APIs and drivers provided by the manufacturer.
The board is equipped with four on-board power-supply
monitors with accuracy within 1%. The tool also annotates
power consumption data with time stamps at a fine-grained
resolution with an average of about one sample every two
milliseconds. The monitoring tool simultaneously records
power data in real-time for all four power-supply rails. In our
experiments, we are primarily interested in the 1.2V and 1.8V
rails which correspond to CPU and memory operations.

The experiment uses the CHStone benchmark suite version
1.6 as standard workloads for creating power consumption
profiles. The suite is designed for C-based high-level synthesis,
and is easy to use since the programs are self-contained and
require no external libraries [5]. The CHStone suite consists of
12 programs taken from widely-used applications in the real
world from various application domains—four arithmetic
programs, four media applications, three cryptography
programs, and one processor. We are able to compile and run
11 out of the 12 programs on the Atlys board (presented in
Table I and Figure 3). For each hardware system with different
cache configurations, the 11 programs were executed and
profiled.

B. Experimental Method
There are three main steps in conducting the experiment—

implementing the hardware platforms, profiling the software’s
power and performance, and analyzing the resulting data.

1) Implementing the Hardware Platforms
In the first step, we use the Xilinx EDK tool to design and

implement each individual hardware platform with different
cache parameters for the experiments. The system design and
specifications of the hardware platforms are based on the Atlys
Base System specifications provided by the manufacturer [3].
The only non-default parameter in each platform is the cache
configuration parameter. The idea is not to build all hardware
platforms for every possible combination of cache
configurations but to vary only the controlled parameters from
the base system, while leaving the other parameter values at the
defaults. The purpose is to see how the dependent variable
impacts the power consumption and performance of the base
system. Based on the FPGA cache properties, we implement
36 hardware platforms, each labeled with a code—for example,
ICS-64B for Instruction Cache Size of 64B (the rest of the
parameters are set to the default values), DCS-512KB for Data
Cache Size of 512KB, DC-WB-VIC4 for Data Cache Write-

Back Storage Policy Enabled with 4 victims, DC-LL-4W for
Data Cache Line Length of 4 words (see Figure 3).

2) Software Power/Performance Profiling
The second step is to create a software project for each

CHStone benchmark program on each hardware platform using
the Xilinx SDK. With the combination of all 36 hardware
platforms and 11 benchmark programs, a total of 396 software
projects are built for the experiment. Since most of the
benchmark programs are small and have short execution time,
we modify the main programs to execute each benchmark
multiple times. This provides for longer execution time so that
the power monitoring tool can capture enough power data for
the calculations in the next step. Also, during the data
collection, all the print commands have been commented to
minimize the CPU overhead caused by the commands.

3) Analyzing the Result Data
Power/performance profile data collected from each

benchmark execution contain raw sample readings of power
and execution times. The average power of each power rail is
calculated as the sum of all power readings divided by the
number of samples read from the start to the end of the
program execution. The time of execution per iteration is
calculated by the total time of execution from start to end
divided by the number of times a benchmark was executed. For
396 projects, we have collected pairs of average power and
time of execution per iteration for each program execution.
These values are used in the Pareto optimal analysis of each
benchmark described next.

 RESULTS AND DISCUSSION V.
With the data gathered we identify the set of Pareto optimal

configurations for each benchmark. Note that the difference in
power/time values may be very small across certain
configurations; accordingly some points may look identical on
the plots. By using the K-Means clustering algorithm [12], the
Pareto front is divided into three clusters. These clusters may
not exactly signify the three cluster types as discussed in
Section II B; we manually merged one or more clusters
generated by the K-Means algorithm in order to retain the
underlying meaning of the three cluster types. A total of 11
such scatter plots are produced, one for each benchmark
program. Figure 2 shows plots and clusters for three programs
(ADPCM, AES and DFDIV) in the CHStone benchmark suite.
The result data is also translated into a profile table (Figure 3)
to be used in the power-performance tradeoff analysis.

A. Power-Performance Tradeoff Result
For each of the plots shown in Figure 2, the red dots (solid)

represent the Pareto optimal cache configurations, while the
blue points (hollow) represent suboptimal cache configurations.
The groupings depict the three clusters—power, balanced and
performance. Across all 11 benchmarks, we summarize the
experimental result as follows:

 (1) All graphs reveal promising Pareto optimal curves
showing that the cache is a good candidate for power-
performance optimization in an efficient energy-aware
embedded system development.

(2) The results reveal that only a small numbers of choices
of cache configurations (as low as 3 choices from the total of
36 cache configurations) are optimal for power-performance
tradeoffs (see Table I).

TABLE I. NUMBER OF PARETO OPTIMAL SOLUTIONS AND NEGLIGIBLE ONES
BY BENCHMARK PROGRAM

Benchmark
Programs

Number of
Pareto
optimal
solutions

Percentage of all
cache
configurations (out
of 36)

Number of
negligible
Pareto optimal
solutions

ADPCM 11 30.56% 2

GSM 5 13.89% 2

MOTION 3 8.33% 1

AES 9 25.00% 4

BLOWFISH 11 30.56% 0

SHA 8 22.22% 2

DFADD 4 11.11% 3

DFDIV 4 11.11% 1

DFMUL 3 8.33% 0

DFSIN 11 30.56% 1

MIPS 4 11.11% 1

Total 73 17

(3) The clusters show that a small set of configurations
optimally satisfies all three types of system requirements
(performance-favored, power-favored and balanced).

B. Optimal Cache Configuration Result
With some post-Pareto analysis, power/execution time data

from the benchmarks are put into a tradeoff profile table, as
shown in Figure 3. This Figure demonstrates how tradeoff
analysis result data can be displayed, providing the
power/performance visibility and initial guidelines for tradeoff
purposes. Other information can be added depending on the
requirements and selection criteria. In Figure 3, in addition to
the Pareto analysis results, there are also data from using the K-
Means and Normalized Distance to Ideal Point [12] methods as
the post-Pareto analysis for clustering the optimal points in the
scatter plots (e.g., Figure 2). As an example, our tradeoff
profile table contains 36 rows representing 36 cache
configurations and 11 columns for 11 benchmark programs.
The table cells highlighted with red (darkest in grayscale) are
the Pareto optimal cache configurations. The green (gray in
grayscale) and light gray cells are the 2nd and 3rd iterations of
Pareto analysis respectively. The second iteration of Pareto
analysis is done after removing the Pareto optimal
configurations from the design space. The 3rd iteration is done
after removing the configurations found optimal the 1st and
2nd iterations.

Multiple iterations of Pareto analysis is useful when the
power/performance data exhibit low variability and points on
the scatter plot are close together (as seen in Figure 2(a) inside

the balanced cluster). Some configurations result in similar
power-performance outputs—we found that some values are
equal up to the 3rd decimal place. The purpose of this analysis
is to provide additional choices from the suboptimal solutions,
which might be meaningful to developers or system designers.
It also provides a better picture of how each cache property
impacts power and performance on different benchmarks.

Fig. 2. Examples of Pareto optimal cache configurations and clusters of four
programs in the CHStone benchmark.

In Figure 3, all decimal numbers in the cells are the
Normalized Distance to the Ideal Point (0, 0) in normalized
scatter plots—the modified version of scatter plots in Figure 2
but with both scales of execution time and power axis
normalized to the scale from 0-10 units. The ideal point (0, 0)
signifies a system that can run a program at the fastest speed
(lowest execution time) and consume the lowest possible
power, both ideally zeroes. The bold, italic and underlined
numbers indicate a Pareto optimal configuration with the

lowest normalized distance to the ideal point, among all
optimal cache configurations for the same benchmark program.
For example, in the ADPCM column, data cache with write-
back policy enabled and number of victim 0 (row DC-WB-
VIC0) is one of the optimal cache configurations. In addition,
the bold italic and underlined notation CT(8.98525) implies
that 8.98525 is also the lowest distance to the ideal point (0, 0)
among the 11 optimal choices (red or darkest cells in ADPCM
column)—meaning that when running program ADPCM on the
system we just need to enable write back policy for the data
cache and set the number of victim of the cache to 0 to get the
optimal power-performance result.

In the red-highlighted cells (or darkest cells in grayscale),
there are also the letters CT, CB or CP. The letters indicate
clusters in the scatter plots or categories of the Pareto cache
configurations. CT stands for performance cluster, CB for
balance cluster and CP for power cluster. This means that, for
our selected example, DC-WB-VIC0 is an optimal cache
configuration categorized in the performance cluster (CT)—
meaning that it is one of the optimal choices suitable for
running ADPCM benchmark program in a system state where
performance is more important than power, or execution time
is more important than the power consumption.

By looking horizontally across all benchmarks in the
power-performance tradeoff profile (Figure 3) to count the
number of the red (or darkest) cells, and the data in Table II,
we can additionally summarize the optimal cache configuration
result related to cache properties as follows:

(1) Data and instruction cache size, and write-back policy
are the most influential cache properties in the power-
performance tradeoff analysis. They account for most of the
Pareto optimal configurations. In Figure 3, I-Cache, D-Cache
size and D-Cache Write-Back rows have the highest combined
number of red cells or darkest cells across all benchmark
programs. Also in Table II, the first three rows cover more than
95% of all optimal configurations. This means that when
trying to configure the cache parameters for the optimal
power/performance, we just look at these three cache properties
as the main starting points for power-performance
optimization.

(2) Data and instruction cache with larger size (2K and
above), line length, instruction cache’s string buffer and
number of victims did not contribute significantly in the
optimal achievement of a power-performance tradeoff. In
Figure 3, minor rows of cache size 2K and larger and the last
three major rows of the table do not have as many red cells as
the previous three cache properties. Table II shows that the last
three major rows only cover 4.1% of the optimal cache
configurations. It seems that they can be ignored for most
applications and are not the first candidate for power-
performance optimization. This is counterintuitive.

(3) Manipulating the write-back policy on the data cache is
recommended for performance-favored and balanced systems,
while the instruction and data cache size are recommended for
power-favored and balanced interactions. In Figure 3 and Table
II, the write-back policy row has the highest number of red
cells with CT (performance cluster) letters.

0

2

4

6

8

10

12

14

16

18

1.05 1.1 1.15 1.2 1.25 1.3

P
er

fo
rm

an
ce

 (e
xe

cu
ti

o
n

 t
im

e
p

er
 It

er
a

ti
o

n
 in

m

ill
is

e
co

n
d

s)

Average Power (watts)

ADPCM

Power Cluster

Balance Cluster

Performance Cluster

(a)

0

1

2

3

4

5

6

7

8

1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22

P
e

rf
o

rm
an

ce
 (e

xe
cu

ti
o

n
 t

im
e

 p
e

r
It

e
ra

ti
o

n
 in

m

ill
is

ec
o

n
d

s)

Average Power (watts)

AES

(b)

Power Cluster

Balance Cluster

Performance Cluster

the five Pareto points in this group can be reduced in to one, the left-most one.

2.95

3

3.05

3.1

3.15

3.2

3.25

1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17P
er

fo
rm

an
ce

(e
xe

cu
ti

o
n

 ti
m

e
 p

e
r

it
e

ra
ti

o
n

 in

m
ill

is
ec

o
n

d
s)

Average Power (Watts)

DFDIV

(c)

Power Cluster

Balance Cluster

Performance Cluster

(4) Smaller instruction cache size (smaller than 2K) is
recommended for power-favored optimization since this
property produces the lowest power consumption with the
graceful degradation in performance. In Table II, the
instruction cache size row has the highest number of optimal
configurations categorized in power cluster (CP). Also, in
Figure 3, minor rows of I-Cache size from 64 to 2K bytes cover
the majority of the optimal cache configurations. While the I-
Cache with larger size than 2K does not produce many optimal
cache configurations.

C. Insight Summary
Based on our observations from the experimental results,

we summarize our insights as follows:

1) Only a few cache configurations are optimal for power-
performance tradeoffs

All 11 benchmarks reveal only a small number of optimal
(non-dominated) cache configurations from a relatively large
cache configuration space. For example, as summarized in
Table I, the smallest number of optimal cache configurations
are from the MOTION and DFMUL benchmarks, with only 3
Pareto points from 36. These account for about 8% of the cache
configuration space that we evaluated and therefore the other
92% could have been ignored or removed from the solution
space. On average, the benchmark programs produce 6.6 Pareto
points or about 18% of the solution space. The number is
relatively small and more than 80% of solution space can be
disregarded or avoided on average. Smaller optimal choices
can contribute to less complexity in the calculations of an

optimization algorithm. In this case, there are fewer options for
the system to switch the cache configuration parameters and
adapt itself to its current state of power/performance
requirements.

2) Optimal cache configurations are sparse, inconsistent
and sometimes counterintutive

The results are sparse and inconsistent because not all
Pareto curves are in the expected Pareto shape. As seen in the
examples, Figure 2(a), 2(b) and 2(c), some sections of the
curves form vertical or horizontal lines. This means that by
changing from one optimal configuration to another on the
Pareto curve, there is no significant improvement on either
power consumption or system performance. In this case, some
optimal solutions can be ignored and one solution on each
section can be selected as the representative optimal solution in
the group. We call the ignored optimal solutions “negligible”
because, by definition, they are insignificant or unimportant as
to be not worth considering.

For example, in Figure 2(a) and 2(b) in the performance
clusters, most of the optimal cache configuration points are flat
and form horizontal lines on the performance axis (time of
program execution). By changing from one optimal
configuration to another, there is not a significant gain in
performance. Therefore, only one optimal solution should be
retained in this case, the one with the lowest power
consumption (best solution in term of power consumption),
which is the left-most one in the cluster.

Fig. 3. A power-performance tradeoff profile of the Pareto analysis result (CT = Performance cluster, CB = Balance cluster and CP = Power cluster; bold, italic
and underlined numbers indicate the minimum normalized distance to ideal point of a benchmark)

 Similarly, in Figure 2(b), the five optimal configurations in
the performance cluster can be collapsed into one optimal
solution; the other four can be ignored because they do not
create any significant performance improvement. In Figure
2(c) inside the power cluster, the two cache configurations on
the DFDIV plot graph form a straight vertical line on the power
axis. There is one additional negligible Pareto point (the top
one) that can also be removed from the optimal cache
configurations. All negligible Pareto points in the benchmark
programs are presented in Table I. Not all plot graphs are
shown in the paper due to limited space.

TABLE II. COUNTS OF FIRST ITERATION PARETO POINTS BY CACHE
PROPERTY AND CLUSTER

Power
Cluster

(CP)

Performance
Cluster (CT)

Balance
Cluster
(CB)

Total

I-Cache Size 20 3 8 31(42.5%)

D-Cache
Size 1 7 16 24 (32.9%)

Write-Back
Policy 1 9 5 15 (20.5%)

Line Length 0 2 0 2 (2.7%)

I-Cache
String
Buffers

0 1 0 1(1.4%)

I-Cache # of
Victims 0 0 0 0 (0.00%)

Total 22 22 29 73 (100%)

Our analysis also reveals unexpected insights from these
irregular Pareto shapes and the negligible cache configurations.
One most obvious result is revealed by AES benchmark in
Figure 2(b) inside the performance cluster. Four out of the five
optimal cache configurations inside the cluster are related to
data cache write-back policy with different number of victims
(0, 2, 4 and 8). A victim is a cache line that is evicted from the
cache. If no victims are saved, all evicted lines must be read
from memory again, when they are needed. Conventional
wisdom states that by saving the most recent lines data can be
fetched much faster, thus improving performance [11].
However, for this particular AES benchmark, our result clearly
shows that not all victim policies contribute to significant
improvement in performance. This evidence indicates that the
conventional wisdom is not always accurate.

Additionally, in Figure 2(c), the example is not so obvious
but there is a small evidence of counterintuitive insight. In the
power cluster, the two optimal cache configurations are related
to instruction cache size—64B and 256B respectively. In this
case, changing from one I-Cache size to another does not yield
significantly different power consumption. This is somewhat
unexpected and contradicts studies relating cache size and
system power consumption. For example, a study in [10] states
that “increasing cache line sizes tends to consume more
energy” and, for I-Cache size less than 4K, the smaller size
tends to consume more power.

3) There exists cache configurations with certain properties
that do not produce any Pareto optimal points

In our cache solution space, we found that cache
configurations related to I-Cache victims (the last row in
Figure 3 and Table II) do not produce any Pareto points. Also,
cache configurations with I-Cache string buffer and D-Cache/I-
Cache line length do not produce a significant number of
Pareto points (second and third from the last row in Figure 3
and Table II). These cache properties are therefore not
candidates for power-performance optimization and can be
ignored completely. Our rankings in Table II and colored cells
in Figure 3 can help us identify the “hot spots”, the best
candidates for power-performance optimization and the areas
having less impact on the system’s performance and power
consumption. From our case study, the hot spots for cache
configurations are the top three in Table II, in which they
produce the most red cells in Figure 3. The table also shows
that up to 50% of the total effort put into the cache based
optimization can be cut (last 3 out of six cache properties in the
table).

4) There exists at least one cache configuration that can
fulfill each of the typical power-performance tradeoff
requirements

As mentioned in Section II B, our analysis shows that there
exist optimal cache configurations that can fulfil the three types
of system requirements for a typical power-performance
tradeoff—power-favored, performance-favored and balanced.
As shown in Figure 2 and summarized in Table II, the Pareto
points can be clustered into performance, power and balance
clusters using the K-Means algorithm, the same way as the
typical Pareto Optimal curve and clusters in Figure 1. For
power-favored, performance-favored and balanced
requirements, our results recommend the cache configurations
related to instruction cache size (I-Cache Size), data cache size
(D-Cache Size) and Write-Back policy respectively.

D. Threats to Validity
There are several validity threats to the design of this study.

For threats to internal validity, our study is limited to the
configurable cache system of the FPGA embedded system, one
aspect of the energy-aware system. There are also other areas
at different system layers having impact on the system power
consumption and execution times. The cache configuration
results might be different if configured differently along with
other system parameters. In extending this work we should also
include other areas or combinations of different areas and
parameters to capture more data and detailed statistical analysis
as well as allowing a broader coverage on the power-
performance tradeoffs. Also, the configurable cache systems
are only based on the configurable setting and property values
available in the Atlys FPGA. For other embedded systems,
there might be different tunable cache configurations.

For each hardware construction, we only change a single
cache parameter value at a time while leaving the others the
default values. Therefore, the power consumption and
execution values are only based on the default cache
configuration as provided by the manufacturer. This does not
cover all combinations of available cache configurations. For
more complete results, more hardware platforms can be built

with other combination of the available cache setting values
and more data can be collected for the better statistical
analysis. Also, the power consumption data of the system are
only of the CPU and Memory. There are also two other power
monitor rails of Video/Audio and Ethernet ports have been
ignored. This might affect the result if we also include in the
analysis.

During the data collection process, because we have 396
software projects to execute, we only execute each benchmark
on each hardware platform three times. Also, each benchmark
program is set to execute multiple iterations for each run to
make sure each benchmark execute in about 10 seconds.
Therefore, the measured numbers can contain some overhead
from these loops that control the executions. If we increase the
number of executions, the data reading and statistical data
would be more accurate. Also, the Pareto analysis result will be
more accurate if conducted on a larger solution space. Our
solution space might not large enough. The front of our Pareto
optimal values is therefore considered an approximation to the
“true” front. Further runs of the system with more cache
configurations may improve the front approximation. Our
selection of using Pareto optimality and the post-Pareto
methods for the analysis is for demonstration purpose only.
There are many other methods that can also be used to solve
the power-performance tradeoff problems.

For threats to external validity, we try to generalize the
result of our study to all software application domains. We
select the CHStone benchmark suite because it covers multiple
domains of real-world software applications—media,
cryptography, arithmetic and processor. However, processor
domain only contains one benchmark which might not have
enough coverage. And, the generalizability of the result is only
for these four software domains. There is also a risk that the
result might not reflect all domains of complex software
applications, since all the benchmarks are small programs and
specially designed for embedded systems.

 CONCLUSION VI.
As a case study, our research demonstrates a detailed

power-performance optimization process that can be used in
developing efficient energy-aware systems. Because the
process is tedious, it is crucial that developers and researchers
understand the manual process and are aware that unexpected
insights discovery is important and not easy to do in real
systems. In the process, we also gather some basic background
of how we can use Pareto optimality in power-performance
tradeoffs; how power-performance requirements and the
optimal solutions can be categorized; and how the data are
collected and analyzed and used. Along with this, we provide
some useful test results of FPGA cache configurations and
demonstrate that the Pareto optimal cache configurations do
exist in the CHStone benchmarks.

Our results suggest that some optimal configurations might
not be as expected when analyzing the live power consumption
data. We observe that the optimal configurations are sparse in
the cache design space, are inconsistent across the benchmark
and counterintuitive in many cases, making power-
performance optimization processes hard to implement without
analysis from actual data. Our results also show that even

something very low-level like the cache system (that might not
be captured in a power model) can impact the power-
performance analysis significantly and unpredictably. These
results motivate the need for tools and methodologies that
operate directly on data gathered from the systems themselves.

REFERENCES
[1] J. Arora. Introduction to optimum design. Academic Press, 2004.
[2] Digilent Inc., “Atlys Board Reference Manual”, 2012,

http://www.digilentinc.com/Data/Products/ATLYS/Atlys_rm.pdf.
[3] Digilent Inc., “Atlys board support files for EDK BSB wizard. Supports

EDK 13.2 - 14.2 for both AXI and PLB buses”, 2012,
http://www.digilentinc.com/Data/Products/ATLYS/Atlys_BSB_Support
_v_3_6.zip.

[4] A. Gordon-Ross, F. Vahid, and N. D. Dutt. “Fast configurable-cache
tuning with a unified second-level cache.” In IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, pp. 80-91, 2009.

[5] Y. Hara., H. Tomiyama, S. Honda, H. Takada, and K. Ishii. “CHStone:
A benchmark program suite for practical c-based high-level synthesis.”
In 2008 IEEE International Symposium on Circuits and Systems (ISCAS
2008), pp. 1192-1195, IEEE, 2008.

[6] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A.
Clark. “The GISMOE challenge: constructing the pareto program
surface using genetic programming to find better programs (keynote
paper).” In 2012 Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2012), pp.1-14,
3-7 Sept 2012.

[7] J. C. McCullough, A. Yuvraj, J. Chandrashekar, S. Kuppuswamy, A. C.
Snoeren, and R. K. Gupta. “Evaluating the effectiveness of model-based
power characterization.” In USENIX Annual Technical Conf., 2011.

[8] C. J. Petrie, T. A. Webster, and M. R. Cutkosky. Using Pareto
Optimality to Coordinate Distributed Agents. AIEDAM Special Issue on
Conflict Management Vol. 9, pp. 269-281, 1995.

[9] C. Sahin, F. Cayci, I.L.M Gutierrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh. “Initial explorations on design pattern energy usage.”
In 2012 First International Workshop on Green and Sustainable
Software (GREENS), pp.55-61, IEEE, 2012.

[10] C. Su and A. M. Despain. “Cache design trade-offs for power and
performance optimization: a case study.” In Proceedings of the 1995
International Symposium on Low Power Design, ACM, 1995.

[11] Xilinx Inc., “Field Programmable Gate Array (FPGA),” 2013,
http://www.xilinx.com/training/fpga/fpga-field-programmable-gate-
array.htm.

[12] N. Lopez, O. Aguirre, J. F. Espiritu, and H. A. Taboada. “Using game
theory as a post-Pareto analysis for renewable energy integration
problems considering multiple objectives.” In Proceedings of the 41st
International Conference on Computers & Industrial Engineering, pp.
678-683, 2011.

[13] C. Zhang, F. Vahid, and W. Najjar. “A highly configurable cache
architecture for embedded systems.” In Proceedings of 30th Annual
International Symposium on Computer Architecture, IEEE, 2003.

[14] F. Rezzi, L. Collamati, M. Costagliola, and M. Cutrupi. “Battery
management in mobile devices.” In Frequency References on Power
Management for SoC and Smart Wireless Interfaces, pp.147-168,
Springer International Publishing, 2014.

[15] R. Mittal, A. Kansal, and R. Chandra. “Empowering developers to
estimate app energy consumption.” In Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, pp.
317-328, ACM, 2012.

[16] S. Rivoire , P. Ranganathan , and C. Kozyrakis, “A comparison of high-
level full-system power models.” In Proceedings of the 2008
Conference on Power Aware Computing and Systems, pp.3-3, 2008.

[17] J. Horn, N. Nafpliotis, and D. E. Goldberg. “A niched Pareto genetic
algorithm for multiobjective optimization.” In Proceedings of the First
IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computational Intelligence, vol.1, pp. 82-87, 1994.

