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Abstract—Optimizing the power-performance tradeoff of a 
software system is challenging as the design space is large and 
live data is difficult to obtain. As a result, many power reduction 
techniques are based on power models which may not represent 
the full complexity of the system being analyzed.  In this paper, in 
contrast, we propose a process for performing a tradeoff analysis 
using live power/performance data. As a case study, we conduct 
an empirical evaluation of the power/performance impact of 
cache configuration on embedded systems.  We gather live power 
consumption and execution time data for the programs in the 
CHStone benchmark suite on an embedded processor with 
configurable cache parameters and perform a Pareto analysis on 
these data to identify the optimal cache configurations. We 
observe that the optimal configurations are sparse in the design 
space, are inconsistent across the benchmark, and are 
counterintuitive in some cases.  Our results reveal interesting, 
unexpected insights motivating the need for tools and 
methodologies that automate this process and operate directly on 
data gathered from the systems. 

Keywords—Energy; Power; Efficiency; Performance; Tradeoff; 
Optimization; Cache; FPGA; Pareto 

 INTRODUCTION I.
Power-performance optimization is challenging and 

becoming increasingly important among modern computer 
systems, especially for those that rely on battery power.  The 
sophistication of software applications and the increasing needs 
of rich media and big data have made today’s computer 
systems power-hungry, while battery standards are not keeping 
pace with the demand [14].  Therefore, many researchers have 
been developing optimization techniques to extend battery life 
and reduce power consumption while maintaining other 
performance characteristics at acceptable levels.  

Many power reduction techniques are based on power 
models which might not represent the full complexity of the 
system being analyzed. Most computer systems are not 
originally designed to support power optimization so the 
onboard power monitoring systems are not included, or if 
included, they are not explicitly designed to measure the power 
consumption of software applications [7, 15]. Many power 
models have been developed to support power optimization [4, 
10, 13, 15, 16]. They are mostly intended to evaluate a specific 
platform or specific technology [16]. As with all models, if 
there are errors with calibration or inaccuracies in the models, 
or if they are used incorrectly, the results can be skewed or 
different from those based on analysis of live power 

consumption data [7]. In order to avoid the use of power 
models, we focus on the use of live data. 

Optimization with live data is difficult: the process of 
gathering and analyzing these data is tedious and understanding 
conflicting performance attributes is challenging. In software 
engineering, performance and power consumption are viewed 
as non-functional properties.  They are considered conflicting 
attributes and are often traded off, making them difficult and 
time consuming to optimize [6]. Many researchers point out 
that high-level strategies can help in trading off the conflicting 
properties and solving the multi-objective optimization 
problem [6, 9]. Although their results are intuitive and feasible, 
there are still many open challenges and the strategies are far 
from being adopted into practice.  

In this paper, as a case study, we conduct an experiment on 
an embedded hardware platform that can run a wide variety of 
software applications while providing live power consumption 
data. We investigate one aspect of the system, the cache 
system, because it has a major impact on both power 
consumption and execution time, and virtually all computer 
systems use caches [10]. Several other studies have shown that 
the cache has a large effect on the overall system performance 
and also accounts for a large amount of total energy 
consumption in embedded systems; up to 50% of total energy 
usage in some cases [13]. Also, there are many tunable 
parameters in most cache designs [11, 13].   

We select Pareto optimality as the main principle to solve 
the bi-objective optimization problem because it is well-known 
and has been applied in many fields, including engineering and 
economics where optimal decisions need to be made in the 
presence of tradeoffs between two or more conflicting 
objectives [1]. Our goals are to demonstrate a detailed manual 
optimization process and to convey the basic concept of power-
performance tradeoff in an energy-aware system and to 
understand the impact that different cache parameters have (or 
do not have) on the power/time tradeoff in order to better 
understand how an automated optimization methodology for 
performing this analysis might work.  

We consider power consumption data (watts) for the 
analysis instead of energy (joules) because we want to look at 
the system’s power consumption and performance as a whole 
not the specific software being executed. We consider these 
properties to be independent from each other. Power 
consumption and execution time are just a few of the many 
performance and non-functional properties of a system [7]. Our 
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goal is to observe the interactions between the  system’s  power  
consumption and execution time as effectuated by different 
cache system parameters when executing different benchmark 
programs.  

The contributions of this paper are threefold: (1) the 
demonstration of a detailed manual process for power-
performance tradeoff analysis using Pareto optimality and how 
some unexpected insights can be discovered and categorized. 
(2) To provide evidence that some optimal configurations 
might not be as expected when analyzing the live power 
consumption data. Our test results show that the optimal 
configurations can be sparse, inconsistent and in many cases 
counterintuitive, making automated optimization processes 
hard to implement without analysis from actual data. (3) To 
provide some useful test results of FPGA cache configurations 
and to demonstrate that the optimal cache configurations do 
exist in the selected CHStone benchmarks. 

 BACKGROUND II.
In the existing literature on power/performance tradeoffs, 

proposed techniques target improvements over the base system 
without using Pareto optimality. They often fail to address the 
overall space of possible solutions without knowing whether 
their chosen solution is optimal (where they are on the Pareto 
front).  Much of the research is conducted without the 
understanding of the power-performance interactions at the 
system level. As stated in [8], observation of a lack of Pareto 
optimality is an alert to an opportunity to improve the design 
that might be missed, especially when no single engineer 
understands all the design dependencies. By applying the 
Pareto optimality principle with all possible solutions for the 
development of an efficient energy-aware system, we come up 
with the following hypothesis for the experiment: 

x There exists a Pareto optimal curve on a solution 
space so that power and performance can be traded 
off at different weights. 

x If the curve is sparse, the development of the 
efficient energy-aware system is difficult.   

Based on our hypotheses, without a Pareto optimal analysis, 
it is hard to demonstrate that an improved result is optimal.  It 
is possible that the reported result might in fact be suboptimal, 
far from a Pareto optimal curve. In that case, the work done 
could be wasted as the solutions do not encompass all the 
necessary elements.  

A. The FPGA Cache System 
To study the cache parameters of an embedded system in 

our experiment, we select an Atlys development board, a 
complete, ready-to-use digital circuit development platform 
based on a Xilinx Spartan-6 LX45 FPGA [2]. All of the 
hardware platforms configured for the experiments are based 
on   Xilinx’s   MicroBlaze,   a   FPGA   soft   processor   core that 
includes advanced architecture options like AXI or PLB 
interface, Memory Management Unit (MMU), Floating-Point 
Unit (FPU), instruction and data cache among other capabilities 
[11]. For MicroBlaze, the AXI System Cache soft-peripheral 
system used for the study is viewed as a direct-mapped L2 
Cache and is highly configurable. The available cache 
configuration options in the Atlys board include cache size, 

cache line length,  number of stream buffers, number of victims 
and write-back storage policy (all options are listed in Figure 
3). Note that the MicroBlaze Cache configuration parameters 
are preset with some default values and the data cache write-
back storage policy is disabled by default. 

B. Pareto Optimality for a Typical Power-Performance 
Tradeoff 
As an example of power-performance tradeoff analysis, the 

design process we consider can be viewed as solving a bi-
objective optimization problem, where we seek a cache 
configuration that minimizes two objectives, namely the 
execution time of applications in the system, and the power 
consumption of the system. Choices in configuring the system 
are generated by varying multiple cache-related parameters. In 
Pareto optimality, all objectives are treated equally. The 
“optimal”   solutions   found   in   a   Pareto   analysis together form 
the Pareto set or the Pareto front [17]. Solutions in the Pareto 
set reflect tradeoffs in the achievement of the different 
objectives. The selection of these solutions is based on the 
concept of dominance—a solution is worse than another only if 
it is so in all the objectives in the problem [1]. 

A scatter plot of the objective values corresponding to 
Pareto optimal configurations (also called a Pareto curve) can 
give system designers and software developers an overview of 
how power and performance interact in the system. It can help 
them design optimization algorithms for an efficient energy-
aware system that can handle a wide variety of power-
performance requirements. With these algorithms, an energy-
aware software system can have the ability to adapt its power 
consumption behavior at different stages during program 
execution. For example, when the battery level in a system is 
low, applications may be forced to run at a degraded 
performance level in order to induce a lower power 
consumption rate. Algorithms could navigate possible choices 
on the Pareto curve so that the performance of the applications 
is minimally affected even with reduced power availability. 

 
Fig. 1.  A Pareto Optimal curve and clusters for typical power-performance 
tradeoffs 

We generally categorize the power-performance 
requirements of a system into three types—performance-
favored, power-favored and balanced. The performance-
favored type is a system that demands fast execution time over 



power consumption, while the power-favored type is a system 
that demands low power consumption over faster execution 
time. The balanced type is sought in a software system where 
both power consumption and performance are deemed equally 
important. Similarly, on a typical Pareto optimal curve, we can 
categorize the solutions into three clusters—performance, 
balanced and power (Figure 1). As can be seen in the figure, 
configurations in the power cluster allow flexibility in adjusting 
the performance of the applications, with no significant impact 
on the power consumption. While we hypothesize that a Pareto 
optimal curve will conform to this typical picture, the existence 
(or non-existence) of one or more cluster types is a 
characteristic of the application(s) under test. Further, a cluster 
may be dense, including a large number of configurations to 
choose from, while another may be sparse, with a significantly 
fewer number of choices.  

 RELATED WORK III.
Most related work either does not include the Pareto 

optimality principle or analyzes power data derived from 
power estimation models. For example, the research in [9] 
focuses on high-level strategies through an approach for 
mapping software design to power consumption and exploring 
how high-level  design  decisions  affect  an  application’s  energy  
usage. The results from this study show that applying design 
patterns can both increase and decrease the amount of energy 
used by an application; and design patterns within a category 
do not impact energy usage in similar ways. While this is just 
one study, the results imply that it is unlikely that impacts on 
the energy usage can be precisely estimated by only 
considering design-level artifacts. The research uses live power 
data but focuses on reducing energy consumption based on 
different software designs and does not address other non-
functional properties, the tradeoff process nor include Pareto 
optimal analysis which are likely to be important in general.  

Another interesting project related to our work is GISMOE 
[6]. This project sets out an alternative vision for a software 
development environment that can automatically generate a set 
of candidate program implementations, called Pareto program 
surface, with different non-functional attributes. At present, 
GISMOE is a proposed high-level architecture and set of 
principal features of the development environment. Although 
their concept is related to our research, unlike our study, their 
research is speculative rather than based on empirical evidence. 
Their high-level abstractions of Pareto analysis might hide 
some unexpected insights producing an inaccurate Pareto 
surface. Unlike the approach proposed in GISMOE, we do not 
transform or change any of the benchmark program code. We 
instead focus on the cache system as that has been shown to 
have impact on both the software performance and power 
consumption [13]. Although our manual process of gathering 
these data is tedious, the analysis results from CHStone 
benchmark suite yield useful information and provide a 
foundation toward efficient energy-aware systems and 
GISMOE.  

There is also research related to energy efficiency and 
power-performance tradeoffs on the system cache [4, 10, 13]. 
However, the tradeoff techniques are either hardware/software 
specific or require additional hardware or features built in. The 

analyses are based on estimated power data using a power 
model of memory access. Their main focus is for designing 
optimal cache architecture and developing energy-efficient 
cache hardware, not for the whole system in general. In 
particular, the study in [10] is similar to ours but its main 
objective is for designing power efficient cache hardware 
systems. The study also does not include the Pareto optimality 
in their tradeoffs and their power data for the analysis are based 
on power models.  

 EXPERIMENT IV.

A. Experimental Setup 
To perform our experiment, we developed a custom power 

monitoring and profiling tool for the Xilinx Atlys FPGA board 
[2] using the APIs and drivers provided by the manufacturer. 
The board is equipped with four on-board power-supply 
monitors with accuracy within 1%. The tool also annotates 
power consumption data with time stamps at a fine-grained 
resolution with an average of about one sample every two 
milliseconds. The monitoring tool simultaneously records 
power data in real-time for all four power-supply rails. In our 
experiments, we are primarily interested in the 1.2V and 1.8V 
rails which correspond to CPU and memory operations.  

The experiment uses the CHStone benchmark suite version 
1.6 as standard workloads for creating power consumption 
profiles. The suite is designed for C-based high-level synthesis, 
and is easy to use since the programs are self-contained and 
require no external libraries [5].  The CHStone suite consists of 
12 programs taken from widely-used applications in the real 
world from various application domains—four arithmetic 
programs, four media applications, three cryptography 
programs, and one processor. We are able to compile and run 
11 out of the 12 programs on the Atlys board (presented in 
Table I and Figure 3). For each hardware system with different 
cache configurations, the 11 programs were executed and 
profiled.  

B. Experimental Method 
There are three main steps in conducting the experiment—

implementing   the  hardware  platforms,  profiling   the  software’s  
power and performance, and analyzing the resulting data.  

1) Implementing the Hardware Platforms 
In the first step, we use the Xilinx EDK tool to design and 

implement each individual hardware platform with different 
cache parameters for the experiments. The system design and 
specifications of the hardware platforms are based on the Atlys 
Base System specifications provided by the manufacturer [3]. 
The only non-default parameter in each platform is the cache 
configuration parameter. The idea is not to build all hardware 
platforms for every possible combination of cache 
configurations but to vary only the controlled parameters from 
the base system, while leaving the other parameter values at the 
defaults. The purpose is to see how the dependent variable 
impacts the power consumption and performance of the base 
system.  Based on the FPGA cache properties, we implement 
36 hardware platforms, each labeled with a code—for example, 
ICS-64B for Instruction Cache Size of 64B (the rest of the 
parameters are set to the default values), DCS-512KB for Data 
Cache Size of 512KB, DC-WB-VIC4 for Data Cache Write-



Back Storage Policy Enabled with 4 victims, DC-LL-4W for 
Data Cache Line Length of 4 words (see Figure 3). 

2) Software Power/Performance Profiling 
The second step is to create a software project for each 

CHStone benchmark program on each hardware platform using 
the Xilinx SDK. With the combination of all 36 hardware 
platforms and 11 benchmark programs, a total of 396 software 
projects are built for the experiment. Since most of the 
benchmark programs are small and have short execution time, 
we modify the main programs to execute each benchmark 
multiple times. This provides for longer execution time so that 
the power monitoring tool can capture enough power data for 
the calculations in the next step. Also, during the data 
collection, all the print commands have been commented to 
minimize the CPU overhead caused by the commands.  

3) Analyzing the Result Data 
Power/performance profile data collected from each 

benchmark execution contain raw sample readings of power 
and execution times. The average power of each power rail is 
calculated as the sum of all power readings divided by the 
number of samples read from the start to the end of the 
program execution. The time of execution per iteration is 
calculated by the total time of execution from start to end 
divided by the number of times a benchmark was executed. For 
396 projects, we have collected pairs of average power and 
time of execution per iteration for each program execution. 
These values are used in the Pareto optimal analysis of each 
benchmark described next.  

 RESULTS AND DISCUSSION V.
With the data gathered we identify the set of Pareto optimal 

configurations for each benchmark. Note that the difference in 
power/time values may be very small across certain 
configurations; accordingly some points may look identical on 
the plots. By using the K-Means clustering algorithm [12], the 
Pareto front is divided into three clusters. These clusters may 
not exactly signify the three cluster types as discussed in 
Section II B; we manually merged one or more clusters 
generated by the K-Means algorithm in order to retain the 
underlying meaning of the three cluster types. A total of 11 
such scatter plots are produced, one for each benchmark 
program. Figure 2 shows plots and clusters for three programs 
(ADPCM, AES and DFDIV) in the CHStone benchmark suite. 
The result data is also translated into a profile table (Figure 3) 
to be used in the power-performance tradeoff  analysis.  

A. Power-Performance Tradeoff Result 
For each of the plots shown in Figure 2, the red dots (solid) 

represent the Pareto optimal cache configurations, while the 
blue points (hollow) represent suboptimal cache configurations. 
The groupings depict the three clusters—power, balanced and 
performance. Across all 11 benchmarks, we summarize the 
experimental result as follows: 

 (1) All graphs reveal promising Pareto optimal curves 
showing that the cache is a good candidate for power-
performance optimization in an efficient energy-aware 
embedded system development.  

(2) The results reveal that only a small numbers of choices 
of cache configurations (as low as 3 choices from the total of 
36 cache configurations) are optimal for power-performance 
tradeoffs (see Table I).  

TABLE I.  NUMBER OF PARETO OPTIMAL SOLUTIONS AND NEGLIGIBLE ONES 
BY BENCHMARK PROGRAM 

Benchmark 
Programs 

Number of 
Pareto 
optimal 
solutions 

Percentage of all 
cache 
configurations (out 
of 36) 

Number of 
negligible 
Pareto optimal 
solutions  

ADPCM 11 30.56% 2 

GSM 5 13.89% 2 

MOTION 3 8.33% 1 

AES 9 25.00% 4 

BLOWFISH 11 30.56% 0 

SHA 8 22.22% 2 

DFADD 4 11.11% 3 

DFDIV 4 11.11% 1 

DFMUL 3 8.33% 0 

DFSIN 11 30.56% 1 

MIPS 4 11.11% 1 

Total 73  17 

 

(3) The clusters show that a small set of configurations 
optimally satisfies all three types of system requirements 
(performance-favored, power-favored and balanced). 

B. Optimal Cache Configuration Result 
With some post-Pareto analysis, power/execution time data 

from the benchmarks are put into a tradeoff profile table, as 
shown in Figure 3. This Figure demonstrates how tradeoff 
analysis result data can be displayed, providing the 
power/performance visibility and initial guidelines for tradeoff 
purposes.  Other information can be added depending on the 
requirements and selection criteria. In Figure 3, in addition to 
the Pareto analysis results, there are also data from using the K-
Means and Normalized Distance to Ideal Point [12] methods as 
the post-Pareto analysis for clustering the optimal points in the 
scatter plots (e.g., Figure 2). As an example, our tradeoff 
profile table contains 36 rows representing 36 cache 
configurations and 11 columns for 11 benchmark programs.  
The table cells highlighted with red (darkest in grayscale) are 
the Pareto optimal cache configurations. The green (gray in 
grayscale) and light gray cells are the 2nd and 3rd iterations of 
Pareto analysis respectively. The second iteration of Pareto 
analysis is done after removing the Pareto optimal 
configurations from the design space. The 3rd iteration is done 
after removing the configurations found optimal the 1st and 
2nd iterations. 

Multiple iterations of Pareto analysis is useful when the 
power/performance data exhibit low variability and points on 
the scatter plot are close together (as seen in Figure 2(a) inside 



the balanced cluster). Some configurations result in similar 
power-performance outputs—we found that some values are 
equal up to the 3rd decimal place. The purpose of this analysis 
is to provide additional choices from the suboptimal solutions, 
which might be meaningful to developers or system designers. 
It also provides a better picture of how each cache property 
impacts power and performance on different benchmarks. 

 
Fig. 2.  Examples of Pareto optimal cache configurations and clusters of four 
programs in the CHStone benchmark. 

In Figure 3, all decimal numbers in the cells are the 
Normalized Distance to the Ideal Point (0, 0) in normalized 
scatter plots—the modified version of scatter plots in Figure 2 
but with both scales of execution time and power axis 
normalized to the scale from 0-10 units.  The ideal point (0, 0) 
signifies a system that can run a program at the fastest speed 
(lowest execution time) and consume the lowest possible 
power, both ideally zeroes. The bold, italic and underlined 
numbers indicate a Pareto optimal configuration with the 

lowest normalized distance to the ideal point, among all 
optimal cache configurations for the same benchmark program. 
For example, in the ADPCM column, data cache with write-
back policy enabled and number of victim 0 (row DC-WB-
VIC0) is one of the optimal cache configurations. In addition, 
the bold italic and underlined notation CT(8.98525) implies 
that 8.98525 is also the lowest distance to the ideal point (0, 0) 
among the 11 optimal choices (red or darkest cells in ADPCM 
column)—meaning that when running program ADPCM on the 
system we just need to enable write back policy for the data 
cache and set the number of victim of the cache to 0 to get the 
optimal power-performance result.   

In the red-highlighted cells (or darkest cells in grayscale), 
there are also the letters CT, CB or CP. The letters indicate 
clusters in the scatter plots or categories of the Pareto cache 
configurations. CT stands for performance cluster, CB for 
balance cluster and CP for power cluster. This means that, for 
our selected example,   DC-WB-VIC0 is an optimal cache 
configuration categorized in the performance cluster (CT)—
meaning that it is one of the optimal choices suitable for 
running ADPCM benchmark program in a system state where 
performance is more important than power, or execution time 
is more important than the power consumption.  

By looking horizontally across all benchmarks in the 
power-performance tradeoff profile (Figure 3) to count the 
number of the red (or darkest) cells, and the data in Table II, 
we can additionally summarize the optimal cache configuration 
result related to cache properties as follows: 

(1) Data and instruction cache size, and write-back policy 
are the most influential cache properties in the power-
performance tradeoff analysis. They account for most of the 
Pareto optimal configurations. In Figure 3, I-Cache, D-Cache 
size and D-Cache Write-Back rows have the highest combined 
number of red cells or darkest cells across all benchmark 
programs. Also in Table II, the first three rows cover more than 
95% of all optimal configurations.  This means that when 
trying to configure the cache parameters for the optimal 
power/performance, we just look at these three cache properties 
as the main starting points for power-performance 
optimization. 

(2) Data and instruction cache with larger size (2K and 
above),   line   length,   instruction   cache’s   string   buffer   and  
number of victims did not contribute significantly in the 
optimal achievement of a power-performance tradeoff. In 
Figure 3, minor rows of cache size 2K and larger and the last 
three major rows of the table do not have as many red cells as 
the previous three cache properties. Table II shows that the last 
three major rows only cover 4.1% of the optimal cache 
configurations. It seems that they can be ignored for most 
applications and are not the first candidate for power-
performance optimization. This is counterintuitive. 

(3) Manipulating the write-back policy on the data cache is 
recommended for performance-favored and balanced systems, 
while the instruction and data cache size are recommended for 
power-favored and balanced interactions. In Figure 3 and Table 
II, the write-back policy row has the highest number of red 
cells with CT (performance cluster) letters. 
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(4) Smaller instruction cache size (smaller than 2K) is 
recommended for power-favored optimization since this 
property produces the lowest power consumption with the 
graceful degradation in performance. In Table II, the 
instruction cache size row has the highest number of optimal 
configurations categorized in power cluster (CP). Also, in 
Figure 3, minor rows of I-Cache size from 64 to 2K bytes cover 
the majority of the optimal cache configurations. While the I-
Cache with larger size than 2K does not produce many optimal 
cache configurations. 

C. Insight Summary 
Based on our observations from the experimental results, 

we summarize our insights as follows:  

1) Only a few cache configurations are optimal for power-
performance tradeoffs 

All 11 benchmarks reveal only a small number of optimal 
(non-dominated) cache configurations from a relatively large 
cache configuration space. For example, as summarized in 
Table I, the smallest number of optimal cache configurations 
are from the MOTION and DFMUL benchmarks, with only 3 
Pareto points from 36. These account for about 8% of the cache 
configuration space that we evaluated and therefore the other 
92% could have been ignored or removed from the solution 
space. On average, the benchmark programs produce 6.6 Pareto 
points or about 18% of the solution space. The number is 
relatively small and more than 80% of solution space can be 
disregarded or avoided on average. Smaller optimal choices 
can contribute to less complexity in the calculations of an 

optimization algorithm. In this case, there are fewer options for 
the system to switch the cache configuration parameters and 
adapt itself to its current state of power/performance 
requirements.  

2) Optimal cache configurations are sparse, inconsistent 
and sometimes counterintutive 

The results are sparse and inconsistent because not all 
Pareto curves are in the expected Pareto shape. As seen in the 
examples, Figure 2(a), 2(b) and 2(c), some sections of the 
curves form vertical or horizontal lines. This means that by 
changing from one optimal configuration to another on the 
Pareto curve, there is no significant improvement on either 
power consumption or system performance. In this case, some 
optimal solutions can be ignored and one solution on each 
section can be selected as the representative optimal solution in 
the group. We call the ignored  optimal   solutions   “negligible”  
because, by definition, they are insignificant or unimportant as 
to be not worth considering.  

For example, in Figure 2(a) and 2(b) in the performance 
clusters, most of the optimal cache configuration points are flat 
and form horizontal lines on the performance axis (time of 
program execution). By changing from one optimal 
configuration to another, there is not a significant gain in 
performance. Therefore, only one optimal solution should be 
retained in this case, the one with the lowest power 
consumption (best solution in term of power consumption), 
which is the left-most one in the cluster. 

 

Fig. 3.  A power-performance tradeoff profile of the Pareto analysis result (CT = Performance cluster, CB = Balance cluster and CP = Power cluster; bold, italic 
and underlined numbers indicate the minimum normalized distance to ideal point of a benchmark) 



 Similarly, in Figure 2(b), the five optimal configurations in 
the performance cluster can be collapsed into one optimal 
solution; the other four can be ignored because they do not 
create any significant performance improvement. In Figure 
2(c) inside the power cluster, the two cache configurations on 
the DFDIV plot graph form a straight vertical line on the power 
axis. There is one additional negligible Pareto point (the top 
one) that can also be removed from the optimal cache 
configurations. All negligible Pareto points in the benchmark 
programs are presented in Table I. Not all plot graphs are 
shown in the paper due to limited space. 

TABLE II.  COUNTS OF FIRST ITERATION PARETO POINTS BY CACHE 
PROPERTY AND CLUSTER 

 
Power 
Cluster 

(CP) 

Performance 
Cluster (CT) 

Balance 
Cluster 
(CB) 

Total 

I-Cache Size 20 3 8 31(42.5%) 

D-Cache 
Size 1 7 16 24 (32.9%) 

Write-Back 
Policy 1 9 5 15 (20.5%) 

Line Length 0 2 0 2 (2.7%) 

I-Cache 
String 
Buffers 

0 1 0 1(1.4%) 

I-Cache # of 
Victims 0 0 0 0 (0.00%) 

Total 22 22 29 73 (100%) 

 

Our analysis also reveals unexpected insights from these 
irregular Pareto shapes and the negligible cache configurations. 
One most obvious result is revealed by AES benchmark in 
Figure 2(b) inside the performance cluster. Four out of the five 
optimal cache configurations inside the cluster are related to 
data cache write-back policy with different number of victims 
(0, 2, 4 and 8). A victim is a cache line that is evicted from the 
cache. If no victims are saved, all evicted lines must be read 
from memory again, when they are needed. Conventional 
wisdom states that by saving the most recent lines data can be 
fetched much faster, thus improving performance [11]. 
However, for this particular AES benchmark, our result clearly 
shows that not all victim policies contribute to significant 
improvement in performance.  This evidence indicates that the 
conventional wisdom is not always accurate.  

Additionally, in Figure 2(c), the example is not so obvious 
but there is a small evidence of counterintuitive insight. In the 
power cluster, the two optimal cache configurations are related 
to instruction cache size—64B and 256B respectively.  In this 
case, changing from one I-Cache size to another does not yield 
significantly different power consumption. This is somewhat 
unexpected and contradicts studies relating cache size and 
system power consumption. For example, a study in [10] states 
that “increasing cache line sizes tends to consume more 
energy” and, for I-Cache size less than 4K, the smaller size 
tends to consume more power.  

3) There exists cache configurations with certain properties 
that do not produce any Pareto optimal points 

In our cache solution space, we found that cache 
configurations related to I-Cache victims (the last row in 
Figure 3 and Table II) do not produce any Pareto points. Also, 
cache configurations with I-Cache string buffer and D-Cache/I-
Cache line length do not produce a significant number of 
Pareto points (second and third from the last row in Figure 3 
and Table II). These cache properties are therefore not 
candidates for power-performance optimization and can be 
ignored completely.  Our rankings in Table II and colored cells 
in Figure 3 can help us identify the “hot   spots”, the best 
candidates for power-performance optimization and the areas 
having   less   impact   on   the   system’s   performance   and   power  
consumption. From our case study, the hot spots for cache 
configurations are the top three in Table II, in which they 
produce the most red cells in Figure 3.  The table also shows 
that up to 50% of the total effort put into the cache based 
optimization can be cut (last 3 out of six cache properties in the 
table).   

4) There exists at least one cache configuration that can 
fulfill each of the typical power-performance tradeoff 
requirements 

As mentioned in Section II B, our analysis shows that there 
exist optimal cache configurations that can fulfil the three types 
of system requirements for a typical power-performance 
tradeoff—power-favored, performance-favored and balanced. 
As shown in Figure 2 and summarized in Table II, the Pareto 
points can be clustered into performance, power and balance 
clusters using the K-Means algorithm, the same way as the 
typical Pareto Optimal curve and clusters in Figure 1. For 
power-favored, performance-favored and balanced 
requirements, our results recommend the cache configurations 
related to instruction cache size (I-Cache Size), data cache size 
(D-Cache Size) and Write-Back policy respectively.   

D. Threats to Validity 
There are several validity threats to the design of this study. 

For threats to internal validity, our study is limited to the 
configurable cache system of the FPGA embedded system, one 
aspect of the energy-aware system. There are also other areas 
at different system layers having impact on the system power 
consumption and execution times. The cache configuration 
results might be different if configured differently along with 
other system parameters. In extending this work we should also 
include other areas or combinations of different areas and 
parameters to capture more data and detailed statistical analysis 
as well as allowing a broader coverage on the power-
performance tradeoffs. Also, the configurable cache systems 
are only based on the configurable setting and property values 
available in the Atlys FPGA. For other embedded systems, 
there might be different tunable cache configurations.  

For each hardware construction, we only change a single 
cache parameter value at a time while leaving the others the 
default values. Therefore, the power consumption and 
execution values are only based on the default cache 
configuration as provided by the manufacturer. This does not 
cover all combinations of available cache configurations. For 
more complete results, more hardware platforms can be built 



with other combination of the available cache setting values 
and more data can be collected for the better statistical 
analysis. Also, the power consumption data of the system are 
only of the CPU and Memory. There are also two other power 
monitor rails of Video/Audio and Ethernet ports have been 
ignored. This might affect the result if we also include in the 
analysis. 

During the data collection process, because we have 396 
software projects to execute, we only execute each benchmark 
on each hardware platform three times. Also, each benchmark 
program is set to execute multiple iterations for each run to 
make sure each benchmark execute in about 10 seconds. 
Therefore, the measured numbers can contain some overhead 
from these loops that control the executions. If we increase the 
number of executions, the data reading and statistical data 
would be more accurate. Also, the Pareto analysis result will be 
more accurate if conducted on a larger solution space. Our 
solution space might not large enough. The front of our Pareto 
optimal values is therefore considered an approximation to the 
“true”   front.   Further   runs   of   the   system   with   more   cache  
configurations may improve the front approximation. Our 
selection of using Pareto optimality and the post-Pareto 
methods for the analysis is for demonstration purpose only. 
There are many other methods that can also be used to solve 
the power-performance tradeoff problems.  

For threats to external validity, we try to generalize the 
result of our study to all software application domains. We 
select the CHStone benchmark suite because it covers multiple 
domains of real-world software applications—media, 
cryptography, arithmetic and processor. However, processor 
domain only contains one benchmark which might not have 
enough coverage. And, the generalizability of the result is only 
for these four software domains. There is also a risk that the 
result might not reflect all domains of complex software 
applications, since all the benchmarks are small programs and 
specially designed for embedded systems.   

 CONCLUSION VI.
As a case study, our research demonstrates a detailed 

power-performance optimization process that can be used in 
developing efficient energy-aware systems. Because the 
process is tedious, it is crucial that developers and researchers 
understand the manual process and are aware that unexpected 
insights discovery is important and not easy to do in real 
systems. In the process, we also gather some basic background 
of how we can use Pareto optimality in power-performance 
tradeoffs; how power-performance requirements and the 
optimal solutions can be categorized; and how the data are 
collected and analyzed and used. Along with this, we provide 
some useful test results of FPGA cache configurations and 
demonstrate that the Pareto optimal cache configurations do 
exist in the CHStone benchmarks.  

Our results suggest that some optimal configurations might 
not be as expected when analyzing the live power consumption 
data. We observe that the optimal configurations are sparse in 
the cache design space, are inconsistent across the benchmark 
and counterintuitive in many cases, making power-
performance optimization processes hard to implement without 
analysis from actual data. Our results also show that even 

something very low-level like the cache system (that might not 
be captured in a power model) can impact the power-
performance analysis significantly and unpredictably.  These 
results motivate the need for tools and methodologies that 
operate directly on data gathered from the systems themselves. 
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