
Leveraging Smartphone Advances for Continuous

Location Privacy

Wisam Eltarjaman, Prasad Annadata, Rinku Dewri and Ramakrishna Thurimella

Colorado Research Institute for Security and Privacy

Department of Computer Science, University of Denver, Denver, CO 80210, USA

Email: {wisam,prasad,rdewri,ramki}@cs.du.edu

Abstract—Location privacy preservation algorithms for
nearby points-of-interest (POI) search have evolved in the re-
cent years. However, a majority of the proposals assume that
points of interests are ranked only by distance, and demand
extensive architectural changes. As a result, a significant gap
remains between academic proposals and the industry standard of
implementing location based services. Recent advances in mobile
device capabilities, more specifically in their computational power
and energy efficiency, have opened the possibility of engaging
the client hardware more actively in the execution of a privacy
algorithm, thereby relaxing strong dependencies on trusted third
parties or the service provider. With this motivation, we propose
a novel privacy algorithm for use in POI search that achieves
much of the desired location privacy by restricting the usage of
precise location data to the client device.

Keywords—location privacy, POI search, mobile processing

I. INTRODUCTION

Out of the several types of LBSs in use today, direct or
indirect search for points-of-interest (POIs), and navigating
to the most suitable of them, is arguably the most widely
utilized application. This particular application warrants deeper
study from the privacy research community, as it reveals
several facets of a user’s lifestyle, beyond just the location. A
sophisticated attacker or a semi-trusted service provider can
use this information to deduce user preferences and future
locations, in addition to the current location.

Despite the tremendous effort put forward by the com-
munity, mass adoption of location privacy controls are yet
to be seen. A potential reason for this could be the implicit
requirement for architectural changes that a service provider
has to undergo, and the possible adverse impact it can have on
the quality of service. It must be said that researchers are very
much aware of these limitations, and the proposals are very
much driven by the need to perform sophisticated computations
and the lack of an efficient platform to do so, except for
a trusted third-party (TTP) or the LBS servers. Fortunately,
the landscape has changed significantly in the past few years.
Mobile devices (the point of origin of a request) are no longer
a simple piece of radio hardware, but full-fledged computing
platforms, often faster than desktop servers from a decade ago.
It is therefore reasonable to attempt novel location privacy
protection mechanisms that incorporate this new computation
node. Our earlier work demonstrated that, with a minor change
in the control flow of existing LBS server software, POI search
can be performed without requiring the user to transmit precise
location data outside the device [1]. The work assumed a single
snapshot query model; therefore, the privacy guarantees do not

hold when users make multiple queries in a short period of
time.

We build upon our earlier work, and other published
literature, to provide an algorithm that preserves users privacy
in the multiple query scenario, while keeping the algorithm
practical enough to be implemented on the mobile device
itself. We first show how the privacy algorithm executed in
the mobile device for single query systems is susceptible to
localization attacks (determining where the user is at a specific
point in time) when used in the context of multiple queries. To
eliminate this concern, we propose a new client side privacy
algorithm to retrieve POIs, and analyze the inference risk of
the algorithm under a Bayesian adversary model. Finally, we
assess the privacy offered by the algorithm using a real world
POI distribution, and report on the practicability of the process.

II. RELATED WORK

Initial research in providing location privacy took solutions
from other related domains such as statistical databases, and
applied them to the location privacy problem. Gruteser et al.
propose spatio-temporal cloaking [2] and Gedik et al. extend
it using the k-anonymity model to make the algorithm config-
urable, and arguably introduced the concept of configurability
of privacy level to the field of location privacy [3]. These
algorithms propose a model that requires a TTP. There are
a few that deviated from this TTP requirement. Mokbel et al.
[4] propose anonymizing the service provider’s database itself.
Kalnis et al. [5] concentrated more on protecting the identity of
the querying user rather than hiding her location. Olumofin et
al. used Hilbert curves to anonymize, and to an extent, optimize
K-nearest-neighbor queries [6]. Although the claim in most
proposals is that K-nearest-neighbor queries form a bulk of
LBS applications, we find that the location is not the only
factor that actually goes into the ranking of objects.

Most algorithms use perturbation techniques to hide or
generalize the location of the user. The differentiator of
these algorithms from one another is the technique used to
achieve perturbation. Gedik et al. propose an algorithm called
CliqueCloak [3] that uses a quad-tree data structure to find a
region that has at least a specified number of users. Similarly,
Bamba et al. use PrivacyGrid [7] which incrementally adds
or subtracts cells from a grid till a given minimum number of
users are inside it.

Chaum propose an algorithm that uses anonymity sets [8],
inspired by the dining cryptographers problem, and feel that
the size of the anonymity set is a measure of privacy. Gruteser



et al. [2], who designed the k-anonmity based algorithm, treat
the value k as a measure of privacy, while Xue et al. [9]
import the concept of ℓ-diversity from the statistical database
realm, and propose it as a companion measure. Reiter et al.
[10] take a slightly different approach and propose the level of
privacy in layman terms such as suspicion, probable suspicion
and possible innocence. One of the measures we use for
our study, entropy, is first proposed in the location privacy
literature by Serjantov et al. [11]. Entropy as a measure of
privacy is further extended by Diaz et al. [12] as normalized
entropy, and Deng et al. [13] as relative entropy. Shokri et
al. [14] start by modeling a more realistic attacker: an attacker
with some prior knowledge (background knowledge) about the
user’s mobility. They model this knowledge as a probability
distribution. Based on these models, they propose privacy
measures that essentially quantify the failure of the attacker’s
estimation of users location as the measure of success of the
algorithm.

The novelty of our approach is in the usage of local com-
putations to determine the matching top results, using query
platforms readily available from current search providers. In
addition, we do not constrain ourselves to nearest neighbor
results, which has been the major focus in earlier proposals.

III. BACKGROUND

A typical POI search transaction starts with a user search-
ing for a POI by using some keyword. The LBS provider
receives this query and returns a list of POIs that match the
query. Most proposals treat this list to be sorted by distance and
reduce the problem to a special case of the nearest-neighbor
problem; however, most popular providers, e.g. Google, use a
combination of distance and other criteria.

The service provider returns the list already sorted, and
short-listed (typically 10-20 items), to the requesting applica-
tion. In an earlier work, we proposed a TTP-free LPPM that
leverages the processing power of modern mobile devices to
perform most of the operations within the mobile device itself.
For the sake of completeness, description of the model in the
single query case is presented briefly, and then extended with
elements that suit the multiple query scenario. Readers are
requested to refer to [1] for details.

A. Single query scenario

A large geographical area is modeled as a Z×Z square grid
of cells. A cell is defined as the smallest distance that a user
has to move to be recognized as existing in a different location,
i.e. as long as the user moves within the boundaries of a cell,
she will be considered as staying in the same location. The
user configures her level of privacy by setting the value of a
parameter b indicating that she does not care if the attacker
narrows her location to an area larger than or equal to a
b × b box (b cells by b cells). This is often specified in real
life approximations such as the size of a mall, block or sub-
division, that is translated by the application into the parameter
b [1], [15]. The Z × Z grid is pre-partitioned into fixed non-
overlapping boxes of b× b cells.

We use an architecture in which the client first determines a
large geographical area (say 500km2) that includes the user’s
location, and sends the coordinates of this area along with

the search keywords to the server. The server finds the list
of matching POIs within the area from its database, and sends
back only the locations and prominence values for the obtained
POIs. The prominence value here is determined by the service
provider based on criteria such as user reviews, reference
counts, and financial gain, among others. POI search is not a
typical K-nearest-neighbor search when prominence values are
involved. We emphasize that the transmission of location and
prominence values is not equivalent to downloading the entire
POI database to the client, since no details about the POIs
are available to the client at this time. These details include
features such as business name, street address, reputation, user
reviews, services offered, and others. The transmission of only
location and prominence data (and no feature data) at this stage
also reduces the bandwidth requirement of the technique by
preventing the download of large fractions of the POI database,
which a provider may not be willing to do anyways.

The client utilizes the location and the prominence data
to locally rank the received list of POIs. By doing so, the
client can determine the most highly ranked K POIs (top-K
POIs) for the user, and request details on those POIs from the
server. However, this straightforward method is susceptible to
inversion attacks, where an adversary can compute the top-K
POIs of every cell, match them to the set requested by the
client, and thereby infer likely cells where the user could be
located. In order to prevent such attacks, we need to augment
the request set to include more than just the top-K POIs
corresponding to the user’s current cell.

In the pre-partitioned grid, if the box B happens to be
the b × b box where the user is located, then an interest set
I is computed as the union of the top-K POIs of the cells
inside B, notationally the cells in a set C. Therefore, the
interest set contains the POIs of interest to the user, as well
as a few others. The client then queries the server for detailed
information about the POIs in the interest set. In this case,
an inversion attack will produce an area at least as large as
b× b cells. The server responds with details of the POIs in the
interest set. To determine the interest set, an algorithm using
kd-tree data structures and heuristic pruning can significantly
reduce the number of cells for which the top-K set has to be
computed, effectively reducing the computation time to a few
milliseconds [1].

B. Attacker model

Following the standard practice in the literature, we assume
that the attacker knows the LPPM that is being utilized by the
user. The attacker’s goal is to determine the cell the user is
in, based on the observed interest set: localization attack. To
model an attacker in realistic terms, we assume that he has the
following capabilities. The attacker has the ability to eavesdrop
and observe the contents of the query and interest set; is not
only aware that a LPPM is being used, but also knows the
details of the algorithm, and its associated parameters; is also
assumed to have some information (background knowledge)
on the initial location of the user; knows the map of the geo-
graphical area and has access to the POI database; knows (or
can accurately guess) the user’s selection of privacy parameter
b.

The attacker’s knowledge of the user’s location is modeled
as a prior probability distribution Φ, where Φ(ci) is the



A

B

q
1

q
2

A

B

q
1

q
2

Fig. 1: Privacy breach during multiple queries.

attacker’s prior estimate of the probability that the user is in
cell ci. Once the user sends the query, the algorithm obtains
the POIs, determines the interest set and sends it to the service
provider. During this time, the interest set I is observed by
the attacker and he uses it to enhance his knowledge about
the user’s location. Given the set I , the attacker is able to find
all boxes of size b× b that correspond to this interest set. One
scenario is where the b×b box used for interest set generation,
B, happens to be the only box that has I as its interest set. We
assume this scenario for the discussion below. The attacker can
obtain a refinement of the prior probability distribution using
Bayesian inference.

Pr (ci|B) =
Pr (B|ci) Φ (ci)

Pr (B)
=

Pr (B|ci) Φ (ci)
∑

cj∈C Pr (B|cj) Φ (cj)
.

(1)
This posterior estimate is a constant multiple of the prior

knowledge for any cell belonging to the box B. As long as
the multiple queries by the user happen when the user is in the
same box, the attacker’s knowledge of the user’s location will
not be enhanced. The coarseness of the attacker’s estimation
remains b× b.

Consider the scenario where the time interval between the
two queries is less than the time needed by the user to go
from the current cell to the farthest possible cell in the Z ×Z
grid. In this case, the attacker may be able to narrow down
the user to an area less than b × b. This is illustrated in Fig.
1. It shows two adjacent boxes A and B, where b = 4. Let the
time needed by the user to move by one cell be a constant T .
Assume that the time interval between two queries is equal to
the time required to move by one cell. Let us further assume
that the user was in one of the cells in box A that borders
with box B. The user moves by one cell into box B and then
issues her second query. The attacker sees that the first query’s
interest set matches with box A and second query’s interest set
matches with box B. This clearly allows the attacker to narrow
down the user’s location to the boundary cells (shaded) of the
box B since the user had only enough time to move by one
cell. The attacker is able to narrow down the user’s location
to an area much smaller than b× b, thus clearly breaching the
user’s privacy requirement. This shows that obfuscation is not
guaranteed in the case of multiple queries happening across
boxes: this is the main problem that we address in this work.

IV. PROPOSED SOLUTION

The reason for privacy loss during multiple queries with
time interval constraints is due to the fixed pre-partitioning.
Fixed pre-partitioning is suitable for the single query scenario

and the first query, but not for the subsequent queries. In
order to prevent the privacy loss during subsequent queries,
we first create a new area, hereafter called the selection area
S, by expanding the box generated at the previous query to its
neighboring cells. If n is the number of T time periods elapsed
between two subsequent queries, then a neighboring cell is any
cell that is no more than n rows or columns away from the

current box. Formally, n =
⌈

tk−tk−1

T

⌉

where tk and tk−1 are

the time of issuing the kth and (k− 1)th queries respectively.
The box for the new query is determined by selecting a random
b× b box from within the selection area such that it contains
the user.

A. Attacker model – multiple query scenario

For the multiple query scenario, in addition to the capabil-
ities mentioned in Section III-B, we assume that the attacker
knows the unit time period T needed by the user to move
by one cell. If the attacker observes two consecutive queries,
based on the time elapsed between them, the attacker can
estimate the maximum number of cells, n, that the user can
move during that time. For the multiple query scenario, we
continue utilizing the notations introduced so far, but extend
it by using a subscript. The subscript represents the query
number, e.g. Bk represents the box selected for interest set
generation during the kthquery qk. By definition, Bk contains
the user’s location at that time instance. Correspondingly, Ik
is the generated interest set, and Φk represents the attackers
estimated probability distribution at the end of the kth query.
The distribution Φ1 is the attacker’s estimation after the first
query is made, as given by Equation 1.

The attacker’s goal is to narrow down the user’s location
to a specific cell. Short of that, the attacker tries to determine
the likelihood of existence of the user in a particular cell by
calculating a probability distribution of the user’s existence
in each cell. Once the attacker observes the interest set Ik,
he determines the set of boxes within the selection area
whose interest set match Ik. In the specific scenario we are
considering, this set has exactly one b × b box, the one that
was actually used, namely Bk.

B. Selection area

If the user does not hit the border of the Z ×Z grid while
moving n steps from any cell in box Bk−1, then the selection
area Sk for the query qk forms a square of size (b + 2n) ×
(b + 2n). The selection area Sk represents all possible cells
the user could be in for query qk. Fig. 2a and 2b show Sk

where n = 1 and n = 2 respectively. Let the cells of Sk be
numbered c1, c2, c3...c(b+2n)2 starting at the top left corner,
continuing row by row.

Looking at selection area Sk, the number of possible b× b
boxes that contain the cell c1 is only one. We call this number
the weight wi of a cell, and is defined as the number of possible
b × b boxes from which the algorithm could choose for the
next query if the user is located in ci. As we advance by one
cell to the right along the horizontal direction, the number of
possible boxes that include the cell c2 increase by one as well.
If 2n ≥ b, this increment continues until the cell cb is reached.
This is illustrated in Fig. 2b, where b = 4 and n = 2. When
2n < b, the increment stops at the cell c2n+1, as shown in Fig.



(a) n = 1.

4 6 8 8 6 4

6 9 12 12 69

8 12 16 16 12 8

4 6 8 8 6 4

6 9 12 12 69

8 12 16 16 12 8

(b) n = 2.

Fig. 2: Selection area with weight of a cell.

2a with b = 4 and n = 1. The process is symmetric if started
from the right side, vertically down from the top corner, or
vertically up from the bottom corner.

One could see that the selection area is a square in most
instances. But it can be a rectangle if a border of the Z × Z
grid is reached before the n steps. In later discussions, it will
become clear that a square shape for the selection area has
useful properties to our algorithm, and is therefore enforced
by a transformation.

C. Modeling the user’s movement

One of the differences between the single query and the
multiple query scenarios is the user’s movement between the
queries. We model this user movement as follows. If the user
was in cell cj ∈ Ck−1 at the time of the previous query qk−1,
then by the time of the current query qk, she can move to any
neighboring cell ci or continue to stay in cj . The probability
of her moving to a neighboring cell ci from cell cj , called
the transition probability, is denoted as ρji. We work with a
uniform movement model, where for any neighboring cell ci,
the transition probability ρji, ∀cj is a constant value equal to

1
(1+2n)2 ; for all other cells, it is zero.

Refer to Fig. 2. It shows the selection area Sk that is created
based on the box Bk−1 used in the previous query. Observe
that the weight of each cell ci in Sk also represents the number
of cells in Bk−1 that the user could be in and reach ci in at
most n steps. Note that for cells within Bk−1, the weight wi

includes the possibility that the user decides to stay in the same
cell ci.

Before the user performs query qk, the attacker combines
his knowledge of the user’s movement model and Bk−1 to
compute a new distribution for the user’s location as follows.

λk(ci) =

Z2

∑

j=1

(Φk−1(cj)× ρji) , (2)

where λk represents the probability distribution of the user’s
location based on the movement model. When query qk is
made, the attacker observes the new interest set, and subse-
quently determines the box Bk used in the query. Next, the
attacker enhances his knowledge using Bayesian inference,

Φk(ci) = Pr(ci|Bk) =
Pr(Bk|ci)× λk(ci)

∑

cj

(Pr(Bk|cj)× λk(cj))
. (3)

D. Algorithm

Our algorithm makes the selection of the b × b box (for
interest set generation) based on whether the issued query
is the first one, or one of the subsequent ones. For the first
query, as described in Section III-A, the Z × Z grid is pre-
partitioned into fixed non-overlapping boxes of size b× b. The
algorithm simply chooses the box that contains the user’s cell.
We briefly mentioned the method used for subsequent queries
in the beginning of this section; the detailed steps are discussed
below.

Let us assume that the algorithm is trying to generate the
interest set for query qk and n be the maximum number of cells
that the user could have moved after the previous query. Before
making the b× b box selection for query qk, the algorithm has
to ensure that the selection area Sk does not touch the borders
of the Z × Z grid. It does this by creating a new Z × Z
area for each query qk, such that it contains the box used for
the previous query, i.e. Bk−1, at its center. Because of this
realignment of the Z × Z grid, the client device may need to
download a new set of matching POIs. This can add to the
communication overhead between the client and the server. To
reduce this additional overhead, the client caches the POI set
of the previous query. Then, for the new Z × Z grid, it only
needs to retrieve location and prominence data on POIs that
may appear in the non-overlapping areas.

For the second query (k ≥ 2), and subsequent ones, the
algorithm first calculates n based on query timestamps and
determines the selection area Sk. The box for the current query
is selected by picking a b × b box uniformly at random from
Sk such that it contains the user. The algorithm uses the same
techniques used for the single query scenario to efficiently
generate the interest set and sends it to the LBS to obtain
the details. Finally, the client will prepare for the next query
by realigning the Z×Z grid. This will continue till the current
user session ends. When the time interval is large enough
for the user to reach the farthest cell in the Z × Z grid, the
algorithm starts a new session with the fixed pre-partitioning
step.

The chances of the user being in a cell outside the selection
area is zero, because the user cannot move any farther in
the given number of time units (n). Refer to Fig. 2 for the
cases where n = 1 and n = 2. A cell in the selection area
has zero probability only if the prior estimate of the attacker
for that cell, and its neighbors, are zero. As a result, a box
chosen by our algorithm will have all non-zero probability
cells, unless the attacker’s background knowledge can help
eliminate cells. Therefore, the algorithm preserves the required
b× b cell obfuscation if the attacker’s prior knowledge is not
already stronger. It can also be shown that the probabilities of



0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

50

100

150

200

250

300

350

400

450
Specific

General

Correctness

N
u
m

b
e

r 
o
f 
q
u
e
ri

e
s

0 100 200 300 400

0

1

2

3

4

5

6

7

8

Query number

E
n
tr

o
p

y

(a) Path P1.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

50

100

150

200

250

300

350

400

450
Specific

General

Correctness

N
u
m

b
e

r 
o
f 
q
u
e
ri

e
s

0 100 200 300 400

0

1

2

3

4

5

6

7

8

Query number

E
n
tr

o
p

y

(b) Path P2.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0

50

100

150

200

250

300

350

400

450
Specific

General

Correctness

N
u
m

b
e

r 
o
f 
q
u
e
ri

e
s

0 100 200 300 400

0

1

2

3

4

5

6

7

8

Query number

E
n
tr

o
p

y

(c) Path P3.

Fig. 3: Entropy and correctness of location estimation.

the cells in the box selected for the current query are equal if
the cells in the box selected for the previous query had uniform
probabilities.

V. EMPIRICAL EVIDENCE

In order to evaluate our algorithm, we first select
a quantitative measure to evaluate privacy. To measure
the attacker’s uncertainty, we select entropy, H (Φk) =
−
∑

ci
Φk(ci) lnΦk(ci), as the measure. Intuitively, higher

entropy values reflect higher uncertainty for the attacker about
the user’s exact cell. If the attacker’s location estimation for
all ci ∈ Ck is equal, then the entropy is maximum and is equal
to 2 ln b for a b× b box.

From the user’s perspective, measuring location privacy
boils down to the chance of the attacker locating her in the
exact cell, also known as correctness [14]. The lower the
probability that the attacker assigns to the actual cell of the
user, the higher the privacy. Without any other background
knowledge, if the attacker narrows down the user to a b × b
box, he would assign equal probabilities (= 1

b2
) to each cell

in this box, which indicates the highest uncertainty for the
attacker.

In this section, we discuss the experiments performed to
support the conclusions from several aspects of the proposed
algorithm. The first set of experiments are designed to show
that the algorithm provides reasonable privacy protection,
as measured using entropy and correctness. The second set
of experiments are performed to show that the requesting
of additional POIs in an incremental fashion has minimal
performance impact. For the evaluation, we use an area of Los
Angeles, CA, USA, divided into 320×320 cells, and POIs are
obtained from the SimpleGeo database. A cell in this setting is
100m× 100m. We use a relatively high density POI category
(608 cafes) in the evaluations, unless stated otherwise.

A. Entropy and correctness

To demonstrate how entropy and correctness change as
more queries are made, we ran three movement simulations:
two along pre-defined paths (denoted by P1 and P2), and one
along a random path (denoted by P3). The number of queries
in a simulation (a session) is fixed at 400. The pre-defined
paths are generated such that the user is exposed to varying
local distributions of the POI. The privacy parameter b is set
to 32, which implies an obfuscation expectation of roughly

10km2. We simulate the attacker’s initial knowledge Φ as a
two-dimensional Gaussian distribution centered at the user’s
actual location.

Fig. 3a, 3b and 3c summarize the entropy and correctness
values for the three movement simulations in the context
of the gaussian initial knowledge. The x-axis labels on the
correctness plots signify the lower ends of the intervals used
for generating the histogram. The general scenario signifies the
case when the attacker finds multiple b×b boxes corresponding
to the observed interest set, and accordingly accounts for it in
the inference process (the details of the process are withheld
here for space considerations). The quick convergence to a
uniform posterior distribution (entropy saturation) is evident in
all three simulations for the specific scenario when the exact
box used by the algorithm is inferable by the attacker. It is also
evident that once the entropy attains its highest value, changes
do not occur. The entropy values do not demonstrate any
monotonic behavior for the general (more realistic) scenario.
However, there is a significant shift in the interval where
majority of the correctness values (probability associated with
the user’s location) lie when considering the general scenario.
This is partially because more cells could be associated with
the user and the probabilities get distributed across these larger
number of cells. We do not stress much on the numeric value
of correctness since it is a function of the number of cells in
the box(es) inferred by the attacker.

These observations suggest that, as time passes, the at-
tacker’s initial knowledge, no matter how strong, gets dispersed
due to the movement of the user. Therefore, the chances of
correctly locating the user reduces. We also observe that there
is little or no correspondence between the entropy measure
and the correctness measure of privacy, which conforms to
conclusions made by Shokri et al. in a separate study [14].

B. Quality of service

Next we assess the overhead introduced by the algorithm
in the grid realignment step. To maintain the square shape
of selection areas, the algorithm proposes realignment of the
Z × Z grid, and obtaining location and prominence data on
additional POIs for each query. Using a Z value of 160, we
count the number of new POIs that appear when the grid is
realigned. We start the user in a random cell and simulate the
movement in a pre-determined path while issuing queries.

The plot in Fig. 4a shows the number of previously unseen
POIs appearing in each query. It shows the results for the



(a) Bakery. (b) All possible 160× 160 grids with n = 1.

Fig. 4: Number of POIs for which location and prominence is downloaded as multiple queries are made.

POI string “bakery”, which represents a dense distribution of
POI in the available data. Each simulation is executed with
t = 1T, 5T, and 10T as the time interval between queries. The
plots show the time on the x-axis (log scale) and the number
of new POIs obtained for the query issued at that time on the
y-axis. As expected, the initial set of POIs obtained for the
first and second queries are large, but for all of the subsequent
queries, the number of new POIs obtained is much less. This
translates to a small and acceptable impact on the QoS. For
Fig. 4b, we consider all possible 160× 160 grids that can be
embedded into the 320 × 320 map, and obtain the average
number of additional POIs appearing when a grid is shifted
to its neighbors. We see that, for different POI categories, the
average number of additional POIs obtained is less than 5 in
majority of the grids.

VI. CONCLUSION

In this work, we have taken a first attempt at leveraging
the computational capabilities of modern mobile devices to
design practical location privacy algorithms for points-of-
interest (POI) search. We have presented a technique to repeat-
edly retrieve local POI data from a service provider, without
requiring the user to reveal precise location information. The
information exchanged in the process is subjected to inference
analysis under a Bayesian adversary model. Through theoreti-
cal arguments and empirical evidence, we have shown that the
proposed technique leaks little or no advantageous information
to the attacker, can efficiently operate in a mobile device, and
has minimal impact on the communication bandwidth. We
are optimistic that future work in this area will continue in
this direction of practicability, and generate innovative usages
of the newly available computation node for location privacy
preservation.

ACKNOWLEDGMENT

This work is funded in part by the National Science Foun-
dation under Grant No. DUE-0911991. Any opinions, findings
and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of
the National Science Foundation.

REFERENCES

[1] R. Dewri, W. Eltarjaman, P. Annadata, and R. Thurimella, “Beyond
the thin client model for location privacy,” in Proceedings of the 2013

International Conference on Privacy and Security in Mobile Systems,
2013, pp. 1–8.

[2] M. Gruteser and D. Grunwald, “Anonymous usage of location-based
services through spatial and temporal cloaking,” in Proceedings of

the 1st International Conference on Mobile Systems, Applications and

Services, 2003, pp. 31–42.

[3] B. Gedik and L. Liu, “Location privacy in mobile systems: A per-
sonalized anonymization model,” in Proceedings of the 25th IEEE

International Conference on Distributed Computing Systems, 2005, pp.
620–629.

[4] C.-Y. Chow, M. F. Mokbel, and X. Liu, “A peer-to-peer spatial cloaking
algorithm for anonymous location-based service,” in Proceedings of the

14th Annual ACM International Symposium on Advances in Geographic

Information Systems, 2006, pp. 171–178.

[5] P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias, “Preventing
location-based identity inference in anonymous spatial queries,” IEEE

Transactions on Knowledge and Data Engineering, vol. 19, pp. 1719–
1733, 2007.

[6] F. Olumofin, P. K. Tysowski, I. Goldberg, and U. Hengartner, “Achiev-
ing efficient query privacy for location based services,” in Proceedings

of the 10th International Conference on Privacy Enhancing Technolo-

gies, 2010, pp. 93–110.

[7] B. Bamba, L. Liu, P. Pesti, and T. Wang, “Supporting anonymous loca-
tion queries in mobile environments with privacygrid,” in Proceedings

of the 17th International Conference on World Wide Web, 2008, pp.
237–246.

[8] D. L. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 24, pp. 84–90, 1981.

[9] M. Xue, P. Kalnis, and H. Pung, “Location diversity: Enhanced privacy
protection in location based services,” in Proceedings of the 4th In-

ternational Symposium on Location and Context Awareness, 2009, pp.
70–87.

[10] M. K. Reiter and A. D. Rubin, “Crowds: Anonymity for web transac-
tions,” ACM Transactions on Information Systems Security, vol. 1, pp.
66–92, 1998.

[11] A. Serjantov and G. Danezis, “Towards an information theoretic metric
for anonymity,” in Proceedings of the 2nd International Conference on

Privacy Enhancing Technologies, 2002, pp. 41–53.

[12] C. Dı́az, S. Seys, J. Claessens, and B. Preneel, “Towards measuring
anonymity,” in Proceedings of the 2nd International Conference on

Privacy Enhancing Technologies, 2002, pp. 54–68.

[13] Y. Deng, J. Pang, and P. Wu, “Measuring anonymity with relative
entropy,” in Proceedings of the 4th International Conference in Formal

Aspects in Security and Trust, 2006, pp. 65–79.

[14] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux,
“Quantifying location privacy,” in Proceedings of the 2011 IEEE

Symposium on Security and Privacy, 2011, pp. 247–262.

[15] T. Xu and Y. Cai, “Feeling-based location privacy protection for
location-based services,” in Proceedings of the 16th ACM Conference

on Computer and Communications Security, 2009, pp. 348–357.


