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Abstract. Given an equilibrium state µ for a continuous function f on a
shift of finite type X, the pressure of f is the integral, with respect to µ, of

the sum of f and the information function of µ. We show that under certain
assumptions on f , X and an invariant measure ν, the pressure of f can also
be represented as the integral with respect to ν of the same integrand. Under

stronger hypotheses we show that this representation holds for all invariant
measures ν. We establish an algorithmic implication for approximation of
pressure, and we relate our results to a result in thermodynamic formalism.

1. Introduction

Given a finite alphabet A, the entropy of a shift-invariant measure µ on AZ

is sometimes defined as the expected conditional entropy of the present given the
past, or

h(µ) =

∫
H(x0 | x−1, x−2, . . .) dµ(x−1, x−2, . . .),

where

H(x0 | x−1, x−2, . . .) =
∑
a∈A

−µ(x0 = a | x−1, x−2, . . .) logµ(x0 = a | x−1, x−2, . . .).

Equivalently,

h(µ) =

∫
− logµ(x0 | x−1, x−2, . . .) dµ(x).

It is less well-known that there is an analogue of this formula for a shift-invariant

measure µ on AZd

which involves the notion of lexicographic past. Define P ⊆ Zd to
be the set of sites lexicographically less than 0, or equivalently the set of v ∈ Zd\{0}
whose last nonzero coordinate is negative. Then

(1) h(µ) =

∫
− logµ(x0 | {xp}p∈P) dµ

(see [6, Theorem 15.12] or [9, p. 283, Theorem 2.4]).
The integrand in (1), which we will denote by Iµ(x), is fundamental in ergodic

theory and information theory and is known as the information function.
We will mostly be interested in implications of (1) on topological pressure. For

any continuous function f on a Zd shift of finite type, it is a consequence of
the variational principle ([16], [15]) that the measure-theoretic pressure function
Pρ(f) = h(ρ) +

∫
f dρ achieves its maximum on a nonempty set of measures; such
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measures are called equilibrium states of f , and the maximum is called the topo-
logical pressure P (f). When the function f is locally finite, all such equilibrium
states are examples of so-called finite-range Gibbs measures ([8], [14]). For more
on equilibrium states and Gibbs measures, see Sections 2.2 and 2.6.

When applied to an equilibrium state µ for f , (1) clearly implies

(2) P (f) =

∫
Iµ(x) + f(x) dµ.

For certain classes of equilibrium states and Gibbs measures, sometimes there are
even simpler representations for the pressure. A recent example of this was given
by Gamarnik and Katz in [5, Theorem 1], who showed that for any Gibbs measure
µ which has a measure-theoretic mixing property, called strong spatial mixing, and
whose support contains a so-called safe symbol 0 (a very strong topological mixing
property, defined in Section 2.1),

(3) P (f) = Iµ(0
Zd

) + f(0Z
d

)

(here, 0Z
d ∈ AZd

is the configuration on Zd which is 0 at every site of Zd). This
result was the primary motivation for our paper.

They used this simple representation to give a polynomial time approximation
algorithm for P (f) in certain cases. Approximation schemes are very important
because in most cases it is quite difficult (and sometimes impossible!) to obtain
exact, closed form expressions for entropy and pressure ([7]), let alone the exact
values of conditional µ-measures of specific cylinder sets or exact values of the
function Iµ that are needed to evaluate (3).

A consequence (Corollary 3.2; see also Corollary 3.3) of one of our main results
is that under certain hypotheses on the equilibrium state µ and its support, the
integrand in (2) yields P (f) when integrated against any shift-invariant measure ν
whose support is contained within the support of µ:

(4) P (f) =

∫
Iµ(x) + f(x) dν.

For instance, (3) is the special case of (4) where ν is the point mass at 0Z
d

. This
consequence is related to a result of Ruelle [14, 4.7b] which characterizes when
two interactions have a common Gibbs measure; this connection is discussed in
Section 5. The conclusion of Corollary 3.2 is well known when d = 1 and the
support of µ is an irreducible shift of finite type.

We have two main results, Theorems 3.1 and 3.4, with different sets of hypotheses
for representation of pressure of f with respect to a given invariant measure ν. For
each theorem, our hypotheses are of three broad types: a weak topological mixing
condition on the support of µ (see Section 2.5), a type of continuity assumption on
pµ over supp(ν) (see Section 2.3), and a type of positivity assumption on pµ over
supp(ν) (see Section 2.4).

All of these hypotheses, for both theorems, are weaker than those used in [5,

Theorem 1], and so each implies (3) by taking ν to be the point mass at 0Z
d

.
From Theorem 3.1 we prove Proposition 4.1 which, for d > 1 and certain f , shows

that P (f) can be approximated to within tolerance ϵ in time eO((log 1
ϵ )

d−1). This
yields a polynomial time approximation scheme when d = 2 and generalizes some
cases of the approximation algorithms given in [5]. This scheme is more efficient
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than the approximation scheme of [11], but requires the additional hypothesis that
(4) holds for some “simple” ν.

We summarize the remainder of this paper. In Section 2, we give relevant defini-
tions, background and preliminary results. In Section 3, we prove our main results,
Theorems 3.1 and 3.4. In Section 4, we describe a consequence of our pressure rep-
resentation results that yields a method for approximating pressure, and we discuss
connections with work of Gamarnik and Katz [5]. Finally, in Section 5, we describe
a connection between our results and the thermodynamic formalism of Ruelle [14].

2. Definitions and Preliminary Results

2.1. Subshifts.
We view Zd as a graph (the so-called cubic lattice), where vectors in Zd are

the vertices (also sometimes called sites), and two vertices u, v ∈ Zd are said to
be adjacent, and we write u ∼ v, if |u − v| = 1, where | · | is the L1 metric. For
subsets S, T of Zd, d(S, T ) denotes the distance between S and T using this metric.

We also will use the lexicographic ordering on Zd, where v < v′ if v ̸= v′ and,
for the largest i for which vi ̸= vi′ , vi is strictly smaller than vi′ . The lexicographic
past P is the set of all v ∈ Zd smaller than the zero vector.

An edge is an unordered pair (u, v) of adjacent sites in Zd. The boundary
of a set S ⊂ Zd, denoted by ∂S, is the set of v ∈ Sc which are adjacent to some
element of S. In the case where S is a singleton {v}, we call the boundary the set
of nearest neighbors Nv. The inner boundary of S, denoted by ∂S, is the set
of sites in S adjacent to some element of Sc, or ∂(Sc).

For any integers a < b, we use [a, b] to denote {a, a+ 1, . . . , b}.
An alphabet A is a finite set with at least two elements. A configuration u

on the alphabet A is any mapping from a non-empty subset S of Zd to A, where
S is called the shape of u. For any configuration u with shape S and any T ⊆ S,
denote by u(T ) the restriction of u to T , i.e. the subconfiguration of u occupying
T . For S, T ⊂ Zd, x ∈ AS and y ∈ AT , xy denotes the configuration on S ∪ T
defined by (xy)(S) = x and (xy)(T ) = y, which we call the concatenation of x
and y (if S ∩ T ̸= ∅, this requires that x(S ∩ T ) = y(S ∩ T )). For a symbol a ∈ A
and a subset S ⊆ Zd, aS denotes the configuration on S which takes value a at all
elements of S.

For any d, we use σ to denote the natural shift action on AZd

defined by
(σv(x))(u) = x(u+ v).

For any alphabet A, AZd

is a topological space when endowed with the product
topology (where A has the discrete topology), and any subsets will inherit the
induced topology. A basis for the topology is the collection of cylinder sets which

are sets of the form [w] := {x ∈ AZd

: x(S) = w}, where w is a configuration with
arbitrary finite shape S ⊆ Zd.

A subshift (or shift space) is a closed, translation invariant subset of AZd

. An
equivalent definition is given as follows. Let A∗ denote the set of all configurations
on finite subsets of Zd, where we often identify two configurations if they differ by

a translate. A subset X of AZd

is a subshift iff

X = {x ∈ AZd

: x(S) ̸∈ F for all finite subsets S ⊂ Zd}

for some list F ⊂ A∗ of configurations on finite subsets. For a subshift X, when we
wish to emphasize the dimension of the lattice we will refer to X as a Zd-subshift.
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In the case where F can be chosen to be finite, X is called a shift of finite type
(SFT). In the case where F consists of configurations only on edges, X is called a
nearest-neighbor shift of finite type.

The following are prominent examples of nearest neighbor SFT’s.

Example 2.1. The hard square shift is the nearest-neighbor Zd-SFT with al-
phabet {0, 1} defined by forbidding 1’s on any adjacent pair of sites.

Example 2.2. The k-checkerboard (or k-coloring) SFT C
(d)
k is the nearest-

neighbor Zd-SFT with alphabet {0, 1, . . . , k − 1} consisting of all configurations on
Zd such that letters at adjacent sites must be different.

Definition 2.3. For any Zd subshift X, the language of X is

L(X) =
∪

{S⊂Zd, |S|<∞}

LS(X)

where
LS(X) = {x(S) : x ∈ X}.

Given a forbidden list F that defines a subshift X and S ⊆ Zd, every configu-
ration on S that does not contain any element of F is called locally admissible;
every configuration on S that extends to an element of X is called globally ad-
missible. Note that every locally admissible configuration is globally admissible,
but not conversely. Clearly, a finite configuration is globally admissible if and only
if it is in L(X).

Definition 2.4. A nearest-neighbor SFT X is single-site fillable (SSF) if for
some forbidden list F of nearest neighbors that defines X and every η ∈ AN0 , there
exists a ∈ A0 such that ηa is locally admissible.

It is easy to see that a nearest-neighbor SFT X satisfies SSF if and only if for
some forbidden list F of nearest neighbors that defines X, every locally admissible
configuration is globally admissible.

In the definition of SSF above, the symbol a may depend on the configuration
η. This generalizes the concept of a safe symbol, which is a symbol a ∈ A{0} such
that ηa is locally admissible for every configuration η ∈ AN0 (strictly speaking,
the concept of safe symbol applies to a forbidden list on the alphabet of symbols
that occur in a point of the subshift). The hard square shift has a safe symbol in

every dimension. No checkerboard shift has a safe symbol, but for k ≥ 2d+1, C
(d)
k

satisfies SSF.

2.2. Markov Random Fields and Gibbs Measures.
We will frequently speak of measures on AZd

, and all such measures in this
paper will be Borel probability measures. This means that any µ is determined by
its values on the cylinder sets. For notational convenience, rather than referring
to a cylinder set [w] within a measure or conditional measure, we just use the
configuration w. For instance, µ(w ∩ v | u) represents the conditional measure
µ([w]∩ [v] | [u]). By the support, supp(µ), of µ, we mean the topological support,
i.e., the smallest closed set of full measure. Note that for a configuration w on a
finite set, [w] intersects supp(µ) iff µ(w) > 0.

A measure µ onAZd

is shift-invariant (or stationary or translation-invariant)
if µ(A) = µ(σvA) for all measurable sets A and v ∈ Zd.
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Definition 2.5. A shift-invariant Zd-measure µ is a Zd Markov random field
(or MRF) if, for any finite S ⊂ Zd, any η ∈ AS, any finite T ⊂ Zd s.t. ∂S ⊆ T ⊆
Zd \ S, and any δ ∈ AT with µ(δ) > 0,

(5) µ(η | δ(∂S)) = µ(η | δ).

Informally, µ is an MRF if, for any finite S ⊂ Zd, configurations on the sites in
S and configurations on the sites in Zd \ (S ∪ ∂S) are µ-conditionally independent
given a configuration on the sites in ∂S.

Definition 2.6. For any Markov random field µ, any finite S ⊆ Zd, and any
δ ∈ A∂S with µ(δ) > 0, define the measure µδ on AS by

µδ(w) = µ(w | δ)

for every w ∈ AS.

We will deal mostly with nearest-neighbor Gibbs measures, which are MRF’s
specified by nearest-neighbor interactions, defined below.

Definition 2.7. A nearest-neighbor interaction is a shift-invariant function
Φ from the set of configurations on edges in Zd to R ∪ ∞. Here, shift-invariance
means that Φ(σvw) = Φ(w) for all configurations w on edges and all v ∈ Zd.

Clearly, a nearest-neighbor interaction is defined by only finitely many numbers,
namely the values of the interaction on configurations on edges {0, ei}, i = 1, . . . , d.

For a nearest-neighbor interaction Φ, we define its underlying SFT as follows:

XΦ = {x ∈ AZd

: Φ(x({v, v′})) ̸= ∞, for all v ∼ v′ in Zd}.

Note that XΦ is a nearest-neighbor SFT.

Definition 2.8. For a nearest-neighbor interaction Φ, any finite set S ⊂ Zd, and
any w ∈ AS, the energy function of w with respect to Φ is

UΦ(w) :=
∑
e

Φ(w(e)),

where the sum ranges over all edges e of S. The partition function of S is

ZΦ(S) :=
∑

w∈AS

e−UΦ(w).

For δ ∈ A∂S we define

ZΦ,δ(S) :=
∑

w∈AS

e−UΦ(wδ).

In all definitions, we adopt the convention that ∞+ x = ∞ for all x ∈ R.

Definition 2.9. For any nearest-neighbor interaction Φ, an MRF µ is called a
Gibbs measure for Φ if for any finite set S ⊂ Zd and δ ∈ A∂S for which µ(δ) > 0,
we have ZΦ,δ(S) ̸= 0 and, for any w ∈ AS,

µδ(w) =
e−UΦ(wδ)

ZΦ,δ(S)
.
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Note that for a Gibbs measure µ, supp(µ) is automatically contained in the
underlying SFT XΦ; we have allowed the interaction to take on infinite values in

order to allow our Gibbs measures to be supported on proper subsets of AZd

. In
our main results, we will assume that Φ is a nearest-neighbor interaction and that
XΦ satisfies a topological mixing property (the D-condition or block D-condition
described below) that guarantees supp(µ) = XΦ.

Given a nearest neighbor SFT X, and a forbidden list of nearest neighbor config-
urations, a uniform Gibbs measure on X is a Gibbs measure corresponding to
the nearest-neighbor interaction which is 0 on all nearest-neighbor configurations
except the forbidden configurations (on which it is ∞).

Every nearest-neighbor interaction Φ has as least one Gibbs measure; this is a
very special case of a general result of Ruelle [14]. Often there are multiple Gibbs
measures for a single Φ; this phenomenon is often called a phase transition. One
type of condition which guarantees uniqueness of Gibbs measures is so-called spatial
mixing, with two variants defined below.

2.3. Spatial Mixing.
Let Bn = [−n, n]d, the d-dimensional cube of side length 2n+ 1 centered at the

origin.

Definition 2.10. For a function f(n) : N → R+, limn→∞ f(n) = 0, we say that
an MRF µ satisfies weak spatial mixing (WSM ) with rate f(n) if for any
finite set S ⊆ Bn and any w ∈ AS, δ, δ′ ∈ A∂Bn s.t. µ(δ), µ(δ′) > 0,

|µδ(w)− µδ′(w)| < |S|f(d(S, ∂Bn)).

Definition 2.11. For a function f(n) : N → R+, limn→∞ f(n) = 0, we say
that an MRF µ satisfies strong spatial mixing (SSM ) with rate f(n) if for
any disjoint finite sets S, T ⊆ Bn and any v ∈ AT , w ∈ AS, δ, δ′ ∈ A∂Bn s.t.
µ(δ), µ(δ′), µδ(v), µδ′(v) > 0,

|µδ(w | v)− µδ′(w | v)| < |S|f(d(S, ∂Bn)).

Informally, weak spatial mixing means that conditioning on a boundary config-
uration does not have much effect on the measure of a configuration on a set S far
from the boundary, and strong spatial mixing means that this is still true even if
one first conditions on a configuration on sites which may be close to S.

The factor of |S| on the right-hand side is unavoidable in both definitions; with-
out it weak spatial mixing would force a much more stringent condition on µ called
m-dependence. (see [2])

It is well-known that for a nearest-neighbor interaction Φ, weak spatial mixing at
any rate implies that there is only one Gibbs measure defined by Φ [17, Proposition
2.2]. Well-known examples of Gibbs measures that satisfy SSM include the unique
uniform Gibbs measures for the hard square Z2-SFT and the k-checkerboard Z2-
SFT for k ≥ 12 (see [5],[12]).

We will need only somewhat weaker spatial mixing conditions for our main re-
sults. These conditions can be formulated in terms of a function naturally associated
to µ and described as follows.

Recall that P denotes the lexicographic past in Zd. For any shift-invariant
measure µ, define the function

pµ(x) := µ(x(0) | x(P))
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which is defined µ-a.e. on supp(µ). Note that pµ(x) depends only on x(P ∪ {0})
for µ-a.e. x. Recall that Iµ(x) := − log pµ(x) is known as the information function
of µ.

For any finite S ⊂ Zd, define the function

pµ,S(x) := µ(x(0) | x(S)).
We will sometimes refer to the special case

pµ,n(x) = pµ,Pn(x), where Pn = Bn ∩ P.

Definition 2.12. We write limS→P pµ,S(x) = L to mean the limit in the “net”
sense: for any ϵ > 0, there exists n such that for all finite S satisfying Pn ⊂ S ⊂ P,
we have |pµ,S(x)− L| < ϵ.

By martingale convergence, limn→∞ pµ,n(x) = pµ(x) for µ-a.e. x ∈ supp(µ). For
this reason, for any x ∈ supp(µ), if limS→P pµ,S(x) exists, we will take pµ(x) to be
this limit.

Our main results, Theorem 3.1 and 3.4, will establish a representation for pres-
sure in terms of a given shift-invariant measure ν. For Theorem 3.1 we assume
limS→P pµ,S(x) = pµ(x) uniformly on supp(ν), i.e. that ∀ϵ > 0 ∃N > 0 so that
∀x ∈ supp(ν), Pn ⊂ S ⊂ P =⇒ |pµ,S(x)− pµ(x)| < ϵ.

For Theorem 3.4, we will need a stronger type of convergence.

Definition 2.13. We write limS→P, U→+∞ pµ,S∪U (x) = L to mean that for any
ϵ > 0, there exists n such that for all finite S,U satisfying Pn ⊂ S ⊂ P and
U ⊂ (Bn ∪ P)c, we have |pµ,S∪U (x)− f(x)| < ϵ.

We note that this definition could also be written in terms of a single set; the only
property required of S ∪ U is that S ∪ U contains Pn and is contained in Bc

n ∪ Pn.
The definition is written with S and U decoupled only to make comparisons to
limS→P pµ,S more clear.

Again, we will take pµ(x) to be the value of this limit when it exists. For Theo-
rem 3.4, we will assume limS→P, U→+∞ pµ,S∪U (x) = pµ(x) uniformly on supp(ν).
Clearly this implies limS→P pµ,S(x) = pµ(x) uniformly on supp(ν).

We have the following implication.

Proposition 2.14. For an MRF µ, if µ satisfies SSM at any rate, then
limS→P,U→+∞ pµ,S∪U (x) = pµ(x) uniformly on supp(µ).

Proof. We find it convenient to define the vector-valued function

p̂nµ(x) := µ(y(0) = · | y(∂Sn) = x(∂Sn))

where Sn = Bn \ Pn (so, p̂nµ(x)a = µ(y(0) = a | y(∂Sn) = x(∂Sn))).
By SSM applied to S = {0} and Tn = Pn = P ∩Bn. we see that given ϵ > 0, for

n sufficiently large, if x, x′ ∈ supp(µ), and x(Tn) = x′(Tn), then |p̂nµ(x)−p̂nµ(x
′)| < ϵ.

Form ≥ n, p̂mµ (x) can be written as a weighted average of p̂nµ(x
′) for finitely many x′

agreeing with x on Tn. Thus, |p̂nµ(x)− p̂mµ (x)| < ϵ. So, the sequence p̂nµ is uniformly
Cauchy and therefore uniformly convergent.

We can decompose ∂Sn as a disjoint union

∂Sn = Un ∪ Cn

where Un = (∂Sn) ∩ P (the “upper layer” of Pn) and Cn = ∂Sn \ Un (a“canopy”
sitting over Un).
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Fix n and let S be a finite set satisfying Pn ⊂ S ⊂ P and U ⊂ (Bn ∪P)c. Then

(6) pµ,S∪U (x) =
∑

δ∈ACn : µ(x(S∪U)δ)>0

µ(x(0) | x(S ∪ U), δ)µ(δ | x(S ∪ U))

=
∑

δ∈ACn : µ(x(S∪U)δ)>0

µ(x(0) | x(Un), δ)µ(δ | x(S ∪ U))

=
∑

δ∈ACn : µ(x(S∪U)δ)>0

µ(y(0) = x(0) | y(∂Sn) = yδ(∂Sn))µ(δ | x(S ∪ U)),

where yδ is any point in supp(µ) such that yδ(Un) = x(Un) and yδ(Cn) = δ. (For
instance, any y ∈ [x(S ∪ U)δ].)

Let g(x) denote the (vector-valued) uniform limit of p̂nµ on supp(µ). It follows
from the above that given ϵ > 0, for sufficiently large n,

|µ(y(0) = x(0) | y(∂Sn) = yδ(∂Sn))− g(x)x(0)| < ϵ.

Thus, limS→P,U→+∞ pµ,S∪U (x) = g(x)x(0) uniformly on supp(µ) and g(x)x(0) =
pµ(x) by our convention. �

2.4. Positivity of pµ.
Positivity of pµ and related functions will play an important role in our main

results. We begin with an easy implication between two forms of positivity.

Definition 2.15. For any shift-invariant µ, make the notation

cµ = inf
x∈supp(µ), S⊂P, |S|<∞

pµ,S(x).

Proposition 2.16. If cµ > 0, then pµ is bounded away from zero µ-a.e.

Proof. If cµ > 0, then the functions pµ,n are uniformly bounded away from zero on
supp(µ). Since pµ,n converges to pµ µ-a.e., it follows that pµ is bounded away from
zero µ-a.e. �

Next, we show that SSF is sufficient for a stronger form of positivity.

Proposition 2.17. If Φ is a nearest-neighbor interaction and XΦ satisfies SSF,
then for any Gibbs measure µ for Φ, cµ > 0.

Proof. We will show in fact that

inf
x∈supp(µ), S⊂Zd\{0}, |S|<∞

pµ,S(x) > 0.

Recall that N0 denotes the set of nearest neighbors of 0. Let S ⊂ Zd \ {0} be a
finite set. Let

• U = N0 \ S
• V = (∂({0} ∪ U)) \ S
• S′ = (∂({0} ∪ U)) ∩ S

In particular, ∂({0} ∪ U) is the disjoint union of V and S′.
Let x ∈ X. There exists v ∈ AV such that

µ(v | x(S)) ≥ |A|−|V |.
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Let L and ℓ be upper and lower bounds on finite values of Φ. Since any locally
admissible configuration is globally admissible, there exists u ∈ AU such that
x(0)x(S)uv ∈ L(X). Thus,

pµ,S(x) ≥ µ (y(0) = x(0), y(U) = u | y(S) = x(S)) ≥
µ (y(0) = x(0), y(U) = u | y(S) = x(S), y(V ) = v)µ(y(V ) = v | y(S) = x(S)) =

µ (y(0) = x(0), y(U) = u | y(S′) = x(S′), y(V ) = v)µ(y(V ) = v | y(S) = x(S)) ≥

|A|−|U |−1e(4d
2)(ℓ−L)|A|−|V | ≥ e(4d

2)(ℓ−L)|A|−|N0|−|N1|−1

where N1 is the set of nearest neighbors of N0, other than 0.
Since this lower bound is positive and independent of x and S, we are done. �

The preceding result applies to X = C
(2)
k for any k ≥ 5. In contrast we have:

Proposition 2.18. Let X = C
(2)
3 and µ be a shift-invariant measure with supp(µ) =

X. Then cµ = 0.

Proof. Let x∗ ∈ X be defined by:

x∗(v) =

{
v1 + v2 (mod 3) if v ∈ P
1 + v1 + v2 (mod 3) if v /∈ P

.

We claim that x∗ ∈ X. To see this, we must show that for all v and i = 1, 2,
x∗(v + ei) ̸= x∗(v). Clearly this holds when v, v + ei ∈ P or v, v + ei /∈ P by the
individual piecewise formulas. The last case is when v ∈ P and v + ei ̸∈ P, and in
this case x∗(v + ei) = 2 + x∗(v) ̸= x∗(v) mod 3.

Fix any n, and let W3n = [1, 3n] × [−3n,−1]. For 1 ≤ i ≤ n − 1, define
xi = σ(−3i,0)x

∗ and note that

xi(W3n) = x∗(W3n), xi(3i− 1, 0) = 2, and xi(3i, 0) = 1.

We now show that the sets [xi(W3n ∪ {(3i − 1, 0), (3i, 0)}], for 1 ≤ i ≤ n − 1,
are disjoint. Choose 1 ≤ i < i′ ≤ n − 1. Let x ∈ [xi(W3n ∪ {(3i − 1, 0), (3i, 0))}].
We claim that for 3i ≤ j ≤ 3i′, x(j, 0) = j + 1 (mod 3). To see this, we argue
by induction. For j = 3i, this is true by definition of xi. Assume this is true
for a given j. Then x(j + 1, 0) ̸= x(j, 0) = j + 1 (mod 3) and x(j + 1, 0) ̸=
x(j + 1,−1) = x∗(j + 1,−1) = j (mod 3). Thus, x(j + 1, 0) = j + 2 (mod 3),
as desired, completing our proof by induction. But then x(3i′, 0) = 2, and since

xi′(3i′, 0) = 1, x /∈ [xi′(W3n ∪ {(3i′ − 1, 0), (3i′, 0))}], and these cylinder sets are
disjoint as claimed.

We now decompose µ(xi({(3i− 1, 0), (3i, 0)} | x∗(W3n))) as

µ(xi(3i− 1, 0) | x∗(W3n)))µ(x
i(3i, 0) | x∗(W3n), x

i(3i− 1, 0)).

Since W3n − (3i − 1, 0) ⊆ P3n and x∗(W3n) = xi(W3n), the first factor can be
rewritten as pµ,W3n−(3i−1,0)(σ(3i−1,0)x

i). Similarly, the second factor can be ex-

pressed as pµ,{(−1,0)}∪(W3n−(3i,0))(σ(3i,0)x
i). Both are greater than or equal to cµ

by definition, so

µ(xi({(3i− 1, 0), (3i, 0)} | x∗(W3n))) ≥ c2µ.

By disjointness of {[xi(W3n∪{(3i−1, 0), (3i, 0))}]}, we obtain c2µ(n−1) ≤ 1. Since
this is true for all n, cµ = 0. �
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We remark that there is a fully-supported nearest-neighbor uniform Gibbs mea-

sure on C
(2)
3 ([3]), and so the proposition is not vacuously true. It is clear from the

proof that this result actually holds for any shift-invariant measure whose support
contains the point x∗ (and therefore all xi as well.)

2.5. D-condition.
We will frequently make use of a topological mixing condition, defined by Ru-

elle [14, Section 4.1] and given in the definition below. For this, we use the following
notation. Let Λn be a sequence of finite sets. We write Λn ↗ ∞ if ∪nΛn = Zd and
for each v ∈ Zd,

lim
n→∞

|Λn ∆ (Λn + v)|
|Λn|

= 0

where ∆ denotes symmetric difference.

Definition 2.19. An SFT X satisfies the D-condition if there exist sequences of

finite subsets (Λn), (Mn) of Zd such that Λn ↗ ∞, Λn ⊆ Mn,
|Mn|
|Λn| → 1, and, for

any v ∈ LΛn(X) and finite S ⊂ M c
n and w ∈ LS(X), [v] ∩ [w] ̸= ∅.

Roughly speaking, this means that there exists an exhaustive sequence of shapes,
Λn, for which relatively few elements of Λn are near ∂Λn, and “collars,” (Mn \Λn),
around the shapes of comparatively small size such that it is possible to “fill in”
between any legal configurations inside and outside the collar.

We will make use of the following property of a sequence Λn ↗ ∞.

Lemma 2.20. Let Λn ↗ ∞. Given n,N ∈ N, let
ΛN
n = {v ∈ Λn : v + PN ⊂ Λn}.

Then for fixed N ,

lim
n→∞

|ΛN
n |

|Λn|
= 1.

Proof. If v ∈ Λn and v + PN ̸⊂ Λn, then for some w ∈ PN , v ∈ Λn \ (Λn − w).
Thus,

|Λn \ ΛN
n |

|Λn|
≤
∑

w∈PN
|Λn \ (Λn − w)|
|Λn|

.

But the right hand side tends to 0 as n → ∞. �
For most known examples, one can choose Λn to be rectangular prisms, or cubes.

This motivates the following variation:

Definition 2.21. An SFT X satisfies the block D-condition if there exists a
sequence of integers (Rn) such that Rn

n → 0 and for any rectangular prism B =∏d
i=1[−ni, ni], any integers mi ≥ Rni

, and any w ∈ L∂(
∏d

i=1[−(ni+mi),ni+mi])(X)

and v ∈ LB(X), [v] ∩ [w] ̸= ∅.

For a nearest-neighbor SFT, the block D-condition can be expressed in the fol-
lowing equivalent form.

Lemma 2.22. A nearest-neighbor SFT X satisfies the block D-condition if and
only if there exists a sequence of integers (Rn) such that Rn

n → 0 and for any

rectangular prism B =
∏d

i=1[−ni, ni], any integers mi ≥ Rni , any finite set S ⊂(∏d
i=1[−(ni +mi), ni +mi]

)c
, if w ∈ LS(X) and v ∈ LB(X), then [v] ∩ [w] ̸= ∅.
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Proof. Let T =
∏d

i=1[−(ni +mi), ni +mi]. If w ∈ LS(X) for such a set S, then we
can extend w to a globally admissible configuration w′ on S∪∂T . Let w′′ = w′(∂T ).
By the block D-condition [v] ∩ [w′′] ̸= ∅. Since X is a nearest-neighbor SFT, it
follows that [v] ∩ [w′] ̸= ∅ and thus [v] ∩ [w] ̸= ∅. �

It follows, by choosing Λn =
∏d

i=1[−n, n] and Mn =
∏d

i=1[−(n + Rn), n + Rn],
that for a nearest-neighbor SFT, the block D-condition does indeed imply the D-
condition, and this implication can be easily generalized to any SFT. To distinguish
between these definitions we sometimes refer to the D-condition as the classical D-
condition.

For Theorem 3.1, we will assume the classical D-condition. For Theorem 3.4, we
will need the block D-condition. However, we are not aware of any example which
satisfies the classical D-condition and not the block D-condition; in fact in some
works (e.g., [13]) the D-condition is stated with the assumption that the sets Λn

and Mn are cubes or rectangular blocks.
We will make use of the following result that is well known under a much weaker

hypothesis ([14, Remark 1.14]). We give a proof for completeness.

Proposition 2.23. If Φ is a nearest-neighbor interaction and XΦ satisfies the D-
condition, then for any Gibbs measure µ for Φ, supp(µ) = XΦ.

Proof. As mentioned earlier, supp(µ) ⊆ XΦ. Let X = XΦ.
Let S be a finite subset of Zd and w ∈ LS(X). By the D-condition there exists

a finite set T containing S such that for any δ ∈ L∂T (X), we have wδ ∈ L(X).
Since there exists some δ ∈ A∂T such that µ(δ) > 0 and since supp(µ) ⊆ X, we
have δ ∈ L∂T (X), Thus, wδ ∈ L(X) and so µ(w|δ) > 0. Since

µ(w) =
∑

η∈A∂T : µ(η)>0

µ(w|η)µ(η)

we have µ(w) > 0. �

Proposition 2.24. Any Zd SFT that satisfies SSF must satisfy the block D-
condition.

Proof. It is clear that the block D-condition is satisfied with each mi = 1, since for
any dimensions ni, 1 ≤ i ≤ d, and configurations w ∈ L∂

∏d
i=1[−(ni+1),ni+1](X) and

v ∈ L∏d
i=1[−ni,ni]

(X), the concatenation vw is locally admissible, therefore globally

admissible by SSF, and so [v] ∩ [w] ̸= ∅. �

Recall that d = 2 and k ≥ 5, the k-checkerboard SFT satisfies SSF and therefore
satisfies the block-D condition. On the other hand, the 3-checkerboard SFT does
not even satisfy the classical D-condition.

Proposition 2.25. The 3-checkerboard SFT does not satisfy the classical D-condition
for any d ≥ 2.

Proof. For any d, let xd be defined by xd(v) = (
∑

i vi) (mod 3) for all v ∈ Zd.

Then xd ∈ C
(d)
3 .

We will show that there are no points x ∈ C
(d)
3 , x ̸= xd, which agree with xd on

all but finitely many sites. (Such points are sometimes called frozen.)
We argue for d = 2, which implies the same for all d since the restriction of xd

to any translate of {v ∈ Zd : vi = 0 for all i > 2} agrees with a shift of x2
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Suppose that y ∈ C
(2)
3 agrees with x2 on the complement of a finite set of sites.

Let S be the set of sites at which y and x2 disagree. Consider the leftmost site v
in the top row of S. Its neighbors v − e1 and v + e2 are in Sc, and by definition of
x2, y(v − e1) = x2(v − e1) ̸= x2(v + e2) = y(v + e2). Therefore, there is only one
legal choice for y(v), which is x2(v), contrary to the fact that v ∈ S.

In particular, this implies that for any d and finite S ⊆ Zd, any boundary
configuration xd(∂S) has only one valid completion to all of S∪∂S, which precludes
the classical D-condition (for instance, one cannot “fill in” between the configuration
on any cube which consists of alternating 0’s and 1’s and the restriction of zd to
the boundary of any larger cube). �

2.6. Entropy, Pressure and Equilibrium States.

For a shift-invariant measure µ on AZd

, we define its entropy as follows.

Definition 2.26. The measure-theoretic entropy of a shift-invariant measure

µ on AZd

is defined by

h(µ) = lim
j1,j2,...,jd→∞

−1

j1j2 · · · jd

∑
w∈A

∏d
i=1

[1,ji]

µ(w) log(µ(w)),

where terms with µ(w) = 0 are omitted.

We define topological pressure for both interactions and functions on a shift
space X. In order to discuss connections between these viewpoints, we need a
mechanism for turning an interaction (which is a function on finite configurations)
into a continuous function on the infinite configurations in X. Following Ruelle, we
do this as follows for the special case of nearest-neighbor interactions Φ. Define for
x ∈ XΦ

AΦ(x) := −
d∑

i=1

Φ({x0, xei}).

We now give the two definitions of topological pressure.

Definition 2.27. For a nearest-neighbor interaction Φ the (topological) pressure
of Φ is defined as

P (Φ) = lim
n1,...,nd→∞

1∏
ni

logZΦ
(∏

[1, ni]
)
.

It is well-known [14, Corollary 3.13] that for any sequence Λn ↗ ∞,

P (Φ) = lim
n→∞

1

|Λn|
logZΦ (Λn) .

Definition 2.28. For any continuous real-valued function f on a Zd SFT X, the
(topological) pressure of f is defined as

P (f) = sup
µ

h(µ) +

∫
f dµ,

where the supremum ranges over all shift-invariant measures µ supported on X.
Any µ achieving this supremum is called an equilibrium state for f .

When f = 0, P (f) is called the topological entropy h(X) of X, and any
equilibrium state for f is called a measure of maximal entropy for X.
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It is well-known that for an irreducible nearest-neighbor Z-SFT X, there is a
unique uniform Gibbs measure; this measure is the unique measure of maximal
entropy on X [10, Section 13.3] (which is an irreducible (first-order) Markov chain).

The celebrated Variational Principle [16] [15] implies that the definitions we
have given are equivalent in the sense that P (Φ) = P (AΦ). It is well-known that
any continuous f has at least one equilibrium state [15]. And in the case that
XΦ satisfies the D-condition, a measure on XΦ is a Gibbs state for Φ iff it is an
equilibrium state for AΦ [4], [8], [14, Theorem 4.2]. We will discuss connections, in
a more general context, between Gibbs states and equilibrium states in Section 5.

3. Main results

Theorem 3.1. If Φ is a nearest-neighbor interaction with underlying SFT X = XΦ,
µ is a Gibbs measure for Φ, ν is a shift-invariant measure with supp(ν) ⊆ X,

(A1) X satisfies the classical D-condition,
(A2) limS→P pµ,S(x) = pµ(x) uniformly over x ∈ supp(ν), and
(A3) cµ > 0,

then

P (Φ) =

∫
Iµ(x) +AΦ(x) dν =

∫
Iµ(x)−

d∑
i=1

Φ(x({0, ei})) dν.

Theorem 1 of [5], which motivated our paper, shows that if µ is a Gibbs measure
for a nearest-neighbor interaction Φ and XΦ has a safe symbol a and satisfies SSM,

then the pressure representation above holds for the point mass ν on aZ
d

. We
remark that Theorem 3.1 generalizes this result, with weaker hypotheses and a
stronger conclusion. To see this, first recall that the existence of a safe symbol is
even stronger than SSF, which implies (A1) and (A3) by Propositions 2.24 and 2.17;
second, recall from Proposition 2.14 that SSM implies (A2).

Proof. Recall from Proposition 2.23 that supp(µ) = X. So, pµ is defined µ-a.e. on
X and for any finite set S, w ∈ LS(X) iff µ(w) > 0.

Choose ℓ < 0 and L > 0 to be lower and upper bounds respectively on finite
values of Φ. Let Λn,Mn be as in the definition of the D-condition.

We begin by proving that

(7)
1

|Λn|
(
logZΦ(Λn) + logµ(x(Λn)) + UΦ(x(Λn))

)
→ 0

uniformly in x ∈ X (though we will need this only for x ∈ supp(ν)). For this, we
will only use the D-condition (A1).

Fix n and let Rn = |Mn| − |Λn|. Note that for any w ∈ LΛn(X),

(8) µ(w) =
∑

δ∈L∂Mn (X)

µ(w | δ)µ(δ).

For any such w and δ, by the D-condition there exists yw,δ ∈ LMn\Λn
(X) such that

wyw,δδ ∈ L(X). Then there is a constant Cd > 0 such that
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µ(w | δ) ≥ µ(wyw,δ | δ) = e−UΦ(wyw,δδ)∑
u∈LMn (X) e

−UΦ(uδ)

≥ e−UΦ(w)−CdRnL∑
v∈LΛn (X) e

−UΦ(v)|A|CdRne−CdRnℓ
=

e−UΦ(w)

ZΦ(Λn)
eRn(Cdℓ−CdL−Cd log |A|).

Let ymax achieve maxµ(wy | δ) over all y ∈ LMn\Λn
(X). Then,

µ(w | δ) =
∑

y∈LMn\Λn (X)

µ(wy | δ) ≤ |A|Rnµ(wymax | δ)

= |A|Rn
e−UΦ(wymaxδ)∑

u∈LMn (X) e
−UΦ(uδ)

≤ |A|Rn
e−UΦ(w)−CdRnℓ∑

v∈LΛn (X) e
−UΦ(v)−CdRnL

=
e−UΦ(w)

ZΦ(Λn)
eRn(CdL−Cdℓ+log |A|).

Since
∑

δ µ(δ) = 1, we can combine the three formulas above to see that

γ−Rn ≤ µ(w)ZΦ(Λn)e
UΦ(w) ≤ γRn ,

where γ := eCd log |A|+CdL−Cdℓ > 0. Since Rn

|Λn| → 0, this implies (7).

We use (7) to represent pressure:

P (Φ) = lim
n→∞

logZΦ(Λn)

|Λn|
= lim

n→∞

∫
logZΦ(Λn)

|Λn|
dν = lim

n→∞

∫
−UΦ(x(Λn))− logµ(x(Λn))

|Λn|
dν.

(Here the second equality comes from the fact that logZΦ(Λn)
|Λn| is independent of x,

and the third from (7).) Since ν is shift-invariant and Λn ↗ ∞,

lim
n→∞

∫
−UΦ(x(Λn))

|Λn|
dν =

∫
AΦ(x) dν,

and so we can write

P (Φ) =

∫
AΦ(x) dν − lim

n→∞

∫
logµ(x(Λn))

|Λn|
dν.

It remains to show that limn→∞
∫ − log µ(x(Λn))

|Λn| dν =
∫
Iµ(x) dν. We do this

by decomposing µ(x(Λn)) as a product of conditional probabilities. Denote by

(s
(n)
i )

|Λn|
i=1 the sites of Λn, ordered lexicographically. For any 1 ≤ i ≤ |Λn|, denote

by S
(n)
i the set {s(n)j : 1 ≤ j ≤ i− 1}. (This means that S

(n)
1 = ∅). Then for any

x ∈ supp(ν), we can write
(9)

− logµ(x(Λn)) =

|Λn|∑
i=1

− logµ
(
x(s

(n)
i ) | x(S(n)

i )
)
=

|Λn|∑
i=1

− log p
µ,S

(n)
i −s

(n)
i

(σ
s
(n)
i

x).

Clearly, each term − log p
µ,S

(n)
i −s

(n)
i

(σ
s
(n)
i

x) is lower bounded by 0. To get an

upper bound, we use shift-invariance of µ, the fact that S
(n)
i − s

(n)
i ⊂ P and

Assumption (A3) to conclude that for any x ∈ supp(ν) and all n, i,

p
µ,S

(n)
i −s

(n)
i

(σ
s
(n)
i

x) ≥ cµ.
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Fix ϵ > 0 and N ∈ N.
By Lemma 2.20, for sufficiently large n,

|ΛN
n |

|Λn|
> 1− ϵ.

(recall that ΛN
n = {v ∈ Λn : v + PN ⊂ Λn}.)

For all i such that s
(n)
i ∈ ΛN

n , we have PN ⊂ S
(n)
i − s

(n)
i ⊂ P. By assumption

(A2), we then have that for sufficiently large N , all i such that s
(n)
i ∈ ΛN

n and all
x ∈ supp(ν), ∣∣∣pµ,S(n)

i −s
(n)
i

(σ
s
(n)
i

x)− pµ(σs
(n)
i

x)
∣∣∣ < ϵ.

Since p
µ,S

(n)
i −s

(n)
i

is bounded from below by cµ and pµ,n converges to pµ on

supp(ν), it follows that pµ is also bounded below by cµ on supp(ν). Thus,∣∣∣− log p
µ,S

(n)
i −s

(n)
i

(σ
s
(n)
i

x)− Iµ(σs
(n)
i

x)
∣∣∣ < ϵ/cµ.

Therefore,∣∣∣∣∫ − log p
µ,S

(n)
i −s

(n)
i

(σ
s
(n)
i

x) dν −
∫

Iµ(σs
(n)
i

x) dν

∣∣∣∣ < ϵ/cµ.

Since ν is shift-invariant, we have∣∣∣∣∫ − log p
µ,S

(n)
i −s

(n)
i

(σ
s
(n)
i

x) dν −
∫

Iµ(x) dν

∣∣∣∣ < ϵ/cµ.

Now, we are prepared to give bounds on (9). By the preceding,∣∣∣∣∣∣∣
∑

s
(n)
i ∈ΛN

n

∫
− log p

µ,S
(n)
i −s

(n)
i

(σ
s
(n)
i

x) dν − |ΛN
n |
∫

Iµ(x) dν

∣∣∣∣∣∣∣ ≤ |Λn|(ϵ/cµ).

Also, since 0 ≤
∫
− log p

µ,S
(n)
i −s

(n)
i

(σ
s
(n)
i

x) dν ≤ − log cµ,

0 ≤
∑

s
(n)
i /∈ΛN

n

∫
− log p

µ,S
(n)
i −s

(n)
i

(σ
s
(n)
i

x) dν ≤ |Λn \ ΛN
n |(− log cµ) ≤ ϵ|Λn|(− log cµ).

Therefore, by (9),

−|Λn|ϵ/cµ ≤
∫

− logµ(x(Λn)) dν − |ΛN
n |
∫

Iµ(x) dν ≤ |Λn|(ϵ/cµ − ϵ log cµ).

By dividing by |Λn| and letting n → ∞, we see that

− ϵ/cµ +

∫
Iµ(x) dν ≤ lim inf

n→∞

∫
− logµ(x(Λn))

|Λn|
dν and

lim sup
n→∞

∫
U
− logµ(x(Λn))

|Λn
| dν ≤ (ϵ/cµ − ϵ log cµ) +

∫
Iµ(x) dν.

Since ϵ > 0 was arbitrary,

lim
n→∞

∫
− logµ(x(Λn))

|Λn|
dν =

∫
Iµ(x) dν,

completing the proof.
�



16 BRIAN MARCUS AND RONNIE PAVLOV

We now apply Theorem 3.1 to obtain a result which gives a integral representa-
tion of P (Φ) for every invariant measure ν.

Corollary 3.2. If Φ is a nearest-neighbor interaction with underlying SFT X, µ
is a Gibbs measure for Φ,

(B1) X satisfies the classical D-condition,
(B2) limS→P pµ,S(x) = pµ(x), uniformly over x ∈ supp(µ), and
(B3) cµ > 0,

then

P (Φ) =

∫
Iµ(x) +AΦ(x) dν =

∫
Iµ(x)−

d∑
i=1

Φ(x({0, ei})) dν

for every shift-invariant measure ν with supp(ν) ⊆ X.

Proof. This follows immediately from Theorem 3.1. �

Corollary 3.3. If Φ is a nearest-neighbor interaction with underlying SFT X =
XΦ, µ is a Gibbs measure for Φ,

(1) X satisfies SSF, and
(2) µ satisfies SSM,

then

P (Φ) =

∫
Iµ(x) +AΦ(x) dν =

∫
Iµ(x)−

d∑
i=1

Φ(x({0, ei})) dν

for every shift-invariant measure ν with supp(ν) ⊆ X.

Proof. This follows from Corollary 3.2, Proposition 2.24, Proposition 2.14 and
Proposition 2.17. �

Next, we state and prove a more difficult version of Theorem 3.1.

Theorem 3.4. If Φ is a nearest-neighbor interaction with underlying SFT X, µ is
a Gibbs measure for Φ, ν is a shift-invariant measure with supp(ν) ⊆ X,

(C1) X satisfies the block D-condition,
(C2) limS→P,U→+∞ pµ,S∪U (x) = pµ(x) uniformly on supp(ν), and
(C3) pµ is positive over supp(ν),

then P (Φ) =
∫
Iµ(x) +AΦ(x) dν =

∫
Iµ(x)−

∑d
i=1 Φ(x({0, ei})) dν.

In assumption (C3), pµ is taken, by our convention, to mean the limit of pµ,n,
which exists on supp(ν) by assumption (C2).

In comparing Theorems 3.1 and 3.4, note the tradeoffs in the assumptions.

(1) (C1) of 3.4 clearly implies (A1) of 3.1.
(2) (C2) of 3.4 clearly implies (A2) of 3.1.
(3) (A2), (A3) of 3.1 together imply (C3) of 3.4: by (A3), cµ > 0 is a lower

bound for {pµ,n(x) : x ∈ supp(ν)}, and by (A2), for x ∈ supp(ν), pµ,n(x)
approaches pµ(x), which must also be bounded from below by cµ.
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Proof. As in the proof of Theorem 3.1, since the D-condition holds on X, it suffices

to show that limn→∞
∫ − log µ(x(Bn))

(2n+1)d
dν =

∫
Iµ dν. For our purposes, it will be

more convenient to show that limn→∞
∫ − log µ(x(Kn))

nd dν =
∫
Iµ dν, where Kn =

[0, n+ 1]d. Clearly, since |Kn|
nd → 1, this still suffices.

Analogous to the proof of Theorem 3.1, we will decompose µ(x(Kn)) as a product
of conditional probabilities. However, we no longer have a positive lower bound on
pµ,S(x) over x ∈ supp(ν) and finite subsets S of P. By using a more complicated
decomposition of Kn and the block D-condition, we obtain a much weaker (but
still strong enough for our purposes) lower bound on the conditional probabilities
involving sites near the boundary of Kn. The following lemma gives this bound.

Lemma 3.5. Let Φ be a nearest-neighbor interaction with underlying SFT X = XΦ.
Suppose that S, T, U are finite subsets of Zd such that S ⊆ T ⊆ U , U is connected,
S ∩ ∂U = ∅, and [v] ∩ [w] ̸= ∅ for all v ∈ LS(X) and w ∈ LU\T (X). Then, for
any x ∈ LU (X),

µ(x(U \ T ) | x(∂U)) ≥ γ−(|U |−|S|),

where γ = |A|e2dL−ℓ for ℓ and L the minimum and maximum, respectively, of finite
values of Φ.

Proof. Consider any such Φ, S, T , and U . Then for every v ∈ LS(X) and w ∈
LU\T (X), there exists uv,w ∈ LT\S(X) so that vuv,ww ∈ L(X). Fix x ∈ LU (X)
and denote y = x(U \ (T ∪ ∂U)), δ = x(∂U) and ū = uv,yδ. Since µ is a Gibbs
measure,

µ(y | δ) =
∑

z∈LU\∂U (X) s.t. zδ∈L(X) and z(U\(T∪∂U))=y e−UΦ(zδ)∑
z∈LU\∂U (X) s.t. zδ∈L(X) e

−UΦ(zδ)

≥
∑

v∈LS(X) e
−UΦ(vūyδ)∑

v∈LS(X) |A||U |−|S| maxu∈LU\(S∪∂U)(X) s.t. uvδ∈L(X) e−UΦ(uvδ)

≥
∑

v∈LS(X) e
−UΦ(v)−2dL(|U |−|S|)∑

v∈LS(X) |A||U |−|S|e−UΦ(v)−ℓ(|U |−|S|) = (|A|e2dL−ℓ)−(|U |−|S|) = γ−(|U |−|S|).

�
We decompose Kn into geometric shapes, and for those near the boundary will

use Lemma 3.5 to show that the conditional probability of filling the shape in a
certain way cannot be too small.

By (C2), for any ϵ > 0, there exists k := kϵ so that for any finite sets S,U with
Pn ⊆ S ⊂ P and U ⊆ (Bk ∪ P)c, |pµ,S∪U (x) − pµ(x)| < ϵ for all x ∈ supp(ν).
(Equivalently, we could just require that S ∪ U contain Pk and be contained in
Bc

k ∪ P.)
Since X satisfies the block D-condition, there exists a sequence Rn of integers

s.t. Rn

n → 0 and, for any rectangular prism P =
∏

i[1, ni], any r ≥ Rmaxni , and any
configurations v ∈ LP (X) and w ∈ LS(X) for any finite S ⊂ (

∏
i[1− r, ni + r])c,

we have [v]∩ [w] ̸= ∅ (see Lemma 2.22). We may assume without loss of generality
that Rn is non-decreasing by redefining each Rn as maxi≤n Ri.

Due to the technicality of the decomposition, we will begin with d = 2, and
then give an outline of how to extend to larger d via induction. We are therefore
decomposing Kn = [0, n + 1]2. Our construction requires a parameter m := mn,
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which we choose to be equal to ⌊
√
nRn⌋, and so Rn

n → 0, mn

n → 0, and Rn

mn
→ 0..

We only consider n large enough so that m > 2k and Rn

n < 1. Define sets

C0 = (∂Kn),

C1 = {(i, j) : 1 ≤ j ≤ m, 1 ≤ i ≤ k(m+ 1− j)},
C2 = {(i, j) : 1 ≤ j ≤ m, k(m+ 1− j) < i < n− kj},
C3 = {(i, j) : 1 ≤ j ≤ m,n− kj ≤ i ≤ n},

C3t+1 = C1 + (0, tm) for all 1 ≤ t ≤ ⌊ n
m⌋ − 2,

C3t+2 = C2 + (0, tm) for all 1 ≤ t ≤ ⌊ n
m⌋ − 2,

C3t+3 = C3 + (0, tm) for all 1 ≤ t ≤ ⌊ n
m⌋ − 2, and

C3⌊ n
m ⌋−2 = [1, n]× [m⌊ n

m⌋ −m+ 1, n].

CC7

C0

C65C4C

3CC21C

8C

MC

9

Figure 1. Decomposing Kn (here, M = 3⌊ n
m⌋ − 2)

As illustrated in Figure 1, C0 is the inner boundary of Kn. For each t, C3t+1,
C3t+2, and C3t+3 form a partition of the strip [1, n] × [tm + 1, (t + 1)m] of height
m, made of two (discrete) trapezoids and a (discrete) parallelogram. And C3⌈ n

m ⌉−2

is simply a single “leftover” strip at the top of [1, n]2 = Kn \ ∂Kn. For every

t ∈ [1, 3⌈ n
m⌉ − 2], we define Dt =

∪t−1
s=0 Cs, and define D0 = ∅. Note that by the

choice of m, for large n, the bulk of Kn is comprised of {Ci; i = 2 mod 3}.
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We decompose µ(x(Kn)) as

(10)

3⌈ n
m ⌉−2∏
i=0

µ(x(Ci) | x(Di)).

We begin by giving a lower bound for µ(x(C0) | x(D0)) = µ(x(C0)). For any
n, letting R := Rn, then by definition S = [R + 1, n − R]2, T = Kn \ C0 and
U = [−R,n + R]2 satisfy the hypotheses of Lemma 3.5. There clearly exists δn ∈
L∂U (X) s.t. µ(δn) ≥ |A|−|∂U |. For any x ∈ X, by definition of R, there exists
y ∈ LU\(Kn∪∂U) s.t. x(C0)yδn ∈ L(X). So, by Lemma 3.5,

µ (x(C0)y | δn) ≥ γ−(|U |−|S|) ≥ γ−4(2R+1)(n+2R+1).

Therefore,

(11) µ(x(C0)) ≥ µ(x(C0)yδn) = µ(δn)µ(x(C0)y | δn)

≥ |A|−4(n+2R+1)γ−4(2R+1)(n+2R+1) ≥ γ−4(2R+2)(n+2R+1).

(here the last inequality follows from γ > |A|.)
The final factor of (10) is easy to bound from below. Note that the sets S =

T = ∅ and U = C3⌊ n
m ⌋−2 ∪ ∂C3⌊ n

m ⌋−2 satisfy the hypotheses of Lemma 3.5. Then,

(12) µ(x(C3⌊ n
m ⌋−2) | x(D3⌊ n

m ⌋−2))

= µ(x(C3⌊ n
m ⌋−2) | x(∂C3⌊ n

m ⌋−2)) = µ(x(U\T ) | x(∂U)) ≥ γ−(|U |−|S|) ≥ γ−(n+2)(2m+2).

(here the first equality follows from the fact that µ is an MRF.)
We next deal with the terms in (10) of the form µ(x(C3t+1) | x(D3t+1)). We wish

to apply Lemma 3.5 for U = [0, n+1]× [tm, n+1], T = U \ (∂U ∪C3t+1), and S =
([km+R+1, n−R]×[tm+R+1, (t+1)m])∪([R+1, n−R]×[(t+1)m+R+1, n−R]).
(See Figure 2.)

n

T STU

7C

D7

R

R

R

R

n

tm

S

km

m

R

Figure 2. S, T , and U for µ(x(C3t+1) | x(D3t+1))

To check that Lemma 3.5 can be used, we must show that for any configu-
rations v ∈ LS(X) and w ∈ L∂U∪C3t+1(X), [v] ∩ [w] ̸= ∅. This requires two
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applications of the block D-condition. Write v as a concatenation pq for p ∈
L[km+R+1,n−R]×[tm+R+1,(t+1)m](X) and q ∈ L[R+1,n−R]×[(t+1)m+R+1,n−R](X). By
the block D-condition, there exists a configuration w′ which extends w and p. A
second application of the block D-condition gives a configuration w′′ that extends
q and w′ and hence p, q and w. Thus, [p] ∩ [q] ∩ [w] = [v] ∩ [w] ̸= ∅.

Since µ is an MRF, Lemma 3.5 implies that

(13)

µ(x(C3t+1) | x(D3t+1)) = µ(x(C3t+1) | x(∂([0, n+1]× [tm, n+1]))) ≥ γ−(|U |−|S|)

≥ γ−(km2+5(R+1)(n+2)).

We next deal with the terms in (10) of the form µ(x(C3t+3) | x(D3t+3)). We
wish to apply Lemma 3.5 for U = (([0, n + 1] × [tm, n + 1]) ∪ C3t+3) ∪ ∂C3t+3,
T = U \ (∂U ∪ C3t+3), and S = [R + 1, n − R] × [(t + 1)m + R + 1, n − R]. (See
Figure 3.)

n

R

R

R
D9

9C

km

R

tm

STU T S

m

n

Figure 3. S, T , and U for µ(x(C3t+3) | x(D3t+3))

To check that Lemma 3.5 can be used, we must show that for any configurations
v ∈ LS(X) and w ∈ L∂U∪C3t+3

(X), [v] ∩ [w] ̸= ∅. This is a straightforward
application of the block D-condition.

Since µ is an MRF, we can use Lemma 3.5 to show that

(14) µ(x(C3t+3) | x(D3t+3)) = µ(x(C3t+3) | x(∂U)) ≥ γ−(|U |−|S|)

≥ γ−(km2+4(R+1)(n+2)).

It remains to deal with factors of the form µ(x(C3t+2) | x(D3t+2)). For each

t, denote the sites of C3t+2 in lexicographic order as s
(3t+2)
i , 1 ≤ i ≤ |C3t+2|, for

each such i > 1, define S
(3t+2)
i =

∪i−1
j=1{s

(3t+2)
j }, and define S

(3t+2)
1 = ∅. We first

decompose µ(x(C3t+2 | D3t+2)) as

(15)

|C3t+2|∏
i=1

µ
(
x(s

(3t+2)
i ) | x(S(3t+2)

i ∪D3t+2)
)
.
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Let t ≥ 1. For every i,

µ
(
x(s

(3t+2)
i ) | x(S(3t+2)

i ∪D3t+2)
)

= p
µ,(S

(3t+2)
i ∪D3t+2)−s

(3t+2)
i

(σ
s
(3t+2)
i

x).

The discrete parallelogram structure of C(3t+2) guarantees that each set

S
(3t+2)
i ∪D3t+2 − s

(3t+2)
i contains Pk and is contained in P ∪Bc

k. By definition of
k, we then have

(16)
∣∣∣pµ,(S(3t+2)

i ∪D3t+2)−s
(3t+2)
i

(σ
s
(3t+2)
i

x)− pµ(σs
(3t+2)
i

x)
∣∣∣ < ϵ.

We claim that (16) also holds for t = 0 (and every i). In this case, S
(2)
i ∪D2−s

(2)
i

need not contain Pk. However, S
(2)
i ∪D2∪ [0, n+1]× [−k,−1]−s

(2)
i does contain Pk

(and is contained in P ∪ Bc
k). Moreover, since µ is an MRF and D2 ⊇ C0 = ∂Kn,

we have

p
µ,S

(2)
i ∪D2−s

(2)
i
(σ

s
(2)
i
x) = p

µ,S
(2)
i ∪D2∪[0,n+1]×[−k,−1]−s

(2)
i
(σ

s
(2)
i
x)

which is within ϵ of pµ(σs
(2)
i

x), proving the claim.

It follows from (C2) that pµ is the uniform limit of continuous functions on
supp(ν); since, by (C3), it is also positive on supp(ν), it has a lower bound c > 0
there. We can therefore integrate with respect to ν to see that

(17)

∣∣∣∣∫ − log p
µ,(S

(3t+2)
i ∪D3t+2)−s

(3t+2)
i

(σ
s
(3t+2)
i

x) dν −
∫

Iµ(x) dν

∣∣∣∣ < ϵc−1.

We now combine (10), (11), (12), (13), (14), (15), and (17) to see that∣∣∣∣∣∣
∫

− logµ(x(Kn)) dν −
∫

Iµ(x) dν

⌊ n
m ⌋−2∑
t=0

|C3t+2|

∣∣∣∣∣∣
≤ n2ϵc−1+

n

m
(9(R+1)(n+2)+2km2) log γ+(4(2R+2)+2m+2)(n+2R+1) log γ

≤ n2ϵc−1 + n(n+ 2R+ 1) log γ

(
9(R+ 1)

m
+

2km

n+ 2
+

4(2R+ 2) + 2m+ 2

n

)
.

Note that
∑

t |C3t+2| ≥ n2 − 2nm − 2 n
mm(km + 1) = n2 − 2n((k + 1)m + 1).

Therefore,∣∣∣∣∫ − logµ(x(Kn))

n2
dν −

∫
Iµ(x) dν

∣∣∣∣ ≤ 2(k + 1)(m+ 1)

n

∣∣∣∣∫ Iµ(x) dν

∣∣∣∣+ ϵc−1

+ log γ

(
1 +

2R

n
+

1

n

)(
9(R+ 1)

m
+

2km

n+ 2
+

4(2R+ 2) + 2m+ 2

n

)
.

Recalling that m = ⌊
√
nR⌋, R

n → 0, and k is a constant, the right-hand side of

this inequality approaches ϵc−1 as n → ∞. Therefore,

− ϵc−1 +

∫
Iµ(x) dν ≤ lim inf

n→∞

∫
− logµ(x(Kn))

n2
dν and

lim sup
n→∞

∫
− logµ(x(Kn))

n2
dν ≤ ϵc−1 +

∫
Iµ(x) dν.

By letting ϵ → 0, we see that
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lim
n→∞

∫
− logµ(x(Kn))

n2
dν =

∫
Iµ(x) dν,

completing the proof for d = 2.

We now outline an inductive proof for d > 2. We first note that we can broadly
describe the above construction as follows: for every n, Kn = [0, n + 1]d was

partitioned as
∪M

i=0 Ci, which was broken into two classes B (for “big”) and S (for
“small”); there, B consisted of {Ci : i = 2 mod 3}. In fact, to set up our induction,
we will need to assume that the partition could be done for [0, n+1]d−1×[0, n−ℓ+1]
for an arbitrary parameter ℓ (dependent on n) such that ℓ

n → 0 as n → ∞. We

will always assume C0 to be ∂([0, n+1]d−1 × [0, n− ℓ+1]) and assign C0 ∈ S. For
technical reasons, we will also need a condition whose significance was not obvious
in the d = 2 case:

(i) M
n → 0 as n → ∞.

We then dealt with the conditional probabilities µ(x(Ci) | x(
∪i−1

j=0 Cj)) via two
methods. For Ci ∈ B, we broke Ci into its sites, written in lexicographic order,
and used the uniform convergence of pµ,U∪S by fixing a k so that for any set S ∪U
which contains Pk and is contained in Bc

k ∪ P, |pµ,S∪U (x) − pµ(x)| < ϵ. We then
required the following two properties:

(ii) For any Ci ∈ B and any v ∈ Ci, (Pk+v)\Ci ⊆ ([0, n+1]d−1× [0, n− ℓ+1])c∪∪i−1
q=0 Cq. (This ensures that for v ∈ Ci, when we compute

µ

(
x(v) | x

(
(
i−1∪
q=0

Cq) ∪ (Ci ∩ (P + v))

))

= µ

(
x(v) | x

(
([0, n+ 1]d−1 × [0, n− ℓ+ 1])c ∪ (

i−1∪
q=0

Cq) ∪ (Ci ∩ (P + v))

))
,

we’ve already conditioned on the sites in Pk + v.)

(iii) For any Ci ∈ B and any v ∈ Ci, (Fk + v) ∩
∪i−1

q=0 Cq = ∅, where Fk =

[−k, k]d \ (Pk ∪ {0}). (This ensures that for each site v ∈ Ci, when we compute

µ
(
x(v) | x((

∪i−1
q=0 Cq) ∪ (Ci ∩ (P + v)))

)
, we have not yet conditioned on any site

in Fk + v.)

For Ci ∈ S, we conditioned on x(Ci) “all at once” by using Lemma 3.5. For this,

we needed shapes Si ⊆
∪M

q=i+1 Cq with the following property:

(iv) Arbitrary configurations on Si and
∪i

q=0 Cq can be extended to a point of x:

For any v ∈ LSi(X) and w ∈ L∪i
q=0 Cq

(X), there exists x ∈ X s.t. x(Si) = v and

x
(∪i

q=0 Ci

)
= w.
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This property suffices for the use of Lemma 3.5 because we can take Ti =∪M
q=i+1 Cq and Ui = Ci ∪ Ti ∪ ∂Ti. Then ∂Ui ⊆ Ci ∪ ∂Ti, which is disjoint from Si.

Also, Ui \ Ti ⊆ Ci ∪ ∂Ti ⊆
∪i

q=0 Cq, so (iv) implies the hypothesis of Lemma 3.5.
Finally, the contributions from uses of Lemma 3.5 need to be negligible as n →

∞. For our choices made above, Ui\Si = Ci∪∂
(∪M

q=i+1 Cq

)
∪
((∪M

q=i+1 Cq

)
\ Si

)
,

so the following condition is sufficient.

(v) As n → ∞,

n−d
∑
Ci∈S

|Ci| → 0, n−d
∑
Ci∈S

∣∣∣∣∣∣∂
 M∪

q=i+1

Cq

∣∣∣∣∣∣→ 0, n−d
∑
Ci∈S

∣∣∣∣∣∣
 M∪

q=i+1

Cq

 \ Si

∣∣∣∣∣∣→ 0.

(Note that although the volume of our partitioned shape is in fact (n+ 2)d−1(n−
ℓ+ 2), since (n+2)d−1(n−ℓ+2)

nd → 1, replacing this volume by nd affects nothing.)
The reader may check that the d = 2 construction above has properties (i)-(v),

and that for any d, if these five properties are satisfied, then the conclusion of
Theorem 3.4 holds. We then only must describe how to get such a partition for
d+ 1 from one for d. To that end, assume that [0, n+ 1]d−1 × [0, n− ℓ+ 1] can be
partitioned into {Ci}Mi=0, that the Ci are broken into two classes B and S, and that
sets Si have been chosen, for which (i)-(v) above hold. There is a small technical
point in the induction; we actually need to assume that (ii) and (iii) above hold for
2k for the d-dimensional partition in order to get (ii) and (iii) to hold for k for the
(d+ 1)-dimensional partition.

We wish to construct a partition {C ′
i}M

′

i=0 for [0, n+1]d× [0, n−ℓ′+1], B′ and S′,
and S′

i with the same properties. We first define C ′
0 = ∂([0, n+1]d × [0, n− ℓ′ +1])

and assign C ′
0 ∈ S′. Define a parameter m := mn such that m

n → 0 and m
M → ∞

as n → ∞, which is possible by (i). We only consider values of n large enough
that m > 2R, k. Similarly to the d = 2 case, where C1, C2, and C3 partitioned
[1, n]× [1,m], we begin by making a partition of [1, n]d× [1,m]. Retroactively define
ℓ above to be equal to km, which satisfies ℓ

n → 0 since m
n → 0.

Define C ′
1 =

∪m
h=1([1, n]

d−1 × [1, k(m−h)]×{h}) and assign C ′
1 ∈ S′. Then, for

1 ≤ i ≤ M , define C ′
i+1 =

∪m
h=1(Ci+kmed+h(−ked+ ed+1)), assigning C ′

i+1 ∈ B′

if and only if Ci ∈ B. Finally, define C ′
M+2 = ([1, n]d × [1,m]) \

∪M+1
q=1 C ′

q =∪m
h=1([1, n]

d × [n− kh, n]× {h}), and assign C ′
M+2 ∈ S′.

We now partition the prisms [1, n]d × [jm+1, (j+1)m], 1 ≤ j < ⌈n−ℓ′

m ⌉− 1, via
translates of C ′

i, 1 ≤ i ≤ M + 2: for any such j and i, C ′
j(M+2)+i is defined to be

C ′
i +mjed+1, and is in B′ if and only if C ′

i was.

Finally, we define M ′ = (⌈n−ℓ′

m ⌉− 1)(M +2)+1 and C ′
M ′ = [1, n]d× [m⌈n−ℓ′

m ⌉−
m+ 1, n− ℓ′ + 1], and assign it to S′. We still must define the sets Si required for
(iv) and (v):

• Define S′
0 = [R+ 1, n−R]d × [R+ 1, n− ℓ′ −R] as for d = 2.

• For any 0 ≤ j < ⌊ n
m⌋, define

S′
j(M+2)+1 = ([R+ 1, n−R]d−1 × [km+R,n−R]× [mj +R+ 1,m(j + 1)])

∪ ([R+ 1, n−R]d × [m(j + 1) +R+ 1, n− ℓ′ −R]).
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• For any 0 ≤ j < ⌊ n
m⌋, define

S′
(j+1)(M+2) = [R+ 1, n−R]d × [m(j + 1) +R+ 1, n− ℓ′ −R].

• For any 0 ≤ j < ⌊ n
m⌋ and 2 ≤ i ≤ M + 1, define

S′
j(M+2)+i = ((Si−1 + kmed)× [mj +R+ 1,m(j + 1)])

∪ ([R+ 1, n−R]d × [m(j + 1) +R+ 1, n− ℓ′ −R]).

• Finally, define S′
M ′ = ∅. (Again, this is analogous to the Z2 proof.)

Due to the quite long and technical proof, we leave it to the reader to check that
(i)-(v) are satisfied for this partition, completing the proof by induction.

�

4. Pressure Approximation schemes

In this section, we derive, as a consequence of our pressure representation results,
an algorithm for approximating the pressure of a shift-invariant nearest-neighbor
Gibbs interaction Φ. For this, we assume that the exact values of Φ are known; it
would be impossible to hope for a bound on computation time for P (Φ) if Φ were
uncomputable or very hard to compute. The main idea of this section comes from
Gamarnik and Katz [5, Corollary 1].

We would like to apply our main results to shift-invariant measures ν which are
as easy as possible to integrate against, for instance the atomic measure supported
on a periodic orbit. In general, a Zd SFT X need not have any periodic points ([1]).
However, any nearest neighbor SFTX that satisfies SSF must have a periodic point:
choose any b ∈ A and let a ∈ A such that bN0a{0} is locally admissible in X, then
the point z defined by zv = a if

∑
i vi is even and zv = b if

∑
i vi is odd is periodic

and in X.

Proposition 4.1. Let Φ be a nearest neighbor Zd interaction and X = XΦ. Assume
that

(i) X satisfies SSF,
(ii) Φ satisfies SSM at exponential rate.

Then there is an algorithm to compute P (Φ) to within ϵ in time eO((log 1
ϵ )

d−1).

Note that in the case d = 2 this gives a polynomial-time approximation scheme.

Proof. Let µ be the unique Gibbs state corresponding to Φ.
Let z be a periodic point, which exists by SSF, and ν the shift-invariant atomic

measure supported on the orbit of z. The assumptions of Theorem 3.1 are satisfied:
assumptions (A1) and (A3) follow from SSF by Propositions 2.24 and 2.17, and
assumption (A2) follows from SSM and Proposition 2.14.

We conclude from Theorem 3.1 that

P (Φ) =

∫
(Iµ +AΦ)dν = (1/|D|)(

∑
v∈D

− log pµ(σ
v(z))−

∑
v∈D, v′∼v

Φ(z({v, v′})))

(here, D ⊂ Z2 is a fundamental domain for z).
Since we assume that the exact values of the interaction Φ are known, it suffices

to compute the desired approximations to pµ(x) for all x = σv(z), v ∈ D. We may
assume v = 0 (the proof is the same for all v).
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Recall the notation from the proof of Proposition 2.14:

Sn = Bn \ Pn, ∂Sn = Un ∪ Cn

where

Un = (∂Sn) ∩ P, Cn = ∂Sn \ Un.

Note that no site in Cn neighbors one in Un. So, for any locally admissible con-
figurations on Cn and Un, their concatentation is locally admissible, and therefore
globally admissible by SSF. Then, by Propositions 2.23 and 2.24, any such concate-
nation has positive µ-measure as well. Therefore, we may use the fact that µ is an
MRF to represent pµ as a weighted average:

pµ(z) =
∑

locally admissible δ∈ACn

µ(z(0) | z(Un)δ)µ(δ).

Let δz(0),n achieve maxµ(z(0) | z(Un)δ) and δz(0),n achieve minµ(z(0) | z(Un)δ)

over all locally admissible δ ∈ ACn . Clearly,

µ(z(0) | z(Un)δz(0),n) ≤ pµ(z) ≤ µ(z(0) | z(Un)δ
z(0),n).

By SSM at exponential rate, there are constants C,α > 0 such that these upper
and lower bounds on pµ(z) differ by at most Ce−αn.

This gives sequences of upper and lower bounds on pµ(z) with accuracy e−Ω(n).

For δ ∈ ACn , the time to compute µ(z(0) | z(Un)δ) is eO(nd−1) since this is the
ratio of two probabilities of configurations of size O(nd−1), each of which can be

computed using the transfer matrix method from [11, Lemma 4.8] in time eO(nd−1).

Since |ACn | = eO(nd−1), the total time to compute the upper and lower bounds is

eO(nd−1)eO(nd−1) = eO(nd−1). �

There are many sufficient conditions for SSM at exponential rate (for instance,
see the discussion in [11]).

We remark that Corollary 4.13 of [11] gives an algorithm to compute P (Φ) that

is less efficient, in that the approximation to within ϵ requires time eO((log 1
ϵ )

(d−1)2 ).
However, it applies more generally than Proposition 4.1 in that it requires only
assumption (ii) above and not assumption (i).

Finally, we note that, for a nearest-neighbor interaction Φ, the algorithm here
to compute P (Φ) also computes h(µ) for any Gibbs measure corresponding to Φ.

5. Connections with Thermodynamic Formalism

In this section, we connect Corollary 3.2 with results from Ruelle’s thermody-
namic formalism. We begin by taking a new look at Corollary 3.2.

Consider the following probability-vector-valued functions:

p̂µ,n(x) := µ(y(0) = · | y(Pn) = x(Pn))

and

p̂µ(x) := µ(y(0) = · | y(P) = x(P)).

Note that these functions do not depend on x0 (p̂µ,n is similar in spirit to the
function p̂nµ, which was introduced and used in the proof of Proposition 2.14).

Note that p̂µ is defined only µ-a.e. By Martingale convergence, p̂µ,n converges
to p̂µ for µ-a.e. x ∈ supp(µ).
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The following result relates unform convergence of p̂µ,n with a continuity prop-
erty of p̂µ.

Definition 5.1. A function g is past-continuous on a shift space X if it is
continuous on X and, for all x ∈ X, g(x) depends only on x(P): if x, y ∈ X and
x(P) = y(P), then g(x) = g(y).

Proposition 5.2. Let µ be a stationary measure.

(i) p̂µ,n converges uniformly on supp(µ) iff p̂µ is past-continuous on supp(µ)
(i.e., p̂µ agrees with a past-continuous function (µ-a.e.)).

(ii) If p̂µ,n converges uniformly on supp(µ), then limS→P pµ,S = pµ(x), uni-
formly on supp(µ).

Proof. For finite S ⊂ P, a ∈ A and x ∈ supp(µ), we can write
(18)

µ(y(0) = a | y(S) = x(S)) =
1

µ([x(S)])

∫
[x(S)]

pµ(y(0) = a | y(P) = x(P))dµ(y).

(i), ⇐: If p̂µ is past-continuous on supp(µ), then we can take the integrand in (18) to
be a continuous, and therefore uniformly continuous, function of y(P), y ∈ [x(S)].
Thus, taking S = Pn we get uniform convergence of p̂µ,n.

(i), ⇒: If p̂µ,n converges uniformly on supp(µ), then its limit is a uniform limit of
past-continuous functions on supp(µ) and thus is past-continuous on supp(µ). By
Martingale convergence, this limit agrees with p̂µ (µ-a.e.).

(ii): By (i), we may assume that p̂µ is past-continuous. Take a = x(0) in (18).
Given ϵ > 0, for sufficiently large n, if S is a finite set satisfying Pn ⊂ S ⊂ P, then
for all x ∈ supp(µ), the integrand in (18) is within ϵ of pµ(x), and so pµ,S(x) is
within ϵ of pµ(x).

�

Corollary 5.3. If Φ is a nearest-neighbor interaction with underlying SFT X, µ
is a Gibbs measure for Φ,

(D1) X satisfies the classical D-condition,
(D2) p̂µ is past-continuous on X, and
(D3) cµ > 0,

then

P (Φ) =

∫
Iµ(x) +AΦ(x) dν =

∫
Iµ(x)−

d∑
i=1

Φ(x({0, ei})) dν

for every shift-invariant measure ν with supp(ν) ⊆ X.

Proof. This follows immediately from Corollary 3.2 and Proposition 5.2. �

Next, we will show how Ruelle’s thermodynamic formalism [14] can be applied
to obtain a result similar to Corollary 5.3. For this, we need to give a definition of
interactions more general than nearest-neighbor.

Definition 5.4. An interaction is a shift-invariant function Φ from A∗ R ∪
{∞} which takes on the value ∞ for only finitely many configurations on shapes
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containing 0. An interaction is finite-range if there exists N so that if Φ(w) ̸= 0,
then w has shape with diameter at most N .

We remark, without proof, that the results of this paper extend to finite-range
interactions, in particular to interactions which are non-zero only on vertices and
edges (such interactions are often also called nearest-neighbor interactions, but
form a slightly more general class than the interactions that we have called nearest-
neighbor in this paper).

Definition 5.5. An interaction is called summable if∑
Λ⊂Zd,Λ∋0,|Λ|<∞

1

|Λ|
max

x∈AΛ: Φ(x)̸=∞
|Φ(x)| < ∞.

An interaction is called absolutely summable if∑
Λ⊂Zd,Λ∋0,|Λ|<∞

max
x∈AΛ: Φ(x)̸=∞

|Φ(x)| < ∞.

The underlying SFT corresponding to an interaction Φ is defined as follows.

XΦ = {x ∈ AZd

: Φ(x(S)) ̸= ∞ for all finite S ⊆ Zd}.

The role of configurations on finite subsets with Φ(x) = ∞ corresponds to forbidden
configurations and defines the SFT XΦ. This is equivalent to Ruelle’s setting where
one starts with a background SFT X and only considers finite-valued interactions
defined on configurations that are not forbidden.

A continuous function AΦ and underlying SFT XΦ can be associated to any
summable interaction Φ, in a similar fashion as what was done for nearest-neighbor
interactions in Section 2.2:

AΦ(x) := −
∑

Λ⊆P∪{0},Λ∋0,|Λ|<∞, Φ(x(Λ)) ̸=∞

Φ(x(Λ)).

Let X be a nonempty SFT and let I(X) denote the set of summable interactions
Φ with XΦ = X. Ruelle shows in [14, Section 3,2] that for any continuous function
f on X, there exists a summable interaction Φ such that XΦ = X and f = AΦ.
That is, the mapping Φ 7→ AΦ from I(X) to C(X) is surjective. However, the
restriction of this mapping to the set of absolutely summable interactions is not
surjective.

For an absolutely summable interaction, the concepts of energy function, parti-
tion function and Gibbs measure are defined analogously to those in Section 2.2.
For details, see [14]. For us, a Gibbs measure is shift-invariant by definition, as in
the nearest-neighbor case.

Gibbs measures and equilibrium states are intimately connected by the following
two standard theorems (these were mentioned at the end of Section 2.6 for the
special case of nearest-neighbor interactions). Proofs of both can be found in [14].

Theorem 5.6. ([8]) If Φ is an absolutely summable interaction, then any equilib-
rium state for AΦ on XΦ is a Gibbs measure for Φ.

Theorem 5.7. ([4]) If Φ is an absolutely summable interaction whose underlying
SFT XΦ satisfies the D-condition, then any Gibbs measure for Φ is an equilibrium
state for AΦ on XΦ.
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Definition 5.8. ([14]) Absolutely summable interactions Φ and Φ′ with the same
underlying SFT X are called physically equivalent if AΦ and AΦ′ have a common
equilibrium state.

The following result is Proposition 4.7(b) from [14].

Theorem 5.9. If X is an SFT that satisfies the D-condition, and if Φ,Φ′ are
physically equivalent absolutely summable interactions with underlying SFT X, then∫
(AΦ −AΦ′) dν is constant for all shift-invariant measures ν on X.

In order to make a connection with Corollary 5.3, we need the following.

Lemma 5.10. If Φ is a shift-invariant nearest-neighbor interaction, µ is an equi-
librium state for AΦ, and Iµ is continuous, then µ is also an equilibrium state for
−Iµ.

Proof. Let XP = {x(P) : x ∈ X}.
Since log is a concave function, we can use Jensen’s inequality to see that for

any shift-invariant measure ν on X,∫
X

Iν − Iµ dν =

∫
X

log

(
µ(x(0) | x(P))

ν(x(0) | x(P))

)
dν ≤ log

∫
X

µ(x(0) | x(P))

ν(x(0) | x(P))
dν

= log

∫
XP

∑
a∈A

µ(x(0) = a | x(P))

ν(x(0) = a | x(P))
ν(x(0) = a | x(P)) dν(P)

= log

∫
XP

∑
a∈A

µ(x(0) = a | x(P) dν(P)) = log

∫
XP

dν(P) = log 1 = 0.

So,
∫
Iµ dν ≥

∫
Iν dν. For any ν, we have h(ν) =

∫
Iν dν. Therefore,

h(ν)−
∫

Iµ dν ≤ h(ν)−
∫

Iν dν = 0 = h(µ)−
∫

Iµ dµ.

This means that the function h(ρ) +
∫
−Iµ dρ is maximized at ρ = µ, so µ is an

equilibrium state for −Iµ by definition.
�

Corollary 5.11. If Φ is a nearest-neighbor interaction with underlying SFT X =
XΦ, µ is a Gibbs measure for Φ,

(E1) X satisfies the classical D-condition, and
(E2) −Iµ = AΦ′ for some absolutely summable interaction Φ′ with XΦ′ = X,

then

P (Φ) =

∫
Iµ(x) +AΦ(x) dν =

∫
Iµ(x)−

d∑
i=1

Φ(x({0, ei})) dν

for every shift-invariant measure ν with supp(ν) ⊆ X.

Proof. Since X satisfies the D-condition, µ is an equilibrium state for AΦ. By
Lemma 5.10, AΦ and −Iµ are physically equivalent. Since −Iµ = AΦ′ for an
absolutely summable interaction Φ′ and the D-condition holds, by Theorem 5.9,∫
AΦ+ Iµ dν is a constant over all shift-invariant measures ν on X. But, for ν = µ,

this integral is
∫
AΦ + Iµ dµ = P (AΦ) = P (Φ). Therefore, P (Φ) =

∫
Iµ + AΦ dν

for all shift-invariant ν on X. �
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Corollary 5.3 and Corollary 5.11 give the same integral representation for P (Φ)
for every shift-invariant measure ν. The classical D-condition is assumed for both,
but the other hypotheses relate to different types of continuity: (D2) and (D3)
of Corollary 5.3 imply past-continuity of Iµ (by Proposition 2.16), while (E2) of
Corollary 5.11 is a strong form of continuity of Iµ (as mentioned earlier, continuity
of Iµ implies that Iµ = AΦ for some summable, but not necessarily absolutely
summable, interaction Φ).
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