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1 Introduction/Overview

Topological entropy is the most fundamental numerical riard associated to a
d-dimensional shift space. Wheh= 1 and the shift space is a shift of finite type
(SFT) or sofic shift, the topological entropy is easy to cotemas the log of the
largest eigenvalue of a nonnegative integer matrix. Howevieend = 2 there
is no known explicit expression for the topological entrahysFTs, even for the
simplest nontrivial examples. For instance, the one-dsimeral golden mean shift
is the set of all bi-infinite sequences ofs and ‘1’s such thatl1 never appears.
The topological entropy of this shift is well known to be tlog lof the golden
mean, which is approximatelyi(1.618). For the two-dimensional golden mean
shift, defined to be the set of all configurations @§‘and ‘1's on Z? such thatl 1
and ! never appear, there is no known expression for the topabgitropy.

One analogously defines thedimensional golden mean shift for ady> 1.

It is well known that the topological entropy is a non-in@ieg function ind and
thus has a limit. It is not so well known that the value of timsit is known in this
case; namely it iér%” ~ In(1.414) (see [11,17]).

One way of interpreting this result is as follows. For ahycall a site inZ?
even (resp., odd) if the sum of its coordinates is even (yexjd). Now, if we
assign valu@ to each even site, then we are free to assign arbitrary busdnes
to each of the odd sites; the’s in the even sites prevent two adjacent sites from
both taking valud. Equivalently, for any configuration ofi's and ‘1’s on all of Z4
such that all even sites have valughen if we freely change the values at all odd
sites in any way, the resulting configuration belongs to tlden mean shift. The
number of possible restrictions of configurations of thisrfdo ad-dimensional
rectangular cube of even side lendils 2L%/2 The asymptotic growth rate of the



number of such configurations, as— oo, is @ Thus, in any dimension, we

get a contribution of@ to the topological entropy of thédimensional golden

mean shift. We call this quantity the “independence entigbyhe golden mean

shift since it arises from independently choosing values aiaximal collection

of specified sites, while fixing values at other sites. Notg the independence
entropy is exactly the limiting entropy of thedimensional golden mean shift.

It is not hard to show that the topological entropy of thdimensional golden
mean shift dominates its independence entropy and we shaivicthall d, there
is a strict gap; evidently, this gap vanisheslas co.

In this paper, we define a general notion of independencemnfor an arbi-
trary d-dimensional shift spac& over an arbitrary finite alphabet (Section 4),
using an associated “multi-choice” shift space (introduge Section 3). The
alphabet of this shift space is the collection of non-emptysets of4, and a con-
figuration is allowed if and only if whenever one replacesheggmbolS C A
with any element of, one obtains an allowed configurationnh

In Section 4, we observe that the topological entropy of & space always
dominates its independence entropy and show that the indepee entropy can
be computed explicitly for any-dimensional sofic shift.

In Section 5, we introduce the notion of an “axial productdaf-dimensional
shift spacesX; over the same alphabet: namely, theimensional shift space
consisting of all configurations whose restriction to eveow” in the i-th direc-
tion belongs taX;, for eachi = 1, ..., d. For example, thd-dimensional golden
mean shift is the axial product dfcopies of the -dimensional golden mean shift.
We show that the independence entropy of the axial produkinsinated by the
minimum of the independence entropies of He In the isotropic case, i.e., when
all the X; are the same shift space (callXt), we show that the the independence
entropy of the axial product is the same as thakofSo, in the isotropic case, the
independence entropy does not change with the dimensidnsatominated by
the limiting (asd — oo) topological entropy.

As mentioned above, for the golden mean shifts] tends to infinity, the gap
between topological entropy and independence entropppiésas. In Section 6,
we show that this holds for some general classes of shiftaé fiype as well
as for a specific example, tltecheckerboard SFT, thereby answering a question
posed in [6]. For this SFT, as well as the golden mean shiftalse show that
the d-dimensional topological entropy converges exponegtiathd we compute
the exact exponent of convergence (this is an improvemeaharpper bound on
the exponent given in [11]). We do not know of any example dfdimensional



shift space where the limiting topological entropy is nat&do the independence
entropy.

A d-dimensional shift space may naturally be regarded as ddgjgal Z-
action withd generators: namely, the unit shifts in each of thdimensions.
As described above, Bdimensional shift spac& defines ai-dimensional shift
space, namely the isotropic axial product. In the “limit;"also defines an action
of Z" on a sort of infinite dimensional isotropic axial productjave note that the
limiting topological entropy coincides with the topologl@ntropy of this action
(see [16] for an introduction to topological entropy of geleamenable group
actions).

Finally, we remark that our work was motivated by a schemeyknas “con-
strained systems with unconstrained positions,” for caonmg error-correcting
codes and modulation codes in magnetic recording [4,139&1]. The rough
idea there is that a-dimensional SFT or sofic shift ove0, 1} represents a
set of allowable sequences that can be recorded along datestin a storage
medium. Various physical considerations dictate constsahat define the shift
space. While these constraints substantially reduce kkHood of error intro-
duced in the reading process, some errors are unavoidableodmperfections
and noise in the components. Thus, it is desirable to have vror-correcting
(ECC) capability. This can be achieved by reserving someip@ositions for
ECC parity bits, which are computed based on the values gr gibsitions. Since
the parity bits are not known in advance, it is necessaryahwatselection of(’s
and 1's be allowed in those positions, without violating the doaists of the shift
space, so that the desired constraints on recorded seustitideold. This results
in a very special type of multi-choice shift space.

2 Definitions

We begin with some definitions from symbolic dynamics angbrteory.

Let A be a finite alphabet, and fix a positive integerFor a subsePCZ<, a
configuration onP over A is a mapping: : P — A. For any suchr andie P we
denote the element of corresponding tbby x; or z(i). A shiftof a configuration
x on BCZ4 over A is the configurationy ono+B={j+o : je B} over.A given by
Yi+o=1;j, j€ B, for someoeZ. For two configurationge. A" andyc. A%, where
P, QcZ¢ are disjoint, we denote by U y the configuration onPUQ satisfying
(xUy)|p = zand(xUy)|o = y. A configuration is finite if it is on a finite set. We
say that a configuratiom on a setP appearsin a configurationy if there exists



ocZ< such that for alic P, v;,,=x;. For a setF of finite configurations, th&¢
shift space overd defined byF, denotedX , is the set of all configurations on
7 over A which do not have a configuration @ appearing in them. The s&
is usually called dorbidden list A Z? shift spaceX is called ashift of finite type
(abbreviated SFT) if it can be defined by a finite forbidden #sZ? shift space is
soficif there exists an alphabgt’, aZ?-SFT X’ over.A’, and a mapping : A" —

A such thatX= {xeAZd : there exists’e X’ s.t. for allieZ?, xi=¢(x;)}. Let

X be aZ? shift space. A configuratiom on some sePcZ? is calledglobally
admissiblef it appears in an element of. If X is defined by a forbidden list
F, such a configuration is calledlocally admissible w.r.f if it does not contain
an element ofF. For a setPCZ?, we denote byBp(X) the set of all globally
admissible configurations oR. Local admissibility of finite configurations of a
Z4-SFT is decidable: there is an algorithm that given a finitbifitden list7 and
a finite configuration determines whether the configuratsolocally admissible
w.r.t 7. Whend = 1, there is also an algorithm for deciding global admisspili
of a finite configuration; in contrast, such an algorithm doetsexist ford>2 [2].
For an alphabetl, a word of lengtlY is a configuration o0, .. ., {—1} over
A. We usets to denote the empty word and* to denote the set of all words
over A. We use the following conventional notation: for wortdg/c.A* and a
nonnegative integer, we use|z| to denote the length of, zy to denote the
word formed by “concatenating to the end ofz” in the usual sense, and’ to
denote the word formed by concatenatintp itself n times ¢° = ¢). A Z-SFT
is called anm-step SFTif it can be defined by a forbidden list of words such
that the maximum length of a word iA is m+1. For aZ shift space oveX, the
languageof X, denotedB(X), is the set of all globally admissible words &f,

.....

in X, denoted byF'y (w), is defined by
Fx(w) ={zeB(X) : wzeB(X)}.

A Z shift space is sofic if and only if it has only finitely many f@Ner sets.

Let G = (V,E) be a directed graph with a finite set of verticésand finite

set of edges”. For an edgecE we denote by (e) andr(e) the starting and
terminating vertices of in G. A bi-infinite path inG is a sequencé:;)°_ CE

of edges such that for all integerts-(e;) = o(e;+1). We also deal with finite paths,
which are finite sequences;)i_, CF of some lengthf such that(e;) = o(e;,1)

fori = 1,...,/—1. Such a path is said tstart at the vertexs(e;) andendat

the vertexr(e;). A cycleis a finite path that starts and ends at the same vertex.
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A cycle (e;)%_, is simpleif the verticesr(e,), ..., 7(e/) are distinct. The set of
all bi-infinite paths inG is aZ SFT overE called theedge-shift defined b§. A
labeled graphg with edge labels id is a pair(G, £) whereG = (V, E) is afinite
directed graphand : £ — A is an edge-labeling function. The concepts of finite
and bi-infinite paths o are inherited fronG. A bi-infinite path(e;)°__ in G is
said togeneratehe bi-infinite sequencgu;)° . e A% if w; = L(e;). Similarly, a
finite path of lengtl generates word of lengtlY over.A. The set of all bi-infinite
sequences generated by bi-infinite pathg o aZ sofic shift. The labeled graph
G is called goresentatiorof this shift space. In fact evedd sofic shift over4 has
such a presentation. See [13] for proofs and more details mift spaces.

Finally, we useN to denote the set of positive integers.

3 Multi-choice shift spaces

For any finite alphabetl, let .4 denote the set of all nonempty subsetsfofLet
X be az? shift space overd and for a configuratios on PCZ? over A, define
the set of “fillings” of z, denotedd(z), by

®(#) = {ze A" : ForallieP, ;€35 }
= H s
We define thenulti-choice shift space correspondingXg denotedX, by
X = {:i"e,ftzd L B(7) C X} .

It's easy to verify that ifF is a forbidden list defining( then the set

~

F= {x . e AP for somePCZ% and® (&) N f%@}

is a forbidden list defining(; so X is indeed a shift space ovelr. Note that ifF is
finite then so isF, and therefore the multi-choice shift space of an SFT is ah SF
In contrast, ford>1, we don’t know if the multi-choice shift space correspomgin
to a sofic shift is sofic. Fof = 1, [19] shows that this true wheA = {0, 1}. The
proof can be generalized to larger alphabets, and for cdensses we provide it
in the next theorem.



Theorem 1. Let X be aZ sofic shift over an alphabet. ThenX is aZ sofic shift
over A.

Proof. We construct a presentatich= ((V, E), £) for X. The set of vertice¥’
consists of all (finite) intersections of follower sets ofra® in X':

k
=1

Since X is sofic, this is a finite set. We proceed to defiie For a vertex

v=r_, Fx(w;)€V, and symbolic A with aCv, define

k
d(v,a) = m m Fx(w;a)
a€a =1
(note thatw;ac B(X) for everyaca andi = 1,2,..., k). It's easy to verify that
d(v,a) = {fweA* : awew for all aca}, and thereforé(v, a) does not depend on
the choice ok andwy, . . ., w;. The setF is now defined by

E={(v,a,0(v,a)):veV,aCuv},

and for an edge = (v,a,4d(v,a))eE we defines(e) = v, 7(e) = d(v,a) and
L(e) = a. We claim thai is a presentation oX. The following fact is handy for
proving this and is easily verified by induction on the lengtithe wordw.

Fact 1. For any vertex) = ﬂf;l Fx(w;)€V and any wordwe A*, there is a path
starting atv and generatingv in G if and only if®(w)Cwv, in which case the path
ends at the verteR)_; .., Fx (wiz).

Now, let e A% be a bi-infinite sequence generated by a bi-infinite path
(e;)°_ . of G. We claim thatze X. Otherwise, there must be ar®(z) such
thatz¢ X. This implies that there exists a forbidden woraf X, j€Z and a
nonnegative integet such that: = z;...z;,. Consider the finite patfel-){i}"‘,
and letz = z;...2,;4, be the word that it generates. Liet= o(e;) be the starting
vertex of this path. By Fact (%) Cwv. Since clearly:€®(2), it follows thatz€w,
which impliesze B(X), a contradiction.

Conversely, letteX. LeticZ and pick a nonnegative integer Setw =
Zi. . .Zitn. By our assumption, clearly(w)CB(X). SinceB(X) = F(¢c), where
¢ denotes the empty word, it follows by Fact 1 that there is & pgnerating
W = Tj...Tipy IN G starting atF'(¢). Since this is true for all suchandn, it
follows by an application of Konig's Infinity Lemma that tieais a bi-infinite path
in G generating. |



4 Independence Entropy

In this section, we introduce the notion of “independendeogry” of a shift space.
Roughly, this is the part of the entropy resulting from irggmbol independence
in elements of the shift space. We need the following gerzatadn of Fekete’s
Subadditivity Lemma to multivariate functions.

For ann-tuplem = (my,...,m,)eN", let [m| denote the Cartesian product
IL{0,...,m;—1} and letd(m;) = min{m,,...,m,}. We say that a sequence
of suchn-tuples(m;)$°, diverges tox, denotedm;— oo, if (d(m;))2, diverges
to co. Let R denote the extended real numb&J{+oco, —oco}. We say that a
function f : N“—=R has a limitLeR, denotedim,, ,., f(m) = L, if for every
sequencém,)®, CN? with m; — oo, we havelim; ., f(m;) = L. We call a
function f : N¢—[—o0, c0) entry-wise subadditivef for any (my, ..., mg)eN?,
i€{1,2,...,d} andneN, it holds that

f(ml, e, M1, mi—i—n, Miy1, .- md) Sf(ml, PR md)+

f(ml, ey M1, Ty M4,y - .,md).

If fis an entry-wise subadditive function, then

where for a seb we use|S| to denote the cardinality df. See [3] for a proof.
Fix deN and a finite alphabetl. Let X be aZ? shift space ove. It's easy

to verify that the mappingn — In | Bjy(X)| for meN? (we defineln 0 = —oc)

is entry-wise subadditive. Thepological entropyof X, denotedh(X), is given

by

i In | B (X))
= g

1)

If we replace| By, (X)| in the definition by the number of locally admissible
patterns orm| w.r.t some fixed forbidden list, the topological entropy eens the
same. (See [5] or [8] for a proof in the case whéatés aZ? SFT; the proof in [8]
easily generalizes to the case whéfes anyZ“ shift space.) The topological
entropy is an important invariant of shift spaces (underitably defined notion
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of isomorphism). For & sofic shift there is a closed formula (up to computing the
largest root of a polynomial) for determining the topoladientropy. In contrast,
there is no algorithm for even determining whether the togal entropy of a
generalZ4-SFT withd>1 is greater than-co (or equivalently whether the SFT is
nonempty) [2]. There are only a few non-degeneZ#t&SFTs withd >1 for which

the topological entropy is known [1, 10,12, 14, 20].

We now define “independence entropy.” For altuplem and configuration
WE Bl (X), the real numbe (|®(«)|)/|[m]| can be thought of as the contribu-
tion to the topological entropy resulting from independehetween entries in el-
ements ofX as “captured” byw. We define the independence entropy as the limit
(asd(m) — oo) of the maximum possible such contribution. Preciselyeobs

that the mappingn — max {ln (P ()| : WEBim) (X)} for meN? is entry-wise
subadditive. Théndependence entromf X, denotedh;,q(X), is defined by

max{ln|<1>(u3)| : @GB[m}(X)}
hina(X) = lim
w

max {m@(m)\ :

€ Bjm) (X)}

—h El

(@)

We remark that [19] defines the independence entropy Bfsafic shift when
A = {0,1}. There it is called “maximum insertion rate” and the basehaf t
logarithm in the definition i, rather there.

We next prove some properties of the independence entropjl9 Theo-
rem 18] it is shown how the independence entropy of a sbfghift space can
be determined from a presentation®fwhen.4 = {0,1}. This result is easily
generalized to larger alphabets and we state it in the negtrém.

Theorem 2. Let X be aZ sofic shift over an alphabet, and pick any presenta-
tionGg = ((V, E), L) of X. Then

In [®(w . _ .
hina(X) = max {w . weX Is generated by a simple cycle@} . (3)
w
Proof. We first note that the max on the right-hand side clearly sxisince
the finite graph(V, E') can only have finitely many simple cycles. Denote
the RHS of (3) byv*. Let w, be a word generated by a simple cycle of

G such thatv* = (In|®(w,)|)/|w,]. Setl = |w,|. For anyneN, clearly
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wZZEBW](X) and(ln |[®(w?)|)/(nf) = v*. It follows thaty*<(In max{|®(w)]| :
WE Bl (X)})/(nt). Taking the limit ag1— 00, we obtain/* <h;,q(X). To com-
plete the proof, we will show that;.,(X)<v*. We first claim that ifive A* is a

word generated by a (possibly non-simple) cycl& othen
vi>— (4)

This is easily proved by induction dmw|. If [@| = 1, then the cycle generat-
ing w is simple and obviously (4) holds. Fab|>1, let ™ = (e;)t_, be a cycle
of G generatingw. Obviously (4) holds ifr is simple. Otherwise, there ex-
ist integersl <j<k</ such thatr(e;) = 7(ex). So botha = €;14,...,e; and

B =e1,...,€5,€k1,..., e are cycles ing. Letz, y denote the words generated
by a and 5 respectively. Then using the induction hypothesiggrand|y|, we
get

In |O(w)| _ |3]n|O(@)] 17| n|O()

A~ ~

|| | || [l |7
< Iaj\ vy |@{\ r
|| ||
=¥,

Now, for neN, let 2(n)€ By, (X ) be a word such tha®(2(n))| = max{|®(w)| :
We Bpy(X)}, and let(e™)7~ be a path irg generating(n). Then by using [18,
Lemma 13] (and removing “O-length” cycles), it may be decosgu as follows.
There exist an integer < m < |V| and2m integers) < s; < t; < s <ty <

. < 8 < t,, < nsuchthat foreackh = 1,...,m, (eﬁn))t.’“ . Isacycle, and

K3 1=Ss

n—>y . (tk—s+1)<|V]. SetS = U~ {sk: - - -, t }. Using (4), we have

in| ()| _ g I [BEL). L] g~ (L))
n n ,

k=1 i€[n]\S
" (n | (L), L™ -

SZ n|P(L(es,’) (etk))|.tk sk +1 +mln|.¢4|
— tr — sk +1 n n

<v 4+ Vi In |A.

n
The result follows by taking the limit as— oo of both sides of the last inequality.



We next show that the independence entropy of a shift spawetaxceed its
topological entropy.

Theorem 3. For anyZ? shift spaceX over an alphabetd, h;nq (X)<h(X).

Proof. FormeN?, let 2(m)€ By, (X) be a configuration such thab(z(m))| =
max{|®()| : WEBym(X)}. Obviously,®(2(m)) C Bpm(X), which implies
(1/|[m]]) In|[®(2(m))| < (1/|[m]|)In|By(X)|. Taking the limit of both sides
asm — oo, we obtain the result. [

5 Axial Products

In this section we define a construction, which we term andlaproduct,” [14]
of aZ? shift space from lower dimensional shift spaces. We theateghe topo-
logical and independence entropies of the resulting spdts to the respective
entropies of the lower dimensional shift spaces used totaaist.

For a configurationre A% on Z? over A and1 < i < d, arow in di-
rection ¢« of x is a configurationy on Z over A defined by specifying some
My, .o M1, Mg, - .., MgEZ and then taking, = T, ,...m;_1.kmisr,....mq) fOF
all keZ. Let X1, ..., X, beZ shift spaces oved, we define thexial productof
X1, ..., X to be theZ? shift space

X|®..0X, = {zeAZd :Vie{l,...,d} and rowy in directioni of z, yeXi} )

More generally, one can define the axial product @a shift space with &
shift space (both over the same alphabet), and show thaartidsict is associative.
Most of our results below can be generalized to this more rgéisetting; how-
ever to simplify the notation, we only treat axial productsZoshift spaces. For
i€{1,2,...,d}, any configuration: on BCZ corresponds to thel{dimensional)
configurationz(” on the Cartesian produ¢d}’~!'x Bx{0}?~* C Z? defined by

xgg),...,o,k,o,...p) = x;, for all keB. It's easy to verify that if7; is a forbidden

list defining the shift spac&;, thenF = |J,{z® : z€F;} is a forbidden list
defining X;®. ..®Xy; thus the axial product of shift spaces is a shift space. If
X = ... = X; = X, we call X;®...®X, the d-fold axial power ofX and
abbreviate it byX™. If X; is the multi-choice shift space correspondingp

for ie{1,...,d}, then it is easy to verify that the multi-choice shift spacere-
sponding toX®...® X, is X1®. ) .®Xd. The next theorem relates topological
and independence entropiesdshift spaces and their axial product.
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Theorem 4. Let X;,..., X4, X be Z shift spaces overd. Then the following
statements hold:

1. hina(X1®. . .@Xy)< min; hing(X;)
2. WM(X1®...©Xy)< min; h(X;)
3. hind(X®d) — hind(X)

Proof. Part 1. For eachX; let X; be the multi-choice shift space cor-
responding to it and denote h§ the multi-choice shift space(;®.. ®Xd
corresponding toX;®...®@X,. Fix ie{l,...,d}. For meN, definem =
(ma, .. md)CN by m;=1 for je{1,. ,d}\{i} andm; = m. SinceBy,(S) =
Bim)(X1®. . .®X4) S By (X)),

In max{|® ()| : HEBm)(S)} _ In max{|®(w)] : WE By (Xi)}
|[m]] B m

(strictly speaking, a configuration dm]| is not a word of lengt; rather, there
is an obviousl —1 correspondence from,(S) to By, (X;) that preservesb|).
Therefore by (2)hina(X1®...0X)<hina(X;). Sincei is arbitrary, the result
follows.

Part 2. The proof is similar to the proof of Part 1, so we omit it here.

Part 3. Let Y=X"’. By Part 1, it's enough to show,,4(Y)>hi,q(X). Let
f : N — N be any function satisfyingim; ,..(f(i)/i) = oco. Fori€N, let
m; = (i,i,...,14, f(i))€EN? be thed-tuple with every entry but the last equal
to i, and the last entry equal té(i). Set/l(i)=(d—1)(i—1)+f(i), and let
ZA‘(Z')GB[g(i)](X) be a word such thdﬂ)(é’(l))‘ = max{|<1>(w)| : wGB[g(i)](X)}.
Define the configuration(i)e.A™ by

9(i); = 2(i)y(), J€Mmy],
where : Zd — 7 is the function¢(j1,.. Jd) = >_.Jk- We claim that

()€ Bmy (V). Indeed, let’(i)e X be a configuration such that(i); = 2(i);
for je[¢(i)] and consider the configuratigi(i)c A% defined by

§' ()5 = 2 (D)), JEL".

Note that every row of/(4) is a shift of Z'(i); thusy'(i )eY. Since, clearlyjj(i)
appears iy’ (i), it follows thaty (7)€ By, (Y'). Consequently,

P (5(i))| < max{|®()| : WEBjm, (Y)}- (5)
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We next lower boundh |®(y(7))|. SetS = {j€Z : (i—1)(d—1)<j<f(i)}. Then

I |@(G(0)] = Y n|@(H(i))]

Jj€[my]
= > (J¢ " {EHNm] | In |@(2(i),)])
kele()]
>y I |0 (2(i))
keS
(Z n|®(2(0))] — > 1n<1>(2(i)k))
[ST0) Kelt@\S

> i n | ®(2(:))] — 2(d—1)(i—1)i" "  In | A,

where we used the fact that fdreS, it holds thaty'({k}) N [m;] =
{Ury - da1, k=D d1) + (J1s- -+ Ja—1)€[i]*'}. Combining the last inequality
with (5), we have

In max{ | ©(10)] : HEBimy(V)} _ i In|B(2())| — 2(d—1) (=i In|.A]
|[m;]| - |[m;]|
I [0((0)]  2d-1)(i-1)In| A
- L) f(@) '

Taking the limit of both sides ais+oo, we obtaini;,g(Y)>hina(X). [ |

6 Independence entropy andh

Let X be aZ shift space overd. For any meN¢, any configuration of
Bimx {0} (X®@TD)) can clearly be thought of as a configuration B, (X®?)

by simply ignoring the last coordinate of each entry. It follows by (1) that
h(X®?) is non-increasing ind. Combining this with Theorem 3 we have
WMXEY>h(X®*)>. . >hina(X). We denote the limiimg_, o, h(X ") by hoo (X).
Obviously h.,(X)>hine(X), and for the few examples for which we can com-
puteh..(X), it turns out to be equal th;,4(X). It is an interesting open question
whether this is true for all shift spacés In this section we exhibit a few families
of Z shift spaces where this equality holds. In all but one oféhese prove that
the rate of convergence af X “') is exponential.
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6.1 TheRLL(D,oc) SFT

Let D<K be nonnegative integer®LL(D, K) is theZ-SFT over the alphabet
{0, 1} consisting of all bi-infinite binary sequences in which gv&un” of ‘ 0’s

has length at mos€ and every two consecutivé’s are separated by at leaBSt
‘0’s. It is defined by the forbidden li§0**1} U {101 : i€[D]}. The parametet

is allowed to bex, in which case there is no upper bound on the length of a run of
‘0's andRLL(D, o) is defined by the forbidden ligtl0°1 : ic[D]}. These shifts
are widely used in digital storage systems based on optichh@agnetic record-
ing. The independence entropy RL.L(D, K) is computed in [19, Theorem 25]
and is given by:

(K —D)/(D+1)|In2

hiaa(RLL(D,K)) = 7 T (0 + 1) ©)
hina(RLL(D, c0)) = gfl (7)

In [17], Ordentlich and Roth show that for all nonnegativaegers D,
hoo(RLL(D, 00)) = hina(RLL(D, 00)). In fact, they show that

2 (1n2(d(D+1))) |

h(RLL(D, 00)™") = d(D+1)

- D+1

6.2 7Z-SFT’'s with zero independence entropy

We now give another family af-SFT’s X for which h;,4(X) = he(X). Note
that from (6), forkC<2D, hina(RLL(D,K)) = 0. In [9] it is shown that indeed
hoo (RLL(D, K))=0 for suchD and K. In this section we show that the latter
equality holds for alZ-SFT’s with zero independence entropy.

We need the concept of an irreducible component of a finieetid graph and
we summarize it here. For a labeled graph= ((V, E), £) and a subset/CV,
we call the graph(U, Ey, L|g,) whereEy = {e€E : o(e)eU,7(e)eU} the
subgraph o7 induced byU. For two vertices:, veV we say that is reachable
from v if there is a (finite) path irg that starts inu and ends inv. We write
u & v if u is reachable from andv is reachable from. If u < v does not hold

we write u <7'i> v. The relationds is an equivalence relation on the verticegjof
and the equivalence classes are calledrtieelucible componentsf G. For any

In [19] the independence entropy is defined uding, instead ofin. Accordingly, their for-
mulas, presented here, are scaled by a factar f

13



irreducible component of, we shall sometimes also refer to the subgrapt of
that it induces as an irreducible component. A grgpis calledirreducibleif it
has only one irreducible component,reducibleotherwise.

Theorem 5. Let X be anm-stepZ-SFT overA with h;,4(X) = 0. Then for all
d,

h(X™y < g x ™.
m+1

In particular, h..(X)=0.
RemarkThe proof is a generalization of the proof of [9, Theorem 2].

Proof. For any suchX, we construct a presentatigh= ((V, E), L) of X. Its
vertices are alln-letter words over4, V' = A™, and the edges and their labels
are given by

E = {(wp.. wy_1,w1.. wy) : wy. . w,eB(X)},

where for anye = (wo.. Wy_1,w;...wy)EE, o(e) = wp.. Wy_1, T(e) =
wy. . Wy, andL(e) = w,,. It's easy to verify thaig is indeed a presentation
of X. We will need the next two lemmas. The first shows that;if;(X) = 0,
knowledge of long enough prefixes and suffixes of a wor{X) is often suffi-
cient to determine the middle of the word.

Lemma 1. Let X be anm-stepZ-SFT overA with h;,4(X) = 0, and letG be as

above. Letr, yc.A* be words of lengthn such thatr<g>y. Then there is at most
one word of the formray, whereac A, in B(X).

Proof. Assume to the contrary that there are two such wardg xbycB(X)
wherea, be A anda#b. Therefore there are two paths—one generating and
the other generatingby—in G. By the construction ofj, any path generating
x must terminate at and the same holds fay. It follows that there are two
paths, both starting at and terminating ayy such that one generatey and
the other generatdsg,. Since, by our assumptiom, andy are in the same ir-
reducible component, there is a path generating some woeunl starting aty
and ending at. Consequently, for alkeN and sequencé:;)%_ C{a,b}, there
is a cycle inG generating the word,yzcoyz. . .cpyz. Lety = yo...Ym_1, and
z = 2...2z0-1, Wherey,, z;e A for i€[m], j€[(|, and denote by}, 2 the words
over A given by = {yo}.. {ym_1} andz = {z}.. .{z_,}. It follows that for
all keN, ({a,b}j2) e B(X). But then,hin(X)>(In 2)/(m+(+1), contradicting
the fact thath;,q(X) = 0. [ |
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The next lemma bounds the number of appearances of worde &drtim zay
in a certain word ofB(X), wherex, yc.A™ belong to different irreducible com-
ponents ande A.

Lemma 2. Let X be anm-step SFT,G be as above and’; denote the
number of irreducible components gt For /eN and z€Bj41)m+q(X), let
y O . yDeAd™anda®, .. . a"YeA be defined by

Then
Hie[ﬁ] : y(i)g:%y(i“)}) < Cg.

Proof. Assume to the contrary that there aregli;<i,<...<ig,<( such that
(@) Gyt forj = 1,.. ., Cg. Then the sequenggi®), y(i2) . ylicg) ylicg+D)
hasCg+1 vertices and therefore contains two belonging to the saraducible
component, say® andy"), for some integer§<s<t<¢, with se{is, ..., ic,}.
Since the wordy®)a®)y+Ye B(X), it is easy to verify thay**! is reachable
from 3. Similarly, sincey(+Va(sty(s+2)g(+2) =Dy e B(X), it holds
thaty® is reachable fromy+). But sincey®) is in the same irreducible compo-
nent ag/®, it follows thaty® is reachable fromy+1 as well. Thug)®) &+
which contradictse {i1, .. .,ic, }- |

We can now prove Theorem 5. Létbe a positive integer. Denote by
1eN‘ the d-tuple with every entry equal té, and letm,cN?*! be given by
my=(((+1)m~+(, ¢, ¢, ..., ¢). We will give an upper bound 0By, (X D).
Let SC[({+1)m~+/] be the set[({+1)m+¢\{i(m+1)+m : i€[f]} and set
I' = Sx|[l]. For the purposes of this proof we abbrevidte(X““"") by Br.
For a configurationze Br, define the setA(z)C By, (X®WH)) by A(z) =
{2€ Bm (X®@H) : 2|p = z}. Clearly,

| JA(@) = B (X4D), (8)

rEBr

Letz€Br, and fixje[l]. Forie[(+1], lety(i, j, )€ A™ be the word given by

y(ihﬁ x) = T(i(m4+1),j) L(i(m+1)+1,§) - - -L(i(m+1)+m—1,j)

and forz€ A(z) letw(z, j)e A“+D™+¢ pe the word given by
w(2,J) = 2052 (e Dmie-1)-
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y(1,j:x) m

y(l—l,j,X)

+1

y(L,j.x)

y(0.j,x)

Figure 1.z € Br

Note that for such, sincez€ B, (X®@™), w(z, j)e B(X). Sincez|r = ,
we may write

w(Z7j) - y(07j7 x>a(07j7 Z)y(]'7j7 x)a(17j7 Z)‘ ° .y(€_17j7 x)a(£_17j7 Z>y(£7j7 x)?

where a(i, j, 2) = Zum+1)+mj) fOr everyie[(]. Now, if ic[(] has the prop-
erty thaty(i,j,x)&y(wrl,j,x) then, by Lemma 1, altc A(z) have the same
a(i,j,z). On the other hand, by Lemma 2, sindé¢x) # 0, we have|{ic[(] :
y(i,j,2)dy(i+1,j,2)}|<Cg. It follows that [{w(z,j) : z€A(z)}|<|.A|%, and
consequently
. d
[A@@)] < [T Hw(zJ) - zeA@)}[<] AP 9)
Jjefl]
Since for anyz€Br, and anyi€S, it holds thatz|g«py€Bpy (X®?) (where we
identify a configuration or{i} x [1] with a configuration orl] in the obvious
manner), we get thaBr|<|By (X ®%)|*l. Combining this with (8) and (9), we
have
[Blaag (X = D JA(2)] < LA By (X2 (0.

QTGBF
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Taking the natural logarithm of both sides and dividing|fa,]|, we obtain

I | B ) (X* )| (4 Dm In|By(X*)|  Cgln|A|
o] YA + Om+{

The theorem follows by taking the limit &s-oc. |

6.3 The golden mean SFT

Thegolden mean SFG is theZ-SFT on{0, 1} with forbidden listF = {11}. We
note thatG is theRLL(1, co) SFT as defined in Subsection 6.1. As was already
mentioned, itis shownin [17]that, (G) = “‘72 soindeedi,, = hinq. Korshunov
and Sapozhenko [11] show that

Y | Bigja(G)]
11m —— a1 — 1,
d—oo  2,/e2?

which, sincen(|By(G%7))/2% > h(G*?), implies that for large enough

h(G®%) < 1%2 + 20(d)g—d

So h(G®?) approache$ln 2)/2 at least exponentially fast. Our next theorem im-
proves this bound, and also provides a lower bound. Tog#étlese show that the
rate is indeed exponential. In what follows, we call two siteycZ“ adjacent if

x —ye{te; : i = 1,...,d}, whereey, .. ., e, are the standard basis vectors for
R?. In this section, we say that a configuration is locally adsbie in G? if it is
locally admissible w.r.t the forbidden list consisting df@nfigurations on pairs
of adjacent sites iZ.¢ having ‘1’s in both sites.

Theorem 6. For sufficiently larged,

11172 + 1117222(1 S h(G@d) S 11172 4 20(d)272d'

Proof. We begin with the upper bound. The main result which we wi# is
from [7], and concerns the phase transition exhibitedsBy for large values of
d. To state the result, we need a few notations. Gall Z¢ evenif the sum of
the entries ob is even, andddif the sum of the entries of is odd. ForneN,
let A, = ([-n + 1,n] N Z)¢, andd*A,, = A1 \ A,. Define the configuration
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da,.. ONO*A,, which has 0's at even sites and’s at odd sites, and the probability
measureuy,,, . on {0, 1}/‘" which is uniform over all configurations on A,, for
which the configuration U 6, . on A,, U 9*A,, is locally admissible irG®.

It is shown in [7, Theorem 1.2] (where theiris 1 in our setup) that there
exists DeN so thatua, (z(v) = 1) < a(d), for anyneN, d > D, and even
vertexv € A, wherea(d) = 2-2=°()4 We assume thab is so large that
a(d) < 1 whend > D.

Now, we will use a counting argument to give an upper boundhersize of
the setS,, . of configurationse on A,, for whichz U 65 is locally admissible in
G®4, Sinceuy, (z(v) = 1) < a(d) for all evenv € A,

d
) (#of ‘I'satevensitesin) < a(d)ISn,el@.

TESh,e

Itis then easy to see that the number of configuratiors§ inwith total number

of ‘1’s at even sites fewer tham(d)(2n)? is at Ieast%. Denote this set of
configurations bys; .. We note that for any way of filling the even sites /of

with ‘0's and ‘1's, there are obviously at most’s- ways to fill the leftover odd
sites. By this observation and by indexing by the numbef ‘1’s at even sites
within configurations inS! _, we see that

n,e’

(md la(d)(2n)?] , (2n)4 o (2n)4
s Y () 22 @@ (|t )

k=0

Therefore, by Stirling’s formula, fod > D,

In|S] — —(1— —
lim sup n|S;, | < In2 N 2a(d) In(2a(d)) — (1 — 2c(d)) In(1 2a(d))7
(10)
which is less thai? + 2~ for sufficiently larged. We recall thats,, .| >

% and also note that any configurationfiy,_, (G®¢) can be extended to a
configuration inS,, . by surrounding it with®’s. Therefore|S,, .| > Ba, ,(G®?),
Itis then clear that i), , were replaced by, _, (G*?) in (10), it would still hold,
and soh(G®?) < 122 4 2-(2=e()) for large enough.

For the lower bound oh(G®¢), we use a different measure to distribuiés
and 1'sin A,,. For anyn, defineFE,, to be the set of even sites in the rectangular

prism A,,. Define the patterp = 00 (where we abbreviate and writg" for
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{0}"0) containing 0's at the2d neighbors of the origin. (Obviously translations
of p contain 0’s at the neighbors of some other siteZifi) Define the shape

C = Ay U(E, N0 (An1)).

Note that every configuratiom € {0, 1}*~ can be extended to some set of con-
figurations inB.(G®9) by filling in the odd sites in\,,_; with ‘0’s and ‘1's. For
eachw, one can do this i’ ways, wheré is the number of occurrencespin w.
This is true since the only odd sites which are not forced t0 theenw are those
which are surrounded by’s (i.e. those which are at the center of an occurrence
of p in w), and since no two odd sites are adjacent, each of thedd sites may
be independently filled with or 1 givenw.

Denote byf(w) the number of occurrences pfn anyw € {0,1}#". Then,

Bo(G*)| = Y 2> Q\En\2<27‘En‘Zwe{°’1}E” f(w))
we{0,1}En
by Jensen’s inequality and convexity 3. It is clear, however, that
271 S etoaym, f(w) s just the expected value of the functigifw) with re-

spect to the(1,1) Bernoulli measure o0, 1}*», which is272|C' \ E,| =
n_2)d
2-2d9*3=\We have then shown that

(2n—2)4
3

n d —
| Be(Go4)| > 25927 (11)

SinceA,,_; C C C A, lim,,_,o % = h(G®?). So, by taking logs of both

sides of (11) and dividing b{2n)?, we see thab(G®%) > 12 4 2972, |
RemarkIn fact, our reading of the proof in [7] suggests that the egpion2°(9)

in the statement of the theorem could be replaceayor some constanisand
k.

6.4 The3-checkerboard

The 3-checkerboard SFT is the Z-SFT on{0, 1,2} with forbidden listF =

{00, 11,22}. In this section, we will use the results of Subsection 6.3How
thath.(C) = hina(C) = 122, This answers a question of [6]. For aynd any
r € Z¢, we define thaneighbor sebf » asN, := {y€Z? : y is adjacent tac}. In

this section, we say that a configuration is locally admissitbC if it is locally

admissible w.r.t the forbidden list consisting of all configtions ove{0, 1,2} on

pairs of adjacent sites i having the same symbol.
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Lemma 3. Let S C Z9 be finite, letr € S, and letU, = N, N S. Then for any
partition { A, A} of U,,

| B2} (G*)| + By ((a)u(wa) (G| = [Bs\twpuan (G*)| + | Bsy((ajuaz) (G*)].

Proof. Choose sucht and z, and fix any partition{ A,, A,} of U,. By the
definition of G®¢, adding 0’'s to a globally admissible configuration always
yields a globally admissible configuration. Therefore, va@ define an injec-
tion ¢1 : Ba\(z3uay) (G®?) = Bg\(23(G®9), whereu — v U041, Similarly, define
$a 1 B\ ({z}uas) (G®?) — Bg\(2}(G®?), whereu — u U 042, Then itis clear that

| Bs\(23(G®)] = | Bs\((zyuan) (G*D)| + | By (fajuan) (G=9)|
— |01(Bs\({zyuan) (G®Y) N da( Bsy (z10as) (GZD) .

We now note that for any c ¢1(BS\({$}UA1)(G®d)) N ¢2(BS\({$}UA2)(G®d)),
v|a, = 041 andwvl,, = 042, and sov|y, = 0Y=. But then clearly any such is
determined by its letters ofi \ ({z} U U,), and so

|61(Bs\(wyuan () N G2(Bsy (o) (G*))] < [Bsyapov,) (G*)],
completing the proof. |
Our next result gives an upper bound on the topological pyitad aZ? SFT
X in terms of ad — 1)-dimensional expression.

Lemma 4. Letd > 1, X be aZ? SFT overA, defined by a forbidden lisF,
and meN®!. For w € Bjmxio1(X) we defineS(w) = |{v € Amx{1}
v U w is locally admissible w.r# }|. Then

1
h(X) < max _ S(w).
[[m]| ]I Y v B 1oy (X)
Proof. Letm = (my,...,mq—1) and forneN setn = (my,...,mg_1,n). One
can construct every configuration By, (X) by filling the values of the sites of
each “layer”,[m] x {i}, inturn, fori = 0,1,...,n—1, so that at each stage our

configuration is globally admissible. There &f#,,). (0} (X)| choices for the first
such layer, and at mostax,cp,,,, ,(x) S(w) for each successive layer given the
previous one. It follows that

Buy(X)] < | B X{o}<x>|( max S(w))n_

WE Blm] x {0} (X)
< | Al max  S(w) | .
WEB{m] x {0} (X)
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By taking the logarithm of both sides and dividing ||, we get

In | By (X | 1
n | By (X)) < nl Al b max S(w)
|[n]| n Im]|  weBmx 0} (X)

hX) <

which upon letting: — oo, completes the proof. |

We now state the main result of this subsection, which withalus to use the
fact thath.(G) = hina(G) to show thati,,(C) = hina(C).

Theorem 7. For anyd > 1, h(G®%) < h(C®?) < h(G®(-1),

Proof. We begin with proof of the lower bound dr{C®¢). For anyd and for any
d-tuplem, we define an injection fron |, (G¥%) to B, (C*?). We again define
j € Z%to be even if the sum of its entries is even, and odd if the suits ehtries
is odd. Then, for anyn and anyw € By, (G*%), definegy, (w) by

0 ifw(j =1
(pm(w))([§) =41 if w(j) =0andjiseven
2 if w(j) =0andjis odd

It is clear thatp,, (w) is locally admissible; since» did not contain two adjacent
‘1's, ¢m(w) does not contain two adjacerit's, and by definitiong,,(w) does
not contain two adjacent’s or ‘2’s, since adjacent sites have opposite parity. Itis
easy to see that in fagt, (w) is globally admissible by applying a similar mapping
to the configuration’eG™ in which w appears. Figure 2 illustrates this concept;
any configurationo in By 5(G®?) yields a locally admissible configuration in
By(5,5(C#?) by letting a0 at a site inw correspond to the second choice at that
site, and d at a site inw correspond to the first choice at that site.

Therefore | By, (G®?)| < |Bim)(C®%)|, and by taking logarithms and normal-
izing we get the first inequality of Theorem 7.

The proof of the upper bound is more involved. The main idetoisise
Lemma 4. We claim that for any > 1, any (d—1)-tuple meN¢~!, and any
W € By (CPUD), S(w) < |Bmy(G®@Y)[. If we can prove this claim, then
Lemma 4 impliesh(C®%) < h(G®1-Y). We first think of S(w) in a slightly
different way.

For anyw as defined above, we can define an associated diagram, which we
call the up-followers diagranof w and denote by/(w). The up-followers di-
agramU (w) of anyw € Byy(C®?) is a member of {0, 1}, {0, 2}, {1,2}}™),
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NN
NSNS
NN
NSNS
NN

Figure 2: Definingp s 5

where for anys € [m], (U(w))(s) contains{0, 1,2} \ {w(s)}. Then clearly,S(w)

is the number of ways to fill/ (w) (by choosing one of the two options at each
site) with a locally admissible configuration @#“~Y. As an example, in Fig-
ure 3,5(w) is equal to the number of ways to choose a letter at each siteein
up-followers diagrant/(w) on the right to make a locally admissible pattern in
Cc®2,

NSNS
NN
NSNS
NI
AN

w

Figure 3: A configurationv and up-followers diagrart/ (w) induced by it

We are then attempting, for any, to bound the maximum number of ways to
fill U(w) with locally admissible configurations 1641, It is easy to see that
any way of assigning the paif, 1}, {0, 2}, and{1, 2} to sites such that adjacent
sites receive distinct pairs is an up-followers diagramsfame locally admissible
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w in C®=1 _(This restriction comes from the fact thatitself must be a locally
admissible pattern i6®(“-1  and so it does not contain the same letter in adjacent
sites.)

We will now again recast this problem. Since the intersectb any two
distinct2-element subsets ¢f), 1,2} is a singleton, for each adjacent pair of sites
s, in an up-followers diagran/(w) of some configuratiom € Bjy, (C®4-D),
exactly one of the four possible ways to choose lettersaatd? is disallowed in
C®(@=1 We use this fact to associate to any up-followers diagasm U (w) (on
the set of sitesn C Z?) an object called orbidden adjacency chadr FAC. The
FAC associated t&’ consists of, for every set @fadjacent position§s, ¢} C [m],

a forbidden adjacencyy; € {a, b}{*! defined by

W (s) = a IfminU(s)=U(s)NU(t)
{s:t} b ifmaxU(s) =U(s)NU(t)

a IfminU(t) =U(s)NU(t)
b ifmaxU(t) =U(s)NU(t).

As an example, Figure 4 contains an up-followers diagramitsressociated
FAC. (The pair of symbols flanking each edge denotes thedddsi adjacency for
the pair of sites sharing that edge.) It is straightforwardteck that the number
of ways to fill U with a locally admissible configuration i@®(“~) is the same as
the number of ways to fill the FAC associatedltdoy choosing eithet or b at
each site and avoiding all of the forbidden adjacencies.

andw{&t} (t) = {

1/2 0/2 0/1 0/2 1/2 bbbaaabaaabbb
b a a a b
0/2 % 1/2 % 0/2 gaagbagabgaaB
0/1 1/2 0/1 0/2 1/2 gbagabgaagbbB
0/2 % 0/2 % 0/2 baagaabbbbbbg
bb bb bb aa
2% %2 % % et

Figure 4: An up-followers diagrarfi and the FAC induced by it
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It is now sufficient to show that for any FAC, the number of way#ll it with
lettersa, b without using any of the forbidden adjacencies is at moshtheber of
globally admissible configurations with the same shap&iti—"). We will prove
this claim for FACs with any shape Iir*~* (not just rectangular prisms), and will
prove it by induction on the number of sites in the FAC. To lg®rous, we now
say that a general FAE consists of any finite set C Z4-! of sites and, for every
pair {s, ¢} of adjacent sites it5, some forbidden adjacenay, , € {a, b},

The case wheré' has0 sites is trivial. Assume that the claim is true whenever
|S| < k, and consider an arbitrary FAE with |S| = k. Choose any: € S. Then
we may partition the legal ways of filling" by the letter atc. Due to the fact
that each pair of adjacent vertices$nis associated with exactly one forbidden
adjacency inF', we may define a partitiofiA, B} of N, N S, whereA is the set
of sites in/V, N S whose letters are forced when ais placed at:, and B is the
set of sites inV, N S whose letters are forced wher & placed at:. This means
that the number of ways of filling’ is less than or equal to the number of ways of
filling F|s\ ({zjua) plus the number of ways of fillindg’| s\ (z3uns), where for any
T C S, F|r is the FAC with set of site¥’ and adjacencies inherited from

However, by the inductive hypothesis, the number of ways bindi
Fls\({zjua) is less than or equal t0Bg ((jua)(G®@ )|, and the number
of ways of filling F|s\(:jup is less than or equal thBg (z3um)(G¥Y)).
Lemma 3 then implies that the number of ways of fillidgis less than or
equal to| B ;1 (G2 V) |+ | Bs\ (tz3u(nv.ns)) (GE@~1)|. However, by partitioning
Bs(G®@=1) by the letter which appearsatit is fairly clear that B(G®@—1)| =
| B (23 (GZ@D)| + | Bsy ({zu(nvansy) (G2@Y)|, completing the induction and the
proof.

[

The following is now obvious by Theorems 6 and 7.

Corollary 1. /4(C) = hina(C) = 22, and for sufficiently largd, 1224222724 <
h(c@d) < 11172 + 20(d)2—2d.
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